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LOCAL EMBEDDINGS OF LINES IN SINGULAR
HYPERSURFACES

by G. JIANG and D. SIERSMA

Introduction.

Simple surface singularities have been known for long time since
they occur in several different situations. They have at least fifteen
characterizations [4]. One often describes them by the normal forms of
their defining equations in certain coordinate system. This has been done
by ArnoPd [1] and Siersma [8], [9]. The idea is to classify all the surfaces
that contain the origin 0 under the right equivalence defined by the
group 7^, consisting of all the coordinate transformations preserving 0. The
equivalence classes without parameters in their normal forms are called
the simple surface singularities, or the A-D-E singularities.

The observation by Gonzalez-Sprinberg and Lejeune-Jalabert [5] that
on a singular surface X in C3 one can not always find a smooth line
passing through the singular point was our starting point for classifying
functions /, where the corresponding hypersurface X = f~l{0) contains a
smooth curve.

We take the following set-up. Take a line L as the a;-axis of the
coordinate system in C71"1"1, classify all the hypersurfaces that contain L
under the equivalence defined by the subgroup KL of 7?., consisting of all
the coordinate transformations preserving L. If we compare this with the
usual 7^-classification of surfaces, the result classifies the lines contained
in X. Our work is in fact about the pair (X, L).

Keywords : Classification — Line — Singular hypersurface — Embedding.
Math. classification : 14J17 - 32S25 - 58C27.
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We obtain the following results:

• The ^-classification is finer than the T^-classification, i.e. there
are different 'positions5 of lines on the same hypersurface.

• There exist an 7^ invariant A, which counts the maximal number
of Morse points on the line over all Morsifications.

• A is invariant under sections with generic hyperplanes containing L.

• Another proof of the non-existence of lines on J^g surface.

We also introduce a sequence of higher order T^L invariants which
gives more information about lines on hypersurfaces. It turns out that our
work tells how lines are embedded in a hypersurface.

What brought this problem to our attention was the study of functions
with non-isolated singularities on singular spaces [7]. Natural questions are:
given a singular hypersurface X with isolated singularity, does there exist
smooth curves on X passing through the singular point of X? If there exist
smooth curves on X, how many of them?, etc.

Acknowledgements. — This work was done during the visit of the first
author to the department of mathematics at Utrecht University, supported
by the host department, Education Commission, Science and Technology
Commission of Liaoning Province of P. R. China. We thank all of them.

1. Lines contained in singular spaces.

1.1. — Let L be a smooth curve in C71"^1. Since L is locally biholo-
morphic to a line, we often say that L is a line. Let X be a singular space
embedded in C714-1. If for a singular point 0 e Xging, there exists a line
(smooth curve) L in C7^1 such that 0 C L and L \ {0} C Xreg, we say
that X contains (or has) smooth curve passing through 0. Very often, we
say that X contains (or has) a line passing through 0.

1.2. — On a singular surface X in C3 one can not always find a
line passing through (not contained in) the singular locus of X. Gonzalez-
Sprinberg and Lejeune-Jalabert [5], by using resolutions of singularities,
have proved a criterion for the existence of lines on any (two dimensional)
surface, and given a natural partition of the set of smooth curves on (X, 0)
into families. Especially, on surfaces with A^, Dk (k >: 4), EQ or E-j type
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singularity, there exist lines passing through the singular point. In fact one
can find easily lines on this kind of surfaces simply by looking at the defining
equations. But it is not easy to tell how many different lines there are on
a surface, and what kind of invariants can be used to tell the differences.
The hardest thing is to prove the non-existence of smooth curve on certain
surfaces (e.g. Es type surface loc.cit.). There exists similar question for
hypersurfaces with other dimensions.

1.3. Isolated hypersurface singularities. — Let X be a
hypersurface germ with isolated singularity at the origin. The singularity
of X is simple if and only if X can be defined in a neighborhood of the
origin in C^2 by the following equations (see [1] and [8], [9]):

Ak : x^1 + y2 + zi + ... + ̂  = 0 (k > 1),
Dk: x^y + ̂ -1 + z{ + ... + ̂  = 0 (k > 4),
E 6 : ^ + ^ + ^ + . . . + ^ = 0 ,
£7: ^2/ + z/3 + 2:2 + • • • + ̂  == 0,
Es : x5 + y3 4- z{ + • • • + ̂  = 0.

The left hand sides of the equations are called the normal forms of the
simple (or A-D-E) singularities.

The following equations define the simple elliptic hypersurface
singularities (see [2] and [8], [9]):

EG : x^y 4- z\ + ay^z-i + (3y3 + zj + • • • + ̂  = 0, 4a3 + 27/?2 ̂  0;

Ej : x4 + z/4 + ax^y2 -h z{ + ... + ̂  = 0, a ̂  ±2;

^8 : ^3 + o^2/4 + f3y6 + ̂ 2 + • • • + Z2, = 0., 4a3 + 27/?2 7^ O.

2. 7^-equivalence.

2.1. — Let On+i (or 0) be the stalk at 0 of the holomorphic structure
sheaf Ocn+i, m be the maximal ideal of 0. Let K be the group of all the
holomorphic automorphisms of C7^1 that preserve 0. Take L as the a;-axis
in C^^ then the defining ideal of L is Q : == (?/ i , . . . , ̂ ), and

HL : = {(^ e 7Z | <^*g C fl}.

It has an action on rng from the right hand side. This defines an equivalence
relation on mg.
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We recall some notations from [10]. Two germs f^g € mfl are
called KL- equivalent if there exists a (f) e T^L such that / = g o (j). A
germ / € m^ is called k-KL-determined in mg if for each g e m^ with
f - g ^ m^4'1 H fl = m^fl, / and ^ are %L-equivalent.

2.2. THEOREM. — If

m^cmTgC^+m^g,

then / is k -7 -̂determined, where

^-©^--a
is the tangent space at f of the 7^ -orbit 7^(/) of/.

Proof. — Since the proof is a standard argument in singularity theory
and very similar to [10], we give a brief proof. For any function g € m^,
define a one parameter family of functions F := / + t{g - /). Let fg(F) be
the collection of all the differentials of F by the one-parameter families of
vector fields preserving 0 and L. By the assumption and Nakayama lemma,
one finds that there exists a vector field 6 of the above mentioned type,
such that g — f = 6(F). The flow of 6 gives an T^-equivalence between /
and g by continuous induction. D

2.3. Definitions. — For a germ h € m^, the T^-codimension of h is
defined by

/ L \ -i • Q^CL = CL(h): = dime —TT-
^W

Moreover there exists the next T^L-mvariant

0\ = \{h): = dime . . ^J(h) + Q
where J(h) is the Jacobian ideal of h. Note that

1 < X(h) < p,{h),

where /x(/i) is the Milnor number of h. The number A is equal to the torsion
number defined in [7], see also § 2.4.

One can always write h in the following form:

h = ̂  ̂ ^j + ̂  BjkVjVk,
where Aj are functions of one variable x: Aj e 0\, and Bjk € (9.With this
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notation we have the following simple formula:

A = dime —-.——1—-,—'x{A^...,An)

2.4. Torsion number. — We recall the definition of the torsion
number from [7]. This section plays no role in the rest of the paper.

Let L and X be analytic spaces in C714"1 defined by the ideal Q and I)
respectively. If L C X, then () C 0. As a subspace, L can be defined by the
ideal g, the image of 5 in Ox := 0/\). The OL := 0/0-module

M:^-0

' S2"^!)

is called the conormal module ofg. Denote by T(M) the torsion submodule
of M, and by N := M/T{M) the torsionless factored module. We have the
following exact sequence:

0 -> T(M) —> M -^ N -. 0.

In case L is a line on an isolated complete intersection singularity X,
this sequence splits. The dimension of T(M), as a C vector space, is called
the torsion number of L and X, denoted by

Q{L,X) :=dimcr(.M).

When L is a line on a hypersurface X with isolated singuarity, then
A = g(L^X). In fact, the defining equation h of X can be written in the
form h = xA\(x)y\ mod Q2 by a coordinate transformation preserving L,
which has been taken to be the rr-axis. A calculation shows (see [7] for
details) that

M=————9————-, r(M)=7————————r^———.———————r-
(xA^x)y^) + Q2 {xA^(x)y^ + Q/f) + 2/1(2/2, . . . , 2/n)

Hence

dimT(M) = dim , °— = A.
(xA^(x))
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2.5. Semi-continuity of \(h). — For h e gm with isolated
singularity at 0, there exist deformations of h in ^m such that for generic
parameters, the deformed function has only Ai type critical points. Is \(h)
a constant with respect to the deformation? The answer is negative in
general, as easy examples show.

In order to prove a semi-continuity result we consider a map

H:^^ xC^.O) — ^ ( C x C ^ O )

defined by H(z,s) == (hs(z)^s), where hs is a deformation of h in mfl. The
critical locus of H is the germ at 0 of

CH: = MCC^X :={^s)€Cn^xCa |^=0,^0,...,n}.
9hs
9z,

Let 0 be the stalk at 0 of the structure sheaf of C^1 x C7. We
consider 0 as a subring of 0. Denote

T/, >. (Q^s ^s^n
t7(/^s):=^9.o?•-^)a

Obviously, CH H (L x C^) can be defined by the ideal J(hs) + flO. Let

A:- . 0 ^ 7^:(Cn+lxC<T,0)-^(C(T,0), 7r(^,5)=5.
^(^s) + QO

Denote p := ^[^^(^(^xc17)-

THEOREM. — Let h define an isolated singularity at 0.

1) p is finite analytic map;

2) there exist representatives of all the germs considered such that for
all s e C7

\(h) > ^ A(^,p)
(P^ep-1^)

where /i^p denotes the germ ofhs at point P.

Proof. — By [6], thm 5 (d) and p,(h) < oo, p is finite.
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Next we prove 2). Still we denote by A the sheaf defined by A. Since p
is finite, p*(A) is again coherent. For any s e C01, we have

(P*(A)). ^ (]) Ap.
(P,5)Cp-i(5)

Note that p'^O) = {0} and the minimal generating set of Ao consists of
\(h) elements. For s near 0, let \s be the number of the elements in the
minimal generating set of (p*(A))^. Then \s < \(h). Hence

\(h) == dim (———A^———)
^'n*(m^^ ^Ao>'p*(m(c<^,o)Ao^

Ap
(P^ep-^s) ^(^(c-^Ap^ (p,,)ep-i(.)

Remark that there always exist deformations of h in m^ with only
AI points, called Morsifications. An easy calculation shows that there exist
Morsifications hs of h such that the number of Ai points of hs sitting on L
is exact A(/i).

Conclusion. — \(h) is semi-continuous under deformations and
equal to the maximal number of Ai points of hs sitting on L, where hs is a
Morsification of h in ^m. Q

3. Classification of lines contained in hypersurfaces.

The aim of this section is to classify lines on surfaces in C3 (see § 3.3),
but first (for completeness) we classify the lines contained in curves in C2.
The equivalence is defined by 7^-action.

3.1. THEOREM. — A curve X C C2 with an isolated simple or elliptic
simple singularity contains a line passing through its singular point if and
only if it is of type

A2k-i (k ^ 1), Dk (k >, 4), ET, ET or Es.

If we choose the singular point as the origin and the line as the x-axis of
the local coordinate system, the denning equation ofX is ̂ -equivalent to
one of the equations in Table 1.
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Type ofX Equations \ Name CL

A2k-l

(fc>l)

Dk
( fc>4)

ET
E-T

Es

x^ + y2 = 0 (k > 1)

ySy ̂  yk-l ^ () (A > 4)

x^y + a;y2 == 0 (fc = 2^, ^ > 3)

a;3y + y3 = 0

a;y(a;+y)(a;+<y)=0 ((^0,1)
^V+a^y+y^O (a^O,^)

fc

2

^

3
3
4

•42fc-l,fc

Dk,2

Dk.{

•E'7,3

^7,3

•̂ 8,4

f c -1

f c -2

H

4

6
6

Table 1. Curves containing re-axis

Sketch of the proof. — One considers the 2-jet f~h of a function
^ ^ (^Z/?t/2)- Let r be the rank of the coefficient matrix of f'h.

• If r = 2, then /i is ^-equivalent to Ai,i.

• If r = 1, one finds that h is ^-equivalent to A^k-i,k (k > 1) or y2.

• If r == 0, one needs to consider j^h = ax^y + ^2/2 4- q/3.

> In case a ̂  0, j'3^ is 7^-equivalent to 1)4,2 if ^2 — 4ac 7^ 0 and to
x2y if &2 — 4ac = 0. In the latter case, one considers the higher
jets and finds the Dk,2 singularities.

> In case a = 0, b ̂  0, one finds the D^/s by considering the
higher jets of h.

t> In case a = b = 0, c ^ 0, one finds that jf4^ is %L-
equivalent to £"7,3 or y3 + x2y2 or i/3. If j4^ ^ y3 + x^y2

(where ̂  means "to be ^-equivalent to"), then j5h ̂
y3 4- x^y2 + Otx^y SA ^3,4 (a ^ 0, ^). One stops here since the
singularity of h is neither simple nor elliptic simple if j^h ̂  y3

or fh T^ y3 + rcV + a^t/ (a = 0, \).

> It remains to study the case j3h = 0. In the generic case, j4h is
T^L-equivalent to £'7,3. In the non-generic case, the singularity
of h is neither simple nor elliptic simple. D

PROPOSITION. — I f / i€m0 defines an isolated singularity and n = 1,
then CL = ^ — A.
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Proof. — It is an easy exercise in algebra to show that
(mJ(h)) nmg• for any n > l , c ^ = / ^ — A + ^ where z/ = dim

Tfl(fa)

• if n = 1, we have v = 0.
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D

3.2. — A class of singularities S (with respect to an equivalence) is
adjacent to a class T (notation T ^- S) if every function / € S can be
deformed into a function of T by an arbitarily small perturbation (cf. [3]).

For example, x'^y + y6 -+- q/5 is T^-equivalent to D6,2» hence

A?,2 —— ^7,2.

In the following diagram, we record some adjacencies from the proof
of the theorem above, called the classification tree. Note that it does not
contain all the adjacencies.

CL
0

1

2

3

4

5

6

AU
A3,2X
T
As,3
T
Ar,4
T
Ag,s
T
An,6
T
Al3,7
T

£'4.2 -
T ^
Ds,2
T
De,2
T
-07,2
T
D&,2
T

£»6,3
T
Ds.4,
T
£'10,5
T
£'10,5
T

2?8,4 -^7,3

Diagram 1. Classification tree 1

3.3. THEOREM. — A surface X C C3 with a simple isolated singularity
contains a line passing through its singular point if and only if it is of type :

A k ( k ^ l ) , D f c ( & > 4 ) , E^orE^.

Moreover^ if we choose the singular point ofXas the origin and the line
L on X as the x-axis in C3, that is, L is denned by the ideal Q = (y^)^
then the defining equation of X is T^L -equivalent to one of the equations
in Table 2.
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Equations \ Name CL

Ak
(A^l)

Dk
(^4)

Ee
E^

xy + ^fc+l = 0

x^y + Xsz2 -h yz = 0

( f c = 2 ^ + s - 1, ^ > 2, 5 >0)

x^y + 2/fe~l + 2-2 == 0
a:2^/ + xz2 + ?/2 = 0
^ + o^2 + z2 = 0 (A; == 2^, i > 3)

^2/ + ;rz2 + 2/2 = 0 (A; = 2^ + M > 3)

A + 2/3 + z2 = 0

^3?/ + y3 + ^2 = o

1

t

2
2
^
t

2

3

Afc,i
Afc,f

Dkfl

D^
Dk,t
Dk,e

E^ft

^7,3

k-1
k-1

k-1
4

k-1
k-1

5

6

Table 2. Simple surface singularities passing through x-axis

Sketch of the proof. — It is just classifying the functions in (^/, z)m
by choosing all the coordinate transformations in 7^. One starts from the
2-jet of h € (^/, ^)m:

j2^ = 2ai2^ + 2ai3a;2; + a^y2 + 2023^ + 033^, a^ = a^.

Let r be the rank of the coefficient matrix (a^j) of j^h.

• If r = 3, then (012,013) ^ 0. We can assume 012 7^ O. Then

j2h <^> xy 4- az2 <^A a:2/ + z2 <^^ Ai

where we still denote by x, y , z the new coordinates by abuse of notations.

• Suppose r = 2. If (012,013) ^ 0, then f'h ̂  xy. The higher order
jet j^h SA xy 4- az^ which, by Theorem 3.2, is {k + l)-7ZL-determined
in (i/, z)m, and T^L-equivalent to xy + z^1 if o 7^ 0.

If (012,013) = 0, f'h SA ̂ . For i > 2, j^1^ ̂  ̂  + o^ + to^.

> ah ̂  0: ̂ +l/^ <^A ̂  + ^2/ + ^2, which is A^i-\^.

t> o& = 0,o 7^ 0: j^h ̂  yz + ^^/ which is not finitely %L-
determined in (y, z)m. But j^^^h ̂  yz-\- x^y + arc5^ which,
if a ̂  0, is (t + 5 + l)-%L-determined in (i/, <z)m, 7^^-equivalent
to yz + a^z/ + Xs z.
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• Suppose r = 1. We may assume j2h == z2. A calculation shows that

j3h SA z2 4- arq/2 + te2^/ + ca;2^ + e^/3

which is T^-equivalent to z2 + x^y + ei/3 if & ^ 0. Further study of this
case, gives D^^ {k > 4). If b = 0, we have

> ac ̂  0: h is T^L-equivalent to Dg 3.

> a -^ 0, c = 0: by studying the higher jet of h, we obtain D^,£
and D^i,e {i > 3).

> a=0 , ce 7^ O: we obtain £'6,2.

> a = c = 0 , e ^ 0 : we can write j3 = z2 -+- z/3, and j4/?, SA
^2 + y3 + o^3?/ + ̂ 3^ + ̂ y2. A calculation shows that h is
%L-equivalent to £7,3 if a ̂  0. And in case a = 0, there are no
simple germs with 4-jet T^L-equivalent to z2-{-y3-}-|3x3z-^^x2y2.

> a = e = 0: there are no simple germs with 3-jet KL -equivalent
to z2 4- cx2z.

• If r = 0, there are no simple germs with 2-jet ^-equivalent to 0.

Es does not appear in the list. An intuitive reason for this is that one
can bring the 4-jet of the Ek (k ^ 7) singularities into the normal form:
z2 4- y3 + ax3y. In case a ̂  0, one has £7, otherwise, there is no term x4,
so one can never get £g.

The list of 7^-simple singularities is now exhausted.

One can easily calculate X(h) = 1, 2, up to [j (k 4-1)] when h defines
an Ak surface, A(/i) = 2 or [^k] when h defines a Dk surface, and so on. D

3.4. COROLLARY.

1) There does not exist smooth curves on surface with £g type isolated
singularity.

2) All the normal forms of the germs in table 2 are also UL-simple.
And all the KL simple germs of (y, z)m are contained in Table 2.

Proof. — 1) follows from the proof of the theorem in § 3.3.

2) A germ h e {y,z)m is ^-simple if CL{K) < oo and any small
deformation h of h in (?/, z)m cuts only finite number of the %L-orbits
of (z/, z)m. It follows from the classification procedure that all the germs
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in Table 2 are T^-simple and that they are the only ones. All 7^-simple
germs in (^/, z)m are also 7^-simple germs, which are all contained in Table 2
except Es. D

3.5. Remarks. — For a hypersurface X defined by h = 0, two lines
L\ and L^ in X are in one class if there exists a ip € K such that y?(Li) = 1/2
and ho ip = h.

The results of [5] say that there exist A;, 3, 2 and 1 families of smooth
curves on Ajc (k >, 1), D^ (A; ^ 4), EQ and £"7 surfaces respectively. In our
classification of smooth curves on A-D-Ee-E'7 surfaces above, there exist
[ j ( fc+l) ] ,2 , l and 1 class(es) smooth curves on Ak (k > 1), Dfc (k >, 4), EQ
and Ej surfaces respectively. The reason for this is the symmetry property
of the simple singularities. Especially, there is only one class of smooth
curves on Ai, As, D^ EG and Ej surface. There exist two different classes
of smooth curves on D^ surface with the same A = 2. On Ak (k > 3) and Dk
{k >_ 6) surfaces the number A tells the differences of the smooth curves on
these surfaces.

3.6. The classification tree. — We record some adjacencies in the
proof of the theorem in § 3.3 in the classification tree 2 (Diagram 2). Note
that this table contains only some of the adjacencies (c/. § 3.2)

CL
0

1

2

3

4

5

6

7

8

Ai,i
T

A2.1
T

A3.1
T
At,i
t
As.i
T
Ae,i
T

AT,I
T
Ag,i
T
Ag,!

T

*^^

^s

As,2
T

A4,2

T

As,2
T

Ae,2
T
Ar,2
T
As,2
T
Ag,2

T

'S.

As.3
T
^6,3
T ^
^7.3 ^7,4

T T

Ag,3 Ag,4

T T ^
Ag 3 Ag,4 Ag,5

T ' T T

D^2
T ^

^5,2 D^

T T -^
^6,2 ^6,3 EQ 2
T T T '
Dj 2 ^7,3 E-! 3

T T
^8,2 ^8,4
T T
Dg,2 2)9.4

T T

Diagram 2. The classification tree 2
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3.7. Lines on surfaces with simple elliptic singularities. — If
we continue the calculations for the case r = 1,0 in the proof of Theorem 3.3
and record the adjancencies appeared, we obtain the following theorem and
classifcation tree.

THEOREM. — A surface X with simple elliptic singularity at 0 has a
line L passing through 0. And if one chooses L as the x—axis of the local
coordinate system, the denning equation ofX is %L-equivalent to one of
the equations in Table 3.

We give the explanation of the notations in Table 3.

Type
ofX Equations \ Name CL

EQ

E7

Es

x^y -+- doxz2 + d^y3 + d^z + d^yz2 + d^z3 = 0
(for generic di (0 <. i <: 4), especially Ai ^ 0)

x2z + x3y + bx^y2 -+- cxy3 + A/4 + z2 = 0
(0^0,1, As^O)

xy(x - y)(x - vy) + z2 = 0 (y -^ 0,1)

x3z + r^V + 6x^y + y3 + z2 = 0 (D ̂  0)
ax^y + x^y2 + y3 4- ̂  = 0 (a 7^ 0, ^)

2

2

3

3
4

-^6,2

-^7,2

^7,3

^8,3

-^8,4

7

8

8

9
9

Table 3. Simple elliptic surface singularities containing x-axis

Ai:= det

A2 := det

-2At
c
0
0
0

. 0

-2
c
0
0
0

.0

0
0

-12di
0
d2
0

3
-1
0

3+26
0
0

0
-6di
-8d2
4di
2^3

d2

2b
3

3+2&
2&4-3c

-1
0

-4(Wi
-4d2
-4d3
3d2
3^4

2ds

c
2fc

26+3c
c+4d

3
3+2&

—3dod2
-20(3

0
2d3
-c2

3^4

0
c

c+4d
0
26

2&+3c

—2do^3"
0

-c2

d4
0

-c2

0 -
0
0
0
c

c+4d.
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6 is the cross ratio of the four lines denned by

-.a:4 + x^y + bx2y2 + cxy3 + A/4 = 0

and

D^e^-lr^^3-^2.

3.8. Remark. — For £'6,2, there are two UL moduli. £'7,2, £7,3, £s,3
and £3,4 are one 7^ modular.

% £5,2

£6.2^ £7,2 £7,3

£?,3^ £8,3 £8,4

Diagram 3. Classification tree 3

3.9. Invariance of X under sections with hyperplanes
through L. — Let L be a line contained in a hypersurface X C C71"1"1 with
isolated singularity, H a generic hyperplane in the pencil of hyperplanes
passing through L. Then XH H has also isolated singularity and contains L.
A straightforward computation shows:

PROPOSITION. — X(X H H) = A(X).

In fact we can continue cutting until we are in the curve case. If we
apply this on the surfaces defined by the equation in Table 2, we have

X

xnn
Ak,£

^2e-i,£
Dk,t

A2t-l,t

,̂2

As,2

-E'6,2

As,2

-E'7,3

A5,3

Obviously we have in these examples ^{XnH) = 2A-1. This reminds
very much to Milnor's double point formula

p, = 26 + 1 - r,
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where 6 is the maximal number of double points on a deformed curve, and r
is the number of the branches of the curve. But this is a coincidence, which
holds since X n H is of type Aodd. Accordining to the above proposition

A == A(X) = \(X n H) ̂  6(X n H).

Inspection shows A(Aodd) = <5(Aodd). However for X with E^ type
singularity, this is not the case. X D H is of D^ type singularity and
<$ == 3, A = 2 and r = 3.

3.10. Remark. — For all the germs in Tables 2 and 3, we have
°L = /^ - 1, especially CL(h) does not depend on A. This means that for
those surfaces we can not move from one position of a line into another
position. This was a surprise to us; in other dimensions this is different (see
also Question 4.4).

4. Lines on hypersurfaces in C4.

About the existence of lines on hypersurfaces in C4, we mention first
that on corank 2 singularities there always exist lines due to the suspension
xy + g{z,w). This gives lines on, for example, the £'8 hypersurface in C4.
And A = 1 all the time. For corank 3 singularities one can consider the
suspension g(x, y , z) + w2. If g contains the rr-axis, so does this suspension
with the same A. But there are examples of corank 3 singularities which do
not contain any lines. Here is one of them:

h = w2 + X11 + y13 + z15 = 0.

It is natural to consider the above classifications with four variables.
We give here the beginning of the classification for simple singularities. The
proof is very similar to the cases considered in § 3. Also here we record some
of adjancencies in the classification tree. We distinguish between A = 1
and A > 1.

4.1. THEOREM. — Let X C C4 be hypersurfaces with isolated simple
singularity. IfX contains x-axis and A = 1, then the denning equation of
X is UL-equivalent to one of the equations in Table 4. D
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Type of X Equations A Name CL

Ak
( f c > l )

Dk
( f c > 4 )

Ee
E^
Es

xy + ̂ +1 + w2 = 0

xy + z2w + w^"1 = 0

xy + 2;4 + w3 = 0

;q/ 4- 2^w + w3 = 0

xy + ^5 + w3 = 0

1

1

1
1
1

Afc,i

£>fc,i

£;6,1

^7,1

•^8,1

k-1

k-1

5

6
7

Table 4

4.2. THEOREM. — Let X C C4 be hypersurfaces with simple isolated
singularity. IfX contains re-axis, A > 1 and CL(X) < 8, then the denning
equation of X is 7?^ equivalent to one of the equations in Table 5. D

4.3. Remarks.
1) One may compare table 4 with the list of simple hypersurface

singularities in § 1.3.

2) If we compare with the surface case, we find that on Es hypersurface
there exist two classes of lines. Also on other hypersufaces, there exists more
lines than in the case of surfaces in C3.

4.4. Question. — As claimed by the proposition in §3.1, all the
known examples show the following remarkable formulae:

CL = li + (n - 2)A - n + 1.

Is it true for any hypersurfaces with isolated singularities in C71"^1?

4.5. Higher order invariants. — For h C m^ defining an isolated
singularity, there exists the following filtration:

J(h) + 0 D J(h) 4- 02 D • • • D J(h) + ̂  D • • . D J(h).

Define

Ak = Ak(h) := ^W+fl^ k 1?2? '"
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Type
ofX Equations X Name CL

Afc
(fc>l)

Dk
(k>4)

Ee

M
Es

x^y 4- xsz2 + yz 4- w2 = 0

(fe=2<+s-l , 02, s>0)

^ ^ ̂ fe-l ̂  ^2 ̂  ̂ 2 ̂  o

x2z + a^w + a^2 + wz = 0 (^ > 5)

x^y 4- ^2/2 4- z2 + w2 = 0 (^ > 3)

a:̂  + xy2 + 2:2 + w2 = 0 (^ > 3)

^2?/ 4- 2/2 + 2;3 + w2 = 0

a^2^ + 2/3 4- xyw + zw =0

x^y + y3 + ̂ 2 + w2 = 0

A + 2/3 + a:w2 4- zw = 0

^

2

2

^

^

2

2

3

2

Afc,^

^fc,2

,̂2

,̂̂

^2^+1,^

^6,2

-^7,2

-^7,3

-E'8,2

3^+s-3

fc

^

3^-2

3^-1

6

7

8

8

Table 5

/
^6.1
T
^7,1
T
^8.1

-D9,l

T

,04,1

T
^5,1

T
£'6,1

T
£>7,1
T
Ds,i
T

Ai,i.̂.,
T -
A3,l

T
A4,l

T
AS.I
T
^6,1

T
^7,1

T
Ag,!

T
Ag.l

T

<
^3,2 ,
T
^4,2

T '
As,2

T
Ae,2
T

A7,2

T
Ag,2

T
^9,2

T

A5,3

T
A6,3

T
A7,3

T
A8.3

T
A9,3
T

Ag,4 Ag,5

T T

s
A7,4

T

Ag,4

T ^

- D4,2

T
Ds,2

T
A>,2

T
D7,2

T
^8,2

T
^9,2

T

,̂2
T
.̂2

T
^7.2
T
,̂2

T
D^2
T

'̂ '
A>,3

T
^7.3
T

^8,4

T
A),4
T

'̂6,2

T
-S'7,3

-£'7,2

T
'̂8,2

Diagram 4. Classification tree 4
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and the higher order invariants:

Afc = Xk(h) := dime A^, k = 1,2,....

Note that there exists a ko such that

A = AI < As < • • • < Afco = 11.

Denote

K=/ t ( / l )= [ A i , A 2 , . . . , A f e o =JLA] ,

where A:o is the minimal k such that Xj, = /^, called the length of the
sequence /^(/i).

The K,(h) give more information about how a line is embedded into a
singular hypersurface. Recall that in Tables 2 and 5, we have D^ and D^
(£ > 5) with the same A.

Easy calculations show the following:

For surfaces in C3,

• ^(^5,2) = [2,3,4,5] with length 4, and

• ^(^,2) = [2^ 4,5] with length 3.
For the Dk type hypersurfaces in C4,

• ^?,2) = [2 , . . . , £] (£ > 5) with length £ - 1,

• ^(D^) = [2,4,5] with length 3,

• ^?,2) = [2,5,7,.. . . 2^ - 1,2^] with length t ̂  3, and

• ^(^+1,2) = [2,5,7,. . . , U - 1,2^ + 1, ] with length ^ > 3.

So, higher order invariants A^s distinguish D^ and D^.
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