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ANTISYMMETRIC FLOWS AND STRONG COLOURINGS
OF ORIENTED GRAPHS

by J. NESETRII/1) and A. RASPAUD^

Dedicated to the memory of Francois Jaeger

1. Introduction.

Cycle Double Cover type conjectures and Nowhere-Zero Flows
Problems lie in the core of graph theory [30]. They present a complex
web of results, reductions and transformations and conjectures which unify
algebraical and topological approach to graphs. The area became classic
in the work of Tutte, Szekeres, Jaeger, Seymour, Sabidussi and others,
see [12], and still a very nice authoritative survey [13], another more recent
survey [26].

This central area of graph theory led to important modifications (such
as Bouchet theory of "bidirected flows", see e.g. [8], [17], [32]), see also [4].
Here we present yet another approach which is motivated by the recently
defined version of oriented chromatic numbers (of directed graphs), see e.g.
[19], [20], [23]. Among others, we define notions of Antisymmetric-Flow
(ASF) (in the analogy to Jaeger B-flow) [14], strong-oriented chromatic
number ~\^ (as the modulo version of oriented chromatic number) and
strong colourable Cycle Double Cover. All these notions depend on the
particular orientation of the graph.
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We shall give several proofs of the fact that an ASF exists for any
oriented graph without oriented 2-cut. This allows us to define upper
and lower ASF number of any 3-edge connected undirected graph. While
the lower ASF number is closely connected to the NZF number, to
investigate upper ASF number is much harder and, in fact, presently
it is unknown whether such upper number is bounded by a constant.
This is another contribution to the well known phenomenon that minor-
based theories are still undeveloped and even difficult to create for oriented
graphs.

In the positive direction we relate ASF to oriented chromatic number
[5], [II], [23] and in particular we show that any planar graph has a (Ze)5-
ASF. The strong-oriented chromatic number of planar graphs is bounded by
7776. This is indeed a large number and perhaps largest number presently
involved in colourings of planar graphs, compare [2], [10], [16], [18], [23],
[24], [31].

This paper is organized as follows:

In Section 2 we introduce all the necessary notions.

In Section 3 we state some elementary properties and we prove that
any oriented graph has an ASF.

In Section 4 we reveal the original motivation of our study: we relate
all the previous results to the oriented chromatic number and prove that
the class of all planar graphs has a (Zg) ̂ strong-oriented colouring.

Section 5 contains several problems and remarks which illuminate
what we believe is an interesting niche of classical problems.

2. Definitions.

Let G = (V, E) be an oriented graph; if S C V we denote by ^(S)
the set of the edges which begin in S and terminate not in S. We write

^-(S)^^{V\S).

If M is an abelian group (with additive notation), then a M-flow is a
mapping (f) from E to M such that: for all S C V,

^ 4>{e)- ^ <f>(e)=0.
e6^+(S) ee^-(S)
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Now if B c M, such that 0 ^ B and B = -B then a B-nowhere-zero flow
(shorter B-NZF) of a graph G is a flow of G where the values are taken
in B (see [14]).

As is customary a M-NZF is defined as a B-NZF for B = M \ {0}.

When M = Z and B C [1 - k, -1] U [1, k - 1] (k ^ 2), we will speak
about A;-NZF. A classical result of Tutte [28] is that for a graph a Z^-NZF
exists if and only if a A;-NZF exists.

In this context we propose the following:

DEFINITION OF ANTISYMMETRIC-FLOW. — If B C M is Such that
B n -B = 0, then a flow with values taken in B will be called an
antisymmetric-flow. In this case we will say that G has a M-antisymmetric-
flow (shortly M-ASF).

One could also say that an antisymmetric-flow is a nowhere-inverse
flow.

No graph has a (Za^-ASF and any Eulerian graph with an Eulerian
orientation (i.e. balanced: ̂ x € V, d+(x) = d~(x)) has a Zs-ASF.

If A = Z and all the values of the antisymmetric-flow are belonging
to [1 - k, k - 1] (k > 2) then we will say that G has a A;-ASF.

If G is an undirected graph we will say that G has a M-ASF, if it has
a M-ASF for some orientation.

It is a non trivial fact that 3-edge connected graphs have ASF (this
will be proved below).

Let G be a graph and D an orientation of G, we will denote by

asf(G,P)
the smallest order k of a group M such that G has a M-ASF, under the
orientation D. The upper antisymmetric-flow number of G is by definition:

asi£/(G) =maxasf(G,D),

the maximum is taken over all the possible orientations of G. We also call

asiL(G) == min asf(G,P),

the lower antisymmetric-flow number of graph G.

It follows from Theorem 2 below that asfi,(G) is defined for every
bridgeless graph and from Theorem 4 that asf[/(G) is defined for every
3-edge connected graph.
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We review our approach somewhat in the reverse order. The notion
of antisymmetric-flow and antisymmetric-flow numbers was inspired by a
variant of the oriented chromatic number which we are going to explain
now.

Given two oriented graphs G = (V,A) and G' == (V.A') a
homomorphism from G to G' is any mapping /: V —> V satisfying

( x , y ) € A =^ (f(x),f(y))eA'.

The existence of a homomorphism from G to G" will be denoted by G —> G ' .
In [20] we consider the following problem:

Given an oriented graph G == (V^A), find the smallest number of
vertices of an oriented graph G' = (V1',A') for which G —> G1. This
number is denoted by ~)f(G) and called the oriented chromatic number
of G. For an undirected graph G the oriented chromatic number of G
is denoted by ~)f(G) and it denotes the maximal oriented chromatic
number of an orientation of G.

In this paper we consider the following more restrictive definition:

Given an oriented graph G = (V,A) find the smallest q such that
there exists an oriented graph G' = ( V ' . A ' ) with q vertices labelled by
the q elements of an abelian additive group M for which there exists a
homomorphism f ' . G — > G ' such that for any pair of arcs of G (x, y) and
{x' , y ' ) (not necessarily distinct), we have f{y) - f{x) -^ -(/(^/) - f(x'))
(this condition will be called the no-opposite value condition). Then we will
say that / is a M-strong-oriented colouring.

The smallest number q will be called the strong-oriented chromatic
number, and denoted by ~)<ts(G). If the graph is undirected ^(G) will be
the maximum of^(G) taken over all the possible orientations.

We recall now the definition of the oriented dual graph. Given an
oriented plane graph G corresponding to each face / of G there is a
vertex /* of the dual graph G*, and corresponding to each arc e of G there
is an arc e* of G*. Two vertices /* and g * are joined by the arc e* if and
only if the corresponding faces are separated by the arc e in G. The arc
e* is oriented so that if we go from the initial vertex of e to the terminal
vertex then e is crossed by the arc e* from right to left.

It is then easy to see by comparing the corresponding definitions that
if G is a oriented planar graph then G has a Z/c-strong-oriented colouring if
and only if the oriented dual graph G* of G has a Z/c-ASF.
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3. Elementary properties.

We start the following easy lemma:

LEMMA 1. — If an undirected graph G has a M-How 0 such that
(f)(e) ̂  ~(f>(e) for any e e E, then it has a M-ASF for some orientation.

Proof. — Let a be an element of M, we change the orientation of all
the arcs having a flow's value equal to -a. We do the same to all the values
of the flows, then we obtain an M-ASF. D

COROLLARY 2. — If an undirected graph G has a M-Qow, M being a
group of odd order then there is an orientation ofG with an M-ASF.

Remark. — If a graph has a p-ASF, then it has a p'-ASF for any
p ' > p. Moreover if a graph has a Zp-ASF then it has Zp/-ASF for any pf >p
(p and?' odd).

We will use the following result of Tutte [28]:

THEOREM l . — J f G = (V,E) has a Zk-NZF /, then it has a k-NZF
g such that f(e) = g(e) mod k for any e e E and the flows f and g are
defined under the same orientation.

OBSERVATION 1. — If an undirected graph G has a p-NZF {p odd)
then it has a Zp-ASF.

Proof. — If G has a p-NZF for some orientation, then it admits a
Zp-NZF under the same orientation. By reversing the direction of some
arcs, we find an orientation of G for which the NZF uses only the values
{ 1, . . . , j (p - 1)}. It is obvious that this is a Zp-ASF. D

Note that if G has a p-NZF (p even) then it has a Zp+i-ASF.

In the other direction we have

OBSERVATION 2. — If an undirected graph G has a Zp-ASF then it
has a p-ASF.
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Proof. — We choose an orientation for which the Zp-ASF / is such
that

• f{E) = { 1,. . . , jp — 1} ifp is even or

. f(E) ={!, . . . , j(p-l)} ifp is odd.

By the theorem of Tutte there exists a p-NZF g of G under the same
orientation, such that

/(e) = g(e) mod p. Hence for p even, if f(e) = i then g(e) can be i or
i — p. We have then

^)C{l , l -p,2,2-p, . . . ,^- l ,^- l-p}.

It is easy to see that g{E) contains no opposite values. The same verification
holds for p odd. D

Note that the converse of Observation 2 holds only for p odd.

For k even, it may happen that for a graph G there is an A;-ASF
while no Z^-ASF exists. This is due to the fact that an A;-ASF / needs not
satisfy the condition /(e) + f(e') 7^ 0 mod k for any pair of edges e, e' of G.
A A;-ASF satisfying this additional property (which is obviously necessary)
implies the existence of Z/c-ASF. In this case we have the equivalence
between the existence of a A;-ASF and a Z/c-ASF for any integer k > 2.

THEOREM 2. — Every bridgeless graph G has an orientation for wich
G has a Zy-ASF (i.e. asf^(G') < 7 for every bridgeless graph G).

Proof. — By Seymour's theorem [25], any bridgeless graph has a
Z2 x Zs-NZF. By the theorem of Tutte it has a 6-NZF wich is also a 7-NZF,
by Observation 1 it admits a Zy-ASF. D

Also the Jaeger's theorem [15] giving the existence of a 8-NZF for any
bridgless graph, implies that any bridgless graph has a Zg-ASF.

THEOREM 3. — Letp be an odd number^ G an undirected graph. If for
an orientation G has a ^p-ASF then for some other orientation it has a
Zp-ASF. On the other hand every Zp-ASF may be thought as Z^p-ASF and
thus the existence of orientations with Z^p-ASF and Zp-ASF are equivalent.
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Proof. — First, suppose that G has a Z2p-ASF, denoted by /. Clearly
we may assume that the values of the antisymmetric-flow / are taken in
{ 1,... ,p — l}.By the theorem of Tutte there exists a 2p-NZF g under the
same orientation, such that: /(e) = g{e) mod 2p. If /(e) = i then g(e) can
be i or z — 2p. We have then

^)C{l , l -2p,2 ,2-2p, . . . ,p- l ,p- l -2p}.

Let g ' ( e ) be the residue of g{e) modulo p. Since g(e) 7^ 0,dhp, it follows
that g ' ( e ) € Zp is non-zero. Hence G has a Zp-NZF. And by reversing the
orientation of certain arcs, we will have a Zp-ASF in G.

The reverse implication follows by Observation 1: if G has a Zp-ASF
then it has a Z2p-ASF. D

Let us remark that for p even we can only prove that if a graph has a
Z2p-ASF then it has a Zp-NZF.

COROLLARY 2. — IfG has a Z^-ASF then it is an Eulerian graph.

Proof. — By using the same argument as in theorem 3 it is easy to
see that G has a Z2-NZF. It follows that G is an Eulerian graph. D

For a given orientation of a graph G, the existence of a Zp-ASF is
stronger that the existence of a p-ASF. This may be seen as follows:

Consider a cubic bipartite graph G = (V^E) with the bipartition
V = X U Y (where \X\ = \Y\). The edges of a matching are oriented
from X to Y and the remaining edges from Y to X. Let / be the valuation
of the edges of G such that /(e) = 2 if e is an arc belonging to the matching
and /(e) = 1 for the arcs not belonging to the matching. It is easy to see
that / is a 3-ASF, but neither does G admit a Zs-ASF nor a Z4-ASF under
this orientation. It admits a Zs-ASF under the same orientation.

4. Antisymmetric-flows.

Let G be an undirected graph. If G contains an isthmus or a 2-cut
then G does not admit a nowhere-zero flow. If G contains an edge-cut
made of two edges 61,62 between components K\ and K^ and if we take an
orientation of the graph such that the edges e\ and 62 are both oriented
from K\ to K^ then clearly G with this orientation has no antisymmetric-
flow. A 2-edge-cut will be also called a 2-cut.
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Now we prove that every graph without a 2-cut has an antisymmetric-
flow. We shall use the following concept and an easy lemma:

LEMMA 2. — A connected bridgeless graph G has no 2-cut if and
only if for every pair {e,e'} of distinct edges ofG there exits a separating
circuit C (i.e. a circuit which contains exactly one of the edges e.e7).

Proof. — Suppose that G \ {e, e'} is connected, let e = {x, y}. Then a
path which joins x to y in G \ {e, e'} together with the edge e forms a cycle
which does not contain e1 in G.

In the reverse direction, suppose that for any pair of distinct edges
there exist a separating cycles. Thus given a pair {e, e'} of distinct edges
find separating cycles with e e Ce, e' ^ Ce. The end vertices of e belong to
the same component thus G \ {e, e'} is connected. D

Let G be a graph. A family C\,..., Ct of circuits of G is said to be
edge-distinguishing if any pair {e, e7} of distinct edges of G there exists Ci
which is containing exactly the edge e and not containing the edge e ' . The
above lemma can be formulated as follows: every 3-edge connected graph G
has a family of distinguishing cycles.

Note that for 3-edge connected planar graphs the set of facial cycles
is distinguishing.

More generally we have

LEMMA 3. — For a 3-edge connected graph any cycle basis is edge
distinguishing.

Proof. — Assume the contrary: let C be a cycle basis and let e, e' be
distinct edges such that any cycle C € C contains either both edges e, e' or
none of them. As C is a basis there is no circuit which contains exactly one
of the edges. This contradics lemma 2. D

THEOREM 4. — Let G be a graph, C i , . . . ,€< a family of edge-
distinguishing cycles. Then then for any orientation G has a Z^-ASF.

Proof. — Let G = (V, E) with a fixed orientation. Let Ci denote also
the set of arcs. For each Q by doing a walk on Q we define the flow

fi:d—Zs
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{ +1 for forwarding arcs of G^,
by fi(xy) = 2 for the backwarding arcs of C^,

0 for the arcs not belonging to Q.
Put

f(xy)=(fi(xy^i=l,...,t).
We prove that / is an antisymmetric-flow.

Obviously f(x,y) -^ (0, . . . ,0). Let a and b two arcs of G. Let d be
a cycle containing exactly one of the arcs a,b\ let say a € Q and b ^ Q.
Then /,(a) ^ 0 and fi(b) = 0. Thus /(a) ^ -/(&) (in Z^) (note that we
must use Z^ as in Z^ for every x = —x). D

Denote by C(G) the cycle space of G.

COROLLARY 3 (Existence of AST). — Any orientation of a 3-edge
connected graph G has a Z^ C(G) -ASF.

Remark. — Another, although less explicite proof of the fact that any
orientation of any 3-edge connected graph has an antisymmetric-flow may
be sketched as follows:

Existence ofASF (second proof). — Let G = (V, E) be an orientation
of a 3-edge connected graph with 771 edges and n vertices. The set of
all R-flows on G (R-flows are usually called circulations) is the set of all
solutions (xe ; e € E) defined by equations:

(1) \/u^V: ^x^-^x^=0
v^V vCV

the variable Xuv is defined if and only if (uv) e E(G).

The set of all solutions form a (m — n)-dimensional sub-space V of R^.
The projection of V on any coordinate (i.e. edge e of G) is 1-dimensional
as otherwise e would be a cut. Similarly the projection of V to any pair of
coodinates e, e' has dimension 2 (for otherwise there would be no circuit
which would distinguish e and e' and thus {e, e'} would be a 2-cut). Thus
there exists a solution of the system (1) which misses any of the hyperplanes

XQ —— U, Xf^y "7" Xy^fy' '=:=- U.

And there exists also an integer solution. D

Let us remark that this algebraical argument implies a slight
improvement of the existence of ASF:
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COROLLARY 4. — Let G be a 2-edge connected oriented graph without
an oriented 2-cut. Then G has an AST.

The following is an easy corollary of Theorem 4:

COROLLARY 5. — Let Gi = (Vi.Ei) (where i e {1,2}) be graphs.
Let d has a family of ti edge-distinguishing cycles. Then Gi U G^ has a
Z^-ASF.

(Observe that the union of edge-distinguishing cycle families in Gi is
edge-distinguishing.)

Continuing in the same direction we get the following:

Let A; be a fixed number. We say that a class G of graph is A;-edge
degenerated if any graph from Q can be obtained as subsequent strict
amalgamation of 3-edge connected graphs with at most k edges.

Here a strict amalgamation of graphs G\ and G^ Gi = (Vi.Ei)
(i G {1,2}) is a graph G = (V, E) such that

V=V-^UV^, E = E ^ U E ^ , with E^ 0^2=0.

Then we have

COROLLARY 6. — Any class ofk-edge degenerate graphs has a bounded
antisymmetric-flow for any orientation.

Proof. — A ^-degenerated graph G is a disjoint edge union of 3-edge
connected graphs Gi each having at most k edges. Thus we can define an
antisymmetric-flow on G by defining it on each of the graphs Gi. It follows
that fc-degenerated graphs have a bounded ASF. D

We have also

THEOREM 5. — Let G be any graph. Let G be the multigraph which
arises by multiplying every edge ofGa least 3 times. Then any orientation
of G' has a Zs -ASF.

Proof. — Let K^ (m >_ 2) the graph having 2 vertices linked by m
edges. It is easy to check that any orientation of the graph Kj has a Zs-ASF
using the values 1 and 2, the same can be verified for any orientation of
the graphs Kj and Kj. For m > 3 We have the following:
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• if m = 0 mod 3, K^ is an union of graphs Kj',

• if m = 1 mod 3, K^- is an union of graphs Kj and a K^\

• if m = 2 mod 3 jf^ is an union of graphs Kj and a Jf^.

Hence for any m > 3 K^ has a Zs-ASF using the values T and ~2. We
contruct any oriented graph G' edge by edge from G by replacing the edges
of G by the desired orientations of K^ with the Z5-ASF values. Then it is
clear that G' has a Zs-ASF. This completes the proof. D

It is interesting to note that this theorem is not true for graphs with
multiplicities at most 2:

Consider the graph K^^ depicted in Figure 1. It is easy to see that the
strong-oriented chromatic number of this graph is at least 6. The oriented
dual graph K^ 4 of the graph ^2,4 is a cycle of length 4 with double arcs.

» ———^3(C

It is then clear that osiu(K^ 4) ^ 6.

0'

Fig-ure 1. The set ~K^

5. Strong-oriented colouring.

A k- colouring of the vertices of an undirected graph is said to be
acyclic if the subgraph induced by the vertices with any two colours has no
cycle. The acyclic chromatic number a(G) of a graph G is the smallest m
such that G as an acyclic m-colouring.

We are going to prove now that every oriented graph G has a strong-
oriented colouring which depends only on the acyclic chromatic number
a(G) of the graph G. .

THEOREM 6. — Let G be an undirected graph with acyclic chromatic
number at most k. Then any orientation ofG admits a (Ze)^ -strong-oriented
colouring. TAus^(G) < 6^ for any graph G with a(G) < k.
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Before proving Theorem 6 let us list some corollaries and conse-
quences.

The result for the planar graphs is obtained as a consequence of the
following theorem [5]:

THEOREM 7 (Borodin, 1979). — IfG is a planar graph then a(G) < 5.

Theorem 7 combined with Theorem 6 gives the corollary:

COROLLARY 7. — Every oriented planar graph is strongly oriented
^-colourable.

By duality we have

COROLLARY 8. — If G is a 3-edge connected planar graph, then
asf£/(G) < 65 .

A cycle double cover (CDC) of an undirected graph G' is a family
Gi , . . . ,C t of cycles (considered as edge sets) such that each edge of G
belongs to exactly two cycles of the family.

A cycle double cover is said to be p-colourable if all the edges of G
can be covered by p Eulerian subgraphs f i , . . . , ^p such that each edge
is covered twice. This is the same as to colour the cycles C\,..., C< by
p colours such that any two cycles which share the same colour are edge
disjoint. It has been conjectured by Celmins and Preissmann [9], [22] that
any 2-edge connected graph has a 5-colourable CDC. We shall present a
stronger (oriented) variant of these concepts.

Let G be an undirected graph. We say that a cycle double cover
Ci , . . . , Ct is p-strongly colourable if for every tournament R on {1 , . . . ,t},
there exists a mapping /: {d , . . . , CJ -^ Zp with the following properties:

1) f{d) ̂  f(Cj) whenever d H Cj i=- 0.

2) If ( i j ) e R, (z'j') e R, and d H Cj + 0, C,, H Cy, + 0 then

/(^•)-/(Q)^-(/(^)-/(Q/)).

(The tournament R may be viewed as an arbitrary orientation of the
abstract dual defined by the CDC C - y , . . . , Ct. In case of a planar graph G
such an orientation may result from orientation of edges of G). Then we
have the following:



J. NESETRIL AND A. RASPAUD 1049

COROLLARY 9. — Every 2-connected planar graph has a 7776-strongly
colourable CDC.

Proof. — Consider facial cycles and a strong colouring of arbitrary
orientation of the dual. Then apply Corollary 8. D

As the oriented chromatic number, the strong-oriented chromatic
number is linked to acyclic chromatic number:

COROLLARY 10. — For any class /C of graphs the following statements
are equivalent:

1) The acyclic chromatic number is bounded for all graphs from JC.

2) The oriented chromatic number is bounded for all graphs from /C.

3) The strong-oriented chromatic number is bounded for all graphs
from /C.

Proof. — The equivalence 1 4=^ 2 is proved in [19]. The implication
1 =^ 3 follows from Theorem 6. The implication 3 => 2 is trivial. D

Before proving Theorem 6 let us state the following: Let Co be the
directed cycle with 6 vertices labelled by elements of Ze in the order
1, 3, 5, 1, 3, 5. It is a bipartite graph and the two stable sets, denoted by A
and B, of the bipartition have the vertices labelled by 1, 3, 5.

We have the following easy proposition:

PROPOSITION 1. — Let T be a tree and V\ and V^ be any bipartition
of its set of vertices according to the fact that a tree is a bipartite graph.
Then there exists a homomorphism of T into CQ which maps V-y into A
and V^ into B.

Proof. — It easy to see that there is a homomorphism between T
and CQ. For example we can use a depth first search of the tree T from
any root of V\ and map the root vertex into any vertex of CQ according to
the fact that we want to map this vertex into A. Then each new vertex x
encountered will be mapped into a vertex of CQ according to the orientation
of the edge linking the vertex x to another already visited vertex. It is then
clear that Vi is mapped into A and V^ into B. D

Proof of Theorem 6. — In the proof we proceed analogously as in [23],
but we use a different target graph H:
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The set of vertices of H consists from all ^-tuples of form

(01,02,... ,o^_i, 0 ,o^+i , . . . ,a^)

where i C [1, k] and o^ € {I, 3, 5} C Ze for i e [1, i - 1] U [z + 1, k}.

Thus the cardinality of V(H) is then k ' 3k~l and the vertices are
labelled by elements of (Ze)^

The set of arcs of H is denned as follows:

Let i < j, and let

u = (oi,02,. . . ,0z-i , 0 ,o^ i , . . . ,o^ , . . . ,0 fc ) ,
v = (61,62,.. • , b^..., ̂ -_i, 0, ̂ +1,..., bk)

be vertices of I:f. Then u and v are linked by an arc of the same direction
of the arc linking aj G A and bi € B in CQ.

We prove now that the graph H satisfies the no-opposite value
condition.

Let uv an arc of H with u^= (01,02,.. . ,o^_i, 0,0z+i,. . . ,a^ ... ,0^)
and ^ = (&i, 62 , . . . 6, , . . . , ̂ --i, 0, ̂ +i , . . . , bk) with z < j (for j < i the
reasoning is the same). Consider the difference v — n, we have

v -u = (61 -oi,...,^-i -o^-i, 6,, ̂ +1 -a^+i , . . . ,

^'-1 - ̂ '-l^-^^+l - O ^ + i , . . . , 6fc - Ofc).

bi - ae € {^, '2, 4, } for ^ ̂  ̂ j and b^ -o^ e {I, '3, '5}. If by contradiction
we assume that there is an other arc tw of H such that v - u = -(w - t),
then the zero components of t and w must be at the same place as the zero
components of u and v. Since uv is an arc, it follows from the definition
of H that a,j = x and that bi = x + 2^ a; € {T, 3^ 5}.

Suppose that

^ = (c i ,C2 , . . . ,C^- i , 0 ,C^i , . . . ,Cj , . . . , C A ; ) ,

w = (di,d2,. . .^, . . . ,^-i , 0,^+1,..., dfc).

Similarly, as tw is an arc, we have by definition of H that Cj = y and that
di = y + 2. Then u - f = -(w - t) implies x + 2^ = -(y + 2) and x = -y,
which implies 4 = 0, a contradiction.

The other possibility is the case where the zero component of t is at
the place j and the zero component of w is at the place z. Since tw is an
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arc, it follows from the definition of H that Ci = y and that dj = y + 2.
Since v — u = —(w — ^) we have re + 2 = ?/ and y + 2 = a;, which implies
again 4 == 0, a contradiction. Hence the no-opposite value condition is
satisfied.

We define the homomorphism /: G —> H:

Let G = (V, E) be a graph with acyclic colouring

V=VoUV^U...UVk-i,

and G an orientation of G. Denoted by Gzj the graph induced by Vi U Vj
(0 < i < j < k) and Gij the orientation inherited from G. For every %, j ,
Gzj is a forest.

—^ —>•
Hence by Proposition 1 there exists a homorphism c^j of Gij in CQ

which maps Vi (resp. Vj) into A (resp. B).

Let ZA be a vertex of G; then 'u belongs to one Vz for some i G [1, A:].
The image of n, will be

f(u) = (ci,,(^),...,Cz-i^), 0,c^+i (^),...,c^(^)).

We have to prove now that if u € Vi and v € Vj- define an arc n'y then
f(u)f(v) is an arc of J^, assume that i < j. Hence

f{u) = {c^i(u), . . . , Cz-i^(^), 0, Ci^{u), . . . Cij(u), . . . , C^fc(^))

and

fW == {Clj(v), . . . ,Cij{v) . . . ,Cj^j(v), 0,Cjj^{v), . . . ̂ fc(^))

are, by the definition of the graph H , linked by an arc according to the arc
existing between Cij{u) in A and Cij{v) in B. Since Cij is a homomorphism
f{u)f{v) is an arc of H . This completes the proof of Theorem 6. D

An alternative approach to prove Theorem 6 is via embedding of
oriented graphs into oriented Cayley graphs. For undirected graphs such
embeddings were investigated in several papers (see e.g. [3]) and this can be
generalized (with somewhat weaker bounds) for directed graphs as follows:
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For a given group M and a set A of its elements, we define the graph
X(M^A)=(V^E):

V=M and E = {{g,ga); g e M, a e A}.

This is a Cayley digraph. We assume that A does not contain an element a
together with its inverse a~1. Then X(M,A) is an oriented graph (no
symmetric arcs). Moreover if A is a set of generators then the graph is
connected. Our definition of strong-oriented chromatic number may be
replaced as follows:

Given an oriented graph G find a group M of the smallest possible
order such that there is a homomorphism G —> X(.M,A) for a suitable
subset A of M satisfying A D A_i = 0. It is clear that in this case the
no-opposite value condition is verified.

We prove

THEOREM 8. — For every oriented graph G, there exists a group
M and a subset A satisfying A D A~1 = 0 such that G is a subgraph of
X(M,A).

Proof. — Let G be a fixed oriented graph with n vertices, choose p
such that jp > 2n+2. Let M. = Zp. Assume that there exists a set K with
the following properties:

1) \K\ =n;

2) 1 i K;

3 ) x ~ l y ^ y ~ l x for any x,y € K;

4) x~ly ^ t~lz for any a;, y , z, t G K.

Now identify the set K with V(G) and put

A={x-ly^ {xy)^E(G)}.

Then G is obviously a subgraph of X(M^A) and X(A^,A) is an oriented
graph by the above properties of K.

Hence it suffices to construct a set K. Let K the following subset
ofZp:

e n
X^,...,]^...,]^^71-!)}.

i=l i=l
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Let x and y be two elements of K:

^E2*' y=E21-
Z=l t=l

Without loss of generality we assume that P > ^, then the element x~ly
has the form

E2' (^p)'i=^
This element belongs to the set { l , . . . , [ -p j} , while y~lx belongs to
{ | - p j + l , . . . , p — 1}. Hence K satisfies the above requirements. D

Now Theorem 8 may be used for an alternative proof of Theorem 6.

COROLLARY 11. — Let G be an undirected graph. Then )fs{G) is
bounded by a function ofa(G).

Proof. — By [23] there exists an oriented graph Zk with k ' 2k~l

vertices such that any orientation G of a graph G with a(G) < k satisfies
G —> Zk. Applying Theorem 8 for Zk we get a group M. and a sub-set A
satisfying A H A~1 = 0 such that Zk is a subgraph of X(M, A). D

Remark. — Let us compare the bound just obtained by Theorem 8
with the the one obtained by Theorem 6 for planar graphs:

Using Theorem 8 and the theorem of [23], we get that every planar
graph is strongly oriented colourable by 283 colours. However 283 > 65

and this is why we gave a direct proof not using embeddings of universal
oriented graph with 80 vertices.

However, let us observe that the graph introduced in the proof of
Theorem 6 may be thought as a subgragh of an oriented Cayley graph.

Similarly as in [6], [20] we can get better results for colourings of
planar graphs of a given girth. They can be summarize as follows:

THEOREM 9. — Let G be a planar graph. Then the following holds:

1) IfG has girth at least 14 then ̂ (G) ^ 5,

2) IfG has girth at least 8 then ̂ (G) < 7,

3) IfG has girth at least 6 then ̂ (G) < 11,

4) IfG has girth at least 5 then ̂ (G) < 19.
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Proof. — Recall that the circulant (directed) graph G(n;ai, 0 2 , . . . , a/c)
is the graph whose vertex set is Zn and whose arcs are those pairs (x,y)
such that 3 z, 1 < i < k, y — x = di (mod n).

In the proof of Theorem 1 in [6] the used target graphs are the
following circulant graphs:

T5=G(5;1,2), r7=G(7;l,2,3), Tn = G(ll;l,3,4,5,9),

ri9=G(19;l,4,5,6,7,9,ll,16,17).

It is clear that those graphs are Cayley graphs. Hence we obtain strong-
oriented colouring. The result follows. D

By duality we have corresponding antisymmetric-flows. The condition
on the girth becomes a condition on the edge-conectivity. We have

COROLLARY 12. — Let G be a planar multigraph^ then the following
holds:

1) IfG is 14-edge connected then asf^(G) ^ 5,

2 ) J fG is 8-edge connected then asf[/(G) < 7,

3) IfG is 6-edge connected then asf[/(G) < 11,

4) IfG is 5-edge connected then asf[/(G) ^ 19. D

6. Concluding remarks.

In this new niche of classical graph theory there are a few results and
many more open problems. Let us list two of them:

1) The main problem seems to be the absence of good bounds for
Theorem 6 and Corollary 3. It is barely surprising as even in the much
less restricted case of oriented chromatic number the gap for planar graphs
is very large (16 vrs 80; see [23], [27]). But what is perhaps the central
problem is the question whether the upper antisymmetric-flow number of
any 3-edge connected graph is bounded by an (universal) constant.

Planar graphs show that this constant cannot be less than 16 but
perhaps one should conjecture the negative answer. This is presently open
even for special classes of graphs such as (general) orientations of eulerian
graphs and bipartite graphs. Also asf[/ of the Petersen graph Pio is
unknown, we now that asf[/(Pio) > 11.
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2) In the spirit of the [21], we could generalize antisymmetric-flows to
coloured and mixed flows. One can give a necessary and sufficient condition
for the existence of such mixed-flows, it is perhaps interesting that appart
from trivial obstacles such finite flows always exist.
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