
ANNALES DE L’INSTITUT FOURIER

ALLAHTAN VICTOR GNEDBAYE
A non-abelian tensor product of Leibniz algebra
Annales de l’institut Fourier, tome 49, no 4 (1999), p. 1149-1177
<http://www.numdam.org/item?id=AIF_1999__49_4_1149_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_4_1149_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 4 (1999), 1149-1177

A NON-ABELIAN TENSOR PRODUCT
OF LEIBNIZ ALGEBRAS

by Allahtan V. GNEDBAYE

Introduction.

Let Q be a Lie algebra and let M be a representation of fl, seen as
a right ^-module. Given a fl-equivariant map 11 : M —> 9, one can endow
the K-module M with a bracket {{m^m!} :== m^^ ^) which is not skew-
symmetric but satisfies the Leibniz rule of derivations:

[mjm'.m"]] = [[m.m'l.m"] - [[m,m"\,m'Y

Such objects were baptized Leibniz algebras by Jean-Louis Loday and are
studied as a non-commutative variation of Lie algebras (see [8]). One of the
main examples of Lie algebras comes from the notion of derivations. For
the Leibniz algebras, there is an analogue notion of biderivations (see [7]).

The aim of this article is to "integrate" the Leibniz algebra of
biderivations by means of a non-abelian tensor product of Leibniz algebras
as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed
Lie g-algebras 9Jt and 9T, the set of derivations Derg(97t, 9T) has a structure
of pre-crossed Lie fl-algebra. Moreover the functor Der^^, —) is right
adjoint to the functor —0g9T where —0g— is the non-abelian tensor product
of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects

Keywords: Biderivation - Crossed module - Leibniz algebra - Milnor-type Hochschild
homology — Non-abelian Leibniz (co)homology — Non-abelian tensor product.
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to construct a non-abelian (co)homology theory for Lie algebras, which
enables him to compare the K-modules HCi(A) and K^Ia'dd(A) where A is
an arbitrary associative algebra. We give a non-commutative version of his
results, in the sense that Leibniz algebras play the role of Lie algebras, the
additive Milnor K-theory K^^A) (resp. the cyclic homology HC*(A))
being replaced by the Milnor-type Hochschild homology HH^A) (resp.
the classical Hochschild homology HH*(A)).

To this end, we introduce the notion of (pre)crossed Leibniz g-algebra
as a simultaneous generalization of notions of representation and two-sided
ideal of the Leibniz algebra Q. Given crossed Leibniz ^-algebras 9Jt and
9T, we equip the set Biderg (W,^) of biderivations with a structure of
pre-crossed Leibniz ^-algebra. On the other hand, we construct a non-
abelian tensor product 971 -*- 9T of Leibniz algebras with mutual actions on
one another. When SDT and 9T are crossed Leibniz fl-algebras, this tensor
product has also a structure of crossed Leibniz ^-algebra. It turns out that
the functor — *g 9T is left adjoint to the functor Biderg(9T,—). Another
characterization of this tensor product is the following. If the Leibniz
algebra Q is perfect (and free as a K-module), then the Leibniz algebra
Q * Q is the universal central extension of g (see [4]). We give also low-
degrees (co)homological interpretations of these objects, which yield an
exact sequence of K-modules

A/[A,A]0HHi(A) e HHi(A)0A/[A,A]^^(2l,L(2l))
^ W^ [51,21]) ̂  HH,(2l) -^ HH^(9l) -^ M/[5l, [21,21]] -> o

where L(A) is the K-module A0A/1111(63) equipped with a suitable Leibniz
bracket (see section 1.2).

Throughout this paper the symbol K denotes a commutative ring
with a unit element and 0 stands (S)K-
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1. Prerequisites on Leibniz algebras.

1.1. Leibniz algebras.

A Leibniz algebra is a K-module Q equipped with a bilinear map
[~-> ~~] : 0 x fl -^ 0? called bracket and satisfying only the Leibniz identity

[ X A y ^ } ] = [ [ x , y ] , z ] - [ [ x , z ] , y }

for any x, y , z e s. In the presence of the condition [x, x] = 0, the Leibniz
identity is equivalent to the so-called Jacobi identity. Therefore Lie algebras
are examples of Leibniz algebras.

A morphism of Leibniz algebras is a linear map / : Si —> flz such that

/(M=[/(^/0/)]
for any x, y e fli. It is clear that Leibniz algebras and their morphisms form
a category that we denote by (Leib).

A two-sided ideal of a Leibniz algebra Q is a submodule () such that
[x, y] e ^ and [y, x] d) for any x e ^ and any y € s. For any two-sided
ideal () in 5, the quotient module Q / [ ) inherits a structure of Leibniz algebra
induced by the bracket of Q. In particular, let ([x, x]) be the two-sided ideal
in Q generated by all brackets [x,x\. The Leibniz algebra fl/([?,?]) is in fact
a Lie algebra, said canonically associated to Q and is denoted by Quie-

Let Q be a Leibniz algebra. Denote by 5' := [Q,Q\ the submodule
generated by all brackets [x, y}. The Leibniz algebra fl is said to be perfect
if S' == 0- It is clear that any submodule of Q containing Q' is a two-sided
ideal in Q.

1.2. Examples.

Let M be a representation of a Lie algebra Q (the action of Q on M
being denoted by m9 for m € M and g e 5). For any fl-equivariant map
p , : M -> 5, the bracket given by [m, m'} := m^7) induces a structure of
Leibniz (non-Lie) algebra on M. Observe that any Leibniz algebra Q can be
obtained in such a way by taking the canonical projection Q —> Q^ (which
is obviously flLie-equivariant).

Let A be an associative algebra and let 63 : A03 —> A02 be the
Hochschild boundary that is, the linear map defined by

bs(a (g) b 0 c) := ab (g) c - a (g) be 4- ca (g) 6, a, b, c e A.
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Then the bracket given by

[a 0 &, c (g) d] := (a& - &a) (g) (cd - cfc), a, b, c, d e A,

defines a structure of Leibniz algebra on the K-module L(A) :=A02/ im^).
Moreover, we have an exact sequence of IK-modules

0 -̂  HHi(A) -. L(A) -^ A ̂  HHo(A)

where HH*(A) denotes the Hochschild homology groups and b^{x,y) ==
[x, y\ := xy - yx for any x, y e A.

1.3. Free Leibniz algebra.

Let V be a K-module and let T(V) := ® V071 be the reduced tensor
n>l

module. The bracket defined inductively by

[x, v] = x (g) v, if x e T{V) and v € V
[x, y (g) v] = [a;, t/] 0 v - [a; 0 z;, y}, ifx.ye T(V) and v e V,

satisfies the Leibniz identity. The Leibniz algebra so defined is the free
Leibniz algebra over V and is denoted by ^(V) (see [8]). Observe that one
has

Vl 0V2^'"^>Vn = ["'[[vi,V2],V3]'"Vn\, V^ i , - - - , ^ € V.

Moreover, the free Lie algebra over V is nothing but the Lie algebra
WLie.

2. Crossed Leibniz algebras.

2.1. Leibniz action.

Let 0 and 9Jt be Leibniz algebras. A Leibniz action of 0 on 9Dt is a
couple of bilinear maps

Q x 9Jt —^ 9Jt, (5, m) ̂  ^m an?) 9JI x g -^ 971, (m, 0) i-> m8

satisfying the axioms

i) m^l == (m^ - (m97)^

ii) ^TT^^m)^ -^(m^),
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iii) 9(9'm) = -9(m9'),

iv) ^[m,m'] = pm,m'] - [W,m],

v) [m.rn']5 = [m^m'] + [m,m^],

vi) [m^m'} == -[771,771^]

for any ?n, TTI' G 901 and </, p' € Q. We say that 9Jt is a Leibniz Q-algebra.
Observe that the axiom i) applied to the triples (m;^,(7') and (m\g'^g)
yields the relation

m^] =_^<

2.2. Examples.

Any two-sided ideal of a Leibniz algebra g is a Leibniz fl-algebra, the
action being given by the initial bracket.

A K-module M equipped with two operations of a Leibniz algebra
Q satisfying the axioms i), ii) and iii) is called a representation of Q (see
[8]). Therefore representations of a Leibniz algebra Q are abelian Leibniz
g-algebras.

2.3. Crossed Leibniz algebras.

Let Q be a Leibniz algebra. A pre-crossed Leibniz g-algebra is a Leibniz
fl-algebra SDt equipped with a morphism of Leibniz algebras p , : SDt —> fl such
that

/^) = [9. P'(rn)] and p,(m9) = [/^(m), g\

for any g G fl and m € SDt. Moreover if the relations

^m' = [m, m'} and m^^^ = [m, m7], V m, m' e 9Jt,

hold, then (3Jt, /^) is called a crossed Leibniz g-algebra.
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2.4. Examples.

Any Leibniz algebra 5, equipped with the identity map idg, is a crossed
Leibniz ^-algebra.

Any two-sided ideal 1} of a Leibniz algebra 0, equipped with the
inclusion map ^ ^—> 5, is a crossed Leibniz Q- algebra.

Let a : c -» 5 be a central extension of Leibniz algebras (i.e., a
surjective morphism whose kernel is contained in the centre of c, see [4]).
Define operations of Q on c by

^ := [a-1^),^ and c9 := [c,Q-1^)]
where a~l(g) is any pre-image of g in c. Then (c,a) is a crossed Leibniz
0-algebra.

PROPOSITION 2.1. — For any pre-crossed Leibniz Q-algebra (9JI, /^),
the image im(^) (resp. the kernel ker(/^)) is a two-sided ideal in g (resp.
yjf). Moreover, if(9Jt,/^) is crossed, then ker(/^) is contained in the centre
ofyji.

Proof. — Let m be an element of SDZ. For any g € 0, we have
Km), ̂ ] = ^(m^) € im(/^) and [g, ̂ (m)} = ^(^z) e im(/A).

Thus, im(/^) is a two-sided ideal in g. Assume that m e ker(^); then for
any m1 € 9Dt, we have

/^([rn.rn']) === [^(7n),^(m')] = 0 = [/^(m'),^(m)] = /^([m',m]).

Therefore ker(/^) is a two-sided ideal in SDT. Moreover if the Leibniz action
of Q on 9Dt is crossed, then we have

[m,m'] = ̂ W^ 0 = m'^ = [m'.m]

for any m G ker(^) and m/ € 9Jt. Thus ker(/^) is contained in the centre of
9JI. D

2.5. Morphism of pre-crossed Leibniz algebras.

Let Q be a Leibniz algebra and let (3JI, p,) and (9^, v) be pre-crossed
Leibniz ^-algebras. A morphism from (97t, p) to (9T, i^) is a Leibniz algebra
morphism / : 9DT ̂  9T such that

f(^m) = ̂ (/(m)), fW = (/(m))^ and /z = vf



A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS 1155

for any m € 9Jt and g 6 fl. A morphism of crossed Leibniz Q'algebras is
the same as a morphism of pre-crossed Leibniz ^-algebras. It is clear that
pre-crossed (resp. crossed) Leibniz ^-algebras and their morphisms form a
category that we denote by (pc-Leib(fl)) (resp. (c-Leib(fl))).

PROPOSITION 2.2. — Let f : (9Jt,^) -^ (^,^) be a crossed Leibniz
g-algebra morphism. Then (QJt, f) is a crossed Leibniz ^-algebra via the
Leibniz action of^onW given by

nm := ̂ m and m71 := m ,̂ V m € fDt, n (E 9T.

Proof. — One easily checks that 9Dt is a Leibniz 9T-algebra. For any
m, m' C 9Jt and n C 9^, we have

/("m) = /(^m) = ̂ /(m) = [n,/(m)],
/(m") = /(m^")) = /(m)^") = [/(m),n];

thus (SDt, f) is a pre-crossed Leibniz ^-algebra. Moreover we have
f^m' = l/^(m))m/ = ̂ ^m' = [m,m'],
^(m') ^ ̂ (/(m')) ^ ̂ (m') ^ [^^q;

thus (971, f) is a crossed Leibniz ^-algebra. D

2.6. Exact sequences.

We say that a sequence
(£,A) ^w/.) ^(^)

is exact in the category (pc-Leib(^)) (resp. (c-Leib(g)) if the sequence
£ ^gjt ^9T

is exact as sequence of Leibniz algebras.

PROPOSITION 2.3. — If the sequence
(£,A) ^(W^) ^(^)

is exact in the category (pc-Leib(^)) (resp. (c-Leib(g))), then the map X
is zero. Moreover if the Leibniz g-algebra (£, A) is crossed, then the Leibniz
algebra £ is abelian.

Proof. — Indeed, since (3a = 0, we have A = vfta = 0. From whence
ker(A) = £, and by Proposition 2.1, it is clear that the Leibniz algebra £
is abelian. D



1156 ALLAHTAN V. GNEDBAYE

3. Biderivations of Leibniz algebras.

In this section, we fix a Leibniz algebra 5.

3.1. Derivations and anti-derivations.

Let (9Jt, p) and (91, v) be pre-crossed Leibniz fl-algebras. A derivation
from (OT, ̂ ) to (91,;/) is a linear map d : W -> 91 such that

d([m,m']) = c^m)^) + ̂ ^(m'), V m,m' e OT.

An anti-derivation from (OT, /^) to (91, i/) is a linear map P : 9Jt -^ ^l
such that

P([m,m']) = ̂ (m)^^) - ̂ (m')^^), V m.m' e W.

3.2. Examples.

Let (9T, i/) be a crossed Leibniz ^-algebra and let n be any element of
9T. By the axiom iii) (resp. i)) of 2.1, the linear map

9 -> 91, fli-^ (resp. 5 -^ 9T, 51-^ -n9)

is a derivation (resp. an anti-derivation) from (^idg) to (91,^).

3.3. Biderivations.

Let (93t, fi) and (9^,!/) be pre-crossed Leibniz s-algebras. We denote
by Biderg(9Jt, 91) the free K-module generated by the triples (d, D, g), where
d (resp. D) is a derivation (resp. an anti-derivation) from (9Jt, p,) to (91, ̂ )
and g is an element of Q such that

^(d(m)) = ̂ (m^), ^(D(m)) = -^(%i),

^(m) = ^(m), P^) = -D(^n)

for any h e fl and m e 97t.
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PROPOSITION 3.1. — If the Leibniz g-algebra (91, v) is crossed, then
there is a Leibniz algebra structure on the K-moduJe Biderg(9H, 91) for the
bracket defined by

[(d,D,g)^d', D', g')} := (6, A, [g,g'})

where

6(m) := d'(m9) - d(m9') and A(m) = -D(m9') - d'C^n), V m e 971.

Proof. — Let us show that the maps 6 and A are respectively a
derivation and an anti-derivation. Indeed, for any m, m' € 97t, we have

^([m.TO']) ̂ d'^m'^-d^m'}9'}

=d'([m9,m'}) + d'^m"3}) - d([m9',m'}) - d([m,m"i'])

'̂(m5)^"^ + ̂ ^d'im') + ̂ (m)^7""0 + ̂ d^m'9)

- d^mi'Y^ - ̂ "'^(m') - ̂ (m)^"1'9^

-^^(m'9')

= (d'(m9) - d^m9'))^"1^ + ̂ ^(d^m'9} - d(m"1'})

+ ̂ ^d^m') + d'^-mY^"1'^ - ̂ '^d^m')

- d^mY^'^

^^(m)^"1^ + ̂ "^(m') + [d(m),d'(m')}

+ [d'(m\d(m1}} - [d'(m),d(m')} - [d(m),d'{m')}

=6(m)^m')+ft(m)6(m')

and
A([m,m']) = - D([m,m']3') - d'^m^m'}

= - D([m9\ml}) - D{[m,m"i'}) - d'^^m']) + d'([W,mj)

= - D{m9'Y('m')+D(m'Y(ms')-D{mY(m'9') + Dim'i'Y^

- d'W^ - ̂ "^d^m') + ̂ (W)^"^ + ̂ "^d^m)

= (-D(m9') - d'^/m^Y^ - {-D(m'9') - ̂ (W))^"^

+ D^m'Y^^ - D^mY^'^ + ̂ ^d'^m')

- l/(o(m')))d/(m)

=A(m)'^(m') - ̂ (m'Y^ + [D(m'),d'(m)]
- [D(m),d'{m')} + [D(m),d'(m')} - [D(m'),d'{m)]

=A(m)^(m')-A(my(m).
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On the other hand, we have

v(8{m)) = v(d'(mi~)} - v(d{m9')) = ̂ ((m9)9') - ̂ m9')9) = ̂ (m '̂l),

^(A(m)) = -^(m9'))-^^)) = ̂ (m5'))-/^'^)3') = -/^-^m),

^(m) = ̂ (m9) - ̂ (m91) = ̂ (m") - ̂ (m3')

= - ̂ '(̂ i) - ̂ (m91) = -Y(Sm) - ̂ (m91)

^{m),

A(^n) = - .D(C'm)9') - ̂ (^C'm))

= - D^'s'^n) - Dftm9')) + d'̂ m'1))

=D((mh)9') + d'^m11)) = -A(m'1).

Therefore the triple {6,^.,[g,g'}) is a biderivation from (971,^) to (91,^).
Moreover, let {d,D,g), ( d ' , D ' , g ' ) and ( d " , D " , g " ) be biderivations from
(971,^) to (91, i/). We set

(^A, [g ' ,g " ] ) :== [(d7,^,^), (d", '̂,^)],

(<?o,Ao.ffo):=[(d,£>.ff),(^A,[ff^ff / /])].
(6',^',[g,g'}):=[(d,D,g),(d',D',g')},

(^.Ai,ffi) := [(^.A',^^),^",^,^)],
(^, A", [g,g"}) := [(d, £»,ff), (d", £>",ff")],

(^2,A2,ff2) := [(^,A//,[3,9//]),(d/,Z5^/)].
It is clear that go = g\ — 52- For any m € 971, we have

(<?i - <?2)(m) ̂ (m '̂i) - 6'(m9") - d'(m^'9"^ + 6"(m9')

=d"{{mg)g') - d"((m''')i) - d'((m9")9) + d((m9")9')

- d\W") + d'^-m9")9) + ̂ {{m91}9) - d^m9')9")

=d"((m9)9') - d\{m9}9"} - d{m^''9"^

=<5(ms)-d(mlff''ff"l)=^o(m)
and

(Ai - A2)(m) = - A'(m3") - d"^'9'^) + ̂ "(m91) + d'(^i"\n)

=D((m9")9') + d'(i(m9")) - d"^)9') + d"^9'))

- D((m9')3") - ̂ '("(m9')) + d'^m)9") - d'^m9"))

= - D(m^^} - d"^)9') + d'^)9")

= - D^''9"^) - 6(<lm) = Ao(m).

Therefore the K-module Biderg(97t, 9T) is a Leibniz algebra. D
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Let us equip the set Bideig (9Jt, ^Tl) with a Leibniz action of Q.

PROPOSITION 3.2. — Let (SDt,^) (resp. (9^)) be a pre-crossed
(resp. crossed) Leibniz Q-algebra. The set Biderg (9Jt, 9̂ 1) is a pre-crossed
Leibniz Q-algebra for the operations denned by

\d, D, g) := (^ ̂  [h, g]) and (d, A g^ := (d\ D^ [g, h})

where

(^)(m) = d{mh) - d(m)h, (^)(m) := ̂ (m) - ̂ (^m),

(^)(m) := ^(m)^ - ̂ m^), (2^)(m) := P(m)'1 - P(m^).

Proof. — Everything can be smoothly checked and we merely give
an example of these verifications. By definition we have

"[(d, D, g), (d', D', g')} = (̂ , ̂ A, [h, [g, g'}]),

[h(d,D,g),(d',D',g')}=(6l,^[[h,g},g'}),

[V,iy,(/),(^<?)] = (^2,A2,M,(7]).

For any m 6 9K we have

(61 - ̂ )(m) =d'{m[h'9}) - (^(m3') - d^'i^) + (Y)^9)

=d/((m/l)ff) - ̂ ((m9)'1) - (^((m3')'1) + ̂ (m9')'1

- d^)9') + (^((m5')'1) + d'^mif) - d^m9^

= (d'^)") - d((my)) - (d'(m^) - d(m"'))'1

=^(m/l)-^(m)/l=(^)(m)

and

(Ai - A2)(m) = - C1!)) '̂) - d'^'i^n) + ̂ D'^m9) + d^'9'^)

= - ̂ (m91) + d^mi')) - d'^^n)9) + d'(\m9))

+ ̂ '(m9) - d'(\m9)) + d((\n)9') - d(\m9'))

^\D'(m9) - D(m9')) - (d'^)9) - d((^m')9'))

-fc$(m)-^(^n)=('lA)(m).

Thus we get

^[(d,Z^),(^'^)] --= [h{^D^)^d\Df^f)] - [^d^D^g'WD^g)}.
D

Now we can state the fundamental result which is a consequence of
Propositions 3.1 and 3.2.



1160 ALLAHTAN V. GNEDBAYE

THEOREM 3.3. — For any pre-crossed (resp. crossed) Leibniz 0-
algebra (2H,^) (resp. (91,^)), the Leibniz Q-algebra Bider^STt,^) is pre-
crossed for the morphism

p : Bider^mt, W) -> fl, (D, 2), fl) •-> fl. D

3.4. Remarks.

For any element g of 5, the linear map ad^ : h «-> [fe,^] (resp.
Adg : h i-> —[^,/i]) is a derivation (resp. an anti-derivation) of the Leibniz
algebra Q. In the classical sense (i.e., without "crossing", see [7]) the
couple (adp, Adg) is called inner biderivation offl. Therefore the pre-crossed
Leibniz g-algebra Biderg(9Jt, 9T) can be seen as the set of biderivations from
(9Jt, iji) to (91, i/) over inner biderivations of 5.

On the other hand, given a pre-crossed Leibniz 0-algebra (93t, ̂ ), one
easily checks that the map Biderg(97t, —) is a functor from the category of
crossed Leibniz ^-algebras to the category of pre-crossed Leibniz ^-algebras.

4. Non-abelian tensor product of Leibniz algebras.

4.1. Leibniz pairings.
Let 971 and 9T be Leibniz algebras with mutual Leibniz actions on one

another. A Leibniz pairing of 9Jt and ^l is a triple ((?, ̂ , 1)^) where (? is a
Leibniz algebra and h\ : 9Jt x 9T —^ ^P (resp. /i2 '' ̂  x 5^ —^ V) is a bilinear
map such that

h^{m,[n,n1}) = ̂ (m71,^') - /^(m^.n),

/i2(n, [m,m']) = h^n^.m') - h^n^'.m),

/ii([m,m'],n) = h^^m') - ̂ (m.n^),

^(K^7],^) = ̂ i(^m,n') - h^n.m^),
h^m^'n} = -^(m.n^), h^n^'m) = -h^n.m^),

h^rr^^n') = [h^m.n^h^m'.n')} == ̂ (^m'^),

^(^n'^) = [^(n^/^nW)] = ̂ (n771,71^'),

^(m71,^) = [/^(m.n), '̂, '̂)] = ̂ ('"n^m'),

^(^^n7) = [/i2(n,m),fai(m',n')] = ̂ (n7'1^'717)
for any m, m' 6 9Jt and n, n' € 91.



A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS 1161

4.2. Example.

Let 9Jt and 91 be two-sided ideals of a same Leibniz algebra g. Take
V := 931 n9l and define

/ii(m, n) := [m, n] and h^(n, m) := [n, m].

Then the triple (q3, (^, ̂ ) is a Leibniz pairing of OH and 91.

4.3. Non-abelian tensor product.

A Leibniz pairing (qj,^,^) of 9Jt and 91 is said to be universal if
for any other Leibniz pairing (qT, ̂ , ̂ J of 271 and 91 there exists a unique
Leibniz algebra morphism 0 :(? —> ̂ ' such that

(9/ii = fa'i and 0/13 = h'^.

It is clear that a universal pairing, when it exists, is unique up to a unique
isomorphism. Here is a construction of the universal pairing as a non-
abelian tensor product.

DEFINITION-THEOREM 4.1. — Let m and 91 be Leibniz algebras
with mutual Leibniz actions on one another. Let V be the free K-module
generated by the symbols m * n and n * m where m e 971 and n e 91. Let
9)1*91 be the Leibniz algebra quotient of the free Leibniz algebra generated
by V by the two-sided ideal defined by the relations

i) \(m * n) = \m * n = m * An, \(n * m) == An * m = n * Am,

ii) (m + m') * n = m * n + m' * n, (n + n') * m = n * m + n' * m,
m * (n + n') = m * n + m * n7, n * (m + m') = n * m + n * m',

iii) m * [n, n'] == m71 * n' - m^ * n, n * [m, m'] = r^ * m' - n^' * m,
[m, m'] * n = "̂  * m' - m * n ,̂ [n, n7] * m = ̂  * n' - n * m^,

iv) m*m/n=-m* n ,̂ n * ̂ m = -n * m^,

v) m" * ̂ n' = [m * n, m' * n'] = rr^ * m'̂ ,
m71 * n'̂  = [m * n,n' * m'] = 7r^ * ̂ m',
^m * n'^ = [n * m, n' * m7] = 7^ * ̂ m'
^ * ̂ n' = [n * m, m' * n7] = n771 * m'̂
for any X e K, m, m' e STt, n, 71' e 91. Define maps

/ii :9Jtx9l-^97t*9T, l)i(m,n) :=m*n
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and
h^ : 9Tx 9Jt-^SDU9^ ^(n,m):=n*m.

Then the triple (9)1* ,̂ ̂ , ̂ ) is the universal Leibniz pairing of TO and 9T
and called the non-abelian tensor product (or tensor product for short) of
9Jt and 9T.

Proof. — It is straightforward to see that the triple (9Jt*9T,()i,()z)
so-defined is a Leibniz pairing of 9DT and ^Vt. For the universality, notice
that if ((?, ̂ , ()'J is another Leibniz pairing of 9Jt and 9T, then the map 0
is necessarily given on generators by

6(m * n) = h[ (m, n) and 0(n^m) =h'^ (n, m)
for any m € 9Jt and n € 9 .̂ D

As an illustration of this construction, we give now a description of
the non-abelian tensor product when the actions are trivial.

PROPOSITION 4.2. — If the Leibniz algebras SDT and ^l act trivially
on each other, then there is an isomorphism of abelian Leibniz algebras

9Jt*9T ̂  9Jtab <8) ^ab C ^ab ̂  9^6

where 9Jtab ̂  W/[m, m] and ^ab := ̂ /PI, ̂ ].

Proof. — Recall that the underlying K-module of the free Leibniz
algebra generated by V is

T(V) = v © y02 e • • • e v^ e • • •
Since the actions are trivial, the definition of the bracket on T(V) and the
relations v) enable us to see that 971 -A- 9T is an abelian Leibniz algebra and
that the summands V^ (for n >_ 2) are killed. Relations i) and ii) of 4.1
say that the K-module 9Jt -A- 9T is the quotient of 9Jt (g) 9T © ^ (g) 9Jt by the
relations iii). These later imply that ajt^9T is the abelian Leibniz algebra
S^ab^^ab C 9Tab <^ ̂ ab. D

4.4. Compatible Leibniz actions.

Let 9Jt Find ̂  be Leibniz algebras with mutual Leibniz actions on one
another. We say that these actions are compatible if we have

(^W ^m^m'], ̂ n' =[nm^nf],
(^W =[^,7^], ̂ n' ^n.n'],
m )̂ ==[771,^], n )̂ =[71,^,
m^) ^m^m'], n^) = [n,77 '̂]
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for any m, m' € 9Jt and n, n1 € ^T.

4.5. Examples.

If 9Jt and 9T are two-sided ideals of a same Leibniz algebra, then the
actions (given by the initial bracket) are compatible.

Let (SDt,^) and {^v) be pre-crossed Leibniz g-algebras. Then one
can define a Leibniz action of 9Jt on 9T (resp. of ̂  on 9Jt) by setting

^:=^^ and n171 := n^

(resp. "m := ̂ m and m^ := m^).
If the Leibniz 0-algebras (2Jt, /^) and (71, ̂ ) are crossed, then these Leibniz
actions are compatible.

4.6. First crossed structure.

Let 9Jt and 7^ be Leibniz algebras with mutual compatible actions on
one another. Consider the operations of 9Jt on 9Jt * OT given by
^{m' * n!) := [m, m1} * n' - 'V * m7, ^(n' * m') := 'V * m' - [m, m'] * n',

(m * n)771 := [m, m'] * n + m * n771 , [n * m)771 := n771 * m -\- n * [m, m']
and those of 91 on 9Jt * 9T given by

"(m' * n') := W * n' - [n, n'] * m', ^n' * m1) := [n, n'] * m' - W * n',

(m * n)71 :== m71 * n + m * [n, n'], (n * m)" := [n, n'] * m + n * m71

for any m, m' C 9Jt and n, n' 6 ^Yl. Then we have

PROPOSITION 4.3. — With the above operations, the map
li: ajt-Ar^—^ 9Jt, m + n h - ^ m " , n ^ m ^ ' ^ n

(resp. i/ '.yjl^^—^yi, m*!!!-̂ , n+m^n" 1 )
induces on 9Jt * OT a structure of crossed Leibniz yjt-algebra (resp. OT-
aJg-ebra^.

Proof. — Once again everything can be readily checked thanks to
the compatibility conditions. For example we have

^^(m' * n') = ̂ (m' * n') = [m71, m'] * n' - ̂ V * m1

:= ̂ V * m' - m" * n '̂ - ̂ n1 * m'

= m71 * ̂ ^ = [m * n, m' * n']
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for any m, m1 € 97t and n, n' € OT. D

4.7. Second crossed structure.

Let (971,/^) and (9^,^) be pre-crossed Leibniz g-algebras, equipped
with the mutual Leibniz actions given in Examples 4.5. One easily checks
that the operations given by

g{m * n) := ̂  * n — %i * m, (̂n * m) := % * m — %n * n,

(m * n)^ := m^ * n + m * n9, (n * m)9 := n^ * m -+- n * m^,

define a Leibniz action of Q on 971 * 9T.

PROPOSITION 4.4. — Let (yjt.fji) and (9T,^) be pre-crossed Leibniz
Q-algebras. Then the map T] : Q7t * 9^ —>• Q defined on generators by

rj(m * n) := [p.(m)^ v(n)} and r](n * m) := [^(n), /^(m)],

confers to 231*91 a structure of pre-crossed Leibniz Q-algebra. Moreover, if
one of the Leibniz Q-algebras 9Jt or 91 is crossed, then the Leibniz Q-algebra
yjt^^yi is crossed.

Proof. — It is immediate to check that the map rj passes to the
quotient and defines a Leibniz algebra morphism. Moreover we have

rj^m * n)) = [/,(^), ̂ (n)] - [î ), /x(m)]

= [[?, /^)L ̂ )] - [[̂  ̂ {n)]^{m)}
== b, [/^(^). ̂ (^)]] = [9. ̂ {m * n)];

rj^n * m)) = - ̂ {m * n)) = -[^, r][m * n)]

= - [g, [/A(m), i/(n)]] = [p, [v{n), ̂ (m)}} = [g, r]{n * m)];

77((m * n)^) = [/.(m^), i.(n)] + [^(m), ̂ )]

= [[/^(^)^]^(^)] + [/^(^), K^)^]]
=[[jLfc(m),i/(n)],^] = [77(m*n),^];

77((n * mY) = [^(^)^(m)] + [y(n)^{m^\

= [[^/(^)^]^(^)] + [^(^), [^(rn\g\}
=[[^(n)^(m)},g} = [7y(n*m),^];

thus (9Jt*9T, r/) is a pre-crossed Leibniz fl-algebra. Assume that, for instance,
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the Leibniz g-algebra SDt is crossed. Then we have
"(""̂ (m' * n') = ̂ )^)\m' * n') = ̂ "^(m' * n'}

=^"l•'(B)W*n/-^m•'(n)V*m/

== [m^"), m'] * n' - ̂ "^"'W * m'

=^t(mv(n))n' ^ m' - m^") * n'^ - ̂ v(n\' * m'

= m^") * ̂ "'V = [m * n, m' * n']
and

(m * n) '̂"'*"') = (w * ̂ ("')^(n')] = (̂  ̂ (m'̂ "'))

^^"'•'^n+m^"1'1^)

^m^'^n+m*^"1''^)

= ̂ ("^ * m'̂ "') - m * n^'"^ + m * n^"^"0)
= [m * n,m' * n'].

By the same way, one easily gets

^ (̂n7 * m') = [m * n, n' * m'], (m * n) '̂*^) = [m * n, n' * m'],

^ (̂n' * m') = [n * m, n' * m'], (n * m)^'*^) = [n * m, n' * m7],

^^^(m' * nQ = [n * m, m' * n'], (n * m)^^ == [n * m, m' * n'].
So we have proved that the Leibniz fl-algebra 9Jt * ̂  is crossed. D

4.8. Remark.

It is clear that if (9Jt,/x) (resp. (9^)) is a crossed Leibniz g-algebra,
then the map 9Jt * - (resp. - * 91) is a functor from the category of pre-
crossed Leibniz g-algebras to the category of crossed Leibniz 0-algebras.

PROPOSITION 4.5. — Let (91, v} be a crossed Leibniz Q-algebra. The
functor F(-) := - * 91 is a right exact functor from the category ofpre-
crossed Leibniz Q-algebras to the category of crossed Leibniz Q-algebras.

Proof. — Taking into account Proposition 2.3, let

O-.OP.O) -^(Q,A) ^(^^-^o
be an exact sequence of pre-crossed Leibniz ^-algebras. Consider the
sequence of Leibniz algebras

F(q3) ̂  ̂ (Q) ̂  ̂  _ ̂
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It is clear that the morphism F{g) is surjective. Since the map
F(f) is a morphism of crossed Leibniz 0-algebras, by Proposition 2.2,
(F^),^)) is a crossed Leibniz F(Q)-algebra; and by Proposition 2.1,
the image imF(f) is a two-sided ideal in F(Q). By composition we have
F(g)F(f) = F{gf) = 0, which yields a factorisation

J\g):F(Q)/imSW--m.

In fact, the morphism F(g) is an isomorphism. To see it, let us consider
the map

r:F(^)->^(Q)/imi?(f)

given on generators by

r(r * n) := g~1 (r) * n mod im F(f) and r(n * r) := n * g~1 (r) mod im F(f)

where ^~ l(r) is any pre-image of r in Q. Indeed, if q and q' are two pre-
images of r, then q - q1 == f{p) for some p in (?. Therefore we have

q * m - q1 * n = (q - q ' ) * n = f(p) * n = F(f)(p * n) e imF(/),
n * g - n * g ' == n * (q - q ' ) = n * /(j?) = F(f)(n^p) € imF(/);

thus the map r is well-defined. One easily checks that F is a morphism of
Leibniz algebras and inverse to F(g). D

5. Adjunction theorem.

In this section we show that, for any crossed Leibniz ^-algebra (9T, z/),
the functor - ̂ -^T is left adjoint to the functor Biderg^, -). For technical
reasons, we assume that the relations

iv) m * ̂ ^n = -m * n^0, n * ̂ m = -n * m^^

defining the tensor product 9Jt * 9T are extended to the relations

w)' m * ̂  = —m * n^, n * %n = —n * m5

for any m, m' G 9JI, n, n' e 9^ and g € fl. To avoid confusion, we denote
this later tensor product by 9Dt ̂  9 .̂ For instance, the Leibniz g-algebras
9Jt T*r 9^ and 9Jt ̂  9T coincide if the maps ^ and v are surjective.

THEOREM 5.1. — Let (9Jt, JLA) be a pre-crossed Leibniz Q-algebra and
let (91, z/) and (^P, A) be crossed Leibniz Q-algebras. There is an isomorphism
otIC-modules

Hom(pc-Leib(g))(9",Biderg(^(p)) ^ Hom(e-Leib(0))(W*0 ̂ ,W.
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Proof.— Let (f) e Hom(pc-Leib(0))(^Biderg(^,(P)) and put
(dm, Dm, 9m) :== (^(m) for m e 9Jt. Notice that we have ̂  = p,(m) thanks
to the relation p(f) = /^, where p : Bider^ (9T,(?) -^ 5 is the crossing mor-
phism. We associate to ( / ) the map ^ : Wl-kg ^—> ̂  defined on generators
by

<^(m * n) := -Dm(n) and ^(n * m) := d^(n), V m e 9JI, n e ̂

LEMMA 5.2. — The map <I> is a morphism of crossed Leibniz Q-
algebras.

Conversely, given an element a € Hom(c-Leib(0))(9^ ̂  ^n,^), we
associate the map S : Wt —^ Biderg(9rl,(P) defined by

E(m) := (6m, ̂ m, P'(m)), V m e CT,

where

^m(^) := cr(^ * m) and A^(n) := -a(m * n), V n e 9T.

LEMMA 5.3. — The map S is a morphism of pre-crossed Leibniz
Q-algebras.

It is clear that the maps (/) ̂  $ and cr i—?- S are inverse to each other,
which proves the adjunction theorem. D

Proof of Lemma 5.2. — There is a lot of things to check in order to
show that the map ^ is well-defined. Let us give some examples of these
verifications. For any m, m' € SDt, n, n1 € ̂  and h e fl, we have

^("m * y/ - n * m^) = - ̂ (^(n7) - C^Q (n)

= - (^DmW - ((dmY^n)

=-^n)^(n/)+^(l/(n)n/)-^^(n)I/(n/)+^(^n/))

=-l/(n)^(n')+^([n,7^/])-^(n)l/(n/)+^([n,n/])
=dm([n,n/]) = ̂ ([n,n'] *m).

We also compute

^(m * ̂ ) = -^(^ = ̂ (n'1) = -$(m * n'1),

^(n * \n} = ̂ (n) = (^)(n) = -((dm^n) = -d^(n) = -^(n * m'1)
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and
$(m" * ̂ n') = - D^w^V) = -((Pnz)'̂ )^"1'̂ )

= - ̂ ( '̂"'V)^") + ̂ ((^'"'V)1^"))

= - A^V)^") + lU "̂'̂ ])

= - D^n)^'^ = lUn)̂ "̂'))

= [D^(n), D^(n')\ = [$(m * n), <S>(m' * n')]
= $([m * n, m' * n']).

Now let m € SOT, n € 91 and <? € fl. One has successively
^(m * n)) = ̂ ("m * n) - $( î * m) = --D^(n) - ̂ (^

= ("Dm^n) - <U )̂ = -•'D (̂n) = ̂ (m * n),
^(^n+m)) = -^(m^n)) = -^(m*n) = "D^n) = "d^n) = ̂ (n+m),

$((m * n)") =$(TOg * n) + $(m * n3) = -P^(n) - D^n")

= - (W)(n) - D^{nS) = -D^{n)" = $(m * n)s,

$((n * m)9) = <S>(n9 * m) + $(n * m9) = dm(n9} + dm9 (n)

-^(n") + ((d^g)(n) = (Un)" = $(n * m)";

A$(m * n) = -A(-D^(n)) = v^^n) = (/x(m), i/(n)] = r)(m * n),

A$(n * m) = A(<U")) = ^(^(m)) = [i/(n), /,(m)] = 7?(n * m).
Therefore the map $ is a morphism of crossed Leibniz g-algebras. D

Proof of Lemma 5.3. — Let us first show that E(m) is a well-defined
biderivation. For any n, n' € 91, we have

U^^+'̂ U"')
= <7(n * m)^"') + ̂ "^(n' * m) == a((n * m)t/(ra')) + a^^n' * m))

= ̂ (n1'^^ * m) + <r(n * m^"0) + (rC^^V * m) - a^'^m * nQ

= 2<7([n, n'] * m) - ̂ (''("Vn * n' - n * m^"'))

= 2o-([n, n'] * m) - (r([n, n'} *m) = (r([n, n'] * m) = 6m([n, n'}),
thus ^TO is a derivation. Moreover, we have

An^n)^"') - A^n')^")

= - (T(m * T^)l/("') + <r(m * n')^ = cr((m * n')^) - a((m * T^)l/("'))

^(m^") * n') + <T(m * n"̂ ) - <7(TO'/("/) * n) - <r(m * ̂ (n'))

= o•(Tn'/(") * n' - m^ * n) - a(m * '/(n}n') - a(m * n^)

= a(m * [n, n'}) — a(m * [n, n']) — a(m * [n, n'})

= - <r(m * [n, n'}) = A,n([n, n']),
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thus Am is an anti-derivation. We have also

A(<U^)) = ̂ (ri * m)) = r](n * m) = [^(n),/A(m)] = ̂ (n^)),

A(A^(n)) = -A(cr(m * n)) = -^(m * n) == -[/2(m), i/(n)] = -y^^n),

^m(n) = ̂ (n*^) = a(\n^m)) = -a(\m^n)) = -^(m*n) = -^(n),

A^CVi) = -a(m * ̂ i) = a(m * n'1) == -A^(n'1).

Therefore S(m) = (<^,A^,^(m)) is a biderivation from (9T,i/) to (^^A).

For any h e g, m C TO and n € 9T, we have

(^m))(n) = <^m(^) - ̂ (n)^ = ̂ (n71 * m) - a(n * m)^
= - a(n * m71) = (T(n * \n) = ̂ (n),

(/l(A^))(n) = ̂ (n) - ̂ (^) = ̂ (m * n) - a(^ * m)

^(^n*^) =Ah^(n);

and obviously [h^(m)} = ^(^72), thus we have E^) = ^(m). On the
other side, we have

(OU^M =<U^ - ̂ m^) = (J(n * m)'1 - a(n'1 * m)
= cr(n * m11) = <^h (n)

and

((A^)(n) = A^(n)'1 - ̂ (n71) = -a(m * n)'1 + a(m * n'1)

= — a(mh * n) = Ay^h(n).

Since [/x(m),/i] = /^(m^), we get E(m'1) == E(m)'1. By definition of the
map E, we have pS(m) = ^(m). Therefore the map E is a morphism of
pre-crossed Leibniz ^-algebras, n

6. Cohomological characterizations.

6.1. Non-abelian Leibniz cohomology.

Let 0 be a Leibniz algebra viewed as the crossed Leibniz ^-algebra
(fl,idg), and let (TO,/A) be a crossed Leibniz fl-algebra. Given an element
m € 9Jt, we denote by dm (resp. Dm) the derivation (resp. anti-derivation)
g ^ ^m (resp. g ^ -m9) from (fl,id^) to (9Jt,/A), and by Ji(m) :=
^(m) mod Z(^), where Z(fl) is the centre of Q. One easily checks that
the triple (dm, Dm, P'(rn)) is a well-defined element of Biderg(0,951).
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DEFINITION-PROPOSITION 6.1. — L e t 3 be the K-module freely
generated by the biderivations (dm,Dm,P'(rn)),m e QJt. Then 3 is a two-
sided ideal ofBider^, 9Jt). The Leibniz algebra Biderg(g, 931)/3 is denoted
byW^m).

Proof. — For any m € 93T and (d, D, g) G Biderg(fl, 9Jt), we have

[(d,D,g),(dm,Dm^(m))} = (<^,A^, [^(m)])

with ___
6m(x) =dm([x,g}) - d([x,]I(jn)) = ̂ g\n - d([x^(m)})

=^d(x)^ _ ̂ ^(m) _ ̂ (m))

= [d{x),m\ - [d(x),m] - ̂ (/^(m))

=dm,(x)

where m\ := —Z)(/^(m)),

A^) = - D([^,/.(m)]) - d^x}) = -D([x^(m)}) - ̂ ^n

= - D(xY^ - D^m^ + ̂ ^m

= - [D(x)^m] + D^{m)Y + [D(rr), m]

=D^x),

^(mi) = -/A(D(^(m))) = [^(m)] = [^,jLA(m)];

thus we have [(d, D, ̂ ), (dyyi, Dm, /^(^))] ^ 3. On the other side, we have

[{d^ D^ ^(m)), (^ -D^)] = (^, A^, [^(m)^])

with

(U )̂ =^([^,^(m)]) - ̂ ([^,p]) == d([x^(m)}) - ̂ \n

=d{xY{rn} + ̂ (m)) - ̂ ^^

= [d(a;),m] + ̂ (m)) - [d{x),m]

=d^{x)

where 7712 := d(/^(m)),

A^(rc) = - D^g}) - d(\^m)^\) = m^ - d{[^m\x})
=^/^(^)) _ ̂ (m))^ - ̂ d(x)

= [m, d(a?)] - ̂ (^(m))2' - [m, d(a;)]

=^2^),

^(m2) = /x(d(/^(m))) = [/A(m)^] = [/i(m)^];
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thus we have [(dm,Dm^(rn)),(d,D,g)} e 3. Therefore the set 3 is a two-
sided ideal of Biderg(g, 9Dt). D

Similarly, given a crossed Leibniz ^-algebra (9Jt,^), one defines

W°(^m) := {m e 9Jt: ̂  = m0 = o, v 0 e 5}
that is, the set of invariant elements of 9Jt. From the relations

[m.m'] = m^^ = 0 = ̂ ^m = [m'.m], m C ^C°(fl,9Jt), m' e 9Jt,

it is clear that ^£° (0,9)1) is contained in the centre of the Leibniz algebra
9H.

PROPOSITION 6.2. — For any exact sequence of crossed Leibniz Q-
algebras

0-.OM) ^CB.A) ^((^)^o,

there exists an exact sequence of K-modules

0 -^ Wfl,2l) ̂  ̂ '(s,®) ̂  ̂ °(0,£) ^ ̂ ^(g^)

-.^^s) ^^^(fl.e)
where /31 is a Leibniz algebra morphism.

Proof. — Everything goes smoothly except the definition of the
connecting homomorphism 9. Given an element c € ^£°(0,€), let & € %
be any pre-image of c in S. For any x € g, we have

(3(xb)=xc=0=cx =f3{bx).

Thus the element % (resp. fr^) is in ker(/?) = im(a). Since the morphism
a is injective, the map d0 : x i—^ a"1^) (resp. D0 : x \—> a"1^)) is
a derivation (resp. an anti-derivation) from (fl,idg) to (51, o). One easily
checks that the triple (c^jD^O) is a well-defined element of Biderg(g,2l)
whose class in ^^(fl, 21) does not depend on the choice of the pre-image b.
We put

<9(c) := class(<f, Jy,0). D

6.2. Non-abelian Leibniz homology.

Let 0 be a Leibniz algebra viewed as the crossed Leibniz g-algebra
(fl,idg), and let (9^,^) be a crossed Leibniz 0-algebra.
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DEFINITION-PROPOSITION 6.3. — The map ^n : 9T*fl -^9T given
on generators by

^n(n * g) := n9 and ^y^(g * n) := <^, g e s, n C 9T,

is a morphism of crossed Leibniz Q-algebras. We define the low-degrees
non-abelian homology of Q with coefficients in 9T to be

Wo(Q, ̂ ) := coker^n anZ) ^£1(5,9T) := ker^n.

Proof. — To see that the map ̂  is a Leibniz algebra morphism is
equivalent to the fact that the Leibniz action of 9T on Q is well-defined. The
definition of the crossing homomorphism ̂  '• ^ * 0 —^ fl implies that ̂
is a morphism of crossed Leibniz g-algebras. D

PROPOSITION 6.4. — For any exact sequence of crossed Leibniz Q-
algebras

0-(2l,o) ^(»,A) ^(e^)-o,

there exists an exact sequence of K-modules

î(fl̂ ) ̂  ̂ ^(fl^) ̂  ̂ i(0,^) ^ Wo(Q^) -^ Wa(Q^)

-^ Wa(Q^) -^ 0.

Proof. — We know that the functor -*fl is right exact (Proposition
4.5). Therefore Proposition 6.4 is nothing but the "snake-lemma" applied
to diagram

2l*fl—^ ^fl—^ €^Q—. 0
[ ̂  [ ^<B I ^£

o —^ 5i—^ a—^ e—^ o
which is obviously commutative. D

6.3. Universal central extension.

Let fl be a Leibniz algebra and let ^ := ̂  be the morphism defining
the homolgy ^£*(fl, fl). From the relations v) of Definition-Theorem 4.1, it
is clear that ^ : s *fl -^ [fl, 5] is a central extension of Leibniz algebras (see
[4]).
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THEOREM 6.5. — If the Leibniz algebra Q is perfect and free as a
K-module, then the morphism ̂  : S*S -^ [̂  fl] = fl is the universal central
extension of Q. Moreover, we have an isomorphism of K-modules

^Ci(fl,S)^HL,(0).

Proof. — It is enough to prove the universality of the central exten-
sion ^ : Q * Q -^ [fl, Q\ = Q. Let a : € -^ Q be a central extension of 5. Since
ker(a) is central in €, the quantity [Q!-1^),^-1^)] does not depend on
the choice of the pre-images a"1 (a;) and a~^(y) where x, y e fl. One easily
checks that the map (f): Q -A- Q —^ (t given on generators by

( / ) ( x ^ y ) := [Q;"1^),^"1^)]

is a well-defined Leibniz algebra morphism such that a(f) = ^. The
uniqueness of the map (f) follows from Lemma 2.4 of [4] since the perfectness
of Q implies that of Q * g:

x^y=^[x^x^^(^[y^y^=^[x^x^y^y^
i 3 i j

By definition we have ^£1(0,5) = ker(). After [4] the kernel of the
universal central extension of a Leibniz algebra Q is canonically isomorphic
to HL2(fl). Therefore we have

^(fl,s)^HL,(s). D

7. The Milnor-type Hochschild homology.

Let A be an associative algebra viewed as a Leibniz (in fact Lie)
algebra for the bracket given by [a, b] := ab - ba, a, b e A. Recall that
the IK-module L(A) := A^/im^s) is a Leibniz (non-Lie) algebra for the
bracket defined by

[x 0 y, x ' 0 y'} := (xy - yx) (g) ( x ' y 1 - y ' x ' ) , \fx, y, x1\ y ' e A.

PROPOSITION 7.1. — The operations given by
A x L(A) -> L(A), \x 0 y) := [a, x} 0 y - [a, y] 0 x,
L(A) x A -^ L(A), (a: 0 2/)° := [x, a] (g) ^ + x 0 [2/, a]

confer to L(A) a structure of Leibniz A-algebra. Moreover the map

^A : L(A) -^ A , x ( ^ y ^ [ x , y } = x y - y x
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equips L(A) with a structure of crossed Leibniz A-algebra.

Proof. — The operations are well-defined since we have
^b^^x 0t/0 z)) = b^(ax ^ ) y ( S ) z — a ( S ) z ( ^ x y — z a ( S > x ^ ) y

+a0 y z ^ ) x - \ - a < ^ ) z x ^ ) y — a 0 ^/ 0 zx)
and

{b^{x 01/ 0 2;))° = &3(—arc 02/0z+a^/0a0^- |-a;02/02:a
— x (S) a<S>yz — zx ̂  a^y — zx (S) y (S) a).

One easily checks that the couple (L(A),/^A) is a pre-crossed Leibniz
A-algebra. Moreover we have

^A{x0y)^ ^ ̂  - [a: 0 2/, a/ 0 y'\ = &3([^, y } ^ x f ( S ) y / - [x, y] 0 ̂  0 a;')
(a; 0 ̂ A(^) - [a; 0 2/, a/ 0 y1} = &3^ ̂  [x1, y1} 0 t/ - x 0 ̂  0 [a;', i/']).

Thus the Leibniz A-algebra (L(A),/^A) is crossed. D

It is clear that the inclusion map [A, A] ̂  A induces a structure of
crossed Leibniz A-algebra on the two-sided ideal [A, A], and that the map
^A : L(A) —^ [A, A] is a morphism of crossed Leibniz A-algebras. Moreover
we have an exact sequence of K-modules

0 -^ HHi(A) -> L(A) ̂  [A, A] -^ 0.

LEMMA 7.2. — The Leibniz algebra A acts trivially on HHi(A).

Proof. — One easily checks that

\x 0 y) = a 0 [x, y} + 63(0 0 x 0 y - a 0 y 0 x) = a 0 [x, y] in L(A)

and

{x 01/)" = [rr, y] 0 a + 63(2: 0 a 01/ - x 0 ?/ 0 a) = [x, y] 0 a in L(A).

Therefore, if a; = ^Ai(^0^) € HHi(A), that is ^A,[^,^] = 0, then
we have

^ = ̂  A,^, 01/,) = ̂  A^(a 0 [xi, yi\) = a 0 ̂  A,[a;,, i/,] = 0

and

^a = ̂  Az(^z 0 l/z)" = ̂  A,([a;,, z/,] 0 a) = (^ A,[^, ̂ ]) 0 a = 0

for any a e A. D

As an immediate consequence, we get the following
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COROLLARY 7.3. — The sequence

0 ̂  HHi(A) -. L(A) ̂  [A, A] -. 0

is an exact sequence of crossed Leibniz A-algebras. D

We deduce from Proposition 6.4 an exact sequence of K-modules

^(2l,HH,(2l)) -. ̂ (2t,L(2i)) -> W^ [21,21]) ̂
-^ ^£o(2l, HH, (21)) -^ ^£o(2l,L(2l)) -^ ^£o(2l, M) ̂  o.

Since A and HHi(A) act trivially on each other, we have

^£o(2t,HH,(2l))=HH,(2l)
and

^(2l,HH,(2l)) =^HH,(2l) ^2l/[2l,2l]^)HH,(2l) C HH,(2l)02l/M.

On the other hand, it is clear that

^£,(2l,[2l,2l])^[2l,2l]/[2l,[2l,2t]].

Therefore we can state

THEOREM 7.4. — For any associative algebra A with unit, there
exists an exact sequence of K-modules

A/[A,A]0HHi(A)eHHi(A)^A/[A,A] -^ W^LW) -> ^£x(2l, [21,21])
- HHi(A) -. HH^A) -. [A, A]/[A, [A, A]] - 0

where HH^A) denotes the Milnor'type Hochschild homology of A.

Proof. — Recall that HH^A) is defined to be the quotient of A(g)A
by the relations

a 0 [6, c] = 0, [a, b] (g) c == 0, b^a 0 b 0 c) == 0

for any a,6,c e A (see [6, 10.6.19]). By definition L(A) == A 0 A/im^s)
and from the proof of Lemma 7.2, we get

^L(A)(a * (x (g) 2/)) = ̂  0 2/) = a 0 [a;,^]

and
^L(A) {(x<S>y)^a)={x^y)a = [x, y] 0 a.

Therefore it is clear that -Q£o(2l,L(2l)) = coker(^(<a)) is isomorphic to
HHf^A). 0



1176 ALLAHTAN V. GNEDBAYE

Remark. — The K-modules HHi (A) and HH^A) coincide when the
associative algebra A is superperfect as a Leibniz algebra that is, A = [A, A]
and HL»2(A) = 0. Also, if the associative algebra A is commutative, then
we have

HH^A^HH^A)^^.

Let us also mention that the Milnor-type Hochschild homology ap-
pears in the description of the obstruction to the stability

HL,(^-i(A)) -. HLn(gln(A)) -. HH^A) -^ 0

where gin (A) is the Lie algebra of matrices with entries in the associative
algebra A (see [2], [6, 10.6.20]).
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