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HARMONIC METRICS AND
CONNECTIONS WITH IRREGULAR SINGULARITIES

by Claude SABBAH

1. Statement of the results.

Let X be a compact Riemann surface, D C X be a finite set of
points and denote by j the open inclusion X* ^ X — D c—^ X. Let M. be
a locally free Ox [*-D]-module of finite rank d, equipped with a connection
V : M. —^ M. <S)QX ̂  which may have regular or irregular singularities at
each point of D. Therefore, M. is also a holonomic module on the ring T>x
of holomorphic differential operators on X. We call such a T>x -module a
meromorphic connection for short. There exists a unique holonomic T>x-
submodule Mmm C M. satisfying

(1) Ox[*^](g)Ox^mm=A(,

(2) A^min has no quotient supported on a subset of D.

One says that A^min is the minimal extension of M along D. If M*
denotes the dual P^-module, we have an exact sequence

0 -^ Mrnin — M -^ [^D](^*)]* -^ 0

where ^^(A^*) denotes the torsion of M* supported on D.

Denote by M the local system of horizontal sections of M\x* ^d
denote by DR(.M) the de Rham complex (^ ̂ ox M ,^7). If Mis regular
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at each point of D, we have DR(.Mmin) = J*M. In general, however,
DR(A^min) cannot be computed in terms of M only.

When V has only regular singularities, it follows from [11] that, when
the meromorphic bundle with connection (A^V) is irreducible, i.e. in this
case when the local system M is so, there exists on M\x* a- harmonic
metric having a moderate behaviour near each point of D. Then, Zucker's
arguments in [13] show that the L2 complex of this bundle (associated with
this harmonic metric and with a metric on X* locally equivalent, near each
point of D, to the Poincare metric on the punctured disc) is isomorphic
to the de Rham complex DR^A^min) = J * M , and its cohomology can be
computed with L2 harmonic sections. The situation is thus analogous to
that of a variation of polarized Hodge structure considered by Zucker,
without the Hodge decomposition however.

In this paper, we show that the same results hold without any
regularity condition on the connection. The results below are a step towards
a general conjecture made by M. Kashiwara [4] concerning the behaviour
of semi-simple holonomic P-modules. The problem we solve was raised in[ii].

First, we construct in § 3 a hermitian metric k on the flat bundle
C^ 0o^ .Mjjc-5 satisfying the following properties:

(1.1) the fc-norm of any local section of M. has moderate growth near each
point of D;

(1.2) the norm of the curvature of A;, computed with a C°° metric on X,
is "acceptable" in the neighbourhood of D (in the sense of [11, Prop. 3.1]);

(1.3) the A;-norm of the pseudo-curvature (in the sense of [11]) of
(M\x*, V, k) is L^ with some p > 1;

(1.4) the degree of the bundle M\x* 5 computed with the metric k, is zero.

We then obtain, as a consequence of the fundamental results of
Simpson [10], [11]:

THEOREM 1.1. — Let (jM,V) be a meromorphic bundle with con-
nection on X, having poles on D. If (M., V) is irreducible, there exists a
harmonic metric h (in the sense of [11]) on M.\x* such that h and k are
mutually bounded.

Notice that, when V is irregular, (A^, V) may irreducible without M
being so.
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Proof. —Indeed, Property (1.2) shows that the subsheaf.M ofj^M^x*
of sections having a norm with moderate growth is a meromorphic bundle
(cf. [2], [10]). This meromorphic bundle contains M. because of (1.1). As
both bundles M. and M. coincide on X*, they are equal.

If (A^,V) is irreducible, the object (J^i\x*-»^-,k) is stable: if At* is a
proper subbundle of M\x* invariant by V, Lemma 6.2 in [11] shows that

- either deg(.A/"*, k) == —oo and the existence of A/"* does not contradict
stability,

- or deg(A/"*, k) is finite, and then ./V* can be extended as a meromor-
phic subbundle of M. = M.', this is impossible as (A^t, V) is irreducible.

The object {M\x*i^->^) ls thus stable and has degree 0, because of
(1.4). We may apply part 2 of Theorem 6 in [11] to get the harmonic metric
satisfying the desired properties, n

Fix also a complete metric on X* which, at each point of D, is locally
equivalent to the Poincare metric on the punctured disc A*. This metric
and the metric k on M.\x* allow us to define a L2 complex on X, denoted by
C^(M) (no irreducibility assumption is needed here). This complex comes
equipped with a natural morphism in the complex of currents 3)b^ 0o^ A^,
which is isomorphic to the de Rham complex DR(./M).

THEOREM 1.2 (L2 Poincare lemma). — The complex C^{M) is
isomorphic to DR(A'lnun)«

Remark 1.3.

(1) The de Rham complex is centered here in the usual way, namely

DR(A^nun) = (^X ^A^nmnV).

It is known to be constructible. Hence the theorem implies the constructibil-
ity of the complex C^(M) and the finiteness of its global hypercohomol-
ogy-

(2) When (./M,V) has only regular singularities, Theorem 1.2 is due to
S. Zucker [13] (Th. 6.2 and Prop. 11.3, which is also valid for a € C). In
the proof, we will use this result.
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2. Preliminaries.

2.a. Recall first the formal structure of meromorphic bundles with connec-
tion. Let A be the disc {z G C | \z\ < ro}. It will be convenient to assume
that ro < 1. Let (p G 0(A)[1/^] and denote by ̂  the free 0^[l/z}-mod\i\e
of rank one equipped with the connection defined by V^(l) = (p(z). We
say that a meromorphic connection (A^,V) on A with pole at 0 only is
elementary if it is isomorphic to a direct sum of meromorphic connections
^ ^OA ̂  where T^y, are regular at the origin.

We say that a meromorphic connection (A^V) on A has a formal
decomposition at the origin if there exists an elementary meromorphic
connection (A^'.V) and an isomorphism (A^.V) c^ (A^V), where we
put, for a meromorphic connection (A/", V), J\T =^ C \z\^o^-^'- The theorem
ofTurrittin (see e.g. [7], [12], [9]) asserts that any germ (A^, V) has a formal
decomposition, possibly after a ramification: there exists a cyclic covering

Ag -^ A
t i—> z = ̂

for some q G N* such that the inverse image TT*.M equipped with its natural
connection, that we denote by Tr^A^V), has a formal decomposition at
the origin. There exist (see [7, chap. Ill, Th. (2.3)]) formal germs of regular
connection (A^^V) and purely irregular connection (A^^V) such that

(M, V) = (A^, V) C (A?0^, V).

One may rephrase this a little differently:

LEMMA 2.1 — Let (A^, V) be a meromorphic bundle with connection
on A, with pole at 0 only. There exist

(1) a meromorphic bundle with connection (A^', V) and an integer q
such that ^(A^V) is elementary,

(2) an isomorphism A : (A?', V) -^(A?, V).

Proof. — Let TT : t i—> t9 = z be such that TT"^ {M., V) has a formal
decomposition. Let C, = e2^/9 and a : t \—> C^t. As TT = TT o a, we have an
isomorphism Ao- ^ ^(A^^-^^TT^A^V)).

Let (A/^V) be an elementary meromorphic connection in the t-
variable equipped with a formal isomorphism X^ '. (A/7, V) —^Tr^A^, V),
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given by Turrittin's theorem. Put

^ = ̂ (V)-1 o A, oA, : (A^V) -^^(A^V).

As (A^.V) and ^(A/^V) are elementary, this isomorphism comes from
an isomorphism A^ : (./V'.VQ-^cr-^A^V). Hence, there exists a mero-
morphic bundle with connection (A^V) in the z-variable such that
(AV, V) = Tr^A^', V): it is the invariant part of the meromorphic bundle
with connection TT^A/"' with respect to the automorphism induced by A'̂ .

Notice that, \^ being compatible with A^ and A^. by definition, it
defines a formal isomorphism A : (A^', V) -^(A^, V). D

2.b. Let us now be more explicit concerning DR(Alniin). Denote by 0——
the formal completion of Ox along D. This is a sheaf on X supported
on D, which fiber at each point of D is isomorphic to C [z]. Consider the
formalized bundle M^ 0^ ̂ ox At As in the local case above, it can be

decomposed as the direct sum M = M^ C M^ of its regular component
and its purely irregular component.

Notice that the notion of minimal extension is also well-defined for
0^^[*D}-mod\i\es with connections and that Mmm = A?mm: indeed,
tensorizing with 0__ commutes with duality of P-modules and preserves
ox or 03^torsion• Denote by TM (resp. TQ) the dual of the torsion part
of A^t* (resp. A^*). We hence have TM = T...

Remark also that the dual P-module of M^ is a 0—— [*D]-module
J\. | D

([7, chap. Ill, Rem. (2.4)]). This implies that A?^ = M^ and T- =
T^Q(^ . It follows that A^min is equal to the kernel of the composed morphism

M^M——TM-/T^r

We have recalled above that when M is regular, we have DR(A^mm) =
J.M.

On the other hand, if M is purely irregular (i.e. if Al^ = 0), then
A^min = Al by the remark above, and consequently DR(A^min) = DR(A/().
In this case, DR(Almin) is far from being concentrated in degree 0 because,
at each point of D, the difference dim7^1 - dim7Y° is equal to the
irregularity number of M at this point.



1270 CLAUDE SABBAH

2.c. Let CDb^, d) be the complex of currents on X. The natural morphism
(f^,d) -^ (2)b^,d) is a quasi-isomorphism. As .M(nun) (i.e. M or .Mmin)
is Ox-nat, the complex (^Db^* (g)^ M(mm)^~9) is a resolution of ̂  ^Ox
•^(min)? a^ taking the single complex associated with the double complex
QDb^ <S>ox •^(min^V,^) we conclude that

DR(.M(nun)) = (^ ^Ox Mmin),V) -^(S)b^ (g)̂  .M(nun), V + 9).

Fix a complete metric on X* as in § 1. If a metric is given on the
bundle M\x^ the sheaf C^(M) is the sheaf on X which sections on an
open set U of X are z-currents r on [/* with values in .M, such that r
and (V + Q)r are in L2 on each compact set of U^ with respect to the
chosen metrics. If the matrix of the metric on M\x* m some (or any)
local meromorphic basis of M. has moderate growth along D, the complex
£T^(./M) is naturally a subcomplex of

Db^0^ 0 M == ®b^[*P] 0 M = ̂  (g) A^,

where ̂ b^0 = image p)bx -^ S)bx4

Denote by C the cone of C^(M) —> S)b^ 0 A1. To prove Theorem
1.2 it is enough to construct a morphism C —> DR(7^() in D^Cx) such
that the diagram

Sb^^M ——————^C

(*) ^ [
DR(M) —————— DR(TM)

commutes and to show that it is an isomorphism. This is now a local
problem on X, so we may (and will) assume in the proof of Theorem 1.2
that X = A and D = {0}. It is also enough to prove the result for germs
at the origin, because it is clear outside the origin.

2.d. Let e : A = [0,ro[ x 51 —> A be the real blow-up of A at the origin
(polar coordinates) and let A. be the subsheaf of C°° defined as the kernel
of the Cauchy-Riemann operator ~z£^. Put M. = A. ^e-'^o^ e"1 !̂. As 9z
operates on sections of A* , one may extend the action of V to M. in a
natural way.

The de Rham complex DR(.M) is the complex A. 0 e'^^ 0 M)
with its natural differential.
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The complex of currents with moderate growth

/T^rinodO,® .0, —1 k A /T\t.mod0,» .<->, iT7
X)b~ ^e-^A e A1 = /Db— ^A— A4

A - A A

is also defined, because 9z and 9^ operate on

^r^odo ̂  ̂ ^ j^^ _^ ̂ 1 .

The complex C^(M) can be defined in a similar way on A, and
for the metric constructed in § 3, we have a natural inclusion C^(M) ̂
m^^^A-M.

A A

Since the terms of these complexes are c-soft, and since we evidently
have e*£?^^(A/() = £^(.M), we conclude that this natural inclusion
becomes the natural inclusion

WM) ̂  ̂ odo- 0c?A M = S)b^ 0oA ̂

after applying the functor Me*.

2.e. Let (A^V) be a free OA^" ̂ -module of rank d with connection
and fix a formal model (A^V) as in Lemma 2.1 and an isomorphism
A : (A^V) —)• (A^(,V). Let TT : Ag —» A be a cyclic covering such that
^(A^V) is elementary. Then, for any 6° C <91, denoting by ^° the
germ of A. at (0,0°) € [0, ro[ x S'1, there exists \eo such that the diagram

{Aeo (S) M1, V) ——A^——. (^o (g) M, V)

(A '̂, V) ————A————. (A^, V)

commutes, where the vertical maps are induced by the Taylor expansion
map AQO —> C[z].

This is known ([12], [9], [7]) when (A^f, V) is elementary. In general,
remark that TT induces a covering map TT : Ag —^ A, with Ag = [0, rQ^^S1,
hence an isomorphism Tr^o : AQO —^ A^o/g for any possible choice of 0°/q^
and one may define \Qo as

(7Tffa1 0 Id )""1 0 A^o/g 0 (TTffa1 <S> Id ).
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It follows that there exists a covering of S1 by open intervals I such
that all triple intersections are empty and all intersections are connected
or empty, and isomorphisms

\i : (^0A^VO|[o,^xJ^(^.M,V)|^[xJ

lifting A, for e > 0 small enough. The Stokes automorphisms \j o \~f1 =
Id +AAJ,J on [0,^[ x (JHJ) are such that fJi^j is nilpotent and its matrix in
any meromorphic basis of.M is C^-flat along {0} x (JnJ); more precisely,
the entries have an exponential decay along {0} x (7D J). Let us prove this
assertion.

It is possible to write

TT-^J) =J iU——U^, TT-^J) =JiU-..U^,

a disjoint union of open intervals of S1 such that Ii H Ij -^ 0 for i -^ j
and TT : Jfe D Jk —>• I Fl J is a diffeomorphism for any k = 1,..., q. Put
Ajfe = (TTjj^ 0 Id)"1 o Aj o (TT)^ (g) Id). It is known that the matrix of
Aj,, o AJ^ in any meromorphic basis of 7^*M/ is equal to Id + A^,^ with
TVj^j^ nilpotent and exponentially decreasing at {0} x (7^ HJfc). Hence the
same property holds for Aj o AJ1 on ^(^A^^o e fx f jn j ) ' ^^ms is a^so true ^or

the matrix of Aj o Aj1 in any A-basis of A 0 M^Q e\x(lnj^ hence for ^e
matrix of Aj o A71 in any A-basis of A 0 .A^iio^x^rv)- o

2.f. Remark that, for any rank-one meromorphic connection (£,V) on
A with pole at 0, the natural connection on Homo^(C,C) is regular
at 0. It follows that for any meromorphic connection equipped with a
formal isomorphism A as above, the isomorphism del A can be lifted to
an isomorphism de^A^', V) -^dei{M, V). In particular, given any basis
e' of M!\ there exists a basis e of M such that the matrix A of A in these
bases satisfies del A = 1.

Let Aj be the matrix of Aj in these bases. Then det Aj = det Aj on
[0,6:[ x I D J as p,i^j is nilpotent. Hence detAj is a meromorphic function
independent ofJ. Its asymptotic expansion at 0 being equal to 1, it is equal
to 1. Therefore, in the bases e' and e as above, we have det Aj == 1 for all I .
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3. Construction of the metric k.

The metric k will be constructed in the neighbourhood of each point
of D and then will be extended to X* in a C°° way using a partition of
unity.

The metric k on C^ (g) M\^ will be first defined for elementary
meromorphic connections, then for any connection.

3.a. See also [11, § 5] and [1, § 11].

Let a € C, (p e 1 / z ' C[l/z] and put a' = Re a, a" = Ima.

Let y be a nilpotent d x d matrix, (V, X, H) a s ̂ -triple and ( , } a
positive definite hermitian form such that V* = X, X* = Y and H* = H.
Fix an orthonormal basis e° of V = C^, made with eigenvectors of H and
denote by Wj the eigenvalue of H corresponding to e°., with wj € Z. We
will denote by V, X, JY the matrices of V, X, 7:f in the basis e°.

Put on the trivial bundle V =C(^<^cv on ̂  disc A = {z \ \z\ < 7-0}
the connection D such that, in the basis e = 1 0 e°, one has

D^e = 0

D^°e = e . (V + (-a + ̂ (z))Id) 0 ̂  .

The family e defined by

e^ = e-^z^ exp(-Vlog^) • ej

= e-^)^ ̂ (-log ̂ fe • y^e,
k^O

is a multivalued horizontal basis of V|A*-

Put a(z) = |log2^| and let P(z) be the matrix

P^l^ a(z)-H/2ex.

Consider the basis e of V|^- defined as

£=e -P (^ ) .

The metric k will be the metric on V(^ such that the basis e is
orthonormal.
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The metric k\ for which an orthonormal basis is e-1^1°' a(z)~11/2 will
also be useful. Of course, k and k^ are mutually bounded. Notice that e is
k\ -orthogonal and that

^(e^e^^H-^a^)^;

but the horizontal multivalued basis e is no more orthogonal; however, for
any closed sector {z e A* | arg^ C [OQ, 6^}} there exist two constants Ci, C^
such that any branch of ej satisfies on this sector

C^e-^^a(zr3 ^ h(e^e,) ̂  C^e-^^^z)^.

Remark 3.1. — When y? = 0 and a is real, the metric fci is the
metric used by Zucker in [13, Prop. 11.3]. His argument also gives a proof
of Theorem 1.2 for any a € C (and (p = 0), when one uses the metric Jfci to
compute the L2 complex. Notice that, as A;i and k are mutually bounded,
they define the same L2 complex.

LEMMA 3.2. — The curvature Rk of the metric k is "acceptable" in the
r-i

sense of [11]; more precisely it satisfies \\Rk\\k ^ —o————^ with C > 0
H [log zz\-

the norm being computed with the standard Euclidian metric on A.

Proof. — Recall that for £ € Z and z e A we have

z9,a(zY =^a(zY = -£a{zY-1.

We will use the following identities:

^±H/2y^H/2 ̂  ̂ ly

^±H/2^H/2 ̂  ̂ ±1^

eYHe~Y = H + 2Y
exHe~x =H -2X
gXy^-x ^ Y + H - X.

The matrix K of k in the basis e is

K = (P-1)*?-1 = l^l-2"' a^e^e^a^2

and the matrix of the metric connection Dk = D1'0 + 9 is

M1,0^ = [-a'ld ^K-\z9^a')K} ̂ .
'̂ ' z
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The computation gives

M, l 'o=-a /Id-y-2^+2 x

a a2

In the basis e, the curvature Rk has matrix R1'1 ——7.— with
M

r>l,l -o n.rl,0 2Jf 4X^ =-^^ =:^-^-
The matrix of Rk in the orthonormal basis e is thus

p-i pU ̂  dz f\dz _ 2H dz /\dz
1 ^k r —| .2 = ——| ,2 o——

R M a

and the "acceptability" is clear, n

LEMMA 3.3. — The pseudo-curvature Gk of (VIA* •> Jr^ k) is zero.

Proof. — Denote by M^°dz/z (resp. M°^dz/z) the matrix of J91'0

(resp. D0^) in the basis e. We have

M1'0 = (-a + z^(z))ld + P-^YP + P-1^?,
M°'1 = P^zQjP.

Put

e = ^ (M1'0 + M°'1*), e* = 1 (M1'0* + M°'1)
Zt &

and e = O d z / z , 0* = Q * d z / z . The matrix N°^dz/^ of the operator
^^f^o,i _ ^* ̂  ̂ ^ ^^g g. ^ ^0,1 ̂  ^0.1 _ Q* The pseudo-curvature

Gk ^ 0£;(^) has matrix

(^(e)+[A^e])^A^.
/2 /2^

Put 6 = Greg + zvwld and JV,%1 = M0-1 - e;eg. Then

^(0) + [N°'1, 9] = ̂ (0,eg) + «g1, 6,eg].

It is thus enough to prove the lemma when (p = 0. One computes that in
the basis e ' Q ( z ) with Q(z) = l^l'0'7 a~HI(lexaHlel\ the matrix of9^reg is
zero and the matrix of 0reg is equal to

(^"^)?
which is holomorphic, hence QEreg^reg) =0. D
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Remark 3.4. — The notation QE is taken from [11]. The holomorphic
bundle E is the bundle generated by the basis e • Q^e^"*^/2. The
computation above associates to (V, D) and the metric k a Higgs bundle
(E^e).
3.b. Let now V be a C-vector space of dimension d, equipped with an
automorphism T and with a r-stable decomposition V = (D^e^^ indexed
by a finite subset <I> C z^Clz"1]. Let T = TsT^ be the decomposition of
T into its semi-simple and unipotent part and put Y = ——— logT^. Fix

2Z7T
an s la-triple (V, X, i^) compatible with Tg and with the ^-decomposition
of V, and fix a positive definite hermitian form ( , ) such that

(3.5) The double decomposition V = 9^,aV^,a with respect to <^ and to
—— log of the eigenvalues of T is orthogonal,
2%7T

(3.6) V* = X, X* = V and H* = H.

Fix also an orthonormal basis e° of eigenvectors of H adapted to this
double decomposition.

Let e = 1 0 e° be the corresponding basis of Vo = OA ^ V- Put on
the meromorphic bundle Vo[^~1] the connection V which is the direct sum
of those used in § 3. a. This meromorphic connection is elementary and any
elementary connection has this form.

Define the metric k in such a way that e = e • P(z} is a A:-orthonormal
V|A*-basis, where P is a block-diagonal matrix, the blocks being those of
§ 3.a. Define the metric k^ in a similar way. The matrix P can be written
as P{z) = 6(z)a(z)~H/2ex, where 6(z) is a diagonal matrix with diagonal
entries of the form \z\a and commuting with V, X, H.

Clearly, the metric k satisfies both lemmas of § 3.a.

3.c. Keep the same notation as above. Let q e N* and put C = e2^/9. Let
(./M, V) be a meromorphic bundle with connection on A, with pole at 0. Let
TT : t ^—> tq = zbe QL cyclic ramified covering from a disc Ag to A and assume
that ^(.M, V) is elementary, i.e. can be described as in § 3.b. As TT = TTOCT,
we moreover have an isomorphism \cr '• ^(A^V)—^-^'^^4^.^^)). In
terms of the data of § 3.b, we are given an automorphism of finite order q:

^ : V -^ V

which commutes with Tu and is a-compatible with the double decomposi-
tion of V, i.e., A^(Vy?,a) = y^oa,ot-\-\lqi where a + 1/q is taken modulo 1.
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We will choose H and X so that \°, also commutes with the ^-triple. It
defines an isomorphism

V -^4 a*V
f[t)^v° —— /(C-^A^O.

Fix a positive definite hermitian form ( , ) on V which satisfies (3.5), (3.6)
and

(3.7) < , ) is A^-invariant.

Let e° be an orthonormal basis of V made with eigenvectors of H and
compatible with the double decomposition, and put e = l ( g ) e ° , £ = e - P(t)
with P as in § 3.b. We thus get a metric kq on V\^.

LEMMA 3.8. — The metric kq is compatible with A^, i.e.,

kq^v^f)d±f^kq(X^v)^\,(vf)) = kq{v^')

for local sections v, v / ofV.

Proof. — Working in the basis e and denoting by A^ the ma-
trix of A^ in this basis, we see that the matrix of the hermitian form
a*A^(A^),A^')) is equal to A ^ ' K q oa -A^, H Kq = (P-1)*?-1 denotes
the matrix of kq. As A^ is orthogonal and commutes with H and X and as
P o or •==. P, this matrix is equal to Kq. D

We deduce from this lemma that there exists a metric k on M\^ such
that the metric kq on V^* is pulled-back from k by TT. In particular, the
curvature and the pseudo-curvature are also pulled-back, and both lemmas
of § 3 are satisfied by k on M.\^ as soon as they are satisfied by kq on
7r*V,^.

Remark. 3.9. — (1) The determinant detKq is equal to (detP)"2 =
\t\2^ for some f3' € R, as trH = 0 and X is nilpotent.

(2) The metric k\^q is also compatible with A^, hence defines a metric
A;i on A^jA*. Moreover, k and A;i are mutually bounded.

3.d. Let (.M, V) be a meromorphic bundle with connection on A having a
singularity at 0 only. Let (M1', V) be a formal model for it, in the sense of
lemma 2.1. Fix a formal isomorphism A and liftings A j as in § 2.e.

Index the family of intervals by Z/7VZ, so that It D J^+i ^ 0 and
li H I^k = 0 if k ̂  -1,0,1 for any L Let ̂  e C°°(^ D J^+i) be such that
\s, == 0 on the ^-side and ̂  = 1 on the £ + 1 side of Ie H 7^+i.
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We may now define an isomorphism

>'' %[x^i ̂  M' -^ q^^ 0 A^
by the formula

_ ( A^(also denoted A^) on [0,e[ x (7^ - u J^),

[ (Id 4- ̂ 09)^+i) o X^ on [0,5[ x (J^ n J^+i).

Denote by k' the metric on M\^ constructed in § 3.d and let k be
the metric on M.\^* obtained by pushing k1 by A. Define A;i in a similar
way, pushing k[ by A.

Let us show that k satisfies (1.1), (1.2) and (1.3). Assume first, for
simplicity, that q = 1.

Denote now by e' the basis of M1 used in § 3.b, and by e' the
corresponding orthonormal basis; we have £ ' = e' • P(z) where P is a
block-diagonal matrix as in § 3.b.

Put e = A(e'). Then e = A(e') = e • P is an orthonormal basis for k.

In a neighbourhood of the sets ]0,5[ x (7^ — U^^J^), the basis e is
holomorphic and we may compute the curvature and the pseudo-curvature
of k exactly as in § 3. a.

On ]0,f[ x (7^ n -^-n), denote by e^ the holomorphic basis A^(e').
We then have

£=e^(Id+M^+i).P,

where M^^\ is a nilpotent matrix with exponentially decreasing C°°
coefficients. The curvature and the pseudo-curvature of k can be expressed
with the same formulas as in § 3. a, adding a perturbation term which is
asymptotically equal to 0 along {0} x S1.

Therefore, properties (1.1), (1.2) and (1.3) are satisfied for (Ad\^, V, k).
For q ^ 2, argue similarly with -K^M' and TT^M..

Remark. 3.10. — If e is any meromorphic basis of .M, the norm of
dete for the metric on defA^A- induced by k or k\ is equal to \z\ for
some /?' e R and some choice of coordinate on A: indeed, this is true if e
is chosen so that the matrix of A^ in the bases e' and e has determinant
equal to 1 for all £ (see § 2.f); hence this is true for any meromorphic basis
after a suitable change of coordinate.
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3.e. Let us now come back to the global setting. In order to show that
the metric k satisfies (1.4), we will need the lemma below. Let £ be a
rank-one meromorphic bundle on X, with poles on P, equipped with a
connection V : C —> C ®0x ^x' Let x° C D and let e be a local section of
C^o for which, if z is a local coordinate at x°, one has Ve = e (g) ci;, with
uj = (a^o + z ( p ^ o { z ) ) d z / z , (pxo e ̂ ^C^"1] and a^o e C. Let k be a metric
on C\x* which satisfies, near any x° € P,

^e.e)^!21^^.

LEMMA 3.11. — With these assumptions, we have deg{C^*,k) = 0.

Proof. — Let L be the rank-one Ojc-submodule of C which is equal
to C\x* o11 ^* ^d which is generated by the section e near x°^ for any
x° e D. The residue formula and the fact that degL is an integer give

degL = ̂  Res^ V = ̂  a, = ̂  Re(c^).
rcCD a;€D a;CD

Indeed, if L is trivial, this is the usual residue formula for meromorphic
differential forms; if L is not trivial, there exists on its dual L* a logarithmic
connection which satisfies the residue formula; the residue formulas for the
trivial bundle L 0 L* and for L* give the formula for L.

On the other hand, in a punctured neighbourhood of x° G P, the
(1, l)-form 99 log fc(e, e) is identically 0. The curvature of k exists as a (1,1)-
current and the degree of L can be computed with this current. Taking into
account the Dirac currents at each x € D, one gets

degL = ̂  Re(a^) +deg(£|x-,A;).
x^D

The lemma follows, n

According to Remark 3.10, the metric constructed in §3.d on
detM^x* satisfies the assumptions of the previous lemma. This shows that
deg(.M|x-,fc)=0.

4. Proof of Theorem 1.2 (first part).

We will use polar coordinates (r,0) on [0,ro[ x 51, with ro < 1. We
put on ]0,ro[ x S1 = A* the Poincare metric and we denote by dvol its
volume form. We have
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(0) / € L2(dyo\) ̂  |logr|-1 / 6 ̂ (d^r/r);

(1) a; == f d r / r ^ - g d 0 e L2(dyol) ̂  f and g C L2(d0dr/r)•,

(2) 77 = hdOdr/r € L^dvol) <^ |logr| /i e L2(d0dr/r).

Let (^(^) = - -j- (1 -h z^{z)) with ^ € N*, a^ € C and ^ holomorphic
/2^

on A. Let f3 E R and A; € Z (for the application we will take (3 = 0).

Let L be a flat bundle of rank one on A* equipped with a met-
ric such that a multivalued horizontal section e has norm ||e]| ~
r2^ llogri^ e-2Re<^) ^et /^W be the L2 complex on [0,ro[ x 6'1: a local
section of C^(L) on an open set f2 of [0,ro[ x S'1 can be written ^ (g) ?,
where a; is a z-current on ^ D A* such that the currents

r^llogrl^e-^^o; and r^ (logrl^e-^^^

are in L^dvol) on any compact set of ^2.

LEMMA 4.1. — In this situation we have

(1) n^{C^(L))=Ofor^^2;

(2) H^C^L)) =0ifa^0or/^0.

Remark. — In the proof we will assume that a^ 7^ 0. If a^ = 0 (and
/? 7^ 0 in (2)), the proof is analogous and even simpler. When a^ 7^ 0 we
put —a^ = |a^| e^. We then have

- Re(^) = ^l (cos(^ - r) + r^(r, ̂ ))r^

such that 6y is real analytic on [0,ro[ x 5'1; hence there exists r^ € ]0,ro]
such that, for any r € ]0, ry,[, the sign of <9(— Re ̂ p)/90 is equal to the sign of
sin(r—^) and the sign of <9(— Re ̂ )/<9r is equal to the sign of — cos(r—£0).

The property that we will use in an essential way is that the map

(^)———e-Re^re10)

has no critical point on ]0,ro[ x 6'1, i.e. 9(—Re(p)/9r and 0(—Re(p)/90 do
not both vanish as soon as ro is sufficiently small.

Proof. — Let 0 = ]0,ri[ x ]6Mi[ with n ^ r^. Let ^l" = jO^r'i'I x
]0o',0^[ containing fl. D A*. We assume that }0^0'{[ contains at most one
zero of sin(r - iff) cos(r — iff) and, if it contains one, this zero belongs to
}0^0i[.
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Let u = fdr + gd6 (resp. rj = h d6 dr) be a one-form (resp. two-form)
on ^" such that a; 0 e e L2(^f{',^d^oV) and duj = 0 (resp...). We will
show that there exists a function u (resp. a one-form ^) on fl. such that
u 0 e e I/2^; L; dvol) and d-u == ^|Q (resp...). This will give the vanishing
of 7^ (resp.M2).

By assumption, e"^^ is monotonic with respect to r or to 0 on f2".

Choose W = ]0, ri [ x ]6>o, ̂  [ with ̂  e ̂ ' ^ ^". There exists then (see
e.g. [3, Prop. 12.2]) a sequence En > 0 converging to 0 and a sequence of
one-forms ̂  with coefficients in C§°(f2") (resp. of two-forms T^ = hndOdr)
with support in [cn.r^ x }O'Q,O'{[ such that

ujn 0 e —^ uj (g) e (resp. ̂  0 e -^ 77 (g) e) and

c^ 0 e -^ 0 in L2^'; L; dvol).

First case: e-^^ is monotonic with respect to 6 on ^//. We
assume here that sin(T - W) does not vanish on }0/Q, <9'/[.

Let us begin with H1. Let \ = ̂ (6) e Coo(6fl), with ^ = 1 on [<9o, 0i]
and ^ = 0 outside ](9o, 6>i[. Put ̂  = /^dr + gnd6 and define

r /-^i\ X(t)gn(r, t)dt if e- Re ̂  is decreasing,
.nM)=po

- / xWgn(r,t)dt if e-R^ is increasing.
v 7^

We will consider the decreasing case for instance. One has a Hardy-type
inequality (see for instance [8, Th. 1.14])

Un(r)^ I 1 |̂ M)|2 e-2^^ d0
^o

,^)^ t°\Un(rM2 e-2^^6

^ Cn(r) f ' \x(0)gn^e)\2 e-2^^ d0^ C^r)Gn{r)
Je'

with

Cn(r) = 4 SUp [el e-2^^^ dt . f ^Re^e-) ̂
e^e[]Je Je^

^ 4supe-2Re<^^e^0)e2Re^re^0)((9/l - 0)(0 - 0^)
u

=(6[-0,)2
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because e-^^ is decreasing on [0^6'^}. We hence have

IK ̂ 11^,^^ = F ^(r)r2^-1 llogrf-2 dr
*/o

^ W - ̂ o)2 r Gn(r)r2!3-1 |logr|fc dr = 4 \\x9n<W ® e||2 ,̂̂ .̂
*/o

We thus deduce the existence of u on 0' such that

r^^gr^e-^.ueL^'-^dr) and ^ = ̂  on ̂
cw

Remark. — At this step, we can repeat the proof for 7Y2 and get the
vanishing of H2 except maybe at points where sin(r - £0) vanishes. Up to
now we did not use the assumption an -^ 0 or (3 ^ 0. As indicated above,
we will now assume that a^ ^ 0, and leave the regular case a^ = 0 to the
reader.

On the other hand we have

9Un f° Q9n ,,

-^ = le^

=xW/nM)- /"\(t)fn{r^dt- f x(H- - ̂ }dt.
Je^ Je^ \ 9t 9r )

We deduce as above that the sequence r^1/2 [logr^72 e~ ̂ ^'Qun/Qr
has a limit in L2^'; d0dr). Therefore, we have u (g) e e I/2(^; L; dvol) and
uj — du= £(r)dr since dw == 0.

We are hence reduced to the case where u = f(r)dr with uj 0 e €
L^L^vol).

/.6>i
Put^(r)= / e~2Re^rei^d0.

JOo

LEMMA 4.2. — Assume that cos(^ - r) does not yanisA on }0/Q,0/{[.
Then there exists, for all N e Z, a number nv(^, ̂ 0^1) > 0 such that the
function r^'0(r) is monotonic, as ̂  is, on ]0,r7v(^,0o^i)[-

Let us keep this lemma for granted and let us end the proof of
Lemma 4.1. if cos(^ - r) and sin(^ - r) do not vanish on [0o^i]. Then
r2^ [logri^ ̂ (r) and r2^ [logri^"2 ̂ (r) are monotonic, as ̂  is, on ]0, r7v[ for
a suitable N. We may assume in the following that ri < r^v((/?,0o^i) by
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choosing Q, smaller. Define

( r\ f(p) dp if ^ is decreasing,
.,(r\ — JQU\T) — .n

— f(p) dp if -0 is increasing.
Jr

We then have, using a Hardy-type inequality as above,

||n0 e||2 = l^ |n(r)|2 r^-1 [logr^-2 ̂ {r)dr
Jo

^C t 1 \f(r)\2r2w\\ogr\k^(r)dr=C\\uJ^e\\2

Jo

with

G = 4 sup ( ' r^-^logr^^dr- ( p (r2^1 ̂ ogr^ ^(r)\^ dr,
pe[o,ri[Jp Jo v /

if for instance '0 is decreasing. But we then have

P r^ llogr^-2 ̂ (r) ̂  ^ p2^ [log^-2 ̂ (p),

y' (r^ |logr|^(r))~1 ̂  ^ (^ |logp|^(p))~1,

hence (7^4 sup p(ri — p) llogpl"2 < +00.
pe[o,ri[

The case where ^ is increasing is analogous.

Assume now that cos(t0 — r) vanishes at ^1/2 € [0o?^i]; from the
assumption made at the beginning of the proof, we may even suppose that
^1/2 ^ ]^0^l[-

Consider the case where cos(^-r) > 0 on ]0o? ^i/2[ (tne other case is
treated in a similar way). We then have sin(^—r) ~ 1 near ^1/2, so e"^^
is decreasing with respect to 0 on ]^o^i[- Let £ > 0 be small enough and
put

/.^i/2-e
^(r)= / e-^^dO.

JOo

It is decreasing with respect to r. Moreover, there exists K,(e) > 0 such that

^+(r) ̂ (r) ^/^(£)^+(r).
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It will be clear from the proof of Lemma 4.2 that we may apply it to ^+M
(using there ^1/2 - e instead of (9i). We may conclude the proof in this case,
defining u(r) by the formula

^(r)= r f(p)dp.
Jo

The constant C is now bounded by 4/t(^) sup p(ri - p ) [log?)"2 < +00.
pe [o,n [

Proof of Lemma 4.2. — We have

^^,(^)^^_^^i^^_^^^^^

with p, real analytic on [0, r^[x S1 depending only on (p. Since |cos(^9 - r)|
is bounded from below on [<9o^i], there exists r^(^,(9o,^i) such that, for
r < TN^, Oo^i), the sign of

r-^ (r^(r)) = ̂  /* 1 \N - 2^N cos(^ - r)(l + r . /.(r, 0))1 e-21^^ d0
•^^o L ^ J

is equal to the sign of — cos(£0 — r). n

Second case: e"^^ is monotonic with respect to r on Q". We
assume now that cos(£0 - r) does not vanish on ^' but sin(^ - r) vanishes
at one point of ]OQ^ 6\ [.

Choose \ e C^dO.r'iD with ^ = 1 on [0,ri[. Consider the same
sequence ujn as above and put

( r\ fn (p, 0) dp if e- Re ̂  is decreasing,
hn^6)= Jo ,

- / X(p)/n(p, 0) dp if e- Re y is increasing.
J r

Le us consider the second case for instance. For a fixed 6 we have

F^e-^^-^logr^dr
Jo

^ CW { r l \xfn\2 e-^r2^ llogri' dr
Jo

with

C(0) = 4 sup fe-2^^2^ llogrf-2 dr f\e-^r^ ̂ ogr^Y1 dr.
pe[o,^[Jo r Jp \ i s i ^ y.
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As cos(£0 — r) does not vanish in [^o^iL we mav BPPty a11 argument
similar to that of Lemma 4.2 to find r^^.Oo^i)- We conclude that C{6)
is bounded by a constant independent of 0, hence \\hn 0 e\\ ^ C \\fndr 0 e||
and therefore hn 0 e tends to h (g) e in L2^'; L; dvol).

At this step, we can repeat the proof for H2 and thus get the proof
of part (1) of Lemma 4.1. Let us end the proof of part (2). We have

9^-=Xgn{r,0)-f\'(p)g^p,0)dp+f\. (^ - ̂ dp

and one gets in the same way the convergence of Qhn/90 in L2^; L; dvol).
This shows that h 0 e and dh 0 e are in L2^; L; dvol).

We thus have LJ - dh = ^((9)d(9 with ^((9)d(9 0 e e L2^; L; dvol) and
we are reduced to the case where uj = t(6)d0. Then uj = 0 if cos(£0 - r) > 0
on }O'Q, 6'{[, since e~ Re(p —> oo exponentially when r —^ 0, ^ being fixed. We
may thus assume that cos(^-r) < 0 on }O'Q, 0'/[. Let ^1/2 € }0o, 0i[ be such
that sin(r - ̂ 1/2) = 0, so e"^^ is increasing on ]0o^i/2[ and decreasing
on](9i/2,6>i[.

Put then

r °u(0) = y i(t)dt.
J Q\l-2.

We have, using once more Hardy-type inequalities,

[e l / 2 W^e-^^^dO ^ C [e l / 2 \£{0)\2 e-^^^de
JOQ J0o

with

C = 4 sup / e-2^^^ dt. [e l / 2 e2^^^ dt ̂  (0^ - O^2

^e[6»o,6>i/2] Joo Je

and analogously

{ 1 \u(0)\2e-2Re^rei^d0^(0^-ez)2 ! 1 \£{0)\2e-2Re^rei^d0.
^01/2 VQ\|•2.

We hence get

f ' \u(0)\2e-2Re^re^^d0 ^ C I01 \£(0)\2e-2Re^re^d0
JOQ Jeo
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with C independent of r. Therefore we have

\\u^e\\2 = f f \u\2 e-^r^-1 [logr^-2 d0dr

^ cf/W2e~2Re^2(3-l llogr^-2 d0dr

^ C'Jf^e-2^^-1 [logri" d0dr

=G'||^6||2.

5. Proof of Theorem 1.2 (continued).

5.a. By the notation M, or M, etc., we now understand the P-module
structure, so that the connection is included. We will use the decomposition
M == M^ C M^ (cf. § 2.a).

We have U^{M) == 7-̂  (A?) and we have seen that Mmin is the
kernel of the surjective morphism

M —>M —> t = T.

Moreover, we have T = T^), where the last term is computed with M^.
Thus DR(A^min) is isomorphic to the cone (shifted by -1) of the composed
morphism (viewing DR(M) etc. as a complex supported at the origin):

DR(M) —> DR(M) -^ DR(T) —> DR(T(7)).

Assume now (§§ 5.b-5.c) that M has a formal decomposition M ̂  M'
with M' = €^(£^(8)7^). It will be easier to work with the metric k^ instead
of k (the L2 complexes are the same).

5.b. For simplicity, we will first consider the case where M has no regular
component. We thus have A^min = M and T = 0. We have to show that
the natural morphism C^(M) -^ S)b^ (g) M is a quasi-isomorphism.

As explained in § 2.d, it is enough to prove that the natural inclusion
morphism

W^^S^^^M
' ' A A
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is an isomorphism in Db(C.). This is a local problem on A, so we may
assume, by the Hukuhara-Turrittin theorem recalled in § 2.e, that M is
elementary, as M and M' are locally isomorphic on A.

It is easy to see that this morphism induces an isomorphism on
H°. Moreover, it is known that W^b^0'9 0^ M) = 0 for i ^ 1:

A A

indeed, this cohomology sheaf is equal to l-t^A^0 (g)^ DR(A^)), with

^odo ^ Ker \z9^ : ©b^0 -> Sb^0], and the latter group is zero, as
indicated in [7, p. 211].

Therefore, it is enough to show that H1 {^\{M)\ = 0 for i ^ 1.
This follows from Lemma 4.1 in § 4 by an easy extension argument, taking
/3=0.

5.c. Recall that (Remark 1.3-(2)), for regular connections, the theorem
is proved by Zucker. Hence it follows from § 5.b that the theorem is true
for elementary connections M'. It remains to show it for connections M.
having a regular part in their elementary local model M'.

LEMMA 5.1. — Let 0° e S1. Any morphism p : Me° —> My lifting
the projection M —> M^ induces the same morphism

c:H\C^(M))e. — H\C^{M^.

Proof. — Let us fix a decomposition MQO = My (D My lifting
the formal decomposition, and let pi be the first projection. One may
write p = p^ + p^^ where p^ : My —>• My is asymptotic to Id, and
^ : M^ -^ M^] is asymptotic to 0.

Then p^ is equal to Id, because p^ — Id is a horizontal section of
the meromorphic connection Homo{M^\M^)0o\ as Homo(M(-T\M^)
has a regular singularity, any horizontal section in a sector which is
asymptotically equal to 0 vanishes identically.

On the other hand, Lemma 4.1 of § 4 shows that H1 fc^ (M^)) =0.

Consequently, p and p\ induce the same morphism c. D

This lemma implies that there exists a globally well-defined isomor-
phism

c:H1 (C^(M)) ̂ H1 (-C^)^)) •
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Consider the following exact sequences of complexes:

0 -^C^{M) —— ^ D b ^ " 0 M -°^ C —. 0m^^^M
A

o —r^)^^) — ̂ odo^ (g) ̂ (r) — c^ — o.

By Zucker we have Re^C^ = T^. Moreover, Sb^0^ (g) M has cohomo-
logy in degree 0 only and the morphism H°(C^ (M)) -^ ^(Db^ °^(S)M)
is an isomorphism: indeed, this is a local statement on A which is true for
elementary local models as A^, so is also true for M.. It follows that C
has cohomology in degree 0 only, this cohomology being isomorphic to
^(^G^))-

Consequently, the morphism c above induces an isomorphism c: C —>
C^ in D^C^).

We will now use the sheaves A^° and 6^ defined on S1 = e-^O)
in [7, p. 61], and denote the de Rham complexes with coefficients in these
sheaves by DR^°(M) and DR^°(A?).

The natural morphism DR^°(M) -^ (©b^0^ 0 M)^ is a qua^i-
isomorphism (cf. loc. cit.) because it induces an isomorphism of H0 and
the W vanishes for i ̂  1.

The left part of the following diagram of complexes defines the
morphism b:

DR^°{M)

[
DR^JCl)

1
DR^^^)

'!
DR^O(A^(r))

(®b'inod0,»
A (g)A^)|5i C

0

{W^^M^)^
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Up toji shift by -1, the complex DR(.Mmin) is identified with the
cone of Re^b and the complex C^(M) with the cone of Re* a.

To end the proof of the theorem under the assumption on the existence
of a formal decomposition, it is therefore enough to show that b = coa. This
is now a local problem on S1 and we may use a local morphism M. —^ M^
lifting the projection M —> M^ to define c at the level of complexes and
not only at the level of the derived category. With this definition of c the
diagram clearly commutes.

5.d. Let us now consider the general case. Let TT : Ag —> A be a cyclic
covering of degree q such that the meromorphic connection 7r~^M has a
formal decomposition. Fix the metric A; as in § 3.d. The theorem is thus
true for TT^M.

First, one shows that C^(M) is a direct factor of TT^C^^TT^M).
Indeed, one can write each section of 7r^C^(7T~^M) as a sum of terms
uj (g) 7r*e, where e is a horizontal multivalued section of M. on A* and
where uj is expressed with the forms d z / z and dz/~z\ the composition of
the coefficients of uj with TT is seen to induce an inclusion L\^{M) C
7^*JC^^(7^+.A/(), if the metric on 7r~1'' M.\^ is the inverse image of the metric
k\ on M.\^ (it is comparable to the metric used in § 5.c, hence induces
the same L2 spaces); the projection on C,^{M) is given by the trace map
1/g-tr.

The complex C^{M) is therefore a direct factor of TT^C^^TT^M).
According to the theorem applied to TT^M, the complex C^TT^M) is
perverse on Ag, being isomorphic to the perverse complex DR^Tr'^.A/Omin).
The map TT being finite, the complex Tr^C^^M) is perverse on A, as
well as the direct factor C^(M.).

Let C, = e2^/9 and let a be the automorphism of Ag sending t to <^.
We have TT o a = TT. It induces an automorphism a of TT^C^^TT^M):

TT^^^M) = (Troa^^Troa)-^)

^ 7r^C^(a^7r^M) ̂  n^a-^C^^M)

=7^*^2)(7^+^)•

The perverse subsheaf C^(M) is then identified with Ker(? - Id) (the
kernel is taken in the perverse sense).



1290 CLAUDE SABBAH

We may argue in a similar way with the terms appearing in the
following diagram:

TT.C^^M) —— 7^.CDb^do07^+A^) -^ TT.C^M)

n ic
7r,DR((7r+A1)^) -^ 7r,DR(7r+A1) —— 7r.DR(T,+^).

The theorem for M will follow from the result for -K^M and from the
fact that 7r^+^ incompatible with a. Let us show this last statement: the
decomposition TT+.M = (^M)^ ̂ (^M)^ is invariant under the action
ofo-^taking thejnean of any local liftings TT+.M —> TT^M^ of the projection
TT+A^ -^ (7^+A/()(r) at the points 0° + 2ik7r/q gives thus another such local
lifting, which is invariant under the action of a; as cdoes not depend on the
choice of the local lifting, we conclude that TT^+^ is compatible with a.
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