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A NON-ABELIAN TENSOR PRODUCT
OF LEIBNIZ ALGEBRAS

by Allahtan V. GNEDBAYE

Introduction.

Let g be a Lie algebra and let M be a representation of g, seen as
a right g-module. Given a g-equivariant map p : M — g, one can endow
the K-module M with a bracket ([m,m’] := m#(™)) which is not skew-
symmetric but satisfies the Leibniz rule of derivations:

[m’ [mlvm"]] = [[m’ m,]’m”] - [[m’ m”]’m,]'

Such objects were baptized Leibniz algebras by Jean-Louis Loday and are
studied as a non-commutative variation of Lie algebras (see [8]). One of the
main examples of Lie algebras comes from the notion of derivations. For
the Leibniz algebras, there is an analogue notion of biderivations (see [7]).

The aim of this article is to “integrate” the Leibniz algebra of
biderivations by means of a non-abelian tensor product of Leibniz algebras
as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed
Lie g-algebras 90t and N, the set of derivations Derg(9t, M) has a structure
of pre-crossed Lie g-algebra. Moreover the functor Dery(91,—) is right
adjoint to the functor —®y9t where —®y— is the non-abelian tensor product
of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects
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to construct a non-abelian (co)homology theory for Lie algebras, which
enables him to compare the K-modules HC;(A) and K3/244(A) where A is
an arbitrary associative algebra. We give a non-commutative version of his
results, in the sense that Leibniz algebras play the role of Lie algebras, the
additive Milnor K-theory KM239(A) (resp. the cyclic homology HC,(A))
being replaced by the Milnor-type Hochschild homology HHM (A) (resp.
the classical Hochschild homology HH,(A)).

To this end, we introduce the notion of (pre)crossed Leibniz g-algebra
as a simultaneous generalization of notions of representation and two-sided
ideal of the Leibniz algebra g. Given crossed Leibniz g-algebras 9t and
N, we equip the set Bidery(M, D) of biderivations with a structure of
pre-crossed Leibniz g-algebra. On the other hand, we construct a non-
abelian tensor product I x N of Leibniz algebras with mutual actions on
one another. When 9 and 91 are crossed Leibniz g-algebras, this tensor
product has also a structure of crossed Leibniz g-algebra. It turns out that
the functor — x; M is left adjoint to the functor Bideryg(M, —). Another
characterization of this tensor product is the following. If the Leibniz
algebra g is perfect (and free as a K-module), then the Leibniz algebra
g % g is the universal central extension of g (see [4]). We give also low-
degrees (co)homological interpretations of these objects, which yield an
exact sequence of K-modules

AJA, A @ HH,(A) © HHy(A) ® A/[4, 4] > H£,(2, L(2))
— 5’.’21(91’ [le Ql]) —— HHl(Ql) - HHZR(QL) - [le Ql]/[Q‘l7 [Ql7 Q‘[]] —0

where L(A) is the K-module A® A/ im(b3) equipped with a suitable Leibniz
bracket (see section 1.2).

Throughout this paper the symbol K denotes a commutative ring
with a unit element and ® stands ®x.
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1. Prerequisites on Leibniz algebras.

1.1. Leibniz algebras.

A Leibniz algebra is a K-module g equipped with a bilinear map
[-,—]:9xg— g, called bracket and satisfying only the Leibniz identity

[z, [y, 2l] = [z, 9], 2] - [[=, 2], 9]
for any z,y, z € g. In the presence of the condition [z,z] = 0, the Leibniz
identity is equivalent to the so-called Jacobi identity. Therefore Lie algebras
are examples of Leibniz algebras.

A morphism of Leibniz algebras is a linear map f : g, — g, such that

f([=z,9]) = [f(2), f(v)]

for any z,y € g,. It is clear that Leibniz algebras and their morphisms form
a category that we denote by (Leib).

A two-sided ideal of a Leibniz algebra g is a submodule § such that
[z,y] € b and [y,z] € b for any z € h and any y € g. For any two-sided
ideal b in g, the quotient module g/ inherits a structure of Leibniz algebra
induced by the bracket of g. In particular, let ([z,z]) be the two-sided ideal
in g generated by all brackets [z, z]. The Leibniz algebra g/([z,z]) is in fact
a Lie algebra, said canonically associated to g and is denoted by grie.

Let g be a Leibniz algebra. Denote by g’ := [g,g] the submodule
generated by all brackets [z, y]. The Leibniz algebra g is said to be perfect
if g’ = g. It is clear that any submodule of g containing g’ is a two-sided
ideal in g.

1.2. Examples.

Let M be a representation of a Lie algebra g (the action of g on M
being denoted by m? for m € M and g € g). For any g-equivariant map
f: M — g, the bracket given by [m,m/] := m#(™") induces a structure of
Leibniz (non-Lie) algebra on M. Observe that any Leibniz algebra g can be
obtained in such a way by taking the canonical projection g — grie (Which
is obviously grie-equivariant).

Let A be an associative algebra and let by : A®3 — A®2 be the
Hochschild boundary that is, the linear map defined by

b3(a®b®c):=ab®c—aQ®bc+ca®b, a,b,ce A.
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Then the bracket given by
[a®b,c®d]:= (ab— ba) ® (cd — dc), a,b,c,d € A,

defines a structure of Leibniz algebra on the K-module L(A) := A®%/ im(b3).
Moreover, we have an exact sequence of K-modules

0 — HH;(A4) — L(A) 25 A — HHy(A)

where HH, (A) denotes the Hochschild homology groups and bs(z,y) =
[z,y] := zy — yz for any z,y € A.

1.3. Free Leibniz algebra.

Let V be a K-module and let T(V) := @ V®" be the reduced tensor
module. The bracket defined inductively bynZl
[z,v] =z®v, fz€T(V)andv eV
[z, y®v] =[r,y] ®v—[z®v,y], if z,y € T(V) and v € V,

satisfies the Leibniz identity. The Leibniz algebra so defined is the free
Leibniz algebra over V and is denoted by F (V) (see [8]). Observe that one
has

MOV Qup =[-[[v1,v2],v3] -+ - vn), Yr, -, v, € V.

Moreover, the free Lie algebra over V is nothing but the Lie algebra
F(V)Lie-

2. Crossed Leibniz algebras.

2.1. Leibniz action.

Let g and 9 be Leibniz algebras. A Leibniz action of g on 9 is a
couple of bilinear maps

gxXM—-M, (g,m)—*m and M xg— M, (m,g) — m?
satisfying the axioms
i) mlogl = (m9)s’ — (ms')9,

ii) 99'lm = (9m)9" — 9(m9"),
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i) 9(9'm) = ~9(m9),

iv) 9m,m’] = [fm,m'] — [9m/, m],
v) [m,m'} = [m,m] + [m, m'9],
vi) [m,9m’] = —[m,m'9]

for any m,m' € M and g,¢g’ € g. We say that M is a Leibniz g-algebra.
Observe that the axiom i) applied to the triples (m;g,g’) and (m;g’,g)
yields the relation

mlog’] = _ple'sal,

2.2. Examples.

Any two-sided ideal of a Leibniz algebra g is a Leibniz g-algebra, the
action being given by the initial bracket.

A K-module M equipped with two operations of a Leibniz algebra
g satisfying the axioms i), ii) and iii) is called a representation of g (see
[8]). Therefore representations of a Leibniz algebra g are abelian Leibniz
g-algebras.

2.3. Crossed Leibniz algebras.

Let g be a Leibniz algebra. A pre-crossed Leibniz g-algebra is a Leibniz
g-algebra 9 equipped with a morphism of Leibniz algebras p : 9t — g such
that

p(*m) = [g,p(m)] and p(m?) = [u(m), g]
for any g € g and m € 9. Moreover if the relations
#mm! = [m,m’] and m*™) = [m,m'], Vm,m’ € M,

hold, then (9M, ) is called a crossed Leibniz g-algebra.
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2.4. Examples.

Any Leibniz algebra g, equipped with the identity map idg, is a crossed
Leibniz g-algebra.

Any two-sided ideal h of a Leibniz algebra g, equipped with the
inclusion map b — g, is a crossed Leibniz g-algebra.

Let a : ¢ — g be a central extension of Leibniz algebras (i.e., a
surjective morphism whose kernel is contained in the centre of ¢, see [4]).
Define operations of g on ¢ by

% :=[a"(g),c] and ¢ :=[c,a"1(g)]

where a~1(g) is any pre-image of g in ¢. Then (¢, ) is a crossed Leibniz
g-algebra.

PROPOSITION 2.1. — For any pre-crossed Leibniz g-algebra (9, u),
the image im(p) (resp. the kernel ker(p)) is a two-sided ideal in g (resp.
9M). Moreover, if (I, u) is crossed, then ker(u) is contained in the centre
of M.

Proof. — Let m be an element of 9. For any g € g, we have
[u(m),g] = uw(m?) € im(p) and [g, u(m)] = p(*m) € im(p).

Thus, im(u) is a two-sided ideal in g. Assume that m € ker(u); then for
any m’ € M, we have

p([m, m]) = [u(m), p(m)] = 0 = [u(m"), u(m)] = u([m', m]).
Therefore ker(u) is a two-sided ideal in 9t. Moreover if the Leibniz action
of g on M is crossed, then we have

[m,m'] = Hm)m! = 0 = m*™ = [m/, m)|

for any m € ker(u) and m’ € 9. Thus ker(u) is contained in the centre of
. O

2.5. Morphism of pre-crossed Leibniz algebras.

Let g be a Leibniz algebra and let (9, x) and (M, v) be pre-crossed
Leibniz g-algebras. A morphism from (9, u) to (M, v) is a Leibniz algebra
morphism f : 9t — 91 such that

f(fm) =9(f(m)), f(m?) = (f(m))® and p=vf
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for any m € 9t and g € g. A morphism of crossed Leibniz g-algebras is
the same as a morphism of pre-crossed Leibniz g-algebras. It is clear that
pre-crossed (resp. crossed) Leibniz g-algebras and their morphisms form a
category that we denote by (pc-Leib(g)) (resp. (c-Leib(g))).

PROPOSITION 2.2. — Let f: (M, u) — (M, v) be a crossed Leibniz
g-algebra morphism. Then (9M,f) is a crossed Leibniz N-algebra via the
Leibniz action of 9t on M given by

"m:=""m and m":= m”("), VmeNMneN

Proof. — One easily checks that 9 is a Leibniz 91-algebra. For any
m,m’ € M and n € N, we have
F(*m) = f("™m) =™ f(m) = [n, f(m)],
f(m™) = f(m*™) = f(m)*™ = [f(m),n];
thus (9M, f) is a pre-crossed Leibniz M-algebra. Moreover we have
Fm) ! = VM) gt — W) ! — ],
mf (%) = D) = ) [ ],

thus (90, §) is a crossed Leibniz M-algebra. O

2.6. Exact sequences.

We say that a sequence
(e85 @ & ()
is exact in the category (pc-Leib(g)) (resp. (c-Leib(g)) if the sequence
gsmbEm
is exact as sequence of Leibniz algebras.

PROPOSITION 2.3. — If the sequence
&N S @) 5 o)
is exact in the category (pc-Leib(g)) (resp. (c-Leib(g))), then the map A
is zero. Moreover if the Leibniz g-algebra (£, \) is crossed, then the Leibniz
algebra £ is abelian.

Proof. — Indeed, since fa = 0, we have A = vBa = 0. From whence
ker(\) = £, and by Proposition 2.1, it is clear that the Leibniz algebra £
is abelian. (]
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3. Biderivations of Leibniz algebras.

In this section, we fix a Leibniz algebra g.

3.1. Derivations and anti-derivations.

Let (9, ) and (N, v) be pre-crossed Leibniz g-algebras. A derivation
from (90, u) to (M, v) is a linear map d : PM — M such that

d([m,m']) = d(m)*™) + Hmd(m'), ¥ m,m’ € M.
An anti-derivation from (9, u) to (M, v) is a linear map D : M — N
such that
D([m,m]) = D(m)*™) — D(m/)*™ ¥ m,m' € M.

3.2. Examples.

Let (M, v) be a crossed Leibniz g-algebra and let n be any element of
N. By the axiom iii) (resp. i)) of 2.1, the linear map

g g% (tesp. g — N, g —1n?)

is a derivation (resp. an anti-derivation) from (g,idg) to (M, v).

3.3. Biderivations.

Let (90, 1) and (M, v) be pre-crossed Leibniz g-algebras. We denote
by Bider, (91, ) the free K-module generated by the triples (d, D, g), where
d (resp. D) is a derivation (resp. an anti-derivation) from (9, x) to (91,v)
and g is an element of g such that

v(d(m)) = u(m?), v(D(m)) = —p(°m),
*d(m) = "D(m), D(m") = —D("m)

for any h € g and m € M.
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PROPOSITION 3.1. — If the Leibniz g-algebra (M, v) is crossed, then
there is a Leibniz algebra structure on the K-module Bidery(9t,0) for the
bracket defined by

[(d, D’g)’ (d,’ D/’ gl)] = (61 A, [gagl])
where

§(m) :=d'(m9) —d(m?) and A(m)=-D(m?)—d'(*m), Vm e M.

Proof. — Let us show that the maps § and A are respectively a
derivation and an anti-derivation. Indeed, for any m,m’ € 9, we have

8(lm,m’]) =d'(fm,m')%) — d(fm, m'}*)
=d'([m?,m']) + d'([m,m']) — d({m?',m']) ~ d(fm, m’?'))
- d/(mg)u(m') + 4 @ (m) + d (m)Hm') 4 #m) g (m/9)
— d(m9" ™) _ u(m“')d(m/) - d(m)“(""gl)
— B d(m!9")
= (d'(m?) — d(m*))*™) + H™(d (m') — d(m'?))
+ YA g (m!) + d (m) P () _ v(@ ) g ()
_ d(m)l'(d'(m'))
= 6(m)*™) + KM §(m') + [d(m), d' (m)]
+ [d'(m), d(m')] - [d'(m),d(m")] — [d(m), d'(m)]
= 5(m)u(m') + #m) §(m)
and
A(fm, m']) = = D(fm,m')*") — d'(Im, m’]
~ D(fm*,m']) = D([m,m’?']) — d'({fm, m']) + d' ({4m", m])
- D(mg’)u(M’)+D(m')u(m”')_D(m)u(M'g') + D(m/g')#(m)
_ d'(gm)u(m’) _ u(gm)d/(m') + d/(ym/)u(m) + u(gm’)d'(m)
=(=D(m?) — & (%m))*(™) — (=D(m'?') — d'(5m"))*™)
+ D(ml)V(d’(m)) _ D(m)V(d’(m’)) + YD) g ()
- V(D(m’)))d'(m)
= A(m)*™) — A} + [D(m'), d'(m)]
= [D(m), d'(m')] + [D(m), d'(m/)] — [D(m), d'(m))]
- A(m)n(m') — A(m)Hm),

I

Il
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On the other hand, we have
v(8(m)) = v(d'(m)) — v(d(m)) = p((m?)?) — p((m¥)?) = p(mlo91),
v(A(m)) = —v(D(m?))—v(d' (%m)) = p((m? ) —p((*m)?) = —u(1#9m),
"(m) ="d/(m9) — "d(m9") = "D’ (m9) — "D(m?)
= —"D'(%m) — "D(m?') = —"d'(%m) — "D(m?")
="A(m),
A(*m) = — D(("m)?) — d'(?("m))
= — D("Im) — D((m?")) + d'(A(m™))
=D((m")?) + d'(Y(m")) = —~A(m").
Therefore the triple (6, A, [g,4’]) is a biderivation from (9, u) to (N, v).

Moreover, let (d, D, g), (d',D’,¢') and (d”,D”,g") be biderivations from
(01, 1) to (M, v). We set

6,4, 9" =d, D¢, (", D" ¢g"),
(60, Ao, 90) = [(d, D, 9), (6, A, [g", 9",
(¢',4%19,9') :==(d, D, 9), (d', D', g")],
(61,A1,q1) := [(¢',4',[9,4']), (d", D", g")],
(6”,4",(9,9"]) ==[(d, D, 9),(d", D", g")],
(62, A2, g2) == [(6",4",19,9"]),(d', D', ¢')].
It is clear that go = g1 — g2. For any m € 91, we have
(61 — 62)(m) =d"(ml991) — §'(m9") — &' (ml99"1) + 6" (m?)
=d"((m9)?) — d"((m?)?) — d'((m?")9) + d((m?"))
—d((m*)?") +d'((m?")9) + d"((m?)?) — d((m?)*")
=d"((m*)?) - d'((m*)?") — d(ml"9")
=6(m9) — d(ml9" 91y = §,(m)
and
(A — Ap)(m) = — A'(m?") — d"(199 m) + A" (m9") + d' (199" Im)
=D((m?")?) +d'(Am?")) — d"((*m)*") + d"((m?))
= D((m?)*") = d"(A(m?)) + d'((°m)*") = d'(A(m?"))
= — D(ml9"9"l) — d"((9m)?') + d'((%m)*")
= — DMl 9"y — §(9m) = Ag(m).
Therefore the K-module Bidery(9,) is a Leibniz algebra. a
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Let us equip the set Biderg (91, 91) with a Leibniz action of g.

PROPOSITION 3.2. — Let (9M,p) (resp. (M,v)) be a pre-crossed
(resp. crossed) Leibniz g-algebra. The set Bidery(9, M) is a pre-crossed
Leibniz g-algebra for the operations defined by

h(d’ D?g) = (hd’ hD7 [h’ g]) and (d»D7g)h = (dh’Dh’ [g’ h'])

where
(*d)(m) = d(m") — d(m)*, ("D)(m) := "d(m) — d("m),
(@*)(m) := d(m)" — d(m"), (D*)(m) := D(m)" — D(m").
Proof. — Everything can be smoothly checked and we merely give

an example of these verifications. By definition we have
"((d, D,g),(d', D', ¢")] = ("6,"A, [, [9, 9'])),
["(d, D, 9),(d', D', ¢')] = (61, A1, [[h, 9], '),
[*(d,D',¢'),(d, D, 9)] = (62, Az, [[h, g'), g)).
For any m € 9t we have
(81 = 62)(m) =d' (") — ("d) (m?") — d(ml7) + (') (m?)
=d'((m")*) — d&'((m*)") - d((m*)") + d(m* )"
= d((m")?) + d((m?)") + d'((m9)*) — d'(m?)"
= (d((m")%) — d((m")?)) ~ (d'(m®) — d(m?))"
=6(m") - 6(m)" = ("6)(m)

and
(A1 = Ag)(m) = — ("D)(m?) — d'("9m) + (*D’)(m?) + d(9'm)
= —"D(m?) +d("(m)) — d&'(("m)?) + d'((m?))
+ D' (m9) — d'("(m?)) + d(("m)?") — d((m?))

=MD'(m?) — D(m?)) — (d'(("m)?) — d((*m)?"))
="§(m) — §("m) = ("A)(m).

Thus we get

"[(d, D, g),(d, D', g")] = [*(d, D,g),(d',D',g")] - [*(d', D', ¢'), (d, D, 9)].

O

Now we can state the fundamental result which is a consequence of
Propositions 3.1 and 3.2.




1160 ALLAHTAN V. GNEDBAYE

THEOREM 3.3. — For any pre-crossed (resp. crossed) Leibniz g-
algebra (M, u) (resp. (M,v)), the Leibniz g-algebra Bidery(9M,N) is pre-
crossed for the morphism

p : Biderg (O, M) — g, (9,D,9) — g. o

3.4. Remarks.

For any element g of g, the linear map ady : h — [h,g] (resp.
Ady : h — —[g, h]) is a derivation (resp. an anti-derivation) of the Leibniz
algebra g. In the classical sense (i.e., without “crossing”, see [7]) the
couple (adgy, Ady) is called inner biderivation of g. Therefore the pre-crossed
Leibniz g-algebra Bidery (9, M) can be seen as the set of biderivations from
(901, 1) to (M, v) over inner biderivations of g.

On the other hand, given a pre-crossed Leibniz g-algebra (90, 1), one
easily checks that the map Bidery(91, —) is a functor from the category of
crossed Leibniz g-algebras to the category of pre-crossed Leibniz g-algebras.

4. Non-abelian tensor product of Leibniz algebras.

4.1. Leibniz pairings.

Let 90t and N be Leibniz algebras with mutual Leibniz actions on one
another. A Leibniz pairing of 9t and M is a triple (P, h,, h,) where P is a
Leibniz algebra and h; : 2 x N — P (resp. hz : N x M — P) is a bilinear
map such that

hyi(m, [n,n']) = hy(m™, ') — hy(m™ ,n),
ha(n, [m,m']) = ha(n™,m’) — ha(n™ ,m),
hi([m,m'],n) = ha(™n,m’) — h1(m, n™),
ha([n,n'],m) = hy("m,n’) — ha(n,m"),

hi(m, ™) = —hy(m, nml), ha(n, "Im) = —ha(n, m"l),

by (m™,™n') = [ (m,m), by (', )] = ha("n,m"™),

ha("m,n'™) = [ha(n,m), ha(n',m')] = ho(n™,"m),

hi(m™, 0™ ) = [h1(m,n), ho(n',m')] = ha(™n,"'m'),

hy("m, ™n') = [ha(n,m), hy(m/,n)] = hy(n™,m'™)
for any m,m’ € M and n,n' € N.
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4.2. Example.

Let 9t and 91 be two-sided ideals of a same Leibniz algebra g. Take
P :=MNN and define

hi(m,n) :=[m,n] and ha(n,m) :=[n,m].

Then the triple (B, b,,H,) is a Leibniz pairing of 9t and N.

4.3. Non-abelian tensor product.

A Leibniz pairing (B, b, h,) of M and N is said to be universal if
for any other Leibniz pairing (P, b}, ") of 9t and N there exists a unique
Leibniz algebra morphism 6 : ¢ — 8’ such that

Ohy =h), and Ohy = hj.

It is clear that a universal pairing, when it exists, is unique up to a unique
isomorphism. Here is a construction of the universal pairing as a non-
abelian tensor product.

DEFINITION-THEOREM 4.1. — Let 9 and N be Leibniz algebras
with mutual Leibniz actions on one another. Let V be the free K-module
generated by the symbols m x n and n x m where m € 9 and n € N. Let
M+ N be the Leibniz algebra quotient of the free Leibniz algebra generated
by V by the two-sided ideal defined by the relations

i) A(m*n) = m*xn=mx*n, A\(n*xm) =Anxm=nx*m,

i) m+mNxn=m+n+m'*xn, (n+n)sxm=nxm+n'*xm,
mx(n+n)=mxn+mx*n/, nx(m+m)=nxm+n*m,

iii) m*[n,n'] =m"*n' —m" xn, nx[m,m]=n"xm' —n™ xm,

[m,m/] xn="nxm —m*n™, [n,n]*m="m*n' —nxm",

iv) m*x™n=—-m*n™, nx"m=-nxm",
v) m"x™n! = [mxn,m' xn/] = T xm'™,
m®xn'™ = [m*n,n’ *m'] = " x"m/,
"mox '™ = [n*m,n' *m/] = n™*Vm’
"m o« ™/ = [n*m,m’ xn'] =™ *m'"
for any A € K, m,m’ € M, n,n’ € N. Define maps

hi M N - MxN, h(m,n) :=mx*n
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and
hy : M x M — PM*N, h,(n,m) :=nx*m.
Then the triple (MM *N, b,,h,) is the universal Leibniz pairing of M and N

and called the non-abelian tensor product (or tensor product for short) of
M and N.

Proof. — Tt is straightforward to see that the triple (Mt x N, b,,H,)
so-defined is a Leibniz pairing of 9t and M. For the universality, notice
that if (3, b, b,) is another Leibniz pairing of 9 and N, then the map 0
is necessarily given on generators by

f(m*n) = hj(m,n) and O(nxm)= h4(n,m)
for any m € M and n € M. O

As an illustration of this construction, we give now a description of
the non-abelian tensor product when the actions are trivial.

PROPOSITION 4.2. — If the Leibniz algebras 9 and N act trivially
on each other, then there is an isomorphism of abelian Leibniz algebras
M+ N = 93Iu.b ®mab @ mub ®mub
where Mgy := /I, M] and Ngp := N/[N,N].

Proof. — Recall that the underlying K-module of the free Leibniz

algebra generated by V is
TV)=VeVv®¥®e. - -oV®ae...

Since the actions are trivial, the definition of the bracket on T(V') and the
relations v) enable us to see that 9t x 91 is an abelian Leibniz algebra and
that the summands V® (for n > 2) are killed. Relations i) and ii) of 4.1
say that the K-module 90t x 91 is the quotient of M RN & N ® M by the
relations iii). These later imply that 9t x 91 is the abelian Leibniz algebra
9ﬁuh ® mub &b mab ® 2)thclb- 0

4.4. Compatible Leibniz actions.

Let 9t and 91 be Leibniz algebras with mutual Leibniz actions on one
another. We say that these actions are compatible if we have

("'n)m/ = [mn’ml], ("m)nl = [nm,n/],
(nM)m, = [n’n’ m,]7 (m"),n/ = [mn’ n/]a
m™™ = [m,m], n"™ = [n,n'™],

m(nMI) = [m, "m/]’ n(mn ) = [n, m'n,']
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for any m,m’ € M and n,n’ e N.

4.5. Examples.

If 9t and 91 are two-sided ideals of a same Leibniz algebra, then the
actions (given by the initial bracket) are compatible.

Let (901, 1) and (M,v) be pre-crossed Leibniz g-algebras. Then one
can define a Leibniz action of 99t on N (resp. of 91 on M) by setting
=My and ™ = pm)
(resp. "m :="™m and m" :=m*™),

If the Leibniz g-algebras (90, 1) and (M, v) are crossed, then these Leibniz
actions are compatible.

4.6. First crossed structure.

Let 9 and M be Leibniz algebras with mutual compatible actions on
one another. Consider the operations of 97t on 9 x N given by

™m xn') :=[m,mxn' =™ xm!, (0’ xm') :=""n' xm/ — [m,m]xn/,
(mxn)™ :=[m,m/] sxn+mxn™, (nxm)™ :=n" xm+nx [m,m’]
and those of 9 on 90t x N given by
m' xn') :="m xn' — [n,n]xm/, (0 xm') = [n,n]xm' —"m xn/,
(m*n)” :=m™ xn+mx[n,n], (nxm)" = [n,n'] *xm + nxm"
for any m,m’ € M and n,n’ € N. Then we have

PROPOSITION 4.3. — With the above operations, the map
L:MAN->M mxn—m", nxme—"m
(resp. v : M+ N >N, m*xn— "™, nxm—n"™)

induces on M x N a structure of crossed Leibniz 9M-algebra (resp. N-
algebra).

Proof. — Once again everything can be readily checked thanks to
the compatibility conditions. For example we have

u(m*n)(ml " n/) ___mn(m/ % nl) — [mn,m/] *n — (mn)n/ xm'
— (m"),n/ xm —m™ x n/m’ —m™ em!

=m" *™n = [m*n,m’ *n/|
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for any m,m’ € MM and n,n’ € N. a

4.7. Second crossed structure.

Let (9, p) and (M,v) be pre-crossed Leibniz g-algebras, equipped
with the mutual Leibniz actions given in Examples 4.5. One easily checks
that the operations given by

Imx*n):=%mxn—nxm, In+*xm) :=Msxm-—Im=xn,

(mxn) :=mI*«xn+mxn?, (nxm)? :=nd xm+ns*mf,

define a Leibniz action of g on 97 x 9.

PROPOSITION 4.4. — Let (9, 1) and (M, v) be pre-crossed Leibniz
g-algebras. Then the map 1 : M xN — g defined on generators by

n(m*n) := [u(m),v(n)] and n(nx*m):= [v(n), u(m)],

confers to M =N a structure of pre-crossed Leibniz g-algebra. Moreover, if
one of the Leibniz g-algebras 9 or N is crossed, then the Leibniz g-algebra
M x N is crossed.

Proof. — It is immediate to check that the map 7 passes to the
quotient and defines a Leibniz algebra morphism. Moreover we have

n(%m * n)) = [u(*m), v(n)] — [v(*n), u(m)]
=(lg, p(m)], v(n)] - [lg, v(n)], n(m)]
=[g, [u(m), v(n)]] = [g,n(m *n)};
—n(?(m xn)) = —[g,n(m *n)]
= —[g, [u(m),v(n)]] = [g, [v(n), p(m)]] = [g,n(n * m)];
n((m * n)?) = [u(m?),v(n)] + [u(m), v(n?)]
= [[u(m), g], v(n)] + [u(m), [v(n), g]]
=[[u(m),v(n)], g] = [n(m *n), g];
n((n* m)?) = [v(n?), u(m)] + [v(n), p(m?)]
=[[v(n), g], p(m)] + [v(n), [u(m), g]]
=[[v(n), p(m)], 9] = [n(n x m), gl;
thus (9M*N, n) is a pre-crossed Leibniz g-algebra. Assume that, for instance,

n(%(n * m))
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the Leibniz g-algebra 901 is crossed. Then we have
n(m:m)(m/ " n/) — [y(m),v(n)](ml * n/) - u(mv(n))(m/ " nl)

= #m Nt ot Nt
v(n)
=[m*™ m/]xn — B0t !
=p(m"("))nl xm — ml/(n) * nlu(m') _ p,(m"("))nl xm’

=m¥ (M) m(mpr [m xn,m’ xn']
and
(m * n)n(mun/) _ (m % ’n,)[”(ml)’u(nl)] — (m " n)#(mlu(n'))

’ /
= m“(mw(" )« n+mx* n“(mm(" )

= [m,m"” (™)) xn + m * (")

!’ !
=By V() D) L ()

=[mx*n,m xn’].
By the same way, one easily gets
n’xm’) _

M) !« m!) = [m o« n,n’ *m’], (m xn)" [m*n,n’ xm/],

n(n*m)(nl * ml) — ['I’L xm, n x ml], (n * m)n(n/*m/) _

[n*xm,n' *m/],
M) ! xn') = [nxm,m’ * 7], (n*m)"™*) = [nxm,m’ *n').

So we have proved that the Leibniz g-algebra 9t x 0N is crossed. O

4.8. Remark.

It is clear that if (901, u) (resp. (M, v)) is a crossed Leibniz g-algebra,
then the map M x — (resp. — x M) is a functor from the category of pre-
crossed Leibniz g-algebras to the category of crossed Leibniz g-algebras.

PROPOSITION 4.5. — Let (M, v) be a crossed Leibniz g-algebra. The
functor F(-) := — %M is a right exact functor from the category of pre-
crossed Leibniz g-algebras to the category of crossed Leibniz g-algebras.

Proof. — Taking into account Proposition 2.3, let
0 (B0) L (@A) & (R7) -0

be an exact sequence of pre-crossed Leibniz g-algebras. Consider the
sequence of Leibniz algebras

Fp) O 50) ¥ 5:) - o.
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It is clear that the morphism F(g) is surjective. Since the map
F(f) is a morphism of crossed Leibniz g-algebras, by Proposition 2.2,
(F(),3(f)) is a crossed Leibniz F(0)-algebra; and by Proposition 2.1,
the image im F'(f) is a two-sided ideal in F(Q). By composition we have
F(g)F(f) = F(gf) = 0, which yields a factorisation

F(g) : F(Q)/im(f) — F(R).

In fact, the morphism F(g) is an isomorphism. To see it, let us consider
the map

T': F(R) — §(Q)/imF(f)
given on generators by
[(r*n):= g~ '(r)*n mod im F(f) and I'(n*7r) := n*g~!(r) mod im F(f)

where g~!(r) is any pre-image of r in Q. Indeed, if ¢ and ¢’ are two pre-
images of r, then g — ¢’ = f(p) for some p in PB. Therefore we have

gxm—¢q *xn=(q—q)*n=f(p)*n=F(f)(p*n) €imF(f),
nxqg—nxq =n*(g—q)=nxf(p) = F(f)(n*p) €imF(f);

thus the map I is well-defined. One easily checks that I" is a morphism of
Leibniz algebras and inverse to F(g). m]

5. Adjunction theorem.

In this section we show that, for any crossed Leibniz g-algebra (9, v),
the functor — » N is left adjoint to the functor Bidery (M, —). For technical
reasons, we assume that the relations

i) m o M = etk V0 = s ()
defining the tensor product 2 x 91 are extended to the relations
) m+*=-mx*nd, nxIm=—-nxm?

for any m,m’ € M, n,n’ € N and g € g. To avoid confusion, we denote
this later tensor product by 9 x4 91. For instance, the Leibniz g-algebras
D+ N and P +; N coincide if the maps p and v are surjective.

THEOREM 5.1. — Let (90, u) be a pre-crossed Leibniz g-algebra and
let (M, v) and (P, A) be crossed Leibniz g-algebras. There is an isomorphism
of K-modules

I'Iom(pc-Leib(g))(sma Bidery(,P)) = I'Iom(c-Leib(g)) (M xg N, P).
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Proof. — Let ¢ € Hompc Leib(g) (MM, Bidery(MN,P)) and put
(dm, D, gm) := ¢(m) for m € M. Notice that we have g,, = u(m) thanks
to the relation p¢ = pu, where p : Bidery(M,P) — g is the crossing mor-
phism. We associate to ¢ the map ® : M x; 91 — B defined on generators
by

®(m+*n):= —Dp(n) and P®(nxm):=dn(n), VmeMneMN

LEMMA 5.2. — The map ® is a morphism of crossed Leibniz g-
algebras.

Conversely, given an element 0 € Homc Leib(g)) (I *g N,P), we
associate the map X : 9t — Bidery (M, P) defined by

X(m) := (6, A, u(m)), Vm € M,

where
bm(n) :=0(n*xm) and Ap(n):=—-o(mx*n), VneN
LEMMA 5.3. — The map ¥ is a morphism of pre-crossed Leibniz
g-algebras.

It is clear that the maps ¢ — ® and o — X are inverse to each other,
which proves the adjunction theorem. O

Proof of Lemma 5.2. — There is a lot of things to check in order to
show that the map ® is well-defined. Let us give some examples of these
verifications. For any m,m’ € 9, n,n’ € 9 and h € g, we have

d("mxn’ —n* m"l) = — Dy (1) — dppuinry (1)
= — (“™Dp)(n) = ((dm)"™)(n)
= =D, (0 4 dy (V) =l (1) ™) - dpy (07 ™))
= Y™, (1) +dpm([r, 7)) — dm (n)* ) +dp ([0, n'))
=dm([n,n']) = ®([n,n'] * m).
We also compute
®(m * ") = —Dp (") = Dp(n) = —®(m x nh),
®(n % "m) = diy (1) = ("dm)(n) = —=((dm)")(n) = —dmn (n) = —B(n * m")
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and
™ ™) = = Dyt (") = (D)) (')
— D (MY () 4 D, ((H gy
== Dm(”(m/)"l)u(n) + Dm([#(m,)'nla n])
— Dp(n)*" ™) = Dy () P (W)
[Din(n), Dy (n')] = [®(m * n), &(m xn')]
=®([m * n,m’ xn’)).
Now let m € 9, n € 9M and g € g. One has successively
B (m*n)) =P(m *xn) — ®(*n* m) = —Dop(n) — dp(%n)
= (D) (n) — dm(*n) = —9D,,(n) = 9%®(m x n),
®(In*xm)) = —®((m=xn)) = —9®(mx*n) = ID,,(n) = %y, (n) = ®(n*xm),
O((m*n)9) =®(m? *xn) + ®(m *xn9) = —Dyye(n) — Dy (n9)
= — ((Dm)?)(n) = Dp(n?) = —Dm(n)? = &(m xn)?,
®((n*m)9) =®(n? xm) + ®(n+xm?) = dp(n?) + dms(n)
=dm(n?) + ((dm)?)(n) = dm(n)? = ®(n xm)?;
A®(m x ) = =A(Dp(n)) = v(*™n) = [u(m), v(n)] = n(m xn),
XB(r + m) = Adm(n)) = (™) = [u(n), u(m)] = n(n * m).
Therefore the map ® is a morphism of crossed Leibniz g-algebras. 0

Proof of Lemma 5.3. — Let us first show that 3(m) is a well-defined
biderivation. For any n,n’ € N, we have

8m(n)* ™) + V(M5 (n")
=a(nxm)*™) +*™o(n’ xm) = o((nxm)*™)) + o(*™(n’ x m))
=o(*™) xm) + o(n*m* ™)) + o(*™n’ xm) — ¢ (*®m xn')
=20([n,n'] *m) — o(*™m x ' — nxm™))
=20([n,n'] xm) — o([n,n'] xm) = a([n,n'] *x m) = 6,,([n,n')),
thus é,, is a derivation. Moreover, we have
Am(n)"™) — A (/)™
= —a(mxn)"™) 4 g(m *xn')*™ = o((mxn)*™) = g((m xn)*))
v x n) — o (m * n*™))
=o(m*™ xn’ —m*™) xn) — g(m**™n') — g(m x n*™))

=o(m* [n,n']) — a(m * [n,n]) — a(m * [n,n'])

=o(m*™ xn') 4+ o(m xn*™) — g(m

= —o(m=x* [n, n']) = Ap([n, n,])7
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thus A,, is an anti-derivation. We have also

A(8m(n)) = Ao (n*m)) = n(n x m) = [v(n), u(m)] = v(n™),

MAm(n)) = =A(o(m * n)) = —n(m * n) = —[u(m),v(n)] = —v(*™n),
Pm(n) = "o(nxm) = o("(nxm)) = —a(*(mxn)) = "o (msn) = —"A,,(n),
Ap("n) = —a(m* ") = a(m *nh) = A, (n?).

Therefore 3(m) = (m, Am, 1(m)) is a biderivation from (N, v) to (P, A).

For any h € g, m € M and n € M, we have »

("(6.)) (1) = b (n?) = b (R)* = o(n™ x m) — o(n * m)?

= — o'(n*mh) = o(n * h’m) = bnm(n),

"MAm))(n) ="Am(n) — 6 (") = Po(m x n) — o("n xm)
=o("mxn) = Ay (n);
and obviously [k, u(m)] = w("m), thus we have £("m) = "(m). On the
other side, we have
((6m)")(R) =bm()* = 6m(n*) = a(nx m)* — o (n" x m)
=o(n*mh) = §,,x(n)
and
((Am)")(n) = A (n)* = bm(n) = —o(m ¥ )" + o(m * ")
= —a(m" xn) = Apn(n).
Since [u(m),h] = u(mh), we get L(mh) = E(m)*. By definition of the
map X, we have pX(m) = u(m). Therefore the map ¥ is a morphism of
pre-crossed Leibniz g-algebras. O

6. Cohomological characterizations.

6.1. Non-abelian Leibniz cohomology.

Let g be a Leibniz algebra viewed as the crossed Leibniz g-algebra
(9,idg), and let (9M, 1) be a crossed Leibniz g-algebra. Given an element
m € M, we denote by dr, (resp. Dy,) the derivation (resp. anti-derivation)
g — 9m (resp. g — —m9) from (g,id;) to (9M,pu), and by u(m) :=
u(m) mod Z(g), where Z(g) is the centre of g. One easily checks that
the triple (dm, Dm, u(m)) is a well-defined element of Bidery(g, 9).
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DEFINITION-PROPOSITION 6.1. — Let J be the K-module freely
generated by the biderivations (dp, Dy, p(m)),m € 9. Then J is a two-
sided ideal of Biderg(g,9t). The Leibniz algebra Bidery(g, M)/J is denoted
by H£(g, M).

Proof. — For any m € M and (d, D, g) € Bidery(g, M), we have

[(d, D, 9), (dm D, p(m))] = (8m> Am, [g, (m)])
with
bm(@) = dm([z, 9]) — d([z, p(m)) = =9 — d([z, u(m)))
= #(d=@Dm, — d(z)*™) — %d(u(m))
= [d(z),m] - [d(z), m] — “D(u(m))
= dml (‘T)
where m; := —D(u(m)),
Am(z) = = D([z, u(m))) - din(lg, 2]) = —D([z, p(m)]) — "m
= — D(z)*™ — D(u(m))® + * Py,
= —[D(z),m] + D(u(m))* + [D(), m]
=Dm, (z),
u(ma) = —p(D(u(m))) = [g, u(m)] = [g, u(m)};

thus we have [(d, D, g), (dm, D, p(m))] € J. On the other side, we have

[(dm, D, w(m)), (d, D, 9)] = (81, Ay, [1(m), ])
with
81 (2) = d([z, u(m)]) — dm([z, 9]) = d([z, u(m)]) — = 9hm
=d(z)"™ + Zd(u(m)) — w(d(@))y,
= [d(z), m] + “d(u(m)) — [d(z), m]
= dpm, (2)
where mg := d(u(m)),
A(@) = = D[z, 9]) — d([u(m), z]) = mt=9 — d([u(m), 2])
=mHaE) _ d(u(m))® — #™d(z)
=[m, d()] — d(u(m))* — [m, d(z)]
= Dy, (2),

p(mz) = p(d(p(m))) = [p(m), g] = [u(m), gl;
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thus we have [(dm, D, u(m)), (d, D, g)] € 3. Therefore the set J is a two-
sided ideal of Bidergy(g, 9t). O
Similarly, given a crossed Leibniz g-algebra (90, i), one defines
HL(g, M :={meM:m=mb =0, Vgeg}
that is, the set of invariant elements of 9t. From the relations
[m,m'] = mA™) = 0 = ¥y = [/ m], m € HL (g, M), m' € M,

it is clear that $£°(g, M) is contained in the centre of the Leibniz algebra
m.

PROPOSITION 6.2. — For any exact sequence of crossed Leibniz g-
algebras

0— (%,0) % (BN 5 (€,p) —o,
there exists an exact sequence of K-modules
0 — $£°(g, ) — H£°(g,B) — H£°(5,€) S H£(g, %)
- 5£'(5,8) 5 92(9,0)

where (8! is a Leibniz algebra morphism.

Proof. — Everything goes smoothly except the definition of the
connecting homomorphism 9. Given an element ¢ € $£°(g,€), let b € B
be any pre-image of ¢ in 8. For any x € g, we have

B(D) =" =0=c" = B(b*).

Thus the element % (resp. b®) is in ker(8) = im(a). Since the morphism
a is injective, the map d° : z — a~1(%) (resp. D° : z — a~1(b%)) is
a derivation (resp. an anti-derivation) from (g,idy) to (2,0). One easily
checks that the triple (d¢, D¢,0) is a well-defined element of Bider,(g, )
whose class in $£*(g,2) does not depend on the choice of the pre-image b.
We put

9(c) := class(d®, D°,0). O

6.2. Non-abelian Leibniz homology.

Let g be a Leibniz algebra viewed as the crossed Leibniz g-algebra
(g,idg), and let (M, v) be a crossed Leibniz g-algebra.
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DEFINITION-PROPOSITION 6.3. — The map ¥y : M*x g — N given
on generators by
Up(n*xg):=n? and Un(g*n):=%, g€g, neN,

is a morphism of crossed Leibniz g-algebras. We define the low-degrees
non-abelian homology of g with coefficients in I to be

HL(g, M) :=cokery and  HL, (g, M) := ker ;.

Proof. — To see that the map ¥y is a Leibniz algebra morphism is
equivalent to the fact that the Leibniz action of 91 on g is well-defined. The
definition of the crossing homomorphism 7y : M x g — g implies that ¥y

is a morphism of crossed Leibniz g-algebras. a
PROPOSITION 6.4. — For any exact sequence of crossed Leibniz g-
algebras

0 (%,0) % (B,A) & (€p) —o,
there exists an exact sequence of K-modules

5£,(g,%) — 9£.(9,B) — 9£.(8,€) S H5L(3,2%) — HLo(8,B)
— ﬁso(ga Q:) — 0.

Proof. — We know that the functor — g is right exact (Proposition
4.5). Therefore Proposition 6.4 is nothing but the “snake-lemma” applied
to diagram
Axg— Brg— Cxg— 0
| o 1l ¥s | Ze
00— A— B— c— 0

which is obviously commutative. O

6.3. Universal central extension.

Let g be a Leibniz algebra and let ¥ := ¥ be the morphism defining
the homolgy $£.(g, g). From the relations v) of Definition-Theorem 4.1, it
is clear that ¥ : gxg — [g, g] is a central extension of Leibniz algebras (see

(4])-
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THEOREM 6.5. — If the Leibniz algebra g is perfect and free as a
K-module, then the morphism ¥ : gxg — [g, 8] = g is the universal central
extension of g. Moreover, we have an isomorphism of K-modules

HL,(9,8) = HL,(g).

Proof. — 1t is enough to prove the universality of the central exten-
sion U:g*xg—» [g,g] = g. Let a: € - g be a central extension of g. Since
ker(a) is central in €, the quantity [@~!(z),a!(y)] does not depend on
the choice of the pre-images a~1(z) and a~!(y) where z,y € g. One easily
checks that the map ¢ : g x g — € given on generators by

¢z +y) = [ (2),a7 (y)]
is a well-defined Leibniz algebra morphism such that a¢ = V. The

uniqueness of the map ¢ follows from Lemma 2.4 of [4] since the perfectness
of g implies that of g % g:

Txy = (Z[zl,x;]) * (Z[yj,y;]) = Z[acz * T4, Yj * Y5

By definition we have $£,(g,g) = ker(). After [4] the kernel of the
universal central extension of a Leibniz algebra g is canonically isomorphic
to HL3(g). Therefore we have

H£,(g,9) = HL,(g). O

7. The Milnor-type Hochschild homology.

Let A be an associative algebra viewed as a Leibniz (in fact Lie)
algebra for the bracket given by [a,b] := ab — ba,a,b € A. Recall that
the K-module [(A) := A®2/im(b3) is a Leibniz (non-Lie) algebra for the
bracket defined by

@y, 2 @y :=(zy —yz)® (z'y — y'2’), Va,y,2',¢ € A

PROPOSITION 7.1. — The operations given by
AXL(A) - L(A), (z®vy) :=[a,z] @y — [a,y] ® z,
L(A) x A—L(A), (z®y)* :=[z,a] @y +z ® [y,d]
confer to L(A) a structure of Leibniz A-algebra. Moreover the map

pa:L(A) - A zQyw— [z,y] =2y —yx
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equips L(A) with a structure of crossed Leibniz A-algebra.

Proof. — The operations are well-defined since we have
Wb3(z@Y®2)) =b3(azQRYR®2—aQR2RQry —2a QT Y
+aQyYz®r+a®2x2 QY —aQ Y 2x)
and
(b3(z®@Y®2)* =bs(—ar@YR2+2yRa®2+rQYQ 2a
- IQa®Yz—2xRaQy — 22 Y ®a).

One easily checks that the couple (L(A), 1a) is a pre-crossed Leibniz
A-algebra. Moreover we have

#aEON @y) - [t @y, 2’ @y = bs([z,4] @2’ ®Y ~ [z,9] ®Y ® ')
(@) —zoy,2 @y =bee[,y]0y -0y ,y]).
Thus the Leibniz A-algebra (L(A), p4) is crossed. o

It is clear that the inclusion map [A, A] — A induces a structure of
crossed Leibniz A-algebra on the two-sided ideal [A, A], and that the map

pa : L(A) — [A, A] is a morphism of crossed Leibniz A-algebras. Moreover
we have an exact sequence of K-modules

0 — HH;(A) - L(A) 24 [A4,4] — 0.
LEMMA 7.2. — The Leibniz algebra A acts trivially on HH, (A).

Proof. — One easily checks that
Hz®y)=a®[z,y]+b3(a®@TQYy—a®y®z) =a®[z,y] in L(A)
and
(z®y)* =[z,y|®a+b3(z®a@y—-2®yY®a) = [z,y]®a in L(4).

Therefore, if w = Y \i(z; ® y;) € HH(A), that is Y Ai[z;, ;] = 0, then
we have

w = zx\ia(mi ®yi) = Z)‘i(a® [z:,4i]) = a® Z)\i[mi,yi] =0

and
w? = Z/\i(wz' ®y:)" = z)\i([xi,yi] ®a)= (Z Ailzi, 4:]) ®a =0
for any a € A. O

As an immediate consequence, we get the following
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COROLLARY 7.3. — The sequence
0 — HH;(A) - L(4) 2% (4,4 -0

is an exact sequence of crossed Leibniz A-algebras. O

We deduce from Proposition 6.4 an exact sequence of K-modules
HL, (A, HH, () — HE, (A, L(A)) — HL.(%, (%, 2]) —
= HE,(A, HH, (A)) — HLo(A, L(A)) — HL (A, [A,2]) — o.
Since A and HH, (A) act trivially on each other, we have
HL,(%, HH, (%)) = HH, (%)
and

HE, (2, HH, (1)) = AxHH, () = /[, %] 9HH, (%) & HH, () @21/[21, ).

On the other hand, it is clear that
HL.(A, [, A]) = [A,A]/[, [, 2]

Therefore we can state

THEOREM 7.4. — For any associative algebra A with unit, there
exists an exact sequence of K-modules
A/[A, A]J@HH, (A)®eHH,; (A)® A/[A, A] — HL,(A, L(A)) — HL, (A, [A,2A))

— HH;(A4) — HHY(4) — [4, A]/[A,[4, A]] = 0

where HH (A) denotes the Milnor-type Hochschild homology of A.

Proof. — Recall that HHM (A) is defined to be the quotient of A® A
by the relations

a®[b,c =0, [a,b]®c=0, b3(a®b®c) =0
for any a,b,c € A (see [6, 10.6.19]). By definition L(A) = A ® A/im(b3)
and from the proof of Lemma 7.2, we get
Uray(ax(z®y) =%(z®y) =a®[z,y]
and
Vpa)((z®y)*a) =(z@y)* = [r,y] @a.

Therefore it is clear that $H€o(2,L(™A)) = coker(g() is isomorphic to
HHM (A). O
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Remark. — The K-modules HH; (A) and HH} (A) coincide when the
associative algebra A is superperfect as a Leibniz algebra that is, A = [A, A]
and HLs(A) = 0. Also, if the associative algebra A is commutative, then
we have

HH, (A) = HHY (4) = Q) k.

Let us also mention that the Milnor-type Hochschild homology ap-
pears in the description of the obstruction to the stability

HLn (gln-1(4)) — HLy(gla(4)) — HH,L; (4) — 0

where gl,(A) is the Lie algebra of matrices with entries in the associative
algebra A (see [2], [6, 10.6.20]).
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