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THE HARISH-CHANDRA HOMOMORPHISM
FOR A QUANTIZED CLASSICAL HERMITIAN

SYMMETRIC PAIR

by W. BALDONI and P. MOSENEDER FRAJRIA

1. Introduction.

If G/K is a noncompact symmetric space and KAN is an Iwasawa
decomposition of G then the Harish-Chandra homomorphism is an explicit
homomorphism between the algebra D(G/K) of invariant differential op-
erators on G / K and the algebra of polynomials on A that are invariant for
the Weyl group W]R of the pair (G, A).

If G/K is an hermitian symmetric space then the complexification
^ of the Lie algebra of K is a Levi component of a parabolic subalgebra
of the complexification Q of the Lie algebra of G. This implies that there
is a natural analog (U, K) of the pair (G, K) with U and K quantized
enveloping algebras. In this quantized setting there is also an analog
Dq(G/K) of the algebra D(G/K).

The main result of this paper (Theorem 3.3) is the construction of
an isomorphism between the algebra Dq(G/K) and an algebra of Laurent
polynomials that are invariant for the group >V]R. We feel that ours is the
correct generalization to the quantum group setting of the Harish-Chandra
homomorphism.

The major difficulty in generalizing the classical result comes from the
fact that there is no obvious analog of the group A, we solve this problem by

Keywords: Quantum groups — Symmetric functions.
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substituting the algebra of polynomials on A with an algebra of functions
on the lattice of integral weights of the system of restricted roots. Then we
identify an element X of Dq(G/K) with the function Fx denned by setting
FxW to be ^\(X) where ^\ is a spherical function. This identification
followed by an appropriate p-shift gives the desired isomorphism.

To carry out this program we need to compute precisely the values
^^(X) of spherical functions and we are able to do so only when X is a
central element of U. For this reason we can not prove our result in full
generality, but only for the classical cases.

2. Notations.

Let G/K be an irreducible hermitian symmetric space of the non-
compact type. Let T C K be a torus and set ^o? ^o ^d to to be the Lie
algebras of G, K^ and T respectively. Set g, ^, t to be the complexifications
°f So? ^o aln(^ to- Then t is a Cartan subalgebra of Q and we denote by R
the root system of (s?t)- This is a root system in the euclidean real space
(£", ( , )), where E is the real dual of \^—HQ and ( , ) is any (nonzero)
multiple of the form induced by the Killing form.

Since G/K is hermitian symmetric, it is well known that we can
find a positive system R^ for R such that, if II = {ai,... ,^} is the
corresponding set of simple roots, then there is a simple root a^ such that
the Lie algebra [^, 6] is the algebra corresponding to the subsystem Re of
R generated by II\{a^} and t = [̂ ] + t. In other words the algebra t is
the Levi component of a parabolic subalgebra of Q. Moreover, if a is the
highest root in R^~ and we write

^z^^
3

then 7^0 =1. We assume that such a positive system has been chosen once
and for all.

n
We denote by Q = ̂  Zo^ the root lattice for R, and we let P denote

i=l
the lattice of integral weights. We write P^ for the set of dominant integral
weights for R with respect to R^~. We also set R^ == R^ D Re and Qc the
root lattice for Re.
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We now describe the quantum analog of the pair (G^K): let F be a
field and assume that charF 7^ 2. Fix q € F and assume that q is not a
root of unity.

We normalize ( , ) so that di = (l/2)(a^c^) € N and the di are
relatively prime. Set a^- = 2(a^c^)/(Q^,Q^), and let A denote the matrix
(dij). We let U denote the quantized enveloping algebra associated to
the matrix A. This is the algebra over F with generators Ei, Fi, Ki and
Ky~1 (z = l , . . . ,n) satisfying the relations described in §1.1 of [12]. We
denote by U'1', U~, and U° the subalgebras of U generated by £^, J^, and
Ki,Kj~1 respectively. We set IP (resp. U^) to be the Hopf subalgebra of
U generated by the elements £^, K^ (i^, K^).

As it is well known, U is also a Hopf algebra and we let A denote the
comultiplication, S the antipode, and e the counit. We recall that e is the
homomorphism from U to F defined by

e(Ei) = e(Fi) = 0, e(^) = e(K^) = 1

and we set A = Kere. For the precise definition of the comultiplication and
the antipode we refer again to §1.1 of [12].

If X € U, then A(X) = ̂  Xu 0 X^. We write for short
i

A(X)=^X(i)0X(2).

We let Ad denote the adjoint action of U on itself. This is defined as follows:
if X e U and A(X) = ̂  X^ (g) X^, then

Ad(X)(Y)=^X^YS(X^).

If M is a Hopf subalgebra of U, then M acts via the adjoint action on U;
this action will still be denoted by Ad.

Set K to be the subalgebra of U generated by all the K^F and by
Er^ Fr with r ̂  IQ. We note that, in the classical limit 9=1, the algebra K
turns out to be the enveloping algebra of t. As already observed the algebra
^ is the Levi component of a parabolic subalgebra. An analogous situation
holds in the quantum case: as shown in [§2] we can find a subalgebra Uyi
of U"^ such that P = KUyi is a subalgebra of U and Un is Ad(K)-stable.
We recall that the algebra Vn is the algebra generated by the root vectors
Xa with a 6 R^~\R^ provided that a convex ordering for R^~ is carefully
chosen.
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Let r be the involutive antihomomorphism of U defined by

(2.1) r(Ei)=-FiK^ r(Fi)=-K^E^ r(^) = K,.

It is easy to check (see [1, Lemma 3.1]) that r(Un) is Ad(K)-stable.
The PBW theorem for quantized enveloping algebras implies that the
multiplication

(2.2) m : Vn (g) r(U^) 0 K -^ U

is an isomorphism of vector spaces (see [§3] for the details).

If M is a U°-module and p, € P, then we define

M^ = {v e M I KiV = q^^v for all %}.

If v 6 M^, we say that v has weight p, and that M^ is the weight space of
M of weight p,. As a particular case we consider the action of U° on U via
Ad: in this case U^ 7^ {0} if and only if ji € Q and

u=9u,.
/^eQ

If X € U has weight p, we write for short A(X) = /^.

In this paper all U-modules are meant to be finite dimensional and of
type 1. We recall that a U-module is said to be of type 1 if it is the direct
sum of its weight spaces.

If A € P"1" then we denote by V{\) the irreducible finite dimensional
U-module of highest weight A as defined in [9]. We denote by P^~ the set
of weights in P that are dominant for n\{a^}. If A C P^~ let Vc(A) be the
finite dimensional representation of K with highest weight A.

If V is a U-module, v € V and / € V*, then we denote by Cf^ the
matrix coefficient defined by

c^(X)=f(Xv) X e U .
Let Fg(G') denote the subalgebra of U* generated by the matrix coefficients
of all the representations V{\) with A € P"1". Set

F,(G//K)={fe¥,(G)\f(k,Xk,)
= e(k,)f(X)e(k^ k^ G K, X € U}.

This is the ^-analog of the algebra of bi-J^-invariant functions on G.
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If V is a finite dimensional representation we say that a vector v e V
is a spherical vector if kv = e(k)v for all k G K. We denote by ?o the set
of all dominant integral weights A such that V(X) has a nonzero spherical
vector. The space of spherical vectors in V(\) has dimension at most one,
as follows easily from [11, Theorem 4.12], thus, if A € PO, we fix a nonzero
spherical vector ̂  € V(\) so that the space of spherical vectors in V(\) is
precisely ¥v\.

Let /A € V(\)* be the spherical vector in V(A)* such that f\(v\) = 1.
We call <^A = Cfx,vx the spherical function of weight A.

3. The algebra Dq(G/K).

We now introduce the quantum version Dq(G/K) of the algebra of
invariant differential operators on the symmetric space G / K : set

1̂  = {X e U | Ad(fc)(X) = 6(A;)X, k C K},

and ,7 == U(K H A). It is natural to define

D^G/K)=\^ /^n^.
T^"

Observe that Dq{G/K) is an algebra since J H U is a two sided ideal in
U".

Recall that Re is the root system of (C, t) and that R^ = R^nRc. Let
7i ^ 72 ^ • . . ^ 7r (= R^\Rt be the strongly orthogonal roots associated
to the pair (^+,^) (see [5, Proposition 7.4]). Let We denote the Weyl
group of Re. If We is the longest element of We with respect to R^ we set
6j = Wc(7j) and observe that 6j e ̂ +.

Set a' = ̂  M<^ and let TT : E —^ a' denote the orthogonal projection.
Set (}- = {X e to | ̂ (v^X) = 0 for all a e a7} and ̂  to be the
orthogonal complement of V^l)" in v^to. We observe that the roots
6i are the strongly orthogonal roots for the positive system Wc(R^) =
-R^ U R\R^. Therefore, by [5, Corollary 7.6], we can choose root vectors
X^i and an Iwasawa decomposition G = KAN of G so that the space

ao=^R(X^+X-,J

is the Lie algebra do of A. By standard Lie theory we can find an element
u C Int(fl) and such that u^- = Id and u(^) = OQ.
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If a is an element of the real dual of y^^Lto, then we set o^ to be the
element of the real dual of do + -s/^T^ defined by o^ = a o u~1. It follows
that ^(Jt^VO} is the set of restricted roots for (flo, do), hence 7r(J?)\{0} is
a root system (which is known to be of type BCr). We denote by QR, P^
respectively the root and the weight lattice of 7r(J?)\{0}. We also set W^
to be the Weyl group of 7r(J?)\{0}.

Obviously {R^^ is a positive system for the root system Ru. We set
E+ == TT^+^VO}.

LEMMA 3.1. — S+ is a positive system for ^(^^{O}.

Proof. — Set do to be the real dual of do. The set {<^,(^, . . . ,<^}
is a basis for OQ. We order this basis by setting 6^ ^ 6^ ^ ... ^ ^ and
we extend this order lexicographically to all of OQ. This defines a positive
system A+ for TT^VO}. We claim that A+ = E-^.

As observed above the roots ^ are the strongly orthogonal roots for
the positive system Wc^"^), so, by [14, §2], if a € R^ then 7r(-o;) is in one
of the following possible forms:

7r(-a) = 0 7r(-a) = - ̂  6i 7r(-a) = ̂  (6, - 6j) with j < i

hence, if a e R^ and 7r(o;) 7^ 0 then 7r(a) € A4'.

On the other hand, if a e R\R^ then, by [14, §2], 7r(a) is in one of
the following possible forms:

7r(a)=|^ ^(a)=J(^+^)

thus 7r(a) € A+.

This shows that S"^ C A4". In particular we have that E^" and —S"1' are
disjoint. Finally we observe that A+ U (-A+) == ^(JyVO} = S+ U (-S+)
proving our claim, n

As pointed out in the Introduction the main result of this paper is the
quantum version of the Harish-Chandra isomorphism between the algebra
of invariant differential operators on G/K and the algebra of invariant
polynomials on A. We now describe our result precisely.

We begin with the following observation:

LEMMA 3.2. — I f X e P then 7r(A) C PR.
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Proof. - Clearly 7r(A) = ̂  ̂ 4^- If A € P, then 2(A41 e Z,
i [ ° i ^ i ) (Oi^i)

so we need only to prove that

(3-1) ^},=^1Z6,.

This can be checked directly using (iii) and (iv) of [14, §2]. n

Notice that, by (3.1),

r
2PK=^Z^.

j=l

so, given A € P^, we can define a function e^ on 2P^ with values in F by
setting

e\^)=q^\

We denote the algebra of functions generated by {e2^ | u. e P^} by Fg[2Pfc].
There is a natural homomorphism from the group algebra F[2P^] of 2P^
onto F^[2Pk]. Since we are assuming that q is not a root of unity this
homomorphism is actually an isomorphism. The natural action of W^ on
2P^ extends to an action on Fg[2P^].

K P == ^ S a^ then we set pa' = 7r(p). We already observed that, ifz aefi+
A € 2P^, then (A,/^) e Z for all ^ e P]R. Combining this last observation
with Lemma 3.2 we obtain that we can define an automorphism 7-/, , of
¥q[2P^} by setting 7-^, (e^) = ^-(^^a^e^.

Suppose now that ~X e Dq(G/K). We define a function /-^ : Po -^ F
by setting f-y(p) = ̂ (X). Here is our main result:

THEOREM 3.3. — Suppose that the root system R is irreducible and
of type An, Bn, Cn, Dn. Then the function f^ : PQ -^ F has a unique
extension F^ : 2P^ -» F that belongs to ¥q[2P-^}. Moreover

^-r-pa'W^^W^'
2. The map

r:D,(G/K)^¥,[2P^^

r:x-7-pa^x)
is an isomorphism of algebras.
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The rest of this paper is devoted to the proof of Theorem 3.3. The
reason why we need to restrict to the classical cases will soon be apparent.

We conclude this section by describing briefly the various steps in
the proof: in §4 we construct a basis {X\ | A € Po} of Dq(G/K) using the
decomposition (2.2). Unfortunately we are not able to compute directly the
functions /-^. To overcome this difficulty, we construct a different basis for
Dq(G/K) using the central elements zy defined in [7, Lemma 6.23]. This
is done because the functions f^y are easily computable. To carry out the
proof of Theorem 3.3. we need to relate the elements ~zy with our basis
{X\}. The key result in this direction is Corollary 5.6 which is proved in
§5 using the so called L-operators.

Finally, in §6, we show how to reduce Theorem 3.3 to a computation
in F^J^]^. The actual calculations are performed in §7 for the classical
cases. It should be noticed that we essentially show that the center of U
completely describes Dq(G/K). It is known that in the q = 1 case this fact
holds for the classical cases while it is not always true in the exceptional
ones (see exercise D3 of ch.II and the remark on page 326 of [6] with
the reference cited there). This observation explains why we cannot prove
Theorem 3.3 in the exceptional cases.

4. A basis for Dq{G/K).

In this section we construct a basis for Dq(G/K). We start by
decomposing Uyi as a K-module:

THEOREM 4.1. — As a 'K-module

(4.1) U,=eA(EPo^c(A).

Proof. — It is well known in the q = 1 case that Vc{\) occurs in Un
if and only if A == n^i + n^ + ... + rir6r with rij € Z and HI ^ n^ ^
... ^ Ur ^ 0. Moreover such a Vc{\) occurs with multiplicity one (see the
remarks after Theorem 0 of [10] for the correct attribution of this result).
It follows in particular that, if rij G Z and 77,1 ^ n^ ^ ... ^ Ur ^ 0, then
ni^i + n2^2 + ... + rir6r C P"^. By construction \Jn has the same character
of its classical counterpart, so, by [11, Theorem 4.12], it decomposes in the
same way.
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To conclude the proof we need only to show that

f r 1(4.2) Po == < ̂  r i j 6 j \ r i j eZ and ni ^ na ^ • • • ^ ^r ^ 0 } ,
[j=i J

f r 1If A G \ E ^A- | n, C Z and ni ^ yi2 ^ ... ^ n,. ^ 0 k then A" is
I j=i J

a weight on do + ^+ that is dominant integral with respect to (R^)'11. Set
F(XU) to be the finite dimensional irreducible fl-module of highest weight
A". By Lemma 3.1 we can apply Theorem 4.1 of [6] and find that F^) has
a nonzero ^-invariant vector. We know that in the q = 1 case V(X) = ̂ (A^),
therefore, by applying Theorem 4.1 of [11] again , we find that, if q is not a
root of unity, then V(A) has a nonzero K-invariant vector. This shows that

r . -i
) ̂  n^3 I n? e ̂  anc^ n! ̂  ^2 ^ • • . ̂  ̂ r ^ 0 ) C PO.
U=l J

On the other hand, if A G PO then any highest weight vector v^
of V(A) belongs to U^A. By the PBW theorem we know that U"^ ^
Un 0 (K D U"^), so, since v\ is spherical, we have that ^+ C Un^A- Since
the map Un -^ V-nVx (X i-> XZ»A) is clearly K-equi variant, we can conclude
that Vc(\) occurs in Un. D

It follows immediately that, as a K-module,

(4.3) r(U,) = Q) r(K(A)),
AePo

hence

UnT(U,)= ^ Vc(\)r(V^)).
x^ePo

As shown in [1] it is not hard to check that

K(A)T(y^)) ̂  HomF(K(A),K(^))

as a K-module. This depends on the fact that there is a nondegenerate
K-invariant pairing between \Jn and r(Un); such a pairing will be exhibited
later in this paper.

It follows that

(UnT^f = ̂ (^(^(^(A)))"

\ePo
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and

dim^AM^A)))1' = 1.

For each A e PQ we choose a nonzero element X\ e (^(^(^(A)))1^;
T/-

we have thus shown that {X\} is a basis of (Unr(Un)) .
By (2.2) we have that

(4.4) U = U,r(U,) C J

and therefore since both Unr(U^) and J are K-stable,

u" ^(u^u,))1' e(jf.
It follows at once that

(4.5) (Xx | A e Po}

is a basis of Dq(G/K).

5. L-operators.

In this section we set up the machinery of L-operators. The result
we are aiming at is Corollary 5.6 below. We recall briefly the theory of
L-operators: references are [13] and [8, Chapter 9]. A quick exposition can
be found in [4].

Let ( , ) denote the unique bilinear pairing between U^ and IP such
that, for all y , y ' € U^, all x, x ' C IP and all p,, A € Z$,

(5.1) Q/, x x ' ) = (A(2/),^ 0 ̂  (^', x) = (y 0 ̂  ACr))

(5.2) (^.^) = ̂ ^') (F^E,) = -^.te - g,-1)-1

(5.3) {K^Ei)={F^K^)=0

(see [7, Proposition 6.12]).

We denote by U° the group algebra of P. If H is a Hopf subalgebra
of U containing U° then we can extend the adjoint action Ad of U° on H
to U°: if X C H and A(X) = ^ then we set Ad(^)W = q^^X. We
denote by H the Hopf algebra H = H 0^0 U° with multiplication defined

by
(X^K^(Y^K^)=XAd(K^(Y)^KxK^
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and comultiplication defined by

A(X 0 K^) = T23(A(X) 0 Kx 0 ̂ )

(here T23 is the "flip" r^(X^ 0 ̂ 2 0 ̂ 3 0 ̂ 4) = Xi 0 Xg 0 X2 0 Xi).

By Lemma 4.1 of [4], we can extend the pairing ( , ) to a pairing
between U^ and LP and to a pairing between U^ and IP by defining

(5.4) (YK^XK^) = q-^\Y,X) X € U+, Y e U-.

We denote both pairings by ( , ) and observe that the same argument of
Corollary 4.3 of [4] shows that the pairings are both nondegenerate.

We can now introduce the L-operators. See [4] for a proof of the
following result:

THEOREM 5.1. — Let M be a finite dimensional U-module. Fix v € M
and f € M*. Then

1. There is a unique element -f^ € IP such that Cf^{y) = (^tj
forallyeV^.

2. There is a unique element i. e U^ such that Cf^(S(x)) = ( £ . , x)
forage IP.

The elements £^ are the so called L-operators.

Let M be a finite dimensional U-module, {^} a basis of M, and {fi}
its dual basis. If v € M, and / e M*, we set

(5-5) CM(f^y)=^e^S(£^).
i

We also set

(5.6) ZM=CM^fi^K^Viy
\ i )

A proof of the following result can be found in §7 of [4]:

THEOREM 5.2. — 1. CM '' M* 0M —^ U is V-equivariant. (The action
o f U o n U is given by Ad).

2. If\ € P and 2A € Q, then

A-(A)OW0V(A))cu.

3. ZM is a central element in U.



1190 W. BALDONI AND P. MOSENEDER FRAJRIA

By hitting with ZM the lowest weight of V{\) we find by a direct
calculation that

(5.7) ZM ' v = tr (^_2(A+p), M)v

for all v € V(\). In particular, by applying Proposition 5.11 of [7] or by a
direct calculation, we find that

(5.8) ZM^N = ZM^N-

We set z\ = ZY{\) for A 6 P^.

Our next task is to find a K-equivariant version of CM i this time into
Vnr(Vn): set

K- = K H U- K+ = K D U-^-

and

K ^ = K n u ^ K ^ = = K n u ^ .
We let A denote the augmentation ideal of U. It is the two sided ideal
generated by A and {K\ — 1 | A € P}. We set

z^ = u^(K^ n A) P = (K^ n A)u^.
By the PBW theorem we have that

u^ = r(u^) e z^ u^ = Vn e z^.
Let p"*" : LP -^ U^ and p~ : U^ —^ T(Uyi) be the projections corresponding
to the decompositions above.

We now observe that

(5.9) (^,U,)=0.

Indeed, notice that if Y € 1^ and X € Un, then we can assume that
Y = Y ' K x with y' € U-(K- n A) or Y = Y ' ( K x - 1) with Y ' e U^ and
A € P. In the first case we obtain

(V,X) = 0 by (5.4) and §8.30 of [7]; in the second, (V,X) = 0 by
applying (5.4).

Next we prove that

(5.10) (r(U,),P)=0.
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Let uj be the involutive automorphism of U defined by

uj[Fi)=Ei ^(K^)=K^

We observe that S(uj(X)) == r(X) for all X € U, hence we can extend r
to U. Now, if X e U4- and Y e U-, then, as shown in [7, Lemma 6.16],
we know that

(5.ii) (y,x)=(o;(x),a;(y)).
Using (5.4) it is easy to check that (5.11) holds also if Y e U^ and X e U^.
Since (S(Y), S(X)) = (V, X) for all Y e U^ and X e LP (see Exercise 6.16
of [7]), we deduce that (V,X) = (r(X),r(Y)) if X e U+ and Y e U^. In
order to prove (5.10) it is now sufficient to observe that Z^ = r(J^).

Notice also that (5.9) and (5.10) imply that the pairing between Vn
and r(Un) given by restricting ( , ) is nondegenerate.

THEOREM 5.3. — Let V be a finite dimensional U-moduJe.

1. The map C^y : V 0 V* -^ U^ denned by

^/-^(^^J

is K-equivariant.

2. The map C^y : V (g) V* -^ r(Un) deAied by

^/^P-(5(^^))

is K-equivariant.

Proof. — We first show that for all Xi, X^ C Vn and k e K.

(5.12) (Ad(5(A;))(r(Xi)), X2) = (r(Xi), Ad(/c)(X2))

This can most easily checked using the Rosso form < , > as defined
in [7, §6.20]. Indeed, by equation (1) of [7, §6.20] we have that

(r(Xi),X2) =< Ad(^2p)(r(Xi)),X2 >

hence 5.12) follows readily from the Ad-invariance of the Rosso form.

As observed above, the pairing between Un and r(Un) given by
restricting ( , ) is nondegenerate. It follows that in order to prove our
statements it is enough to show that, for all k e K and X C Un,

(5.13) (r(X), C^y(k. (v 0 /))) = (r(X), Ad(k)(C^y(v 0 /)))
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and that

(5.14) (C^y(k • (v ̂  /)),X) = (Ad(k)(C^y(v 0 /)),X).

We now prove (5.13): write A(fc) = ̂  k[ (g) fc," then
%

(r(X), £^(A:. (v ® /))) = EW)'̂ './,̂ -^)..))
i

=^(r(X),^,^_^.J by (5.10)
Z

= ̂  ̂ / • f(r(X)K^pk[ • v) by Theorem 5.1
i

=^f(S(k'^T(X)K,^.v)
i

=^f(Ad{S{k)(r{X)}K,^-v)
i

= (Ad(5(fc)(T(X)),^_^J by Theorem 5.1

= (Ad(5(fc)(T(X)),p+(4^_^.J) by (5.10)

= (r(X),Ad(fc)(^(^^/))) by (5.12).

The proof of (5.14) is completely analogous. D

Suppose now that A € PO so that V(\) has a nonzero spherical vector.
This implies that the weights of V(\) are all in Q. In particular we can
define an action of U on V(\) by K^v = q^^v for v € V(\)^.

Consider the left ideal Z of U

I = {X € U | Xvx == 0 for all A € Po}.

The following result was proven in [3]:

THEOREM 5.4. — 1. T = U(K n A).
2. The decomposition

V = (U^rOLJ,)^ C (U(K n A) + (K n A)U)

holds.

3. The pairing

< , >: F,(G//JQ x P,(G/A:) ̂  F

given by < /, X >= f(X) is nondegenerate.
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T^"

Let p : U —^ (Unr(Un)) be the projection associated with the
decomposition given in 2 of Theorem 5.4. If V is a U-module, then we set

Po(V) = {A e Po | Vc(A) occurs in V}.

A consequence of Theorem 5.3 is the following result:

PROPOSITION 5.5. — Let V,W be V-modules. I f v e V , / e V * ,
w e W, and g e TV*, then

P(^(^,j)=^c^,
^

with c^ = 0 unless ^ C Po(V 0 V*) D Po(lV 0 IV*).

Proof. — Obviously,

P^S(^J) = P(p+(^)p-(5(^,)))

= p(C^v(K^v 0 f)C^{w 0 ̂ -2p^)).

If /^ € P^ and V is a U-module, we let (7(^, V) denote the isotypic
component of V of type /A. By (4.1), we know that

fC7(^U,)={0} if/^Po,
\C(^\J^=V^) i f / ^ C P o ;

and, by (4.3),

r C(^ r(U,)) = {0} if - wc(^) ^ Po,
I C(^ r(Vn)) = r(K(-Wc(/.))) if - Wc(^) € PO.

By the K-equivariance of C^ y we deduce that

^,v(^0/))e ^ Vc(^)
^ePo(V0^)

and, by the K-equivariance of C^w^

C^(w^K,^g)e ^ r(VcW)
^Po{W®W^

(here we used the fact that (W 0 TV*)* ^ IV 0 TV*).

It follows that

p( ,̂5(^J) ep^ ̂  K(^i)T(Vc(^)))
/Al,At2 /
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with ^i (E Po(V0V*) and ̂  C Po(W^W*). If we set J^ = (U(Kn^)+

(K H A)V), it is easy to check that

VMT(VM) = (K^iWO^))^ e (^?(^2))) n^iK
hence

p(̂ (̂ J) e ̂  (^iMVeG^)))1'.
P'1^2

To conclude the proof it is enough to recall that

(V^OT^G^)))1^ = {0} if /,i 7^ /.2,

(^(^T(K(/.)))K=FX^
D

Analogous to the decomposition (4.4), we have a decomposition

u=u,r(u,)eu(KnA)
hence, if we set J = U(K n A), then

^=(1^(1;,))%^
K TC

thus the embedding U C U induces an isomorphism

^ if ^D^G/K).

^ K _ ĵ
If X € U we still denote X = X + J e Dq(G/K). A consequence

of the previous proposition is the following result:

COROLLARY 5.6. — IfV is a V-module, then

^v=^c^X^
P-

with c^ = 0 unless p, e Po(V (g) V*).

Proof. — We already observed that if A e ?o then U acts on V(A). It
follows that we can define ^\(zy) for all A € PQ. Let < , > be the pairing
defined in Theorem 5.4. Since K D A acts trivially on spherical vectors we
have that

< ^>\,~zy >= ^x(zv) for all A € PO
and that

^\(zy) = ^\(p(zv)) =< ̂ \,p(zy) > for all A 6 PO.
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By the nondegeneracy of the pairing < , > we obtain that

zy = p(zv)

hence our result.

6. The proof of Theorem 3.3.

In this section we show how to reduce the proof of Theorem 3.3 to a
calculation in FpJ^]^.

First of all we observe that it is obvious that f-^y = f-^-fyi so if
we can prove the existence and uniqueness of F-^ and F-y then clearly
F-J^Y = ^~x^Y' ^lnce ^-pcjL' ls obviously an automorphism of Fg[2J^], we
have that r(XY) = r(X)r(Y).

We now show that the function F-^- of Theorem 3.3 exists when
X = zy: by (5.7)

f^W=tr{K.^^V)= ̂  ( ^ dimy^-2^^)].
P^PR \7r^)=iJ.

Since A e PO C a7 then we can rewrite fjy as

f^W- E f E dimV.g-2^)^-2^)
P>ePR \7r(^)=/A /

so, if we set

^v=E f E dimy^-2^)^-2^
^eflp \7r(i.)=^ 7

then clearly F^ e ¥q[2P-^} and (F^)^ = /^. The uniqueness of F^
follows immediately from the following observation:

THEOREM 6.1. — IfF G F^[2J^] is such that F\p =0 then F = 0.

Proof. — Let F^a*^"1] be the algebra of Laurent polynomials in
r variables. We can define a map (j) : ¥[xi^x^1} —> ¥q[2P^} by setting
(f)(xi) = e6i. The map (^ is clearly onto. If -F = (f)(p) is such that J^p =0
then, arguing as in Lemma 4.2 of [4], we find that p = 0 thus F = 0. D
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Since F^ exists we can also define F{zv) = 7-p ,(Fjy). We now
compute it: set RM = p - p a ' , then

(6.1) r(z^ =^-Pa'^v)

= ̂  ( ^ dimy,g-2^)]^a'^)e-2^
(6-2) ^e^i \7i-M=Ai /

(63) -E fE dimy^(——))e-2^
/^^ \^)=^ /

Our next task is to prove that F(zv) is WR-invariant. Set

Ro = {a (E ^ | 7r(a) = 0}.

It is known that RQ is a root system.

It is well known that Lemma 3.1 implies that IInfio is a set of simple
roots for RQ whose corresponding system of positive roots is R^ = R^nRo.

LEMMA 6.2. — Given w e WK, there isw eW such that

(6.4) 7T 0 W = W 0 7T

and

(6.5) w(pM)=?M'

Proof. — Set Wa' = [w e W | w(a') = a'} and let Wo be the Weyl
group of Ro. Then, by Proposition 8.10 of [5], the map Res : Wa' —^ >VR
(Res(w) = wja') is onto and its kernel is Wo-

Given w e WR then we choose w e Wa' such that Res(w) = w and
such that w is an element of minimal length in the coset wWo of Wa'/Wo.
It is clear that w satisfies (6.4).

We now show that w satisfies (6.5) : it is well known that Lemma 3.1
implies that pu = ^ ^ a, so it is enough to prove that w(R^) = R^.

z^
Since w(a') = a', then w{Ro) = RQ. Since R^ is the positive system whose
set of simple roots is II D RQ, it follows that we need only to check that
w(a) e R^ for all a € UnRo. Suppose that a G UnRo and w(a) e -fi^.
Then wsa e wWo and ({wsa) < £(w) contrary to the choice of w. n
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We are now ready to prove that F(zv) is invariant:

PROPOSITION 6.3.

r(zv)e¥[2P^\

Fix w C W]R. We need to check that the coefficient of e~2^ in T(~zy)
is the same as the coefficient of e^1^2^, \ ̂  ^t

^ dimy^-2 '̂̂ ^ ^ dimV^q-2^^.
7r(^)=At Ti^i^w-1^)

Choose w as in Lemma 6.2. Then 7r(i/) = w-1^) if and only if7r(w(;/)) = p,
so we can write

^ dimy,g-2(l/^)= ^ dimV.g-2^^)
TT^^W-1^) •7r(w(l^))=/A

= ^ dim^-i^g-2^-1^)^)
7T(^)=/A

= ^ dim^g-2^^^^))
7r(i/)=^

= ^ dimV^-2^^) by (6.5)
7r(i/)=/A

as desired, n

Recall that r = dima' and for i = 1,..., r set ̂  = ^ ^.
j=i

If I = (?!,..., ̂ ) e N7' then we set |J| = ^ ̂ . If A e Po then
j=i

A = E ̂ ^ with n^ G Z and ni ^ 712 ^ ... ^ nr ^ 0. We set |A| = ̂ rij.

LEMMA 6.4. — Suppose that there are A i , . . . , \r € P~^ such that

{Xj^r) ̂  ^j(^l^l).

Set Zi = zy^ and, ifJ=(zi,..., ̂ ) e N7', set z1 = n^.
3

Then

z^ ^ c^.
IAI^IJI
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Proof. — Set

M = (^Vi) 0 (0^2) 0 ... 0 (0^).

By (5.8) we have that

z1 == ^J =ZM'

Applying Corollary 5.6 we find that

~ZM = ^ c\X\.
A(=Po(M0M-)

If A € Po(M0M*), then A must be a weight ofM0M*, thus A = ̂ v
with p, a weight of M and v a weight of M*, so

r r

^ = ̂ ^3X3 ~ ̂ nia^ and ^ = ̂ ^(-^(Aj)) - ̂ m,a,
j=i j=i

with mi.ni € N. (Here WQ is the longest element of the Weyl group of R
with respect to R^~).

Since ujr is dominant for R^~, we have that

(/^r) ^ ̂ ij(>j^r) and (^,a;r) ^ ̂ ^(-wo(A^),^).
3 3

We are assuming that (\j,uJr) ^ ^j(^i^i). Arguing as in [1, Lemma 6.2]

we see that -wo(^r) = ^r so (-wo(Aj),a;y.) ^ ^j(^i,^i). We can conclude
that

(A,^)=(^+^^)^|J | (^i ,<$i) .

On the other hand, by (v) of [14, §2], (^,^) = (<^i) for all j, hence,
since A = ̂  ̂ j^j, we find that

(6.6) (A,^)=|A|(<$iA).

The result follows, n

By Lemma 6.4, Theorem 3.3 will follow if we prove the following
result:



THE HARISH-CHANDRA HOMOMORPHISM FOR A QUANTIZED CLASSICAL 1199

THEOREM 6.5. — Under the hypothesis of Lemma 6.4 suppose also
that the set

{m),...,r(z,)}
is an algebraically independent set of generators ofWq^P^]^.

Then the set {z1} is a basis ofDq(G/K), Dq(G/K) = F[^], and

r : F[^] -. ¥q[2P^

is an isomorphism of algebras.

_Proof. — Fix TV € N and set Dq(G/K)[N] to be the space generated
by {XA | |A| ^ N}. By Lemma 6.4, {z1 [ \I\ ^ TV} c Dq(G/K)[N}.

r
If I = (^i, • . . , ir) we set A(J) = ^ i^y. By (6.6), using the fact that

j'=i
(^j^r) = J'(^i, ̂ i), we deduce that [A(J)| = |J|, so we can define a map

{-z1 | [J| ^ TV} ̂  {X^ | |A| ^ TV}

z1 •-> X^(j)
that is bijective.

Since the set {r(^i),.. . ,r(^)} is algebraically independent, the set
{'z1 | |J| ^ TV} is linearly independent. Since {X^ | |A[ ^ TV} is a basis
of Dq(G/K)[N], and Dq(G/K)[N] is finite dimensional we deduce that
{z1 | |J| ^ TV} is a basis of Dq(G/K)[N}. This proves the fact that {z1} is
a basis of Dq(G/K) and, therefore, Dq(G/K) = F[^].

Moreover, since F maps an algebraically independent set of genera-
tors onto an algebraically independent set of generators, it is clearly an
isomorphism, n

7. The classical cases.

In this section we prove that if R is a root system of type An, Bn,
Cn, Dn then the hypotheses of Theorem 6.5 hold. Our computations will
be based on the following easy observation:

LEMMA 7.1. — Suppose that

( t > : ¥ [ x ^ . . . , X n ] ^ ¥ [ x ^ . . . , X n ]

is a surjective homomorphism. Then (/) is an isomorphism.
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Proof. — The ring F[a;i,..., Xn} is noetherian. D

If A C 2J^, then we denote by m(A) the W]R-orbit of e\ It is known
by classical invariant theory that Fpjy^ is the polynomial algebra in
the free generators Xi = m(-ci^).

Suppose that, for each i = 1,..., r, we can find \i € P4" that satisfies
the hypothesis of Lemma 6.4. Let Zi be as in Lemma 6.4, and set Yi = r(^).
We need to prove that {Yi} is an algebraically independent set of generators
for Fpjy^. By Lemma 7.1, in order to prove this fact, we need only show
that the homomorphism

0:F[Xi,...,X,]-^F[Xi,...,X,]

defined by setting 0(X^) = Yi is onto, or, equivalently, that there are
polynomials Pi, ?2,..., Pr such that Xi = Pz(Vi, . . . , Yr). The proof of the
existence of the weights \i as well of the polynomials Pi,..., Pr requires a
certain amount of case by case checking, so we prove it separately for each
case. In all of our cases we use the description of roots and weights given
in [2, Planches I-IV]. The various cases are listed according to Table V at
page 518 of [5].

7.1. Case CI.

In this case R is of type Cn, a^ = 2en, and 6i = 2ci, i = 1,... ,n.
It follows that r = n and E = a', so TT is the identity and pu = 0. For

i
i = 1,..., n, we choose \i = ^ Cj; it is easily checked that the weights \i

j'=i
satisfy the hypothesis of Lemma 6.4. It follows from (6.3) that in this case

(7.1) Y, = T(zi) = ̂  dimy(A^e-2^.
^EP

Let F(\i) be the finite dimensional irreducible representation of5p(n,C)
of highest weight \i. Theorem 4.12 of [11] assures that dimV(Xi)^, =
dimF(A^)^. Since F{\i) is a subrepresentation of A^C271 with the action of
5p(n, C) on C271 given by the standard representation, then it is easily seen
that the weights of V(\i) are in the W-orbit of A^, with j ^ i and i - j
even. In turns, this implies that, by the W-invariance of Yi,

(7.2) Yi = ̂  a, m(-2A,) = ̂  a, m(-^) = ̂  a,X,
J^i J^i j^i

where, clearly, c^ is the coefficient of e"2^ when we write Yi as in (7.1).
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We deduce that c^ = dimV(\i)^, hence cu == 1. It follows that we
can invert the matrix {crs) and write

x,= .̂y,.
J^i

This concludes the proof.

7.2. Case AIII.

In this case R is of type A^-i. We can choose a^ = Cp - Cp+i and
assume also that p ^ q where q = n - p. We have that ^ = a - €n+i-i for

z = 1,..., g, hence r = q. If z = 1,..., r, then we set A, = ^ ^ - -z- ̂  e^.
j=i ^j=i

Arguing as in §7.1, we see that the weights occurring in V(\i) are in
the W-orbit of \j, with j ^ z. If a e JZ, then it is easy to check that
(Ay, a) € {1,0, -1}. This implies that, if p, is a weight occurring in V(A^),
then

(/^) = (w(A,),^) = (A.-.w-1^)) e {1,0,-!},

hence 7r(2^) = ^;a^^ with a/, e {1,0, -1}. It follows that 7r(2^) is in the
h

H^-orbit of ujj for some j. By the WR-invariance of Yi we obtain that

Yi=^Cijm(-^).
j

Moreover, ^ is a weight occurring in V(Ai) only if ^ = A, - ̂ n^, with
n^ € N and a e ̂ +. Since ̂  is dominant for -R-^ we see that, if7r(2/^) = ̂ ,
then

2j = (7r(2^),^) = (2^,0;^) ^ (2A,,^) == 2i,

hence

y,=^c,,x,.
J^z

To conclude the argument we need only check that cu -^ 0. Indeed we prove

LEMMA 7.2.

y.=^>,x,-13^3
J^i

with en = 1.
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Proof. — By (6.3)

y,=r(^)=^ [ ̂  dimy^g-2^)] e-2^,
^PR \7rH=/x ]

so Cn is the coefficient of e~u)i in the expression above.

Suppose that v is a weight of V(\i) such that 7r(2^) == c^. We notice
that 7r(2\i) == c^ so we have that (^, <^) == (A^, <^) for j = 1,..., r.

We write v = A^ — ^n/ia/i, with n/i e N. Hence

(^6j) = (\i,6j) - {^nhah,6jj = (^^) - f^7^Q^<^

so (^rihah,8j) = 0 for any j, or, equivalently,

Q^r^a^c^ =0

for any j. Since ujj is dominant with respect to ̂ +, we obtain that if n^ -^ 0
then (a/i,o^) = 0, hence a^ € ^o- Set IIo = II n ^o- We have proven that

(7.3) v=\i- ^ n^ah.
ah^Ilo

Let M~ be the subalgebra ofU" generated by the set {F/i | a^ € IIo}.
Fix z?'1" to be a highest weight vector for V{\i) and set W = M'I^. By (7.3)
the weight v can only occur in W'. On the other hand, since (A^, a) = 0 for
any a e RQ, by the standard theory of finite dimensional representations
of U we see that W is one dimensional, so v = \i. We can conclude that

cu^dimV^i)^-2^^ =1

as desired. D

7.3. Case Dili.

This case is more difficult and somewhat surprising. Here R is of
type Dn and we can choose a^ = €n-i -I- e^. The roots 6i are given by
6i = €2z-i + C2i for i = 1,.. . , [n/2], so r = [n/2].

i

In this case we choose A% = ^ €j. Arguing as in §7.1 we see that the
j'=i

weights of V(\i) are in the W-orbit of Aj, with j ^ i and i — j even. It



THE HARISH-CHANDRA HOMOMORPHISM FOR A QUANTIZED CLASSICAL 1203

follows that, if ^ is a weight of V(\i) then

(/.A) = (w(A,)A) = (A^w-1^)) e {2,i,o,-i,-2}.
By the H^ invariance of Yi, we can write

Yi^^aufm(-^if)

where fiif = uji -^ uj/ with I ^ / (0:0 = 0) o^d

a^= ^ dimV^)^-2^).
7r(i/)=^

Moreover, /^ is a weight occurring in V(\i) only if p, == A^ — ^no/a,
with no: € N and a € -R4'. Since ci;y. is dominant for R~^~ we see that, if
7r(2/^) = ^y, then

2(1 + /) = (7r(2^),^) = (2/^,^) ^ (2Az,^) = 2z,

hence

Yi = ̂  aufm(-p,if).
1-^-f^i

We need to compute the coefficients a^y more precisely:

LEMMA 7.3.

Yi= ̂  (9+^-l)(•f~z)m(-^)+ ̂  aufm(-^if).
l-^-f=i l^-f<i

Proof. — If a weight fji, occurs in V(\i) then we can write

p, = ̂  a^e^
s

with as G {1,0, —1} and ̂  |as[ ^ z. If moreover 7r(2/^) = ^y with I-}- f = z,
then we have that a^s-i + a^s = 2 for s ^ ( and a2s-i + 02s = 1 for
Z+l ^ s ^ /. We deduce that Og = 1 for s ^ 2^ and either 025 = I? ^25-1 = 0
or a2s = 0, a2s-i = 1 for l-\-l ^ 5 ̂  /. Since we are assuming that l-\-f = %,
the fact that ̂  \a,s\ ^ i implies that ds = 0 for s > 2/. We can therefore
write

21
P' = ̂  €5 + Csi + . . . + 6s^._

5=1
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where s^, € {21 -h 2h - 1,21 -+- 2h} for /i = 1,..., / - L Since such a weight p,
is in the W-orbit of \i we see that dmV(\i)^ = 1 while g-2(^,pM) = ^t-p
where

P = Hh | SH = 214- 2/i - 1} ^ = jj{/i | sh = 2^ + 2/i}.

Clearly t = / - I - p, so we have that g-2(^,pM) = qf-i-2p ^ follows that
the coenicient of /^ in V^ when I + / = z is given by

^Ef^)^-'-2^^-1)^
p=o \ l/ /

as desired, n

LEMMA 7.4.

x^ = S ( z - Z ) ̂ "^ + Z^ ^/m(-^/)•
Z+/=i+j '< / ^+/<z+j

Proof. — We observe that, if A e P then m(-A) occurs in XiXj if
and only if there is a weight 1/1 in the W^-orbit of -o^, and a weight 1/2
in the W]R-orbit of -ujj such that v\ + 1/2 = -A. If ;/ is in the WiR-orbit of
—o;i then

y = ̂  Os^s

with Og e {1,0, -1} and S |as| = z. Hence, if we write

y\ = ̂  Os^s 1/2 = ̂  &s^ A = ̂  Cg^s

then -Cs = as-^-bs € {2,1,0, -1, -2}. This implies that A is in the W^-orbit
of iiif for some <, /, hence m(—A) = m(—/^y) and we can write

x '̂ =^klfm(-P'lf)'

To compute the coefficient kif we need only compute the coefficient of e~^f
when we write XiXj as ̂  k^. By taking A = /^y in the argument above,
then we find that

I + / = ̂  c, ^ ̂  | a, | + ̂  | bs | = z + j

hence

^j= Y^ ^^(-^if)'
l+f^i-^-J
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It remains only to find the coefficient kif ofm(—/^y) when l-{-f = i-\-j.
We need to count the number of pairs (^i, ^2) such that z/i is in the WR-
orbit of uji, z/2 is in the W^-orbit of c^, and 1/1 + ^2 = /^/. The fact that
^i + ^2 == A^/ implies that as = 65 = 1 if s ^ Z, and either a^ = 0, 6s = 1 or
a^ = 1, bs = 0 if Z + 1 ̂  s ^ f. Since ^ + / = z + j we see that a^ = bs = 0
if / + 1 ̂  5 ^ r. Hence

i
v\ = ̂  6s 4- <^i + ... <^-z ^2 = ^if - v\

s=l

with I + 1 ̂  «i < 52 < ... < Si-i ^ /.

It follows that the number of pairs (^1,^2) as above is equal to the
number of choices for the indices s^ < s^ < ... < Si-i that is clearly equal10 (L'O-

LEMMA 7.5.

^(-^/) = Qif(X^... ,Xi^f)

where Qif is a polynomial.

Proof. — Obviously the point of this result is the fact that m(-/^y)
does not depend on X^+i,... ,X^. This fact can be derived from
Lemma 7.4. Here we give a more natural proof.

If A € 2J^ then A = ]^nA with m € Z. We set |A| = ^;n,. Since q
is not a root of unity the set {e^ | A e 2J^} is a basis of Fg[2J^]. Hence
we can define a degree d on Fg[2J^] by setting ^(e-^) = |A|. Since F^[2J^]
is a domain we see that if f,g e Fg[2J^] then d(fg) = d(f) + d(g).

We compute that d(m(-p,if)) = I + / and that d(X,) == i.

Since m(-^y) e Fg[2J^]WR then there is a polynomial Qif such that

m(-^if)=Qif(X^...,Xr)^

and Q^ does not depend on X^+i,... ,Xr otherwise the degree of
^"A^/) would be bigger than I + f. o

Our result in case Dili depends on the following formulas:

LEMMA 7.6. — Fix i e {1 , . . . , r} and set m == [z/2]. Ifi=l, then

(7.4) Yi - (q + g-^Xi = k with k e ¥ .
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If i > 1, then for each t = 0 , . . . ,m - 1 there is a polynomial
pt(Xi,. . . , Xi-i) such that, ifi is even,

t
(7.5) Y, +pt(Xi,... ,X,-i) - X^ - ][y + g-^)X^_,X^,

j=i
m s—t—l y ^ \

= E(E f2/;)^-'1^^2^))^-^-,^)
s=t+l /i==0 v /

while, ifi is odd,

t
(7.6) V, +pt(Xi,... ,X,-i) - ̂ y^ + q-^Xm-jX^^

j=o
m s-t-1 y ^

= E(E ( ^ )(^-ft)+l+9-2(s-'l)-l)M-^-^^).
s==t+l /i==0 v /

Proof. — The proof is by induction on t. First of all we prove (7.5):
if i is even and t = 0 then by Lemma 7.3 we can write

Yi= ̂  (g+g-l)(/-om(-^)4- ̂  aufm(-^f).
l-^-f=i l+f<i

By Lemma 7.5 there is a polynomial p'(Xi,..., X^-i) such that

y,+p'(Xi,...,x,-i)= ̂  (^-i)(/-o^(-^)
f+/=z
m

= & + g"1)25^-^-.,^.).
5=0

By Lemma 7.4 we have that

jn / 9« \
x^ = ̂  ( ^ ) m{-^rn-s^s} + ̂  kifm(-^if)

s=0 v / f+/<%

so, by applying Lemma 7.5 we can find a polynomial p"(Xi,..., X^-i) such
that

m / 0 \

X^=^(^)m(-^m-s,m+s)+P"(Xi,...,X^).

s==U
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Substituting we find that, setting po = j/ 4-p",
771 y v

^+Po?,.,X^)-^=^((g+g-l)2--(25))^(-^_,^^
s=l V 5 /

m s-1 / .
= E(E ( T ) (^-^ + T^^M- .̂̂ ).

s==l /i=0 v /

The inductive step is similar: by Lemma 7.4 and Lemma 7.5

Xm-tXm+t = ^ ( ̂  _ _ ) m(-fiif) + ^ kifm(-^if)
^f=i v / f+/<z
m / 2«? \

= S ( s - 1 ) ̂ -^-s^s) +P/(Xl,... ,X,-i)
s==t v /

and, by the induction hypothesis,

Vi + P.-i(Xi,..., X,_i) - X^ - ̂ (^- + g-^)X^-,X^, =
j=i

m s-* /o \= E(E (T) (^-fc) + 9-2(s-k)))-(-^-.^).
s=t /i=0 v /

Substituting in (7.5) and setting pt = pi-i + (q^ + g-2*)?' we find
that

Yi + Pt(Xi,..., X,-i) - X^ - ̂ (^- + q-^)X^X^
j=i

yyi g—^ / ^ \ , .
= E(E (T) (^-fc) +,-2(s-fc)) - ( 2S ) (.2t +g-2t)M-^_„^)

s=t h=0 v / V - l//

= E (T'fT)^''^^2^))^-^--^)
s=t+l /,=0 v n ^

as desired.

The case i is odd is proved in the same way. n

Finally we are ready to prove that the hypotheses of Theorem 6.5
hold in this case:

PROPOSITION 7.7. — There are polynomials P, such that

x,=p,(yi,...,y,).
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Proof. — We prove this result by induction on i: if i = 1 then (7.4)
says that

YI =(q-^q~l)X^-^cost.

so, since q is not a root of unity, we can write

X^=(q-^q-l)-l(Y^-cost.).

The inductive step is similar: by setting t = m — 1 in the formulas of
Lemma 7.6 we find that there is a polynomial Qi such that

y,4-Q.(Xl,...,X,-l)=(9^4-9-%)^

so, since q is not a root of unity, we can write

^=(^+9-^)- l(^4-Q^(Xl,. . . ,X,-l)).

The result follows immediately from the induction hypothesis, n

7.4. Case BDI and R of type Bn+i.

In this case R is of type B^+i. The case when n == 1 has already
been discussed in case CI hence we can assume n ^ 2. We can choose
Q^o = ei - €2, thus r = 2 and ^ = ei + €2, ^ = ei - 62. If we define

n+l 1
^i = S T)^ ana ^2 == ei, then this choice satisfies the hypothesis of

z=l z

Lemma 6.4. Since Ai is the highest weight of the spin representation, the
weights of V^(Ai) are all the expressions l/2(=bei + ... ± e^+i) while the
weights of A2 are ±Cj with j = 1,..., n + 1. In both cases the multiplicity
of a weight is one.

We now proceed to compute Y^, i = 1,2.

Suppose v is a weight of V(\\) and write

i n+l1 v-^^=oE^
i=l

with <^ = d=l. Recall that we normalized the form ( , ) so that (e^, e^) = 2.
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Then

f \ 1 / S. \K > 1 / K \H 1 ^C1~^C2\K 1 ( cl ~C2^ c7r(l/)= 4^W+ 4 (^^2)^2= ^(—^—)^i+ ^ I — ^ — 1 ^ 2 .

By inspection one easily sees that Tr(^) is either equal to ± - ̂ i or to d= - ̂ 2^
and thus 7r(2^) is conjugate to uj\ = <^i. Therefore by the W^-invariance of
YI we obtain that

^=( E ^^^(-^i).
\7r(2^)=o/i /

In order to compute the coefficient we argue as before: suppose that
n+l / 3 \

7r(2i/) =0:1, then ci+C2 = 2, i.e. ci = C2 = 1-Since pM = S [n~3~^'^}€^
J=3 v 2 - /

we find that

^-2(.,?M) = ̂ -E;;^^271-2^3)

and

V^ ^-2(^,pM) ^ \^ ^- E 3̂1 ^ (2n-2j+3)

7r(2l/)=0/i C3?---»Cn+l

= ^ g-E;;,10^2"-2^-1)
ai,...,an-i

where a^ = 0^+2, a^ = ±1.

Set

An = { (a i , . . . , an ) | a, = ±1}.

We claim that

^ ^-E^i1^71-^-1) = ]^(g(2j-+l) + g-(2^+l)).

(ai,...,a^_i)GA^-i J=0

We prove it by induction: if n = 2 we have

- ^q-^q+q-1.
a=±l
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Suppose it is true up to n — 2 and let us prove it for n — 1:

^ ^-E;:̂ ^-^-1)
(ai,...,a^_i)GAn-i

V^ ^-2(n-2)-l^- Ê :21 ^(2(n-j)-l)

(a2,...,an-i)€An-2

+ S g2^-2^^" ̂ =21 ^(2(n-7)-l)

(a2,...,an-i)eA^_2

^ ^-2(n-2)-l V-^ - ̂ ;̂ 2 6,(2(n-l-j)-l)

(bl,...,&n_2)eAn_2

_^^2(n-2)+l V^ ^-E^i26^^71-1-^')-1)

(bl,...,bn_2)€An-2

= (^-2(n-2)-l ̂  ̂ 2(n-2)+l) JJ ̂ (2j+l) ̂  ̂ -(2j+l))

J=0

as desired.

In particular

/n-2 \Yi = n^2^ +^(2J+1)) m(-^) =p(^m(-^).
v=0 /

We now compute Y^ In this case if v is a weight of V(\^, then
n+l

^ = E ^^ wltn E 1^1 ::= l5 thus 7r(2^) is conjugate to 0:2 and1=1

Y2=( "E 9-2(^M))m(-a;2).
\7r(2i/)=u/2 /

If 7r(2i/) = ci;2 then v = X-^ and so Y^ = X-^.

Therefore Vi = p(q)X^ and V2 = X^. Since ^ is not a root of unity
we have that p(q) -^ 0, hence our result.

7.5. Case BDI and R of type J^n+i.

In this case R is of type Ai+i. We can assume n ^ 3 for the case n = 2
has already been discussed in §7.2. We can choose a^ =61-62, thuc r -= 2
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n+1 1
and ^i = ci + 62, <?2 = ei - €2. If we define Ai = ^ -e^ and A2 = ei, then

1=1 2

this choice satisfies the hypothesis of Lemma 6.4. We recall that since Ai
is the highest weight of the spin plus representation, the weights of V(Ai)
are all the expressions l/2(=Lei +.. . =L e^+i) with an even number of minus
signs while the weights of A2 are ±ej with j = 1,..., n 4-1. In both cases
the multiplicity of a weight is one.

We now proceed to compute Y^, i = 1,2.

Suppose v is a weight of V(Ai) and write

-. n+li v-.^^^
i=l

^^E^
with Ci = ±1, then

^) = |^W + - ,̂W = \ (c-^\ 6, + 1 (c——^} ̂ .
^ ^ 1 \ 1 ) Z \ 2 )

By inspection one easily sees that 7r(z/) is either equal to ± - <$i or to ± - ̂ 2;
thus 7r(2^) is conjugate to cc;i = <?i. Therefore by the W^-invariance of Vi
we obtain

1 = ( E g-2^'^ ) m(-a»i).
\ir(2i/)=^i /

yl .
\7r(2r/)=a;i

In order to compute the coefficient we argue as follows: suppose that
n+l

7r(2i/) = 0:1, then ci-+-C2 = 2, i. e. Ci = 02 = 1. Since pM = S (n-j+l)e^,
J=3

we find that

^-2(.,pM)^^-E;;31c^n-^+l)

and

Vs ^-2(^pM)^ \^ ^-E^1^-^-^1)

7r(2i/)==ci;i C3,...,Cyi-(-i

^ ^ g-E;;̂ .̂ -!)
Ol,...,071-1

where a^ = ^-(-2, a^ == d=l, and we have an even number of minus signs.
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Set

^•n = {(a!? • • • » ^ n ) | ̂  = ±1, an even number of —1}

^n = {(a!? • • • ̂ n) | o,i = ±1, an odd number of -1}.

We claim that

^ g-^-la-("-J-l)=^2(^+^).
(ai,...,an-i)€A^_^ J'=l

We prove this by induction: if n = 3 we have A^ = {(1,1), (-1, -1)},
so

E <^E-aj(2-J)=<?+<rl
(ai,at}e.A^

while A2-={(!,-!), (-!,+!)}, so

^ g-E^».(^),^^i.

(ai,a2)€A2'

Suppose true up to n - 2 and let us prove it for n - 1:

^ ^-E^i1"^71-^-1)^ Y- ^-(n-^-E^1^71-^-1)

(ai,...,an-i)eA^-_^ (a2,...,an-i)cA^_2

+g(n-2) ^ -̂E;:̂ .(̂ -i)
(a2,...,an_i)eA^_2

^^-(n-2) ^ ^-E;;̂ .(^-2)

(fci,..,6,_2)eA^-_,

+^n-2) ^ ^-E;;!26^^-^

(6i,...,6n-2)€A^_2

=(,("-2)+^-(n-2))JJ3^^^^

J=l
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while

^ g-E;>.(»-^)= ^ g-("-2)g-E;;^("-^)
(ai,...,an-i)€A^_^ (a2,...,an-i)eA^_2

+ ^ ^-^^-E;:^^^-1)
(a2,...,an-i)€A^_2

=^-(n-2) ^ ^-E;:̂ (^-2)

(6l,...,&n_2)€A^_2

W^ E q-K^-3-^
(bl,...,fcn-2)€A;_2

=(^-2)+^-(n-2))^^^^

J=l

In particular

/n-2 \^ = n^+^) m(-a;l) =P(^M-^)-
V-1 /

We now compute Y^. In this case if v is a weight of ^(Aa), then
n+l

v = ^ c^e^ with E 1^1 = I? tnus ^(^^a is conjugate to 0:2 and
1=1

Y2 = E 9-2(^M) m(-o;2).
\7r(2i/)=o/2 /

If 7r(2^) = (x;2 then ^ = As and so Y^ = Xs.

Therefore Y\ = p{q)X\ and ^2 = ^2- Since g is not a root of unity
we have p{q) -^ 0, hence our result.
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