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A WEIGHTED GRAPH POLYNOMIAL FROM
CHROMATIC INVARIANTS OF KNOTS

by S.D. NOBLE and D.J.A. WELSH ̂

1. Introduction.

In a series of three papers [2], [3], [4], Chmutov, Duzhin and Lando
examine the combinatorial aspects of the relationship between chord
diagrams and Vassiliev invariants of knots.

A key concept in the treatment in [4] is the homomorphism associating
a chord diagram with its intersection graph, and this turns out to be just
a map on weighted graphs modulo a weighted chromatic relation. This
is essentially the same as the study of a chromatic type polynomial on
weighted graphs. However, as the authors point out, the treatment given
in [4] does not allow an extension to more general Tutte Grothendieck
invariants.

This paper originated in an attempt to clarify the reasons for this
and we show that a fairly simple modification of the definition of [4] does
allow such an extension. In a sense this is not too surprising in view of the
established relation between Tutte polynomials and knot polynomials, see
for example Jaeger [8] or Jaeger, Vertigan and Welsh [9]. Here we define
a polynomial of weighted graphs which contains the invariants of [4] as
a specialisation but moreover has a wide range of other specialisations in
combinatorics. These include the Tutte polynomial, stability polynomial
and matching polynomial of ordinary graphs and a polymatroid polynomial
studied by Oxiey and Whittle [16].

^) Supported in part by Esprit Working Group No. 21726, "RAND2".
Keywords: Knots - Chromatic invariants - Weighted graphs - Graph polynomial.
Math. classification 05C15 - 05E05 - 57M25 - 68Q25.
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The plan of this paper is as follows. In Section 2 we introduce weighted
graphs and our weighted polynomial W. We then give a brief overview of
the relationship between Vassiliev invariants, chord diagrams and weight
functions, and explain how they are linked with our polynomial W. In
Section 4 we study the basic properties of W. Then in Section 5 we
study it as an invariant of ordinary graphs and in Section 6 relate this
specialisation to a symmetric function generalisation of the chromatic
polynomial introduced by Stanley [18]. We close with a discussion of
complexity issues.

2. A new polynomial on weighted graphs.

Our notation is fairly standard except that our graphs are allowed to
have loops and parallel edges. V(G) and E{G), or just V and E, are used
to denote the vertex set and edge set of a graph G. We assume that V
and E are both finite. If A C E then G\A is the restriction of G to A
formed by deleting all edges except those contained in A. Given a subset U
of V, we define G:U to be the subgraph of G with vertex set U and edge
set consisting of those edges in E with both endpoints in U. The number
of connected components of G is denoted by k(G). The rank of a set, A, of
edges is denoted by r(A) and is given by

r(A)=|y(G)|-A;(G|A).

A graph is said to be simple if it has no loops or parallel edges. A parallel
class is a maximal set of parallel edges.

A weighted graph consists of a finite graph G with vertex set
V = {^ i , . . . , ^n} and edge set E, together with a weight function
uj'.V —> Z4". We call uj(vi) the weight of vertex ^. More generally, if
U C V, we define the weight of £7, ci;(£7), to be ^ uj(v).

v^U

We need to introduce the notion of deletion and contraction in
weighted graphs.

If e is an edge of (G,cc;) then let (G'^UJ) denote the graph obtained
from G by deleting e and leaving uj unchanged.

If e is not a loop of (G.o;) then let (G'^uj) be the graph obtained
from G by contracting e, that is deleting e, identifying its endpoints v, v '
into a single vertex v" and setting

^(V") =LJ(v) +CJ(^),
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the other vertices of (G^UJ) having the same weight as in (G.o;). If e is a
loop then we regard {G'^uj) as (G^,o;).

If e is an edge of a simple weighted graph, (G,o;), then (G^UJ) is
the graph formed from (G'^uj) by replacing every parallel class by a single
edge. This is the notion of contraction for weighted graphs used in [4] where
they denote it by G^.

Example. — Suppose

(G,o;)=3

then

(G^)=3 (G'e'̂ ) (G^)

From here onwards, we will often write just G instead of (G,o;).

We associate with any weighted graph (G,ci;) a multivariate
polynomial Wc(x,y) which is defined as follows. Let y,x\,x^... be
commuting indeterminates.

Now let Wc{x^y) be defined recursively by the following rules which
are reminiscent of the Tutte-Grothendieck decomposition well-known in
combinatorics:

• If G consists of m isolated vertices with weights a i , . . . ayyi then
Wc(x,y) = X a , ' " X a ^ .

• If G has a loop e then

Wc(x,y) =yWc^x,y).

• If G has an edge e which has distinct endpoints then W satisfies the
deletion/contraction rule

WG{x,y)=WG^x,y)-}-WG-(x,y).
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Thus, as a trivial example,

if (G,o/)= ^ Vg then Wc(x,y) = x^y.

For a slightly less simple example consider the following.

Example. — Let

(^) =

Now

therefore

and so Wc(x, y) = x^xs + ^13 + x^y.

In the next section we explain the relationship between W and
Vassiliev invariants.

3. Chord diagrams and intersection graphs.

We assume familiarity with the basics of classical combinatorial knot
theory, at a level equivalent to say [21]. A key notion in the Vassiliev theory
is that of a singular knot and its associated diagram. In a singular knot
certain crossings are called double points. Geometrically they are points
where the knot intersects itself and the tangent lines cross. An example of
a singular knot with three double points is shown in Figure 1.
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Figure 1. A knot with three double points

Given an orientation of a singular knot K a double point can be
eliminated or unfolded to create either a positive or negative crossing, K^.
or JG-, as shown in Figure 2.

Y yA A
K K, K^

Figure 2. Unfolding a double point

If /C71 denotes the collection of singular knots with n double points,
and /C == |j /C", then a Vassiliev invariant is any function V on /C which

n>o
takes values in some abelian group A, which is invariant under isotopy and
satisfies

V(K)=V(K^)-V(K,).

The invariant V is said to be of order n if V vanishes on any knot of more
than n double points.

A chord diagram of degree m is a circle, oriented anti-clockwise,
together with m chords marked on it. Thus what we are really considering
is arrangements of pairs of distinct points on the circle.

A weight function of degree n is a function c<;, mapping all chord
diagrams with n chords into an abelian group A and satisfying the two
relations (IT) and (4T) listed below.

(IT) The one term relation says that if chord diagram D has a chord which
does not meet another then (^(D) = 0.
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(4T) The four term relation is more complicated and says that if
DN.DS^DE^DW differ only as shown in Figure 3 then

LJ(DN) - ̂ (Ds) = uJ(Dw) - ̂ {DE).

Also it is assumed that no chord, other than those shown, has an endpoint
in the shaded areas.

Ds Dw

Figure 3. Four term relation

A key result is the following

THEOREM 3.1. — If V is a Vassiliev invariant of order n with values in
the abelian group A then there is a naturally denned weight function L^(V)
on chord diagrams of degree n and taking values in A. Conversely given a
weight function f of degree n and taking values in a field of characteristic
zero there is an associated naturally defined Vassiliev invariant V{f) of
order n such that uj(V(f)) = f and this uj is unique, modulo invariants of
smaller order.

For good accounts of the relationship between Vassiliev invariants and
chord diagrams see [2] and [23].

The intersection graph of a chord diagram is obtained by taking a
vertex for each chord of the diagram and an edge between two vertices if
the corresponding (straight line) chords intersect.

The Intersection Graph Conjecture made in [4] is that weight functions
depend only on the intersection graph of diagrams. The Intersection Graph
Conjecture has been verified in [2] for weight functions up to degree 8.
It has also [3] been shown to be true when the intersection graph is a tree
and hence a forest. In other words, if two chord diagrams have isomorphic
intersection graphs and this graph is a tree then the diagrams are equivalent
modulo the (4T) and (IT) relations. It is important to recognise that the
intersection graph is a much rougher concept than a chord diagram and it
has recently been reported in [22] that a counterexample to the Intersection
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Graph Conjecture has been constructed by Le Tu using a pair of mutant
knots.

As it stands the mapping from chord diagrams to graphs has not
taken into account the additional structure due to the 4-term relations.
In [4] the authors move towards this as follows. A function / denned on
the set Wn of weighted graphs with total weight n is called a weighted
chromatic invariant of order n if it satisfies the weighted chromatic relation

(1) f(G) - f(G') - /(G0) = 0.

Given a chord diagram D, its intersection graph can be regarded as a
weighted graph with all weights set to 1.

A main result of [4] is to show that if / is a weighted chromatic
invariant on intersection graphs then regarded as an invariant on chord
diagrams, it will satisfy the more complicated condition demanded by
the (4T) relation, and this is straightforward combinatorics (graph theory).

However, it is important to draw attention to a fairly recent paper
of Lieberum [12] which shows that the Vassiliev invariants of knots
corresponding to the chromatic weight systems distinguish exactly the
same set of knots as a particular one variable specialisation of the Homfly
and 2-variable Kauffman polynomials. They are in fact related in a quite
straightforward way to well known classical invariants coming from simple
Lie groups. We refer to Lieberum [12] for details.

4. Properties of \V.

We begin with some basic properties of W and move on to consider
various expansions and a Recipe Theorem. We will often write W(G) or
just W instead of Wc(x^ y).

PROPOSITION 4.1. — The polynomial W is well defined in the sense
that the resulting multivariate polynomial is independent of the order in
which the edges are deleted/contracted.

Proof. — First note that if we have a weighted graph G and edges e
and / then G / e \ f = G\ f / e so the order in which we contract or delete
edges does not affect the graph which we obtain. We prove the result by
induction on the number of edges. If G has at most one edge then there
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is nothing to be proved. So suppose G has at least two edges. Choose any
two edges e and / which we will assume are not loops and not in parallel.
We will show that computing W in any way that starts with deleting and
contracting e leads to the same answer as starting with /. Starting with e
gives us W{G'^) -h W(G'^) which by induction is not dependent on the order
in which we delete or contract the rest of the edges but

W(G^ + W(G^) = W((G^) + W((G;)';) 4- W({G^) + W({G^)

= ̂ ((G/0 + W((G^) + W{{G^) + TV((G^)
= W(G'f) + W(Gff)

which is what we get if we delete and contract / first. It is easy to modify
this if either e or / or both is a loop, or if they are in parallel. D

The following properties of W are easily verified:

• If G consists of connected components G\,..., Gk then

k

W(G)=]^W(G,).
i=l

• For any G, each monomial in the polynomial Wc^x^y) is of the
form X a ^ X a ^ ' ' ' Xarr^yt whe^e ai -\- • ' • + dm equals the sum of the weights
of&

• Wc(x^ y ) has no term in y if and only if G is a forest.

We first show that W contains as a specialisation the weighted
chromatic invariants of [4] as an evaluation of the form Wc(x, 0).

THEOREM 4.2. — Let f be a weighted chromatic invariant with
the property that on any graph consisting just of k isolated vertices with
weights a i , . . . , dk, / takes the value Xa^' • ' Xa^ ? then for any simple weighted
graph G^f(G)=Wc(x ft).

Proof. — Let G be a graph with no loops. Suppose ei, 62 are parallel
edges. We claim WG(X^O) = WG'^ (a^O). This follows from the recursive
definition of W, WG(X,O) = WG^\X,O) 4- WG'^ {x,0) but WG^ {x,0) = 0
because G^ contains a loop e^. Hence, for any e, WG'^X^G) = WG^(^O).
Now the result follows by induction on the number of edges of G using the
recursive definition of W and Equation 1. D
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THEOREM 4.3. — Wo^x.y) has a states model representation of the
form

WG{x^y) = ̂  x^x^ .. x^(y - l)W-rW
ACE

where c^ 1 < i < k is the total weight of the ith component of the weighted
subgraph (G\A,UJ).

Note that in this and some later theorems, the number of
components k is not constant and depends on A. Setting y = 0 gives
a corollary concerning the form of any weighted chromatic invariant.

COROLLARY 4.4. — Every weighted chromatic invariant is of the form

^...^(-1)^1-^).
ACE

Proof of Theorem. — We let Cz(A) be the total weight of the zth
component of G\A. Let

S{G) = ̂  ^(A)^(A) • • • ̂ (A)Q/ - 1)^1-^.
ACE

We show that S(G) = W(G) by induction on the number of edges of G.
If G has no edges then -S'(G) = W(G) so suppose e is an edge of G that is
not a loop:

S{G) = ̂  X^)X^(A) • • • a^(A)(y - l)^-^)
ACE

= Z^ a ;cl(A)a^(A)•••^(A)(y-l)IAI - '" (A)

ACE\e

+ ^ x^(A)X^(A)•••X^(A)(y-^~r(A)

A-.eeACE

= S{G',) + ̂  ^(AUe)^(AUe) • • • ̂ (AUe)(y - l)!^!-^06)
ACE\e

=S(G',)+S(G^,
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which by induction is equal to W(G'J + W(G^) = W{G). If e is a loop then

S(G) = ̂  ^(A)^(A) • • -^(A)(2/ - 1)^1-^
AC£;

= ^ ̂ (^^(^.•.^(^((y-^^-^+^-l)^!-^^)
AC£;\e

= ^ ^(A)^2(A)•••^W^- l) IAI - r (A)^
AC£;\e

= 2/5(^)

which by induction equals yW{G'^) == W(G). D

As an immediate consequence, we have by putting y = 1:

COROLLARY 4.5. — The polynomial WG^X^I) is a homogeneous
polynomial in (x\^x^^...) and is a weighted sum over all spanning forests
ofG, namely

WG(X^I) = ^ x(F)^
FC^(G)

where if F is a spanning forest with connected components having vertex
sets V\,... ,Vk, x(F) is the monomial x^(y^x^(y^ • • ' ^(14) ajn^ ^(F) ls

the set of all spanning forests ofG.

The Tutte polynomial of a graph is the two variable polynomial
given by

T(G;^2/) = ̂  {X - lyW-rW^ _ i )IA|-r(A)^

ACE

COROLLARY 4.6. — IfXi = 6 for each z, then the resulting 2-variable
polynomial WG^XI = 0, y) is independent of its weights and is given by

W(xi=0^y) =^G)^(G;1+^),

where k{G) is the number of connected components of G.

Note. — Here and throughout this paper we slightly abuse notation
by letting W (xi = 0, y) denote the polynomial (function) obtained by
substituting 6 for each Xi.
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Proof. — Putting Xi = 0 for all i in Theorem 4.3 gives

Wc(xi = 0^y) = ̂  ̂ I^Q/ - I)IAI-(A)
ACE

== V ̂ ^I-^Q/- l)!^-7'^)
AC£?

=^)r(G;i+0,z/). D
This instantly gives a host of specialisations of IV, see for example [21].

A second interpretation of W in terms of the Tutte polynomial is
contained in the following theorem.

Ifpr = (YI, . . . , Vfc) denotes a partition of the vertex set V it determines
subgraphs Gi , . . . , Gk where Gi denotes the subgraph of G induced by Vi.
We say a partition is connected if each of Gi , . . . , Gk is connected. The
partition TT of V also determines the monomial defined by

^W =-^(Vi) '"x^Vk)'

Then we have

THEOREM 4.7. — A states model for W is given by

(2) WG[x,y) = ^.r(7r)r(Gi; 1^).. .r(Gfc; 1,2/)
7r

where the sum is over all connected partitions TT ofV(G).

Again, by putting y = 0 we obtain a corollary concerning chromatic
invariants.

COROLLARY 4.8. — Any weighted chromatic invariant has the form

^(7r)r(Gi;i,o)...r(Gfc;i,o)
7T

where the summation is over all connected partitions ofV(G).

Proof of theorem. — Given a set A of edges, we define II(A) to be
the partition with ground set V whose blocks correspond to the connected
components of G\A. We have from Theorem 4.3 that

Wc^y) = ̂  x^ ' " x ^ y - 1)^1-^)
ACE
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where c^ 1 < i <, k is the total weight of the zth component of the weighted
subgraph (G[A,o;). Now

Wa{x^ y) = ̂  ^ ^(v,)^(v.)(• • ̂ (v,) (y - 1)^1-^)
7T A:n(A)=7T

where TT is the partition (Vi , . . . , Vk). If n(A) = TT then we can write

A = Ai U ... U Ak

where for each z, the edges in Ai have both endpoints in V, and G:V, is
connected. Hence

r(A)=r(Ai)+...+r(A,).

This gives

W^ y) = ̂  ̂ (v,)^(v.) • • • ̂ (^) ̂ (i/ - i)lAil-(Ai)
Al ...^(^-l)IA.|-r(A,)

Afc

= ̂ -MV,)^(^) • • •^<y,)T(Gi;l^)... T(Gk'^y),
TT

where the final summation is over all connected partitions of V(G). D

Suppose we are given a connected graph G and a total ordering on its
edges. Consider a spanning tree T of G. An edge e in G \ T is externally
active with respect to T if it is the largest edge in the unique cycle contained
in T U e. Let ext(T) be the number of externally active edges with respect
to T. A theorem of Tutte [20] implies that

T^G;!^)^^)
T

where the summation is over all spanning trees. This implies that the
number of spanning trees with a given external activity is a graph invariant
and not dependent on the choice of ordering. We extend the definition of
external activity to forests in the obvious way: given a graph G and a
spanning forest F of G, an edge e of G is externally active with respect
to F if F U e contains a unique cycle and e is the largest edge in that cycle.
An edge is externally active with respect to F if both its endpoints are
incident with vertices in the same component T of F and e is externally
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active with respect to the spanning tree T of G:V(T). Given a weighted
graph (G,o;) and a spanning forest F with connected components having
vertex sets Vi , . . . Vk the term x(F) is given by

x(F) = ̂ (Vi)^(V2) • • • ^(Vfc)-

This leads to yet another states model for W over the set of all spanning
forests.

THEOREM 4.9. — For any weighted graph (G,o;)

Wc{x^) = ^ x{F)yext^
Fe-F(C)

where the summation is over all spanning forests of G and ext(F) is the
number of edges externally active with respect to F.

COROLLARY 4.10. — Any weighted chromatic invariant can be written
in the form

E^)
F

where the summation is over all spanning forests of external activity zero.

Proof of theorem. — For a spanning forest F we let II(F) be
the partition of V induced by the connected components of F. Using
Theorem 4.7 we have

WG(x^y)=^x(7r)T(G^y)'-T(G^y)
7T

where the summation is over all connected partitions TT = (Vi , . . . , Vk) of
the vertex set and for each z, Gi is the subgraph induced by Vi. This gives

Wc{x^ y) = ̂  xW ̂  ̂ W)... ̂  y^W
7T Tl Tfc

where for each i the summation over Ti is over all spanning trees of Gi. The
union of these trees is just a spanning forest and so

WG(x^y)=^xW ^y^W = ^ x(F)y^^
TT F:n(^)=7r ^e^(G)

where the summation is over all spanning forests of G. D
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PROPOSITION 4.11. — If G has n vertices each with weight one or
weight two and A is the set of vertices of weight two then the coefficient of

k+\A\ n-2k-\A\
X-2 x!

in WG(X,I) gives the number of matchings of size k in which no edge has
an endpoint in A.

Proof. — Theorem 4.9 shows that

WG(X^I)=^X(F)
F

where the summation is over all spanning forests of G. The spanning forests
such that x(F) = x ^ ' '^~2 ' ' are precisely the matchings with k edges
in which no edge has an endpoint in A. D

We now move to a version of the Recipe Theorem of [15].

THEOREM 4.12. — Let f be a function on weighted graphs denned
recursively by the following conditions:

1) For any non-loop edge e,

;(G)=a/(G'J+5/(G';)

where a, b are any two non-zero scalars.

2) Ife is a loop then f(G) = yf(G^).

3) If G consists of isolated vertices with weights a i , . . . ,0yn then
f(G) = X a ^ ' - X a ^ .

Then

f{G) =0^1-1 vi ̂ l^(^).

Proof. — We prove the result by induction on the number of edges
in G. If G consists of isolated vertices with weights a i , . . . , dm then

f(G)^x^..x^=a\E\-\v\b^w(G•^,^)
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so the result is true if G has no edges. Let e be an edge of G and suppose
first that e is a loop. Using induction we have that

/(GO=^(G'e)

^.J^^)!-!^^)!^^)!^, f^,^)v e \ b a/
= ̂ ^)H^)1 ^(G)l w^, f^,^)

a e \ b a!
^ ^E(G}\-\V{G}\ ^\V(G)\ ̂  (ax , y.\

\ b a/
so the result is true in this case. Now let e be any non-loop edge of G. Using
induction we have that

f(G)=af(G^+bf(G'^
^ 1+|£(G'.)1-|V(G.)1 (,|V(G^)| ̂ , ( a x , V\€ \ b a/
4. al-B(G.')|-|V(G'.')| (,1+|V(G.')1 ̂ , /az, M^

\ o d /
^^E(G)!-(V(G)|^|V(G)1^, (^,n

e \ 6 a/
. ^(OI-J^G)! blv(G)l^,, f^,^)e \ b a/

^ JE(G)|-|y(G)| ^1V(G)| ̂  ('a3c, ^\
\ 6 a /

hence the result is true in general. D

5. An invariant of ordinary graphs.

We now consider the natural invariant of graphs obtained from W by
treating an ordinary, unweighted graph G as a weighted graph in which
each vertex has weight equal to unity. In this case we write W as Uc^x.y}.

Apart from a certain intrinsic interest as a combinatorial invariant it
is also the case that in the original motivating situation (weighted chord
diagrams) the weights are initially all one but the recursive definition does
not permit remaining in this "unweighted category". First we summarise
the basic properties of U which follow from what we know about W.

PROPOSITION 5.1. — If G is a graph on n vertices then Uc{x,y) is a
polynomial in x\,... ,^n^ ̂ ^h ̂ at

1) UG is independent ofy if and only ifG is a forest.
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2) Each monomial in UG is of the form x^' • • Xa^ where ̂  en = n.

3) I fni , . . . ,rik are the number of vertices of the different components
ofG\A then

UG(x,y) = ̂  x^^xn^y - I)IA|-(A)^
ACE

We now turn to specific evaluations of U in terms of known
combinatorial polynomials. From Corollary 4.6 we know that the Tutte
polynomial is given by

r(G;rr, y) = (x - 1)-^) UG(X, = x - 1^).

In particular, the chromatic polynomial PcW is given by

PcW = (-1)1^ UG{X, = -X^y = 0).

Despite its apparent similarity to the Tutte polynomial, U is a much
stronger invariant. Any two graphs with the same matroid share a common
Tutte polynomial whereas

(7(.P4) = x\ + 3^2 + 2x^X3 + x\ + a;4,

^7(5^4) = ̂  + 3a^2 4- 3:̂ 3 + x^

where ?4 and 6^4 are respectively the path and star with four vertices.

Another specialisation of U gives the stability polynomial, A(G;p), of a
loopless graph. This was introduced by Farr in [5] and is the one-variable
polynomial given by

A(G;p) = ^ pl^l(i-p)lv(G)\^
UCV{G)
U(ES(G)

where «S(G) is the set of all stable sets of G.

THEOREM 5.2. —IfG is loopless then A(G; p) is given by

A(G;j?) = Uc(x^ = l,Xj == -(-p)3 ifj > 2,y = o).
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Proof. — Theorem 13 in [5] shows that

A(G;p)= ^ (-1)1^^)
ACE{G}

where /(A) is the number of vertices incident with an edge of A. In the
case when all weights are one and y = 0, Theorem 4.3 reduces to

WG(X^ 0) = ̂  X\y^\ X\y^\ • • • ̂ (^(-l)!^-^)
ACE

where G^, 1 < i < k is the i-th component of the weighted subgraph
(G|A,^). Now ^ \V(Gi)\ is equal to /(A) and E(l^(Gz)| - 1) is

z:|V(Gz)>l| i
equal to r(A). Hence

(-i)^) = r^-i)^^)!-1).
z

Thus when we set x\ = 1 and ̂  = -(-p)-7 for j > 2 we have

£/G(^0) = WG^,O) = ̂  pAA)(_i)r(A)(_^|A|-r(A) ^ ̂ (^^ ^

ACE

In [16] Oxiey and Whittle study a polynomial 5 that is the analogue of
the Tutte polynomial for 2-polymatroids. In the case that the polymatroid
has as its ground set the edge set of a graph G and rank function, /,
where /(A) is the number of vertices incident with an edge in A, the
polynomial is the two variable polynomial given by

S(G^V) = ̂  ^)-/(A)^2|A|-/(A)^

ACE

This polynomial, which clearly contains the stability polynomial A as a
specialisation, turns out also to be a specialisation of U.

THEOREM 5.3. — Let G be a loopless graph with no isolated vertices.
Then 5(G; u,v) is given by

S(G;u,v) = UG^XI =u, x^= 1, X j =vj~2 forj > 2, y = v2 + l).

The restriction on isolated vertices is not really important because
the polynomial S is unaffected by the addition of isolated vertices.
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Proof. — The proof is similar to that of the preceding theorem. In the
case when all weights are one and y = v2 + 1, Theorem 4.3 reduces to

Wo(x, y) = ̂  ^)v(Gi)| ^|V(G2)| • • • ^iv(c?.)| ̂ l-^))
ACE

where G^, 1 <, i <, k is the %-th component of the weighted subgraph
(G|A, a;). Now the number of components of G'|A consisting of just a single
vertex is f{E) - /(A). Also

r(A) = ^ (im)l-l)
z:|V(Gi)|>2

and hence

2r(A)-/(A) = ^ (|y(G,)|-2).
z:|V(G',)|^2

Thus, setting x\ = ZA, a'2 = 1, ^j = ̂ -2 for j >2 and ?/ == v2 -(- 1 gives that

^(^^) = ^(^,2/) = ̂  ^|^)-/(A)|^(A)-/(A)^2(|A|-r(A))

ACE

=S(G;u,v). D

We now show that the number of cliques of given size appear as
coefficients of monomials in U.

PROPOSITION 5.4. — If G is simple and has n vertices then the
coefficient of XkXr^~ky^2)~k+l in Ucix^y) gives the number of cliques of
size k in G.

The proposition follows from Theorem 4.7 and the following
easy lemma.

LEMMA 5.5. — Suppose G is a simple connected graph on n vertices,
then G is a clique if and only if the coefficient o f y ^ 2 ^ ^ 1 in T{G\ 1, y) is
positive.

Proof. — The evaluation of T at (1, y) is given by

T(G^y)=^(y-l)^-n^
A

where the summation is over subsets of edges spanning G and so if G is
a clique, taking A = E(G) will give a term in y ^ 2 ^ 7 1 ^ 1 . Conversely if the
coefficient of^/2^7 1 4 '1 in T(G;1,?/) is non-zero then G must have (n) edges
and hence be a clique. D
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Proof of proposition. — Suppose H is a set of vertices of G
corresponding to a /c-clique. Equation (2) and Lemma 5.5 show that
the partition of V into n - k + 1 blocks, one of which is H and the others
are singletons, will lead to a term in XkX^y^-^. Such terms can
arise only if the partition in the sum in Equation (2) consists of one block
with k vertices and singleton blocks otherwise. Then for some z, T(Gi\l,y)
contains a term of the form ^/(S)-^1 and hence by Lemma 5.5, d is a
clique. ,-,

The matching polynomial of G is the polynomial m(G\t} given by

m(C^)=^m^,
k>0

where mk is the number of matchings of G with k edges. A consequence of
Proposition 4.11 is that m(G\t) is an evaluation of U.

PROPOSITION 5.6. — The matching polynomial is given by

m(G,t) =UG(xi = 1, X2 =t, Xj =0forj > 2, y = lY

Proof. — Proposition 4.11 implies that if G has n vertices then the
coefficient ofa;^""2^ in Uc(x, 1) is the number of matchings of size k in G.
The result follows from this observation. Q

6. A symmetric function application.

A more interesting and less apparent specialisation of UG is that it
gives the symmetric function generalisation XG of the chromatic polynomial
developed in [18].

For any graph G, XG is a homogeneous symmetric function in
x = (a-i, X2,...) of degree n = \V\ defined by

XG=XG(X) =XG(X^X^,...) =^^(^)^(^)-'-^(^)
K,

where the sum ranges over all proper colourings i^:V -> Z-^. Note that the
sum is infinite since we allow any proper colouring using positive integers.
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In [18] Stanley develops XG and its properties in terms of the standard
'natural' bases for the space of symmetric functions. The basis which is of
most interest here is the power sum basis {pr} given by (see Macdonald [14])

po = 1 and pr(^i,a'2,.. .) = ̂ ^L for r>l.1 5 ^ 2 5 • • •/ —— / ^-^j 5

i

THEOREM 6.1. — For any graph G

XG=(-l)^UG(x,=-p^y=0).

Proof. — For S C E, let A(5) be the partition o f n = \V\, whose parts
are equal to the vertex sizes of the connected components of G\S. For a
partition TT with blocks of size s i , . . . , Sk we let

PTT = P s i ' " P s ^

(see [14]). Then from Theorem 2.5 of [18] we know

^=E(-1)151^).
SCE

Now use the representation we have given of WG in Theorem 4.3 and noting
that the number of parts (or length) of A(5) is exactly k(G), it is easy to
see that the substitution xj = —pj gives XG up to (—1)^1. n

Many of the results in [18] now follow from our earlier interpretations
ofUc.

In a later paper Stanley [19] suggests the following symmetric function
generalisation of the Tutte polynomial of a graph. He does this by using
the equivalent representation in terms of the bad colouring polynomial
of [21] which gives T as the generating function for the number of 'bad' or
monochromatic edges over all colourings K:V(G) —> {1,2, . . .}.

DEFINITION. — Let x = Cri ,a;2, . . . ) and t be indeterminates and
define

Xc(x,t) = ^ (1 + t^x^,) x,^ .. • x^),
^:v-^z+

where 6(/^) denotes the number of bad edges in the colouring K and the sum
is over all colourings.
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Note that the sum is infinite since we allow all possible colourings using
positive integers. If /(!"') denotes the substitution x^ = x^ = • • • = Xn = 1,
Xn-^-i = Xn+2 = • • • = 0 then

XG(I^ t) = n^ t^ r(G; ̂  ̂  + l)

and

XG{X^-I)=XG(X).

THEOREM 6.2. — For any G, UG and Xcix^t) determine each other.
In particular XG is easily obtained from UG by the substitution

XG(X^ = t^ UG (x, = ̂  , 2/ == t + l) .

Conversely, if we can expand XG in terms of the power basis of symmetric
functions then we can recover UG-

Proof. — A result attributed in [19] to T. Chow gives the representa-
tion

XG(X^)= ̂ t^p^s)
SCE

where we are using the same notation as in the previous theorem. Now put
Xj = p j / t and y = t + 1 in the representation for UG given in Theorem 4.3
and the result follows. D

One consequence of Theorem 6.2 and our original definition of W and
which does not seem obvious from their definitions in [19] is:

COROLLARY 6.3. — The function Xc{x^t) and hence the symmetric
chromatic polynomial XG have recursive delete/contract derivations
analogous to those of the normal chromatic polynomial.

7. Complexity issues.

Consider now the problem of computing W. This is clearly going to
be a hard problem for general G and x because the Tutte polynomial is a
specialisation of W and this is shown in [9] to be #P-hard to compute at
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most points. In a sense it appears that W should be no harder to compute
than the Tutte polynomial as both have a similar recursive formula [15].
Here however, we show that unlike the Tutte polynomial, this polynomial
is hard to compute even for the special cases where the input graph is a
tree or a complete graph.

First we clarify the problems.

PROBLEM 7.1: TV-coefficient.

• Input: Weighted graph G, finite ordered (multi)-set P={pi, . . . ,pfc}
of positive integers and a positive integer q.

• Output: Coefficient o f x p ^ , . . . ^Xp^ in Wc(x,y).

PROBLEM 7.2: IV-evaluation.

• Input: Weighted graph G, finite set S = {(z ,a^) :z C 1} where I C N
and each ai is an integer together with an integer yo.

• Output: The value which W takes on substituting
( di i € J,

xi= \ ^ • ^ T ^dy=yo.f 0 z ^ I

Note. — We have made the slightly artificial restriction that the o,i
be integral to avoid unnecessary complications. As in [9] we could have
allowed the a^ to take values in any algebraic field but since we are going to
prove hardness results for most graphs and most integer points it does not
seem worthwhile.

THEOREM 7.3. — Computing W-coefficient is #P-hard even if G is
restricted to being a tree.

To prove the theorem we need to consider the following four problems,
the first of which is a counting version of one of Karp's original twelve NP-
complete problems. Note that in the following we take Z4' to be the set of
strictly positive integers so that we do not allow elements to have size 0.

PROBLEM 7.4: ^partition.

• Input: Finite set A and a size s(o) e Z4" for each a C A.

• Output: The number of subsets A' C A with ^ s(o) = ^ s{o).
aeA' aeA\A'
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PROBLEM 7.5: #-partition.

• Input: Finite set A and a size s(a) € Z4' for each a € A.

• Output: The number of subsets A' C A with

\A'\=^A\ and ^ s{o) = ̂  s(a).
a^A' a€A\A7

PROBLEM 7.6: ^paired-partition.

• Input: Finite set A = {a\,... a2n} and a size 5(a) € Z~^ for each
a € A.

• Output: The number of subsets A' C A such that A contains
precisely one ofdi and a^n-i tor each i with 1 < i < n and

^ s(a) = ̂  5(a).
aGA' aCAVA'

PROBLEM 7.7: ^distinct-partition.

• Input: Finite set A and a size s(o) € Z4' for each a € A such that
s(a) ^s(a/) ifa^a'.

• Output: The number of subsets A' C A such that

^ s(a) = ̂  s(a).
aCA' aeAVA'

We need the following lemma.

LEMMA 7.8. — Each of problems 7.4-7.7 is #P-complete.

Proof. — We show

^partition OT # j partition OT ^paired-partition
ar ^distinct-partition.

As far as we know there is nothing in the literature showing explicitly that
^partition is #P-hard. The reductions in [6], [11] showing that partition is
TVP-hard do not immediately give proofs of ^P-hardness because they do
not seem to preserve the number of solutions. However using the following
two problems it is possible to obtain a reduction.
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PROBLEM 7.9: #3-COl.

• Input: A graph G.

• Output: The number of proper 3-colourings of the vertices ofG.

PROBLEM 7.10: #exact cover.

• Input: Finite set A and a collection C of subsets of A.

• Output: The number of subcollections C' C C such that every
element of A is contained in precisely one member ofC'.

The problem #3-col is shown to be #P-hard in [13] and a reduction
is given from the decision problem 3-col to the decision problem exact cover
in [11]. It is easy to check that this reduction preserves the number of
solutions and so #exact cover is ^P-hard. There is a reduction to partition
from a problem very similar to exact cover, namely 3-dimensional matching
in [6] and this can be easily modified to give a reduction from exact cover
which doubles the number of solutions. Hence ^partition is #P-hard.

Next we show ^partition ay #j partition by giving an algorithm
which constitutes a Turing reduction from ^partition to # j partition.
We assume we are given an instance (A, s) of ^partition and an oracle
for # j partition. The command jpart(A; s(ai) , . . . , s(a2n)) calls the oracle
with the instance (A, s) of # j partition where A == { a i , . . . ,0271}. This
algorithm is shown as Algorithm 1.

To show #j partition reduces to ^paired-partition we suppose we
have an instance (A,s) of # j partition. Since the number of solutions to
#^ partition is zero if |A| is odd we may assume that |A| is even. Let
A = { a i , . . . , a-2n} and let M == ^ s(a). We construct an instance (A', 5')

aCA
of ^paired-partition by setting A' = { a i , . . . , a^n} and defining s ' by

s ' (a , )=( s ( a t ) ifl^2n'
I M otherwise.

It is clear that the number of solutions to the original instance
of # j partition equals the number of solutions to this instance of #paired-
partition.

Finally we show ^paired-partition OT ^distinct-partition. Suppose
we have an instance (A, s) of ^paired-partition where A = { a i , . . . , a^n}'
Any pair (a^, 0271-1) with s(di) = s{a^n-i) is essentially irrelevant because
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Algorithm 1: Turing reduction from partition to #^ partition

Requires: A == {ai,... ,0n}, s(a,), 1 < i < n

M ̂  2 Z 5(a)
a€A

count <— 0
for i = 1 to n

S\CLi) = s(Oi)

end for
forz = 1 to [jnj

A' <— {ai,... ,a2n-2i+2}
for j = n + 1 to 2n - 2i + 1

s^dj) ^- M
end for
^n^^) <- (n - 2% + 1)M
count <— count-}- ^part{s(a^),... ,5(0^-2^+2))

end for
Ensure: count

deleting such a pair of elements just halves the number of solutions to
^paired-partition, so assume that there are no pairs of this form. Let
M = ^ s(a). We construct an instance (A,s') of ^distinct-partition

a€A
where s ' is given by

. , fs(a ,)+M1 i f l < z < n ,
s (ai) = {

[ s(a,i) + M271-' otherwise.

This means that if i ̂  j then s^a^) 7^ s'^cij) and again it is easy to see
that this instance of ^distinct-partition has the same number of solutions
as the original instance of ^paired-partition.

We can now prove the theorem.

Proof of theorem. — We suppose we are given an instance (A, s) of
^distinct-partition where A = { a i , . . . , a^}. Let M = ̂  s{a) and consider

aCA
the weighted tree r, shown in Figure 4 with vertices ^ i , . . . , Vn, v [ , . . . , Vn,
v^ v ' where

uj^v^) = uj{v[) = s(ai) and cj(v) = ( j j { v 1 ) = M.
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^i) ^ ;• s(ai)

^i) • ^ ^ v M M / ^ s(ai)

s{an) ^ ^ 5^)

Figure 4. The weighted tree T

For each z, T has an edge joining ̂  with v, and joining ^/ with v'. Finally
there is an edge between v and ^/. Theorem 4.7 shows that the coefficient
of ^s(ai) • "-^(a^^j^j in W(T) is equal to the number of partitions of
V(T) into n + 2 blocks such that two blocks have total weight [3M\ and
the other have weights 0?(ai),. . . , s(dn)}. The number of such partitions is
equal to the number of sets A' C A such that ^ s(a) = ^ s{a). D

aeA7 aeAYA7

THEOREM 7.11. — Computing W-coefficient is #P-hard if G is
restricted to being a complete graph and in the notation of Problem 7.1,

^{[E^J-El^J} and ^= 0 -[V

vev ~ vev

Proof. — We use a reduction from # j partition. Suppose (A, s) is
an instance of ^partition where A = { a i , . . . ̂ rj. Let M = ^ s(a).

Now let G be a complete weighted graph with vertices { ^ i , . . . ,V2n} and
uj(vi) = s(di) + M. Clearly

^ o;(v) == (2n + 1)M.
vev

Adding M to s(a,) to give a;(^) ensures that if we partition V{G) into
two sets of equal weight then the two sets must each contain n vertices.
Then Theorem 4.7 shows that the coefficient of ^,(2n+i)Mj ^Li(2n+i)Mj
is equal to

(r(^;l,0))^a(A^)
where a(A,s) is the number of solutions to the instance of # j partition.
The factor of a half is because the # j partition problem counts twice each
partition of A into parts with the same total size. A recurrence relation to
evaluate T(^;l, 0) is given in [1] and it is easy to see that this leads to a
polynomial time algorithm for evaluating T(Kn; 1,0). Q
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We now turn to the problem TV-evaluation.

THEOREM 7.12. — Computing W-evaluation is #P-hard even ifG is
a star.

Proof. — The proof is by a reduction from partition. Let (A,s) be
an instance of partition. Let M = ^ s(a). Now let G be the weighted

a€A
star shown in Figure 5 with |A| + 1 vertices where the central vertex has
weight M and the other vertices have weights corresponding to sizes of
distinct elements of A. The evaluation of W with x\ 3 ̂ -j = 1 and Xs(o\ = 1
for all a € A but Xj = 0 otherwise, gives the number of partitions of A into
two parts with equal size. D

s(dn)

Figure 5. The graph G

It seems worthwhile to note the following obvious corollary:

COROLLARY 7.13. — Computing W-evaluation is #P-hard for trees.

THEOREM 7.14. — Computing W-evaluation is #P-Aard even ifG is
a complete graph and in the notation of Problem 7.2,

^{([E^)^)} and ^0=0.
vev

Proof. — Let M = ^ uj(v). The theorem follows from the
v€V

corresponding theorem concerning TV-coefficient. Theorem 7.11 shows that
it is #P-hard to compute the coefficient of x2 , , where M = ^ uj{v).

2 • vev
If M ^ 4 then the evaluation of W with a ; i i ^ j = = l and Xj = 0 otherwise,
is equal to the coefficient of x21 ̂  i . D
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This highlights the fact that it is not really the graph, but the
weights which make TV-evaluation hard to compute. Of more interest is
to consider U and its complexity. Clearly computing U is hard in general.
The complexity of the polynomial UG^X^O) when G is restricted to being
an intersection graph of a chord diagram is of particular interest because
these evaluations correspond to weight functions on chord diagrams. In [7],
computing the chromatic number of such a graph, commonly known as a
circle graph, is shown to be TVP-hard. This implies the following theorem:

THEOREM 7.15. — Computing Uc(xft) is NP-hard even if G is
restricted to being the intersection graph of a chord diagram.

Proof. — Equation (1) shows that the chromatic polynomial can be
computed from Uc(x, 0) and this easily gives the chromatic number. D

The reader will notice that, unlike our earlier results, we are only
claiming in Theorem 7.15 that UG is TVP-hard. We strongly believe that it
is possible to replace this by ^P-hard, however the only proof we can see
is by following through the reductions of [7] and [10] and showing that the
reductions are at least weakly parsimonious. To do this rigorously would
take a great deal of time and space and at this stage hardly seems justified.

8. Conclusion.

Although the functions WG, UG are formally very similar there does
seem to be a significant difference in their computational complexity. For
example, while W is hard even for the star or the complete graph, it is easy
to see that

U(St^ x ^ y ) - ̂  (n . 1) x^i ̂ -fc-l

k=0 v K /

if Stn denotes the star with n vertices. Similarly for the path Pyi, if Un
denotes U(Pn) then it is easy to prove

Un = X^Un-1 -+- X^Un-2 + • • • + Xn-lU^ + Xn

so it too is easy to compute and in fact has a 'nice' generating function
(see a corresponding formula for X(P^) in [18], Proposition 5.3).
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Finally, for the complete graph Kn, [19] gives a generating function
completely analogous to that of the Tutte polynomial, namely

j^XK^t)— =exp(^Cm(t)pm(x)um}
^o d! ^o mu

where
/m\

Cm(t)= ^ C^f

i=m—l

and where Cmi is the number of connected simple graphs with m vertices
and i edges. From our correspondence given by Theorem 6.2, we can read
off the corresponding formula

E^(^ -exp^-l)^7"-1) E c^^^).
d>0 ' m>0 m'

It now follows in exactly the same way as in the proof of the corresponding
result for ordinary Tutte polynomials by Annan [1] that there exists a
polynomial time algorithm for computing U{Kn, x, y). This contrasts with
Theorem 7.14 and together these results suggest that computationally U is
closer to T than to W. However although it is easy to find non-isomorphic
graphs with the same Tutte polynomial, until recently we knew of no pair
of non-isomorphic graphs with the same polynomial U. I. Sarmiento [17]
has recently found an infinite family of such pairs. We still do not know
whether there exist non-isomorphic trees with the same U.
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