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THE GRAPH POLYNOMIAL AND THE NUMBER
OF PROPER VERTEX COLORINGS

by Michael TARSI

1. Introduction.

Let G = (V, E) be a graph, V = { 1 , 2 , . . . , n}, let

PG= II {x,-x,)
ij^E,i<j

be its graph polynomial, and let PkG be the remainder of this polynomial
modulo the ideal generated by the polynomials x^ — 1, 1 < i < n. Put
Z^ = {0 ,1 , . . . , k - I}71. For a polynomial

n

P=P(^i,...,^)= ̂  a,]"]^1.
vez^ 1=1

Define ||P|||= ^ l^l2.
vez?

In a recent joint work with Noga Alon, [2] we proved the folowing
result, in which Cfc(G) is the set of all proper colorings c of a graph G by
the k colors { 0 , . . . , k — 1}.

THEOREM 1.1. — In the above notation

m ii^iij'̂  E n ̂ [̂ (J"].
ceCk{G)ijeE,i<j
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Theorem 1.1 clearly provides a lower bound for the number of proper
^-colorings of a graph G in terms of HP^HI- For the special case k = 3
this is an equality, showing that the precise number |G3(G)| of proper 3-
colorings satisfies

(2) ||P3G||i=3l£;l-n|C3(G)|.

The following notation is used in the sequel: A Partial orientation of
a graph is obtained when some edges are assigned with an orientation while
the other edges remain undirected.

Given a partial orientation and a vertex x, the number of oriented
edges with their tails, (heads) at x is denoted by d^{x}, {d~{x)).

A A;, I—flow in a graph G = (V, E) is a partial orientation of G, where
for every vertex x € V, d^~(x) — d~(x} '= 0 (mod A;).

F^(G) stands for the set of all fc, 1-flows of G.

The support a(f) of a flow / € F^(G) is the set of edges of G which
are oriented in /.

The main result of this paper is the following equality, which gives
another combinatorial interpretation to the left hand side of 1:

THEOREM 1.2.

(3) II^G||i=(-l)^ E (-2)1£;1-K/)1.
f^(G)

Note that Ff^(G) corresponds to the subset of Fk(G) (the set of all
Zk— flows in G) where the permitted flow values are 1,—1 and 0. Since
Zs = {0,1, —1}, in the special case of k = 3 we obtain

(4) II^Glli^-l)^ E (-2)l£;l-w)l

f^F^G)

and by 2

(5) 3^1-^3(^1 = (-1)^1 E (-2)1^1-1^)1.
feF3(G)

Considering the parity of the right hand side, all summands are clearly
even, except those corresponding to flows / for which a(/) = E. These flows
are the 3- Nowhere Zero Flows (3 - N Z F ) of G. This implies:
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THEOREM 1.3. — The set of3-Nowhere zero flows (NZF^G)) and
the set of proper 3-colorings of a graph G are of the same parity, or more
precisely

(6) \Cs{G)\ = |7VZF3(^)|(mod4).

Remark. — Clearly IC^G)] is always divisible by 6 (permutations
of the 3 colors) and flows come in pairs (obtained by reversing the entire
orientation). It is a common convention, however, to refer to permutations
of the colors as the same coloring (e.g. phrases like "uniquely /c-colorable"
etc.). Accordingly, when talking of an "odd" |C3(G')| we actually refer to 2
modulo 4 and the same holds to the parity of NZF^(G).

One can easily observe that in 4-regular graphs, Eulerian orientations
are the only 3—Nowhere zero flows. The following is then a direct conse-
quence of Theorem 1.3:

THEOREM 1.4. — The set of proper 3-colorings of a 4-regular graph
G and the set of Eulerian orientations of G have the same parity.

Fleischner and Stiebitz [3] proved that in every (Cycle and triangles'
graph there is an odd number of Eulerian orientations. They used this
result and the 'Graph polynomial method' presented in [I], to prove that
such graphs are 3-colorable. Recently Sachs [4] proved, by means of direct
induction, that the number of 3-colorings of every Cycle and triangles
graph is odd. Theorem 1.4 shows that Sachs result can be derived from the
Fleischner and Stiebitz Lemma. This observation provides an affirmative
answer to a question posted by Jack Edmonds.

2. Proving the main result.

As observed in [I], each term in the expansion of PG to the sum
of 2^1 monomials, corresponds to an orientation of G. Similar terms,
that is monomials with the same degree for every variable, correspond to
orientations which share the same outdegree sequence {d^~{x)\x G V}.

When computing P^G) two monomials are similar if the correspond-
ing degrees are congruent modulo k. The outdegree sequences correspond-
ing to such two monomials are clearly, term by term, congruent modulo k.
We refer to such orientations as k— equivalent.
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Let uj\ and 01:2 be two orientations of a graph G = (V,£1), and let
0:1 A 0:2 denote the set of edges whose orientation is reversed when going
from uj\ to uj^. For uj\ and 0^2 to be ^-equivalent, uj\ A uj^ should satisfy
(as a subgraph of any of the two orientations) d^(x) = d~(x) (mod A;) for
every x G V. In other words, uj\ A uj^ should be the support of a A:, I—flow
inG.

Furthermore, selecting either x or y as the head of an edge ( x ^ y ) ^
corresponds to the selection of either x or —y from the term (x — y)^ in the
expansion of PG (and of PkG 0s well). Two A;—equivalent orientations uj\
and c<;2 then yield similar monomials, of the same sign, if \uj\ Acj2| is even,
or of different signs, if it is odd.

Let us agree that an edge (xi^xj) with i < j is oriented backwards
if its head is at a^, and define parity (c<;) = 0 if the number of backwards
oriented edges is even and parity ((j) = 1 if this number is odd.

For v e Z^ let Sy be the A;—equivalence class of orientations of G
with d^^Xi) = Vi (mod A;), 1 ̂  i < n, and let 5^, respectively S^ denote
the subsets of even, respectively odd orientations in that class.

For any uj € Sy, let (F^)°(a;), respectively (F^)1^) be the sets
of fc, I—flows, the supports of which are even, respectively odd oriented
subgraphs of uj.

Following the discussion above we obtain

(7) a^l^l-l^l

and for i = 0,1 (0 = 1,1 = 0) and any m e S^:

(8) 1(^)^)1 = 1 |̂ and \(F^(^=\S^\.

Consider now the quantity

^ (K^1)0^)! - K^)^)!).
wCSv

By 8 it can be rewritten as:

EI^I-I^I+ EI^I-I^I-
uess ^es^

By 7, this equals:

^a,- ^a, =(|^|-|^|)a, =4
ujes° ^es1
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Summing up the above over all equivalent classes we obtain

(9) IIPBllJ- E (K^1)0^)!-!^1)1^)!)
o/€D(G)

where D(G) is the set of all orientations of G.

Let us now change the order of summation in the right hand side of 9 by
taking fc, I—flows, instead of orientation, as the leading index:

(10) iipam = ^ (-I)W)I|D(/)|.
^^(G)

Here D{f) = {(^\f C Fj^(uj)} is the set of all expansions of / to (complete)
orientations (of all the edges) of G.

An expansion of a partial orientation is constructed by selecting an
orientation for each undirected edge and hence \D(f)\ = 2l£;l-l<T^I which
completes the proof of Theorem 1.2.
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