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A NOTE ON PROJECTIVE LEVI FLATS
AND MINIMAL SETS

OF ALGEBRAIC FOLIATIONS

by Alcides LINS NETO

1. Introduction.

A non trivial minimal set of a singular foliation T on a complex
compact manifold M, is a closed set M C M with the following properties:

a) A4 is invariant for T\

b) M ̂  0.

c) M does not contain singular points of T.

d) M. is minimal with respect to properties a), b) and c).

We shall use the abbreviation n.t.m.s. to denote "non trivial minimal
set".

In [CLS1] the problem of the existence or not of n.t.m.s. for codimen-
sion one foliations of CP2 was studied. In particular it was proved that for
any k ^ 2, the space of foliations of degree k contains an open non empty
set, say A^, such that any foliation F C Ak has no n.t.m.s. It was proved
also that if a foliation has an algebraic leaf then it has no n.t.m.s. Since
foliations of degree 0 or 1 have always algebraic leaves, they cannot have
n.t.m.s. In general, the question of the existence of foliations in CP2 having
n.t.m.s. remains open. Concerning this problem we will prove in §2.1 the
following result:

Keywords: Holomorphic foliation - Non trivial minimal set - Levi flat.
Math. classification: 58A17 - 32F15 - 32F25.
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THEOREM 1. — Codimension 1 foliations on CP^ n ^ 3, have no
n.t.m.s..

In fact Theorem 1 will be a consequence of the following result:

THEOREM 1'. — Any closed invariant set of a holomorphic codimen-
sion one foliation ofCP71, n ̂  3, contains a singularity of the foliation.

Another problem that we will consider is the existence of Levi flats in
projective spaces. Let M be a complex manifold of complex dimension n
and L be a C1 submanifold of real codimension 1. Given p G L, the tangent
space Tp(L) contains an unique complex subspace of complex dimension
n — 1 that we shall denote Cp. This defines a distribution C on L.

We say that L is a Levi flat if the distribution C is integrable. The
integrability of C implies that L has a Ck~l foliation T, whose leaves are
tangent to the subspaces Cp,p € L. Since the subspaces Cp are complex the
leaves of T are holomorphic immersed submanifolds of complex dimension
n-1.

In §2.2 we shall prove the following result:

THEOREM 2. — jFor n ^ 3 there are no real analytic Levi flats on CP71.

In §3 we will generalize Theorem 2. In order to state the main result
that will be used, we consider the following situation:

Let M be a holomorphic manifold of complex dimension n ^ 2. Let
V be an open set of M satisfying the following properties:

a) All connected components of V are Stein.

b) The closure V of V, is compact and connected.

We will denote by K the boundary V \ V of V. Given a neighborhood
U of K, 0 < j <^ 2n, and p C K, let

(*) hj : Hj(U, Z) —. Hj(V, Z) and ij : H (U,p) —> Tlj(V,p)

be the homomorphisms induced by the inclusion i : U —> V in the
homology and homotopy groups respectively. The following result is a kind
of generalization of Lefschetz Theorem on hyperplane sections (cf. [M]):

THEOREM 3. — For any neighborhood A of K in V there is a neigh-
borhood U of K such that UcA and hj and ij as in ( * ) are isomorphisms
for j ^ n — 2 and are onto for j = n — 1. In particular we have the follcvv'ing:
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(i) K is connected.

(ii) IfK is a C1 real submanifold ofM then the homomorphisms below
are isomorphisms for j ^ n — 2 and are onto for j = n — 1:

h, : H,(K^) -^ H,(V^) and i, : Hj{K,p) —. II,(y,p).

(iii) If K is a C1 real submanifold ofM and n ^ 3 then IIi(JC,p) and
ni(^,p) are isomorphic.

It is not difficult to see that Lefschetz Theorem on hyperplane sections
is a consequence of Theorem 3. Another consequence is the following:

COROLLARY — Let M be a compact complex manifold of complex
dimension n^ 3, with finite fundamental group. Then M cannot contain a
real analytic Levi flat L such that all connected components of M\L are
Stein.

The above corollary follows from (iii) of Theorem 3 and Haefliger's
Theorem, which says that a real analytic manifold with finite fundamental
group admits no real analytic foliations (cf. [Ha]).

I would like to thank A. Douady and M. Brunella for helpful conver-
sations and ideas and the referee for some useful suggestions for the final
version of this paper.

2. Non trivial minimal sets and Levi flats.

In this section we prove Theorems 1' and 2. In the proof we will use
the following:

THEOREM [T]. — Let U be an open connected subset ofCP^n ^ 2,
satisfying the following properties:

(i) The boundary 9U of U is not empty.

(ii) For anyp C 9U there exists a holomorphic embedding fp : B71"1 —>
CP", where B71-1 is the unit ball in C71-1, such that /p(0) = p and
fp(Bn-l)nu=0.

Then U is Stein.

Note that condition (ii) implies that U is locally pseudo-convex, that
is, if p C 9U", then there exists a neighborhood V of p such that V D U is
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Stein. Therefore Theorem [T] is a consequence of a Theorem of Takeuchi
(cf. [T] and [E]).

As a consequence we have the following:

COROLLARY — Let K C CP^yi ^ 2, be either a Levi flat or a
closed invariant set of a holomorphic singular foliation of codimension 1
ofCP71, which does not contain singular points of the foliation. Then every
connected component ofU= CP71 \ K is Stein.

2.1 Proof of Theorem 1'.

The idea is to prove that the singular set of a holomorphic foliation
of codimension 1 on CP71 must have at least one irreducible component of
complex codimension 2. This fact together with the corollary of Theorem
[T] implies Theorem 1'. In fact, if a foliation T on CP^n ^ 3, had a
closed invariant set K such that K D sing(.F) = 0, then, by the corollary
of Theorem [T], the connected components of the open set U •==• CP77' \ K
would be Stein. On the other hand the singular set of T contains some
irreducible component, say S^ of dimension ^ 1. Since a Stein open set
cannot contain a compact analytic subset of dimension greater than zero,
this would imply that S D K 7^ 0, which is a contradiction.

We will consider the following situation:

Let T be a foliation of degree k on CP2, with finite singular set
smg(f). Given p G sing(^7) let X be a holomorphic vector field in a
neighborhood V of p which is tangent to F. Suppose that the linear part
A = DX{p) of X at p is non singular. The Baum-Bott index of F at p is
defined in this case by

BB{F,p} = (trace (A))2/det(A).

The Baum-Bott index can be defined for any isolated singularity (cf. [BB]
and [MB]), but we will use it only in the non degenerate case.

We will use the following result, wich is a consequence of a theorem
ofBaum and Bolt (cf. [AL-N]):

PROPOSITION 1. — Let F be a foliation of degree k on CP2, with
singular set sing^) of complex codimension 2. Then

^ BB(^p) = (A;+2)2 .
p(Esing(:T)
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In particular ^ BB{F,p} is positive for any foliation F on CP2.
pesing(^)

Now let Q be a codimension one holomorphic foliation on CP7'1, n ^ 3,
and suppose by contradiction that all irreducible components of sing((?)
have complex codimension ^ 3. Let E C CP71 be a 2-plane in general
position with respect to Q. The 2-plane E is a linear embedding of
i : CP2 —^ CP71, where £J = i(CP2), with the following properties:

a) E is not containned in any leaf of Q.

b) E intersects transversally all smooth strata of sing(^).

c) Outside E D sing(<?), the set of tangencies of Q with E has
codimension at most 2 in E.

In Proposition 1 of [CLS2] it is proved that the set of all 2-planes
satisfying (a), (b) and (c) is open and dense in the Grassmanian of 2-
planes in CP71. It follows from (a) that the i*(G) == F is a codimension one
foliation on CP2. Condition (b) and the fact that all irreducible components
of smg(Q) have codimension ^ 3, imply that E D sing(^) = 0, so that the
singularities of F correspond to the tangencies of E with some leaves of Q,
and so (c) implies that smg(^F) is finite.

Let p G sing(.^'). Since i{p) = p ' is not a singular point of Q, this
foliation has a holomorphic first integral, say ^, defined in a neighborhood
U of p', where dg{p') ^ 0. Let f = g o i. Observe that / is a local first
integral of F. Since p ' is a tangency of G with E^ we must have df(p) = 0,
so that p is an isolated singularity of / and of F. We say that p ' is a
tangency of Morse type if p is a Morse singularity for /, that is in some
coordinate system ( x ^ y ) around p such that x(p) = y{p) = 0 we have
f(x^ y ) = f(p) + xy. If this is the case, then the foliation F is defined in
a neighborhood of p = (0,0) by the vector field x 9 / Q x — y 9 / 9 y ^ so that
BB{F,p)=Q.

Now observe that the 2-plane E can be deformed a little bit to a 2-
plane £" in such a way that all tangencies of E ' with Q are of Morse type.
This assertion is an easy consequence of the following facts:

(i) Morse type singularities are stable by small perturbations.

(ii) Let g : £^(0,2) —> C be a holomorphic function, where g(0) = 0
and dg(0) -^ 0, say 9g/9xn(0) ̂  0. Let f(x, y) = g(x, y , 0 , . . . , 0) . Assume
that d/(0,0) = 0 and that df(x,y) ^ 0 for (x,y) (E B2^) \ {0}. Then,
given e > 0, there are a,&,c € C, with |a|, |&|, |c| < e and such that all
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singularities of h(x, y) = g{x^ y , . . . , ax + by 4- c) in ^(O,1) are of Morse
type.

We leave the details of the proof for the reader.

Finally, observe that we have obtained a foliation F ' = G\E' such that
for any p € sing(J'') we have BB(F^\p) = 0. This contradicts Proposition
1, so that sing(C?) must have some component of codimension 2.

2.2. Proof of Theorem 2.

The idea is to use Theorem 1', and the following result:

THEOREM 4 . — Let L be a real analytic Levi flat in CP71, n ̂  2. Then
there exists a holomorphic codimension one foliation F on CP71 such that
L is F-invariant.

Clearly Theorem 4 follows from the corollary of Theorem [T] and of
the following lemmas:

LEMMA 1. — Let Mbea complex manifold and LcM be a real analytic
Levi flat. Then, there exist a neighborhood U of L and a holomorphic
codimension one foliation Q on U such that L is Q-invanant.

Observe that, if F is the foliation on L defined by the integrable
distribution C of complex hyperplanes in L, then Q\L = F.

LEMMA 2 . — Let V be a Stein manifold and K C V be a compact
set such that U = V \ K is connected. Then any holomorphic codimension
one foliation Q on U, such that cod(sing(<?)) ^ 2, can be extended to a
holomorphic foliation on V.

2.2.1 - Proof of Lemma 1.

We will use the following fact in the proof:

ASSERTION. — For any p € L there exists a holomorphic function Jf,
defined in a neighborhood U ofp, such that dH(p) 7^ 0 and LC\U = ^^(O),
where v = Q^H).

The above assertion is well known and can be proved by using
Frobenius Theorem and the results of [To]. Since its proof is not long we
will give it at the end of §2.2.1. Let us prove Lemma 1 from the assertion.



NOTE ON PROJECTIVE LEVI FLATS 1375

Observe first that the assertion implies that for any p € L there exists
a holomorphic coordinate system

(f) = (x,y) : U —> C71, where x : U —> C71-1 and y : U —>C

such that L D U = y^1^), where z/2 = Q(y).

It follows from the above observation that it is possible to find a
holomorphic atlas of a neighborhood V of L

U = {U^<f>, = (x^y,)}^j where (x^y,) : U, —— C71-1 x C

such that

(i) If i^j 6 J, then Uij = Ui D Uj is connected and homeomorphic to a
ball in C71, if not empty.

(ii) For any j e J we have Uj H L ^ 0 and is homeomorphic to a ball
in L.

(hi) For any i^j € J such that Uij ^ 0 then L D Uij -^ 0 and is
homeomorphic to a ball in L.

(iv) For any j € J we have Uj r\ L = {^(%) = 0}.

Now let z, j € J be such that L^ C\Uj ^ 0 and consider the change of
chart

Cf> = ̂ 3 = <t>i ° W1 '' Wij) ——^ Wj).

In order to simplify the notations let us call X i = x ^ y i = y , X j = z
and yj = w, so that (f)(x,y) = (^(a:,?/),w(.r,2/)). It follows from (i), (ii)
and (iii) above, that the domain of w, ^(^j), is homeomorphic to a ball
and contains a ball B C C71"1 x R c C71"1 x C. Moreover, condition (iv)
implies that if (a;, t) € i? (^ € R), then w(a*, t) € R, so that the holomorphic
function x i—^ w(x,t) (t fixed) must be constant. This implies that the map
(x^t) € B \—> w{x^t) does not depend on x. Since w is holomorphic it
follows that (a;, y) «—^ w(x^ y) does not depends on x.

The above argument implies the coordinate changes <^j, are of the
form

^ i J ^ j ^V j ) = {x i ( x j , y j ) , y i ( y j ) ) .

Therefore the atlas U defines a codimension one foliation on the neighbor-
hood V = U^£/y ofL.

Proof of the assertion. — Let 7 be the foliation on L defined by
the distribution of complex hyperplanes C. Since L is real analytic F is



1376 ALCIDES LINS NETO

also real analytic. Fix a point p e L and a holomorphic coordinate system
{(f) = (x, y), U) with the following properties:

a) x={x^...,Xn-i) :U—>Cn-l and?/: U—> C.
b) p e U and 0(p) = 0.

c) The surface {x = 0} is transversal to the leaves of F.

Condition (c) implies that L H {x == 0} is a real analytic curve 7^) =
(0,?/(t)). After a holomorphic change of variables in the coordinate y we
can suppose that y(t) = t, which means that L D {x = 0} is the real axis in
the ^/-plane. Let Ff be the leaf of F through 7^). Since Ft is holomorphic
it can be written locally as the graph of a function, say y = (p(x, t), where
(p is real analytic, holomorphic with respect to x and <^(0, t) = t. If we set
(p = u + w, where u = R((p) and v = 9(y?), then the hypersurface L can be
defined locally around p by eliminating t in the equation y\ — u(x, t) = 0
Q/ = 2/1 + ^/2), say t = h(x,y^), and substituting h in ?/2 - v(^), so that
in a neighborhood ofp, L is given by y^ = v(x,h(x,y^)).

00

Now, let ^p{x,t) = ̂  (in^x)^ be the Taylor series in t of ^ around
n=l

(0,0). Extend ^ to a neighborhood of (0,0) in C71"1 x C by setting (p(x, z) =
00

^ OnCr).^ , /Z € C. Let F ( x , y , z ) = y - y(x,z). Since F(0,0,0) = 0
n==l

and 9F/9^(0,0,0) ^ 0, by the implicit function theorem, there exists a
holomorphic function H{x, y), defined in a neighborhood of (0,0), such that
(p(x, H(x, y)) = y . Finally, observe that L can be defined in a neighborhood
of (0,0) by Q(H(x, y)) = 0. We leave the proof of this fact for the reader.
This ends the proof of Lemma 1.

2.2.2. Proof of Lemma 2.

Let / : V —> R be a strictly-pluri-subharmonic C°° exhaustion of V.
Since Inn f(p) = +00, the sets Mi = {p e V; f(p) ^ t} are compact and
K C Mt for t ^ to, so that the foliation Q is defined on Vf = V \ M(, for
t ^ to. The idea is to prove the following:

(*) Suppose that Qt is a codimension one holomorphic foliation
defined on V^ such that cod(sing(^)) ^ 2. Then there exists e > 0 such
that Qt can be extended to a foliation on Vf-e.

Since m = inf{/} > -oo, it is clear that (*) implies Lemma 2. On
the other hand, since /-l(t) is compact, it is not difficult to see that (*) is
a consequence of the following:
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(**) Let Qt be as in (*) and p e /-1^). Then Qt can be extended
to Vt U W, where W is a neighborhood of p.

In order to prove (**) we use the following results:

LEMMA A (cf. [ST]). — Given p e /-1^) there exists a biholomor-
phism (f) : W —> W C C71, where W is a neighborhood ofp, and a Hartog's
domain H C W such that ^-l(^^) C Vt and p e ̂ (H).

A Hartog's domain is an open set H of C^n ^ 2 of the form
H = (U' x A(r)) U (£7 x (A(r) \ A(r')), where £/ and U ' are open sets
of C71"1, (7 connected, U Z) Uf ̂  0, A(r) is the disk of radius r in C and
0 < r ' < r. The set H is, by definition U x A(r). We observe that in Lemma
A, we can suppose that U and U ' are polydisks.

LEVPS THEOREM (cf. [S]). — Let H be a Hartog's domain and f be
a meromorphic function on H. Then f can be extended to a meromorphic
function on H.

Let us finish the proof of Lemma 2. Consider the biholomorphism (j)
as in Lemma A and let Q' be the restriction of ^(Gt) to H C C71. We
will prove that there exists an integrable holomorphic 1-form u; on H such
that Q' is defined by the differential equation uj \H == 0. This will prove the
lemma.

The foliation Q' is defined locally by integrable 1-forms, so that there
exist a covering of H by open sets U = (Uj)j^j and collections (^)^eJ,
(^ij)uij^0 (Uij = Ui n Uj), such that

a) ujj is an integrable 1-form on Uj such that cod (sing (c^-)) ^ 2 and
Q' \Uj is defined by ujj == 0.

b) If Uij ^ 0 then hij € 0*(Uij) and on Uij we have ̂  = hzj . cc^.

Since H C C71 we can write
n

^ = ^g^dx, , where g{ e 0(Uj).
i=l

Observe that condition (b) implies that if Uj^ -^ 0 then

(*) 9i = hj^gi for all i = 1,.. . , n.

Since H is connected, it follows that for some i C {1 , . . . , n} we must
have g\ ^ 0 for all j C J. We suppose i = n, so that g ^ / g ^ defines a
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meromorphic function f^ on Uj for all i == 1,... ,n — 1. Now, (*) implies
that if Uj^ 7^ 0, then /̂ J = ff on L^, so that, for all i = 1,..., n — 1, there
exists a meromorphic function fi on Jf, such that /^ |?7 = fi- It follows
from Levi's Theorem that fi can be extended to a meromorphic function
on H, which we call still fi.

Consider the meromorphic 1-form rj defined on H by

n-l

rj = dxn + ̂  fi . ctez
z=l

Since Jf is a poly disk, it follows that there exists h G 0(H) and a
holomorphic 1-form uj on H such that cod(sing(c<;) ^ 2 and 77 = —.€<;. It

/i
is not difficult to see that for all j E J we have uj \jjj = Qj'^j for some
g^ € 0*(£/j), so that uj is integrable and the foliation defined by u} = 0 on
H extends G ' . This ends the proof of Lemma 2.

3. Theorem 3 and its corollary.

In this section we prove Theorem 3 and its corollary.

Let V, V and K=V \ V, be as in Theorem 3. Fix a neighborhood A
of K in V. We need a lemma.

LEMMA 3. — There exist neighborhoods U\ and U of K in V and a
now (p :RxV —>V such that

(a) Ui C I7i C U C A.

(b) (pt(p) =P, V p e Ui, where ^(p) = y(t,p).

(c) ^ \pxv is C°°. Let X be the C°° vector field on V which generates y.

(d) All singularities of X in V \ U\ are hyperbolic.

(e) Ifp G V \ U\ is a singularity ofX, then its stable manifold, Ws(p),
has (real) dimension at most n.

(f) Ifp^V\U is a singularity ofX, then W8 (p) is contained in V\U.

(g) I f F c V i s a compact subset ofV such that FC\ W8^) = 0 for any
singularity q of X in V \ U, then there exists SQ > 0 such that ^pt(F) C U
for t ^ SQ .
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3.1. Proof of Lemma 3.

Let N be a connected component of V. Since N is Stein, there exists
on N a C°° strictly-pluri-subharmonic exhaustion, say /. We will use the
following facts:

(1) The set of exhaustions of TV, is open in the Whitney C° topology of
/^O / \T TCD \U \^1\ , M.J.

(2) The set of C2 Morse functions is open and dense in the Whitney C2

topology of <72(./V,]R).

(3) The set of C°° functions is dense in the Whitney C2 topology of
^(N TRh\^ \^1\ , M.̂ .

(4) The set of strictly-pluri-subharmonic functions of class C2 on N ,
say SPSH^^.M), is open in the Whitney C2 topology of C'2(^,R).

The definition of the Whitney topology and the proofs of (1), (2) and
(3) can be found in [H]. Let us prove (4).

Let h C C^TV.R) and let Ch be the Levi form of h, which is defined
in a holomorphic coordinate system (x = (x\^..., Xn)i U) of N by

^h(p)'v = '^92h/Qxi9xj(x) .Vi.vj ,
i j

where (p, v) € TU and (re, (2:1,..., Vn)) = Tx(p, v).

By definition, h is strictly-pluri-subharmonic if, and only if, Ch(p)'v >
0 for all (p, v) € 7W, with v ^ 0. Let us fix a riemannian metric g on N
with norm | . |. Given h € SPSH^Tv.R) define kn : N —> R by

kh(p) = mf{£h(p)'v ; v € TpN and | v \p= 1}

so that kh > 0 on N. Now, for a fixed ho € SPSH^TV.R) let

U = {heC2(N^ \C^p).v-C^(p).v\<l/2.k^(p)
V (p,v) C N with | v |p= 1}.

Since Ch and kh depend only on the second jet of h, it follows from
the definition of the Whitney topology that U is a neighborhood of HQ in
C2(A^, R). Moreover if h C U, then k^ > 0, so that h € SPSH^TV, R), which
proves (4).

It follows from (1), (2), (3) and (4) that we can suppose that / is
a Morse function. Let g be the riemannian metric on N fixed before. Let
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Y = gradg(/), which is defined by dfp.v = gp(^, ̂ (p)), for any (p, 2;) € TN.
Let VA be the flow of Y.

The following facts are well known (cf. [M] and [Sm]):

(5) / is strictly increasing along non singular orbits of V.

(6) The singularities of Y are the points p of N for which dfp = 0.

(7) Given p such that dfp = 0, there exists a C°° coordinate system
x == (:KI, . . . , x^n) around p such that

2n

(*) /(a;) = /(p)+^ ^•(^•)2 + h.o.t., where 6 , e R \ { 0 } .
j=i

The number z(p) of negative bj's m (*), is an invariant of / and p and
is called the Morse index of / at p.

(8) If p and i{p) are as in (7), then p is a hyperbolic singularity of Y
and its stable manifold, W8^?)^ has (real) dimension i(p}.

We need the following:

ASSERTION. — For any singularity p of V, we have i(p) ^ n.

Proof. — It follows from Theorem 1.4.15, pg. 29 of [HL], that there
exists a holomorphic coordinate system (z = (z\,... ,2^), W) around p,
such that z(p) = 0 and the expression of / in W is of the form

n

(*) /(^) =/(p)+E[( l+a^•^2+( l-^)^2] +h•o•t-j=i
where ^ = Xj -\-i yj and 1 7^ Oj; > 0 (because / is a Morse function). This
implies the assertion.

Let us consider now the open set A' = A H TV. Since V is compact,
it follows that N \ A' is compact, which implies that there exists to ^ ^
such that /^((-oo,^) D N \ A', for t ^ to- Fix t2 > ti > to and let
Nj = y"1^-, +00) , .7=1,2, so that A' D ~N\ D M D TVs. We choose ti in
such a way that /^(fi) does not contain singularities of V, which implies
that Y is transverse to ./'"^i) and points inward A^i. Observe also that Y
has finitely many singularities on N \ N-^.

Now, let p G TV \ Nj, j = 1,2 be a singularity of Y. It follows from
(5), from the definition of Nj and from the fact that

W^p] = {q; ^Yt(q)=p}
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that

(9) WS(p)cN\1^^oTj=l^.

Let (f) : R —> R be a C°° function such that (t>(t) -=- 0 for t ^ t^,
(f)(t) = 1 for t ^ ti and (f)(t) > 0 for t € (ti,^>).

Let X^ be the C°° vector field on N defined by XN(p) =
0(/(p))-^(?)5 and denote by X^ its flow. It is not difficult to verify the
following facts:

(10) x N ( p ) = p ^ v pe7V2.
(11) lfpeN\N^ and ox(p), oy(p) are the orbits of X1^ and V through

p, respectively, then ox(p) = oy(p) C\(N\N^).

(12) / is strictly increasing along non singular orbits of X^.

(13) The singularities of X1^ on N \ N^ are hyperbolic and are singular-
ities of y.

(14) If p e N \ ~N] , j = 1,2, is a singularity of X1^ , then its stable
manifold coincides with W8 (p), the stable manifold ofp with respect to Y.
In particular (13) is true for X1^.

(15) If p € N \ A/i does not belongs to the stable manifold of some
singularity of X^ in N \ A/i, then there exists SQ > 0 and a neighborhood
Wp of p such that if t > SQ, then XN(Wp) C TVi.

This last assertion follows from the continuity of the flow and
from (12).

Let us finish the proof of Lemma 3. Consider the decomposition of V
in connected components, V = U N 3 . For each j C J, let f3 be a Morse

j'eJ
strictly-pluri-subharmonic exhaustion of N 3 . Let A3 = Ar\N3 and N^ C N[
be like N\ and N^ considered before. Let X1^3 = X3 be a vector field on N3

which satisfies properties (10), . . . , (15). Define the flow ^ : R x V —> V
by ^(,t,p) = p if p C K and ^p(t,p) = X^{p) if p € 7V-7. Observe that y?
satisfies (c) of Lemma 3.

Since f3 is an exhaustion of N3 for any j e J, it is not difficult to see
that U = ̂ ]N{ UK and £/i = U A^ 'UK are neighborhoods of Jf and satisfy

(a) of Lemma 3. Observe that this fact and (10) imply that ip is continuous
and satisfies (b), (d) and (f) of Lemma 3. On the other hand property (g)
of Lemma 3 can be easily checked from (15). We leave the details for the
reader. This ends the proof of Lemma 3.
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3.2. Proof of Theorem 3.

Let V, V, K and A be as in Theorem 3. Let U, U\ and (p be as in
Lemma 3. Fix p 6 K and consider the homomorphisms induced by the
inclusion i : U —> V:

(*) hq : HqW) -^ Hq(V^) and i, : Ilq(U,p) —. II,(V,p).

Let us consider first the homotopy case. Consider iq as above and let
us prove that it is onto for 1 ̂  q < n — 1. We will consider a class [g] in
Tlq(V,p) represented by a continuous map g : Sq —> V, where Sq is the
unit sphere in R9"1"1 and g{e) = p for some fixed e € Sq. Let V\ = V \ V\
and consider the open set A = g~^{V\} C Sq. It follows from standard
arguments of differential topology that it is possible to find a continuous
map h: Sq —> V such that

(1) h coincides with (7 in 5'9 \ A.

(2) h is homotopic to g.

(3) h is C°° in A.

Let pi , . . . ,pm De ̂ ne singularities ofX in V\U, and W = U IVs (pj).
Since for all j == 1,..., m we have q + dim^W8^)) ^ 2n — 1 < 2n =
dimR(V), it follows from transversality theory that it is possible to find h
in such a way that

(4) h{A) D IV = 0, so that h^) 0 TV = 0 (by (f) of Lemma 3 and (1)).

It follows from (g) of Lemma 3 that there exists t > 0 such that
(^(^('S'9)) C U. Since ^ is homotopic to the identity of V, this implies
that iq is onto.

Let us prove that iq is injective if 1 ̂  q ^ n — 2. Let [g] € IIg((7,p)
be such that iq[g] = 0 and g : Sq —> U be a representative of [^]. Let
B^+1 be the closed unit ball in IR9"^1 and G : B^1 —> V be a continuous
map such that G [59+1= g. Let A == G^Vi). It follows from standard
arguments of differential topology that it is possible to find a continuous
map H : B^ —> V such that

(5) H coincides with G in B^ \ A.
(6) H is homotopic to G.

(7) H is C°° in A.
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Moreover, since for all j = 1,..., m we have q -h 14- dim^W8^;)) ^
2n — 1 < 2n = dim^Y), it follows from transversality theory that it is
possible to find H in such a way that

(8) H(Sq)nW=0.

It follows from (g) of Lemma 3 that there exists t > 0 such that
(pt(H(B^1)) C U. This implies that [g] == 0 in Hq(U,p), so that iq is
injective.

The proof in the homology case is similar. Let us sketch it.

We will work in the singular homology theory, with the notations of
k _

[G]. If c = ̂  i/jOj is a q-chain in V then each simplex aj is a continuous
j==i

map from the standard simplex
q

A^= { p € R 9 ; p=^ti.Ei , O^^l.^^l}
1=0 i

into V. We will use the notation supp(c) = Ucr^(Ag). A sub-simplex o-J,

I = (zo < %i < ... < ir) , r ^ g , is, by definition, the restriction of aj to
A^, where

r

^={pe R9; p = ̂ >.^, , 0 ^ t,^ l^t, ̂  l}.
J=0 j

We will say that c is C°° if for all j and all J the restriction of aj to
the open subsets (o-J)"3^) of A^ is G°°.

Let us prove that hq is onto i f O ^ g ^ n — 1. Let [c] € ^9(^5 ̂ ) and
fe

c = ^ ^(7j be a representative of [c]. It follows from standard arguments of
j=i

homology theory that we can suppose that all aj are C°° and transversal
to W. Since 0 ^ q ^ n — 1 this implies that IV D supp(c) = 0. On the
other hand, (g) of Lemma 3 implies that there exists i > 0 such that
<^t(supp(c)) C U. Since ̂  is homotopic to the identity, it follows that hq
is onto.

Let us prove that hq is injective if 0 ^ q ^ n — 2. Let [c] € Hq(U,Z)
be such that /iq[c] = 0. Let c be a C°° representative of [c]. It follows from
standard arguments of homology theory that there exists a C°° (q+l)-chain
c' = ̂  ̂ j-crj on V, such that 9c' = c and all aj are transversal to W. Since
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q+1^ n — 1 this implies that TV D supp(c') = 0. On the other hand, (g) of
Lemma 3 implies that there exists t > 0 such that y?t(supp(c')) C U. Since
(pt is homotopic to the identity, it follows that hq is injective.

It remains to prove (i) and (ii) of Theorem 3 (since (iii) follows from
(ii)).

Proof of (i). — Since n ^ 2, it follows from the theorem that
there exists a a collection {Un}^\ of open neighborhoods of K such that
Hn^n = K and for all n

ho:Ho(Un^)-^Ho(V^)

is an isomorphism. On the other hand, this implies that Un is compact and
connected for all n. Therefore K is connected.

Proof of (ii). — Let us suppose now that K is a C1 submanifold of
M. Let B be a tubular neighborhood of K with projection TT : B —> K.
We have two possibilities:

1st - B \ K has one connected component.

2nd - B \ K has two connected components, say B\ and B^ (if K has
real codimension 1).

In the first case VC\B = B and B is a neighborhood of K in V. In the
second case we have two possibilities: either VnB = B, or VC\B = BjUK
for j = 1 or 2 and Bj U K is a neighborhood of K in V. In any case we will
set A = V Ft B, so that A is a neighborhood of K in V. It is well known
that the homomorphisms induced by the inclusion K —> A

h, : H,(K^) -^ ^g(A,Z) and i, : Tlq{K^p) -^ II,(A,p)

are isomorphisms for all g.

On the other hand there exists a neighborhood U of K in V such that
U C A and the homomorphisms induced by the inclusion U —> V

\ : JW,Z) —— ^(7,Z) and ^ : II,(£/,p) —— II,(7,p)

are onto if q ^ n — 1 and injectives if q ^ n — 2. It is not difficult to see
that this implies (ii). This finishes the proof of Theorem 3.
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