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THE TUTTE POLYNOMIAL OF A MORPHISM
OF MATROIDS
I. SET-POINTED MATROIDS
AND MATROID PERSPECTIVES

by Michel LAS VERGNAS*

1. Introduction.

The dichromatic polynomial of a graph - now currently called the
Tutte polynomial - is a 2-variable polynomial introduced by Tutte in [28] as
a self-dual generalization of the 1-variable chromatic polynomial considered
by Birkhoff and Whitney. The extension of the dichromatic polynomial
to matroids (combinatorial geometries) is due to Crapo [13]. The Tutte
polynomial plays a central role in the theory of numerical invariants of
matroids, and has numerous applications. We refer the reader to [8] for a
recent survey on Tutte polynomials.

We have introduced in [19] a 3-variable polynomial associated with
two matroids related by a strong map (or matroid perspective in our
terminology) generalizing in several respects the Tutte polynomial of a
matroid. The classical Tutte polynomial is equivalent up to a simple
transformation to the generating function of cardinality and rank of subsets
of elements. The 3-variable Tutte polynomial studied in the present paper is
in a similar way equivalent to the the generating function of cardinality and
ranks of subsets but in both matroids. The assumption that the matroids
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are related by a strong map is necessary for certain desirable properties to
hold. Owing to the factorization theorem of strong maps, an alternative
setting is constituted by matroids containing a subset of distinguished
elements - we say, in the present paper, matroids pointed by a subset of
elements, or set-pointed matroids. When the distinguished set is empty - or
the two matroids of the strong map are equal - the polynomial reduces to
the usual Tutte polynomial. When the distinguished subset is reduced to
one element we recover a polynomial introduced by Brylawski in [3]. The
homogenous 4-variable Tutte polynomial defined by Brylawski is equivalent
to the present one in this special case (see the beginning of Section 3 below).
A generalization of the Tutte polynomial to graphs pointed by a subset of
distinguished vertices has been introduced by Tutte [29]. It turns out that
this polynomial is the coefficient of the monomial of highest degree in the
3-variable of our polynomial (see the end of Section 8).

Several papers deal with applications of the Tutte polynomial of
matroid perspectives.

e When M — M’ is an oriented matroid perspective on a set F the evalu-
ation t(M, M’;0,0,1) counts the number of subsets A of E such such that
—aM is acyclic and —4M' is totally cyclic [20]. This result generalizes
in a self-dual way previous results of the literature on acyclic orientations
of graphs [27], orientations of regular matroids [7], regions of real hyper-
plane arrangements [31], non Radon partitions of real spaces [5], acyclic
reorientations of oriented matroids (or, equivalently, regions of pseudohy-
perplane arrangements), [17] [21], and bounded regions of hyperplane ar-
rangements [15]. It has applications to the counting of containments of a
given flat in facets of acyclic reorientations of an oriented matroid (i.e. pro-
jective transforms in the real case): see [10], Section 4 (b). The evaluation
t(M,M’;0,0,1) generalizes in a certain sense Crapo’s 3 invariant of a ma-
troid [13] [20]. More generally, the coefficients of t(M, M’;z,y,1) have a
combinatorial interpretation in terms of reorientations [24].

e Let G and G* be two graphs dually imbedded in a surface. By a result
of J. Edmonds (1965) up to the natural bijection between edges induced
by the duality, the bond matroid of G* and the cycle matroid of G are
related by a strong map. We have used this property in [23] in the case of
4-valent graphs imbedded in the projective plane and the torus to relate
the 3-variable Tutte polynomial to Eulerian tours and cycle decompositions
of the graph G.

e A matroid perspective is a special case of a ¢g-matroid in the sense of
[2] (see end of Section 6). The Martin polynomial of a g-matroid studied
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in [2] reduces in the case of a matroid perspective to its Tutte polynomial
(specifically, if Q@ = Q(M, M) we have m(Q;z) = t(M,M';z,z,1)). A
property of the Tutte poynomial of a matroid perspective dealing with
connectivity (see [22] Theorem 8.3) is generalized in [2] to g-matroids (see
Theorem 6.1 and Corollary 6.2).

e A (finite) vectorial matroid can be represented by a subspace V C
GF(q)® for some finite field - in other words, a linear code in the con-
text of coding theory. The matroids associated with two subspaces V C
V! C GF(q)F are related by a strong map. In [14] we have unified, and
generalized in terms of 3-variable Tutte polynomials, several classical re-
sults of the literature dealing with Tutte polynomials of vectorial matroids.
In particular we have generalized a result of F. Jaeger on the generating
function of weights of codewords of a linear code and its dual [16].

Our purpose in this paper is to present the basic algebraic properties
of the 3-variable Tutte polynomial of matroid strong maps, or perspectives.
The main content of the sections are as follows. Section 2 recalls the
properties of strong maps useful for the sequel. In Section 3 we introduce the
3-variable Tutte polynomial of a matroid pointed by a subset, and describe
its elementary properties. Section 4 shows how this polynomial can be used
for the computation of the Tutte polynomial of a matroid with a normal
subset. In section 5 we relate the (almost) equivalent points of view of Tutte
polynomials of set-pointed matroids and matroid perspectives. We establish
the linear relations between coefficients valid for all perspectives except a
finite number (counterpart of a result of Brylawski for matroids [3]). Section
6 deals with the Higgs factorization of a strong map. Our main result here
is that the Tutte polynomial of a strong map is equivalent to the collection
of Tutte polynomials of factors of the Higgs factorization. As is well-known,
the Tutte polynomial of a matroid can be expressed in terms of the Mébius
function of its lattice of flats. We generalize this result to perspectives in
Section 7, and also give a generalization of Stanley’s factorization theorem
[26]. In Section 8 we establish the expression of the Tutte polynomial of a
matroid perspective in terms of activities of independent /spanning subsets.

A further generalization is introduced in [19] and [22]. A Tutte
polynomial in k& + 1 variables can be associated with any sequence of k
matroids on the same set pairwise related by strong maps - a matroid
perspective sequence. For the sake of simplicity we restrict ourself here
to the case k = 2. Most results presented here generalize easily. We refer
the reader to [9] for some developments on Tutte polynomials of matroid
perspective sequences, with application to electrical network theory, and to
[2] for a relation with g-matroids (see Section 7).
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2. Notation and terminology.

All definitions and results of this section are classical and can be
found in standard textbooks [1] [8] [30]. We recall some of them for the
convenience of the reader.

Let M be a matroid on a (finite) set E.

We denote by rs(A) the rank in M of a subset A C E and by Clps(A)
the closure of A in M. The rank of the matroid M is r(M) = ry(E).

We denote by t(M) the Tutte polynomial of M, defined by

@1 May) = Y (@ - TN - A,
ACE

The expressions M\ A, M/A denote the matroid obtained from M by
deleting and contracting A respectively, and M(A) denotes M \ (E \ A).
As usual, when A = {e}, we write M\e and M/e instead of M\{e} and
M /{e} respectively. For X C F\ A, we have

(2.2) ram\a(X) = ru(X) and rag/a(X) = rm (X U A) — rar(A).

We denote by M* the dual (or orthogonal) matroid of M. The rank
of X C E in M* is given by rp *(X) = | X|+ 7y (E\X) —ra(E). We have
(M*)* =M, and (M\A)* = M/A, (M/A)* = M\A for ACE.

Let E = E; + E5 be a partition of E. The following properties (i)-(ii)
are equivalent:

(i) rm(E) = rm(Er) +7m(E2)
(i) rM(XUY)=rm(X)+rm(Y) for all X C Ey and Y C Es.

Then the matroid M is said to factorize into M(E;) and M(E2). We
write M = M(E,) & M(E,).

An isthmus of M is an element e € E such that r(M\e) = r(M) — 1.
A loop is an element e € E such that rp({e}) = 0. If e € E is an isthmus
or a loop of M, we have M = M(E\e) ® M(e). Accordingly e is called a
factor of M. If e € E is a factor of M, we have M\e = M/e. Note that e
is an isthmus of M if and only if e is a loop of M*.

Let M, M’ be two matroids on a set E. The following properties (i)-
(iii) are equivalent :
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(i) every flat of M’ is a flat of M
(ii) every circuit of M is a union of circuits of M’
(iii) T‘M/(X) - T‘M/(Y) < 'I‘M(X) - ’I'M(Y) foralY C X CE.

We write M — M’ to indicate that these three equivalent statements
are true. We may wish to give a distinctive name P (say) to a pair of
matroids M, M’ which are thus related, and we then say that P : M — M’
constitutes a matroid perspective. We define the degree (or rank drop) of
P by d(P) =r(M) - r(M').

A matroid perspective in our sense is a particular case of strong map of
matroids. No significant generality is lost, since it can easily be shown that
any strong map is reducible to a perspective by adding loops and parallel
elements to the matroids. We use the word perspective to emphasize that
the matroids are on the same set, or more generally on two sets related by
a bijection.

Let P: M — M’ be a matroid perspective on a set E.

Given A C E, we have clearly M\A — M'\A and M/A — M'/A. We
say that P\A: M\A — M'\A and P/A: M/A — M'/A are the matroid
perspectives obtained from P by deleting and contracting A respectively.

We say that A is a factorof P : M — M’ if A is a factor of both M and
M'. We then write P = P(A) @ P(E\A), where P(A) : M(A) - M'(A).

The flats of M’, together with the flats of M which have the same
rank in M and in M’, constitute the flats of a matroid L on E. If
r(M)—r(M') <1 wehave L = M. If r(M)—r(M') > 2 then L is a
new matroid of rank r(M’) + 1, called the Higgs lift of M' with respect to
M. The rank in L of X C E is given by

(2.3) ’I"L(X) =min(rM(X),rM/(X)+ 1).

We have M — L — M'. Iterating the lift construction, we get a
sequence of r(M) — r(M’) + 1 matroids on F such that My = M —
M1 - ... r(M)-r(M') = M' and ’I‘(Mi) = 'I‘(M) — 1 for i =
0,1,...,7(M) — r(M'), called the Higgs factorization of M — M’. The
matroid M; is the (r(M) — r(M') — i)-th Higgs lift of M’ with respect to
M. By (2.2), the rank in M; of X C E is given by

(2.4) rm; (X) = min(ra(X), rar (X) + 7(M) — r(M') —3).
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Given a matroid N on a set E and A C E, we have N\A — N/A.
Conversely, by a classical result of Edmonds and Higgs, if M — M’ there is
a matroid N on a set F' containing E such that M = N\A and M’ = N/A,
where A = F\FE. A matroid N with these properties is called a major
of the matroid perspective M — M’. A canonical major, unique up to
isomorphism, is given by a construction due to Higgs.

Let A be any set disjoint from E with |A| = d = (M) — r(M').
We denote by U,.(A) the uniform matroid of rank r on A. Observe that
M @ Uy(A) — M’ ® Up(A) is a perspective of degree 2d on E U A. Then
the d-th Higgs lift of M’ @ Uy(A) with respect to M & Uy(A) is a major
of M — M’. We will denote by H(P) = H(M, M’) this particular major,
called the Higgs major of P: M — M'. By (2.4) the rank in H(M,M') of
X C EU A is given by

(2.5) rHMM)(X)
=min(ry(X NE)+ | X NA,rpm (X NE) +r(M) —r(M)).

2. The Tutte polynomial of a set-pointed matroid.

Let M be a matroid on a set E' and A be a subset of E. We define the
Tutte polynomial of M pointed by A, denoted by t(M; A), as the 3-variable
polynomial given by

(3.1) t(M;A;z,y,2)
—_— Z (fL‘ _ l)T(M)—TM(XUA) (y _ I)IXI_TM(X)ZTM(XUA)_"'M(X).
XCE\A

The cases |A| = 0,1 reduce to known definitions.
Case A = @. We have t(M; @) = t(M), the usual Tutte polynomial.

Case |A| = 1. Let A = {e} for e € E. The polynomial t(M;{e})
is equivalent to the Tutte polynomial of M pointed by e introduced by
Brylawski in [3] as a T'-invariant of the category of pointed pregeometries
(matroids). Let tg(M;e; z,z,2',z') denote this polynomial, which is in 4
variables. No closed formula for t5(M; e) is explicitly given in [3]. However
from [3] Cor. 6.14 one can easily derive the identity t5(M;e;2,z,2',2') =
z't(M;{e}; z,x, 2’ /z’) establishing the equivalence.
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By a straightforward calculation it follows from (3.1) that

(3.2) t(M;A;z,y,2) = 2" (M) -7(M\A) Z (z — 1)rM/A)=rr/a(X)
XCE\A
x(y — 1)XI=rana(X) yr(M\A)=r(M/A) = (ran a(X) =711/ a(X))

Hence t(M; A) is completely determined by M\ A, M/A and r(M).
This remark will be used below in Section 5. On the other hand ¢(M; A)
determines ¢(M\A) and t(M/A), since the following proposition follows
from (2.2):

ProrosiTioN 3.1. — Let M be a matroid on a set E and A be a
subset of E. We have

(33)  t(M\A;z,y) = (z — )TMDTODYM; A2, y, 7~ 1)
(3.4) t(M/A;z,y) = (y — 1) DM A;2,y,1/(y - 1)). .

By [3] Cor. 6.14, tg(M;e) and t(M; {e}) are completely determined
by t(M\e) and t(M/e). However for |A| > 1, the two Tutte polynomials
t(M\A) and t(M/A) and rp(A) are not sufficient in general to determine
t(M; A). Actually t(M; A), which is of degree rps(A) in z, is equivalent in
a certain sense to rps(A) + 1 Tutte polynomials (see Theorem 6.1 and the
counterexample of Figure 1).

In the remainder of this section we show that standard properties of
Tutte polynomials with respects to deletion/contraction, direct sum and
duality generalize to t(M; A).

THEOREM 3.2 — Let M be a matroid on a set F, and A be a subset
of E. The following relations (i)-(iv) hold:

(i) if e € E\A is neither an isthmus nor a loop of M
t(M; Asz,y,2) = t(M\e; A;z,y, 2) + t(M/e; A; 2,9, 2);
(ii) ife € F\A is an isthmus of M
HM; A;z,y,2) = zt(M\e; A; 2, Y, 2);
(iii) ife € E\A is a loop of M
HM; As2,y,2) = yt(M\e; A; 2, y, 2);
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(iv) (case A=FE)

t(M; E;z,y,2) = 2",

Conversely the relations (i)-(iv) define t(M; A) uniquely by induction
on |E\A|.

Lemma 3.3. — For any e € E\ A we have
(35) H(M;4;3,y,2) = (z — 1)/ MMV (M\e; A; 7, y, 2)
+(y — DO M/e; Az, y, 2).
Proof. — Let X C E\ A. Set

t(M; A,X; x, y, Z) — (x_l)T(M)—’I‘M(XUA)(y__l)lxl—TM(X)z’I‘M(XUA)—TM(X)‘

We have
t(M; A) = z t(M; A4;X) = Z t(M; A; X)+ Z t(M; A; X).
XCE\A eg XCE\A eEXCE\A

It follows from (2.2) that

t(M; A; X; 2,9, 2)
_[@=@- 1)7(M)=r(M\e)¢(M\e; A; X;z,y,2) whene¢ X C E\A
(y =)™ t(M/e; A; X \e; 2,9, 2) when e € X C E\A

and this proves Lemma 3.3. m)

Proof of Theorem 3.2. — (i) If e € E\A is neither an isthmus nor a
loop of M, we have r(M) = r(M\e) and rps(e) = 1. Hence, by Lemma 3.3,
t(M; A) =t(M\e; A) + t(M/e; A).

(ii) If e € E\A is an isthmus of M, we have M\e = M/e, r(M) =
r(M\e) + 1 and rps(e) = 1. Hence, by Lemma 3.3, t(M; A) = zt(M\e; A).
(iii) If e € E\A is a loop of M, we have M\e = M/e, r(M) = r(M\e)
and rps(e) = 0. Hence, by Lemma 3.3, t(M; A) = yt(M\e; A).
The proof of (iv) is immediate, and it is also obvious that (i)-(iv)
determine ¢(M; A) uniquely by induction on |E \ A|. o

COROLLARY 3.4. — The Tutte polynomial of a set-pointed matroid is
a polynomial with non-negative integer coefficients. n]
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Using straightforward substitutions we obtain

ProposiTioN 3.5. — Let M be a matroid on a set E, and A be a
subset of E. For any factorization M = M(E;) & M(E2) of M we have

(3.6) t(M; A) =t(M(Ey); AN E;) x t(M(Ep); AN Ey).
o
ProprosiTION 3.6. — Let M be a matroid on a set E, and A be a
subset of E. We have
(3.7) t(M*; Asz,y, 2) = 2AI(M; Ay, 2,1/2).
o

By Theorem 3.2 the computation of ¢(M;A) can be considered
as the beginning of a computation of t(M) when operations of dele-
tion/contraction are first applied to all elements of E\A. Then, when re-
duced to A, instead of going on with the computation of t(M), we just
keep track of the rank of the resulting matroid by means of the third vari-
able. A finer analysis of this partial computation is obtained by introducing
variables representing all possible matroids on A.

THEOREM 3.7. — Let A be a set, M(A) be the set of all matroids on
A, and let (2ar) mer(a) be variables indexed by these matroids. Then by
replacing relation (iv) in the statement of Theorem 3.2 by t(M; E; z,y, z) =
2z, we obtain inductive relations whose unique solution is the polynomial
in [M(A)| + 2 variables with non-negative integer coefficients given by

(3.8) T(M;A;2,y, (2n)Nem(a))

— Z (.’ZI _ l)r(M)—rM(XUA)(y _ l)lxl_TM(X)ZM(XUA)/X-
XCE\A
m}

Properties of this ‘big’ set-pointed Tutte polynomial T(M;A) with
respect to direct sum and duality are analogous to those of ¢(M) or ¢(M; A).

We have

(3.9) t(M; A; z,y,2) = T(M; A; 2,9, (2" ™) neacay)

(3.10) t(M;z,y) = T(M; A;z,y, (((N; 2,9)) Nem(a))-



982 MICHEL LAS VERGNAS

In the next section we will give an application of (3.9) and (3.10) to
the computation of usual Tutte polynomials. We refer the reader to [9] for
application of this polynomial to electrical network theory.

4. Normal subsets.

Tutte polynomials of set pointed matroids can be used in certain
situations to simplify the calculation of Tutte polynomials of matroids. In
application of Theorem 3.7, we show in this section that if A is a normal
subset of a matroid M then the Tutte polynomial ¢(M) can be computed
from t(M; A) and t(M(A)).

We recall a definition introduced in [19]. Let M be a matroid on a set
E. A subset A C F is normal in M if X UY spans A whenever X C F\ A,
Y C A and X UY) spans A for some Yy C A such that rp(Yo) = rm(Y).
Roughly this definition means that subsets of A of equal rank have the
same relative position with respect to £\ A in M.

Example. — Let M be the cycle-matroid of the graph with vertices
a,b,c,d and edges e; = ab ez = ac e3 = bc e4 = ad e5 = bd eg = ad. Then
A = {e4,e€5,€s} is normal in M (but A’ = {ey1, e2, €3} is not).

ProposiTION 2.1. — Let M be a matroid on a set E, and A be a
subset of E. The following properties (i)-(iii) are equivalent:
(i) A is normal in M

(ii) for all X C E\A and Y C A, we have

(4.1) ru (X UY) =min(ry(X) +ry(Y), rm(X U A))

(iil) M is therps(A)-th lift of M/A®Uy(A) with respect to M\A®M (A).

The equivalence of (i) and (ii) is Proposition 1.1 of [19]. We give a
proof for completeness. We will often write X + Y instead of X UY to
denote the union of disjoint sets.

LEMMA 4.2. — Let M be a matroid on a set E, A be a subset of E
normal in M, and X C E\A . If Y C A is such that Clp(X +Y) N (A\
Cly(Y)) # @ then we have Cly (X +Y) D A.

In particular if A contains no loops then for all X C E\A we have
Cly(X)D2Aor Cly(X)NA=go.
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Proof. — We prove Lemma, 4.2 by induction on rp(A) — 7 (Y). The
lemma is trivial when 757 (A) —rp(Y) = 0 or 1. Suppose ra(A) —ry (V) >
2. Let {z1,z2,...,2zk} be a basis of A\ Clp(Y) in M(A)/(AN Clp(Y).
We have k > 2. We may suppose that moreover z; € Cly (X +Y). We
have z; € Cly(X + Y + z2), and hence by the induction hypothesis
ACCly(X+Y +x2). Since rpy (Y +21) =rm(Y +22) =rp(Y)+ 1 and
A is normal, we have A C Cly (X +Y 4+ z1) =Cly (X +Y). u]

Proof of Proposition 4.1. — (i) implies (ii). We have rp (X +Y) <
min(ra (X)) +rm(Y), 7 (X +A)). Suppose ryf (X +Y) < rar(X) +rp(Y).
Let Z be a basis of M(X +Y)/X . We have |[Z| =rpy (X +Y) —ry(X) <
rmu(Y), and hence Y ¢ Clp(Z). Since Cly(X + Z) = Cly(X +Y)
we have Cly(X + Z) N (A\ Cly(Z)) 2 Y\ Cly(Z) # @. If A 'is
normal in M by Lemma 4.2 we have A C Cly(X + Z), and hence
Cly(X+Y) =Cly(X + A). It follows that rp (X +Y) = ry (X + A).

(ii) implies (i). Conversely suppose that ra(X +Y) = min(rp (X) +
rm(Y),rm(X +A)) forall X CE\AandY C A. Let X C E\ A and
Y, Yy C A be such that A C Clp (X + Yo) and rp(Y) = rar(Yp). Since
Clyu(X +Yy) = Clpy(X + A) we have ry (X +Yy) = ry(X + A). Hence
ru(X+A) =ry(X+Y0) <t (X)+7ra (Yo) = 7 (X) 472 (Y). Therefore,
using the hypothesis, rp(X +Y) = ry(X + A). Since Y C A, it follows
that Cly (X +Y) = Clp(X + A), and hence A C Cly (X +7Y).

We now prove the equivalence of (ii) and (iii). Set N = M\ Ad M(A)
and N’ = M/A® Uy(A). Then N — N’ is a matroid perspective on F.
By (2.4), the matroid M is the ra(A)-th lift of N’ with respect to N
if and only if for all X C E\ Aand Y C A we have ryy (X UY) =
min(ry (X UY),ry (X UY) + rar(A4)).

Since rn(X UY) = rpy(X) +ryu(Y) and v (X UY) = mpyppa(X) =
ra(X U A) — ry(A), the above condition is equivalent to rp (X UY) =
min(ra(X) + rpy(Y), rm(X UA)) forall X CE\Aand Y C A a

The Higgs major of a matroid perspective M — M’ is a special case
of a matroid with a normal subset. It is easy to prove that a matroid M on
E is the Higgs major of M\ A — M/A if and only if A C E is independent
and normal in M, and r(M \ A) = r(M).

We recall that the rank function of the truncation Tr(M) of a matroid
M is given by rra(X) = min(ry(X),r(M) — 1) for X C E(M).
More generally the k-truncation Trx(M) of M is defined by roy, (a)(X) =
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min(ra(X), k) for X C E(M). The matroids Tri(M) are called iterated
truncations of M.

THEOREM 4.3. — Let M be a matroid on a set E and A C E be
normal in M. We have

i=rp(A)
(42) t(M) = Y t(M;A)(Tri(M(A)))

=0

where t;(M; A; x,y) is the coefficient of 2* in t(M; A; z,y, z) and Tr;(M(A))
denotes the i-truncation of M(A).

In Theorem 4.3 the key property is that if A is normal in M then
any minor of M on A is an iterated truncation of M(A), and hence is
determined by its rank.

LEMMA 4.4. — Let M be a matroid on a set E and A C E be normal
in M. Then any minor N of M on A is an iterated truncation of M(A).
We have N = Tr,(n)(M(A)).

Proof. — A minor of M on A is of the form (M/B)(A) for some
BCE\A. Let X C A. By (4.1) we have

rm/B)(4)(X) =rrmyp(X) =rm(X U B) — ra(B)
= min(rp (X) + ry(B), s (AU B)) — ra(B)
= min(ra(X),ra (AU B) — rp(B))
= min(rpa)(X), (AU B) — rar(B)).

Hence (M/B)(A) is the (rp(AU B) — ra(B))-truncation of M(A).
o

Proof of Theorem 4.3. — Let M(A) be the set of matroids of M on
A. Set

T(M; A3,y (2n)vema) = », Tn(M; Aiz,y)zn
NEM(A)

where T'(M;A) is the ‘big’ Tutte polynomial of M pointed by A. By
Theorem 3.7 Ty (M; A) = 0 if N is not a minor of M on A. By Lemma 4.4,
for N a minor of M on A we have N = Tr;(M(A)) with ¢ = (V). Hence,
setting d = r(M(A)) and denoting by M(M; A) the set of minors of M on
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A, by (3.9) and (3.10) we have

t(M)= > Tn(M;A)(N)
NeM(M;A)
i=d
=Z‘ Z Tn(M; A).t(N)

=0 Ne M(M;A)
r(N)=i

i=d
=S [ 2 T a)ee(m(4))

i=0 NeM(M;A)

r(N)=i
1=d
=Y t(M; A)t(Tr;(M(A))).
i=0 o

Example (continued). — The Tutte polynomial of My is given by

t(Mo) =2 + 2?2y + x> + v + 222 + 32y + 2% + z + v.

We have
t(Mp; A) = (z+1)22 + (x +y + 1)z
and hence
to(Mo; A) =0
tl(Mo;A) =z+y+1
tz(M(); A) =z+ 1.
On the other hand
t(Tra(Mo(A))) = t(Mo(4)) = z% + zy
t(Try(Mo(A))) =y’ +z+y
t(Tro(Mo(A))) = v°.

By Theorem 4.3 we have
t(Mo) =0.° + (z+y + 1)(¥> + z + y) + (z + 1)(2® + zy).
We supplement Theorem 4.3 by observing that the Tutte polynomial
t(Tr(M)) of the truncation of a matroid M can be calculated from the

Tutte polynomial ¢(M). This result is stated in [3] (cf Proposition 4.11),
but the explicit expression is not given.
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ProposiTiON 4.5. — Let M be a rank r > 1 matroid with Tutte
i=r .
polynomial given by t(M;z,y) = > u;z* whereu; € Z[y] fori =0,1,...,r
=0
Then the Tutte polynomial of the truncation of M is given by

i=r—1 _ j=r

@3 unzy) = Y [ 3wl - DutyY

=1 j=itl j=1

More generally, for any integer k with 1 < k < r — 1, the Tutte polynomial
of the k-th iterated truncation, or (r — k)-truncation, is given by

(4.4) #(Ter_p(M); 2, y) Zk( Z (J—z—l) W)t

= Jj=k+1

+ZyJ —1)FJu; + Z (Z(J_Z_Zl)yi)uj.

j=k+1 i=1

By (2.4) it follows from the expression of its rank function that the
truncation Tr(M) is the (r(M) — 1)-th lift of the rank zero matroid with
respect to M. We postpone the proof of Proposition 4.5 until Section 6
where it will be given in terms of lifts.

5. The Tutte polynomial of a matroid perspective.

Let P : M — M’ be a matroid perspective on a set E, and let
N be a major of P on a set F' containing E. Set A = F\E. By (3.2)
2= (r(N)=r(M))¢(N; A) is a polynomial which depends only on M = N\A
and M' = N/A.

We define the Tutte polynomial of P : M — M’, denoted by t(P) or
t(M,M"), by

(5.1)  t(P;z,y,2) = t(M,M';x,y,2) = 2~ "Ny N, F\E; 2,7y, 2)

where N is any major of M — M’ on a set F containing E. By Corollary
3.4, t(M, M’) is a polynomial with non-negative integer coefficients. From
(3.2) we obtain

(5.2) (M,M';z,y,2)

= 37 (@ — 1) (0 (y 1) X1 (0 (M) =r (M) —(ras () vy (X)),
XCE
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By the Edmonds-Higgs theorem, set-pointed matroids and matroid
perspectives are almost equivalent objects in the present context. Parallel
theories can be developed in either language. In the remainder of the paper,
theorems will be stated in terms of matroid perspectives, which are more
natural in applications [20] [23] [24]. For the convenience of the reader we
restate below theorems of Section 3 in terms of perspectives. Besides basic
properties of Tutte polynomials of matroid perspectives, the main result
of this section is a theorem giving all linear relations between coefficients
valid for all perspectives except a finite number.

Straightforward substitutions yield the following simple but useful
relations between Tutte polynomials of matroids and Tutte polynomials of
matroid perspectives.

ProposITION 5.1. — Let M be a matroid on a set E. We have

(5.3) t(M,M;z,y,z) =t(M;z,y),
(5.4) t(M,Uo(E); z,y,2) = t(M; 2+ 1,y),
63 UUn(E) Mis2) = 500 3z, L4 1)

[m}

ProposITION 5.2. — Let M — M’ be a matroid perspective on a set
E. We have

(5.6) t(M;z,y) = t(M,M';z,y,z — 1)

/ 1
67 UM = - )OO (MM ).
a

The polynomial t(M, M';z,y, z) is of degree r(M) — r(M') in z. By

[3] Cor. 6.14 and (5.1), when (M) — r(M') = 1, we have the following
converse to (5.6),(5.7) :

z(y—1)—1

5.8) t(M,M'; = ———t(M,;
( 8) ( ’ aw’yaz) xy~x—yt( ’w’y)+my—m-—

etz —1
——H%t(M’; z,y).

A generalization of (5.8) when r(M) — r(M') > 1 will be given
in Section 6 (Theorem 6.1). We point out that ¢(M) and t(M') do not
determine t(M, M’) in general.

By Propositions 5.1 and 5.2, a theorem on Tutte polynomials of
matroids is also, in a trivial way, a theorem on Tutte polynomials of
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matroid perspectives. Properties reducible in this way to propertics of Tutte
polynomials of matroids will generally be omitted here.

The following evaluations of t(M, M') are not reducible to evaluations
of t(M) or t(M') :

t(M,M’;1,1,1) counts the number of independent sets of M which
are spanning in M’ (proof by inspection of (5.2))

t(M,M’;0,0,0) is related to Mobius functions of the lattices of flats
of M and M’ (see Corollary 7.4 below)

We have studied in different papers several remarkable evaluations of
t(M, M') (see Section 1).

THEOREM 5.3. — Let M — M’ be a matroid perspective on a set E.
The following relations (i)-(v) hold:

(i) if e € E is neither an isthmus nor a loop of M

t(M,M';z,y,z) = t(M\e, M'\e; z,y,2) + t(M/e, M'[e;z,y, 2);

(ii) if e € E is an isthmus of M’, and hence also an isthmus of M

t(M,M';z,y,z) = zt(M\e, M'\e; z,y, 2);

(i) ife € E is a loop of M, and hence also a loop of M’
tM, M';z,y,2) = yt(M\e, M'\e; z,y, 2);

(iv) ife € E is an isthmus of M and is not an isthmus of M’

t(M, M';z,y,2) = zt(M\e, M'\e; z,y,2) + t(M/e, M' [e;z,y, 2);

(v) (case E = @)
t(2,2;z,y,2) = 1.

Conversely these relations define t(M, M') uniquely by induction on
|E].
Proof. — Theorem 5.3 can be either derived from Theorem 3.2 using
(5.1), or proved directly using the relation
(5.9) t(M,M');z,y,2) = (z - l)r(M)—r(M’)zr(M)—T(M’)—(T(M\E)—T(M’\e))
xt(M\e, M'\e; z,y,2) + (y — 1)} ™M©Et(M/e, M’ Je; z,y, 2)

valid for any e € E. We leave details to the reader. o
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ProrosiTioN 5.4. — Let P be a matroid perspective on a set E, and
E = E, + E; be a partition of E such that P = P(E) & P(E3). We have

(5.10) t(P) = H(P(E1)) x t(P(Ez)).
a]
ProposiTiON 5.5. — Let M — M’ be a matroid perspective. We
have
(5.11) HM™, M*;3,y,2) = 2" MyM, My, 2,1/2).

Coefficients of Tutte polynomials are not linearly independent. Bry-
lawski has established all linear relations between coefficients of Tutte poly-
nomials valid for all matroids except a finite number [3]. These relations
arise from the identity t(M;z,z/(x — 1)) = z!Fl(z — 1)~1BI+ (M) The first
ones are the well-known properties ¢o9 = 0 i.e. the constant term of the
Tutte polynomial of a non-empty matroid is zero, t; o = tp,; i.e. the coefhi-
cients of z and y are equal in ¢(M;z,y) if M has at least two elements, etc.
For Tutte polynomials of matroid perspectives the following generalization
holds.

THEOREM 5.6. — Let t;jx denotes the coefficient of z'y’2* in the
Tutte polynomial t(M,M’';x,y, z) of a matroid perspective M — M. For
non-negative integers n, d let

. — 4k
faz= Y, (-1 (n H]-;: )tijk

0<i+j<n, k>0
_ itk (™ —-Jj+k
fra= (-1) PR LS
0<i+jn, 0<k<d

If the number of elements of M (or M') is at least n+1 then the coefficients
in t(M, M') satisfy the relation

k(N —J+k
> (‘1)+k< itk )t“"“zo'

0<i+j<n, k>0

(5.12) fn

Conversely fn 4 forn =0,1,... constitute a basis of the vector space
of linear forms f in finitely many variables t;;, withi,5=0,1,...0<k <d
such that f = 0 is satisfied by coefficients of Tutte polynomials of all but
a finite number of matroid perspectives M — M’ with r(M) —r(M') = d.
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The case d = 0 of Theorem 5.6, i.e. the case of matroids, is Theorem
6.6 of Brylawski [3]. The relation f,, = 0 can be derived from Brylawski’s
theorem f, o = 0 by means of (5.6). Obviously f, is not a finite sum. In
order to have a basis theorem similar to Brylawski’s, we have to restrict
the class of perspectives so that only finitely many terms of f,, are ‘active’.
In Theorem 5.6 we consider perspectives of fixed degree d, so that t;;, =0
for k > d. Slightly different versions of the converse part of Theorem 5.6
can be obtained by proofs similar to the following one. For instance, it can
be shown that the linear forms f, restricted to variables i, j, k such that
i+k <rresp.i <7’ and k < r—r’ constitute a basis of the vector space of
linear forms f in these variables such that f = 0 is satisfied by coefficients
of Tutte polynomials of all but a finite number of matroid perspectives
M — M’ with r(M) =r resp. r(M) =7 and r(M') = r'.

LEMMA 5.7. — Let n,r,7" be integers such that 0 <r’' <r < n.
We have

i=r' -1\ . ) i=r—r'—1 n ,
(5.13) t(Urn, Ups 3 2,y, 2) = [Z (n L )xz]zr_r + ( ) 4
il S A i=1 et
i=n—r (TL _ Z _ 1) ;
+ S LA
=0 n T 1

Proof. — Let F be a set with n elements. The rank function of U,.(E)
is given by 7y, (g)(X) = min(|X|,7) for X C E. Using this expression, we
obtain (5.13) from (5.2) by a straightforward computation. o

Proof of Theorem 5.6. — We could use (5.6) to derive (5.12) from
Brylawski’s result. However the following direct proof is in fact simpler.
The identity

t <M, Mz, —-x—i,z — 1) = xlEI(x _ 1)-—]E|+T(M)
Z__

is an immediate consequence from (5.2).

Since obviously t;;x = 0 for j > |E|, we get the polynomial identity

Z tijeax ™t (z — 1)IPI=3tk = glBl(g _ 1)r(M),
1,5,k20
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Let n be an integer such that n < |E|. We rewrite this polynomial
identity as

(:L‘ _ l)lE]—n Z tijkxi-’-j(z _ 1)n-—j+k
0<i+j<n, k>0
=zlPl(z — 1)r®) — Z tijpa I (z — 1)IEI-I+E,
i+j>n, k20

The right hand side is a polynomial of degree > n. Since the
constant term of (z — 1)!€1=" is not 0, the polynomial > tijratti-
0<i+j<n, k>0
(x — 1) 9*k has smallest degree > n. Since the coefficient of ™ in this
polynomial is 0 we obtain (5.12).

We now prove that f, 4 for n = 0,1,... constitute a basis. The
independence is clear, by checking which variables have non-zero coefficient
in fnq. Let f = ) ayjktijx be a linear form in finitely many variables ¢;;y

4,5,k
for i,5 = 0,1,... and k = 0,1,...,d, such that f = 0 for all but a finite
number of matroid perspectives M, M' with r(M) — r(M') = d. We show

that f is a finite linear combination of forms f, ¢ withn =0,1,....

Let n be the greatest value of 7 4 j such that a;;; # 0 for some k.
Consider integers ¢, k,m such that 0 <i<mand 1 <k <d<m. Set

M=U;; ®Upn-i ®Ui_r,a—1 ® Uk m
M =U;;®Uni®Upax ® Upm

with element sets of M and M’ chosen so that M, M’ is a matroid
perspective. Then M and M’ have n + d — k + m elements and r(M) —
r(M') =d.

By Proposition 5.4 and Lemma 5.7 we have

HM, M';z,y,2) = 2 “—i(z+1)d—k{ 3 (k’fé)zu (’Z_—ll) +y(...)].

1<k

Therefore, by the choice of n, for m > d we have

Z (d ; k) [ Z (knj g)ai,n—i,jw + (7]’:__11>ai,n_i’j] =0.

0<j<d—k 1<k

The left hand side of this equality is a polynomial in m. This
polynomial having value zero for infinitely many values of m is identically
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zero. Setting m = 1 we get
d—k
> ( ] >(ai’"—i”°+j + in—iktj-1) =0
o<j<d—k N 7
or, equivalently,

d—k+1
Z j Qi n—ik+j—1 = 0.

0<j<d—k+1

This last equality holding for k = 1,2, ...,d, it follows that a; n—ix =
(—l)kai,n_w for k = 1, 2, ey d.
Consider now integers 4, m such that 1 <i<nand m >d+ 1. Set
M=U;_1,-10Upn—i ®Ugt1.m
M =Ui_1i10Uppn-i ®Um

with element sets of M and M’ chosen so that M, M’ is a matroid
perspective. Then M and M’ have n +m elements and r(M) —r(M') = d.
We have

t(M,M';z,y,2) = '~y [(m +m—1)2¢ + Z (d _:;L_ e)zl+

(Y e ("]

Hence for infinitely many values of m

m
Qin—id+ (m— l)ai—l,n—-i,d + Z <d+ 1— E) Ai—1,n—ik
1<8<d—1

+m—1 o - m—2 o . —0
d i—1,n—1,0 d i—1,n—i4+1,0 — Y.

The left hand side is an identically zero polynomial in m. Setting
m =1, we get

Gin—i,d + (—=1)%ai-1,n—it+1,0 = 0.

Combining this relation with a;,—;x = (—1)*¥a;n-io we obtain
@in—ik = (=1)**ag o fori=0,1,...,nand k =1,2,...,d. Set

f'=Ff—00n0fna= Y aitijk-

i,3,k
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In view of (5.12), the greatest value of i+j such that a};; # 0 for some
k is now < n. It follows by induction that f is a finite linear combination
of the f, q4 as required. o

6. The Higgs factorization.

The main result of this section is that the Tutte polynomial of a
matroid perspective of degree d is computationally equivalent to the d + 1
Tutte polynomials of the matroids of its Higgs factorization.

Let P : M — M’ be a matroid perspective of degree d = d(P)
r(M) — r(M'). For k = 0,1,...,7(M) — r(M') we denote by tx(P) =
tx(M, M') the polynomial in two variables defined by

a
Il

d
(6.1) t(M,M';z,y,2) = to(M, M'; z,y) 2"
0

=
Il

We have
(6.2) t(M,M';z,y)
= Z (z — 1)T(M')—TM'(X)(y — 1)|X|—TM(X)'
XCE
TM(X)—-’I‘M/ (X):d—k
THEOREM 6.1. — Let M — M’ be a matroid perspective of degree d =

r(M)—r(M') and My = M, M,,...,My = M’ be its Higgs factorization.
Then for i =0,1,...,d we have

(6.3) t(Mi;z,y)

k=i k=d
=Y -1 Ft(M Mz, y) + Y (21— D) (M, M 3,y).
Conversely
(6.4) to(M,M',z,y) = w—_%x—_—y'[-t(Mo;w, y) + (z — 1)t(My; z,y)]
1
6. te(M, M'; =—— Wy — Dt(Mg_1;
( 5) k( ’ a:l:vy) xy_x_y[(y )t( k 1,.’1?,:1/)

+(~zy +z+y— 2)t(Mi; 2,9) + (z — Dt(Mis1;2,9)]
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fork=1,2,...,d—1
1
/. -t (e . _ .
(66) td(M) M y Ty y) Ty—cT—y [(y l)t(Md—l) z, 3/) t(Mda Z, y)]
or, equivalently,
1
(6.7) t(M,M';z,y,z) = 5:7:_—1/[(yz—z—l)t(M;an,3,/)4-(—-,Z~I—:c~1)zd—1

i=d—1
xt((M'sz,y)+ (2 —z+1)(yz —2 - 1) Zz’ (M z,y)).
=1

Proof. — For X C Eandi=0,1,...,d set

t(Mi; Xz, y) — (w _ I)T(Mi)—"'Mi (X)(y _ 1)|X|—TM,;(X)‘

‘We have

k
t(My; z,y) = > t(Mi; X;2,).

XCE
TM(X)—T'M/ (X):d—k

Il
Y

o
Il
=]

By (2.4) we have rp, = min(rp(X),ra(X) +d —0). If ry(X) —
rm(X) =d—k, we have rp,(X) =ry (X)) +d—i =ry(X)+ k —i for
0<k<iand rp(X) =rym(X) =rpm(X)+d—kfori+1<k<d By
straightforward substitution we obtain

—1)i—k 1. .
> t(Mi;X;x,y)={(i 1)t (M, M'; 2, y) 1f0<1’9

<1
— Dk (M, M ;2,y) ifi+1<k<d.

XCE (
TM(X)—TM/(X)=d—k:

The first part of Theorem 6.1 follows.

By (6.3) the polynomials ¢t(M;) for ¢ = 0,1,...,d are linear com-
binations with coefficients in Q(z,y) of the polynomials ¢ty (M, M') with
k=0,1,...,d. The second part of Theorem 6.1 amounts to inverting the
corresponding (d + 1) x (d + 1) matrix (a particular instance of Toeplitz
matrix). Surprisingly enough this computation can be completely carried
out, yielding the simple formulas (6.4)-(6.6). Expanding the determinant
Ag4(z,y) of the matrix along its last column we find it satisfies the relation
Ay = (zy — ¢ — y)Ag4_1. Hence Ay = (zy — = — y)?. Similar inductive
relations are satisfied by determinants obtained by deleting one row and
one column.
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Alternatively, given (6.4)-(6.6) we can check their validity directly.
Using (2.4), for any X C E we have

1
—_— . _ .
py—— y[ (Mo 2,y) + (z = 1)t(My; 2,y)]
_ 0 if’l‘M(X)—TMI(X)<d
T te(M, M X 3,y) i (X)) — e (X) = d.
Analogous identities hold in the two other cases. O

The particular case r(M) — r(M’) = 1 of (6.7) is equivalent to
Corollary 6.14 of [3] - see (5.8).

When r(M) — r(M’) > 2, the polynomials (M) and t(M') are not
sufficient in general to determine t(M,M’), as shown by the following
counterexample. Let M, L, M', N’ be the cycle-matroids of the graphs
with edge-sets {e; = ab,es = ac,es = bc,eq4 = ad, e5 = ae}, {e1 = ab,ex =
ac,e3 = bc,eq = ad, es = bd}, {e1 = ab,e2 = ac,e3 = be,eq = ab, e5 = ab},
{e1 = ab,e; = abye3 = abes = ac,es = bc} respectively. These
matroids are displayed in Figure 1 as matroids of affine dependencies
of set of points in dimensions 3,2,1,1 respectively. We have M — M’
and M — N’'. Obviously M’ ~ N’, and hence t(M') = t(N'). However
t(M,M') = (22 +3x+y+2)22+Br+2y+3)z+z+y+1#t(M,N') =
(z24+32+3)22 + (zy+2x +y+5)z+y+2

We observe moreover that M — L - M’ and M — L — N’
factorize M — M’ and M — N’ respectively. Since the Tutte polynomials
of the matroids composing these two factorizations are equal, it follows
that Theorem 6.1 cannot be extended to general factorizations (actually
M — L — M’ is a Higgs factorization, whereas M — L — N’ is not).

Figure 1
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By Theorem 6.1, for numbers z,y,z such that zy —z — y # 0,
the evaluation t(M, M’;z,y, 2) can be expressed as a linear combination
of t(M;;z,y) with ¢ = 0,1,...,d. The situation is different when zy —
xz —y = 0. Proposition 6.2 relates t(M, M’;0,0, z) to the 3 invariants of
Mo, My, ..., M4. We recall that 8(M) is the coefficient of z in t(M;z,y),
or alternatively, since ¢(M;0,0) = 0, the limit of ¢(M;z,0)/z when z — 0.

ProposiTION 6.2. — Let M — M’ be a matroid perspective with

d = r(M) — r(M'), and My = M,My,...,My = M’ be its Higgs
factorization. We have

(6.8) to(M, M';0,0) = B(Mo) + B(M1)

(6.9) (M, M'50,0) = B(Miy) + 2B(M) + B(Mipa)
fori=1,2,...,d -1

(6.10) ta(M, MI;O,O) = B(Mg-1) + B(My).
Proof. — By (6.4) and the continuity of the polynomial to(M, M') we
have

to(M, M’;0,0) = lirrbto(M,M';z,O)

= il_r.% —_}E [—t(Mo; z,0) + (z — 1)t(My; z,0)]
= B(Mo) + B(M).

The two other cases are similar. u]

COROLLARY 6.3.
(6.11) t(M, M’;0,0,0) = B(M) + B(M)

k=d—1
(6.12) t(M, M’;0,0,1) = 28(M) +2B8(M’) +4 Y B(Mx).

k=1
a

Observe that Proposition 6.2 implies that t(M,M’;0,0,—-1) = 0.
However this equality is trivial since by (5.6) we have t(M, M’;0,0,-1) =
t(M;0,0) = 0.
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ProprosiTion 6.4. — Let M — M’ be a matroid perspective with
d = r(M) —r(M'"), and My = M,M,...,My = M' be its Higgs
factorization. Let i,j be two integers such that 0 < i < j < d. We have

k=i
(613) t(Mi’ Mj; z,Y, Z) = Z(y - l)i_ktk(Ma M/; z, y)
k=0
k=j-1 ' . k=d .
+ Z 2t (M, Mz, y) + 27 Z(x - )%t (M, M'; z,y).
k=it+1 k=j

Proof. — Proposition 6.4 is an immediate corollary of Theorem 6.1.
Alternatively a direct proof is as follows. For X C F and ¢ =0,1,...,d set

t(Mi,Mj;X;x,ya Z)
— (:L' _ 1)7‘(Mj)—’er (X)(y _ 1)IX|_TM'i (X)zr(Mi)_T(Mj)“(TMi(X)_TM]- (X))

By (5.2) we have

k=d
t(Mi,Mj) = Z t(M@‘,Mj;X) = Z Z t(Mi,Mj;X).
XCE k=0

XCE
rm (X)—7rp (X)=d—k
By (2.4) we have
S M, My X;3,y,2)

XCE
'I‘M(X)—T‘M/ (X):d—k

(y = 1)kt (M, M'; 2, y) ifO<k<i
= 2t (M, M z,y) ifi<k<y
27 — 1) It (M, M ;2,y) if j<k<d.
]
CoroLLARY 6.5. — The Tutte polynomial of the Higgs major

H(M,M') of a matroid perspective M — M’ can be calculated from
t(M,M’). Set d = r(M) — r(M'). We have

k=d
(6.14) tH(M, M");z,y) = > te(M, M';2,9)t(U,q; , y)-

k=0

Proof. — By (2.5), we get Corollary 6.5 from Theorem 6.1, Propo-
sition 4.1 and Proposition 4.4. Alternatively by (5.1) Formula (6.14) is a
particular case of (4.1). O

We end this section by a proof of Proposition 4.5.



998 MICHEL LAS VERGNAS

LEMMA 6.6. — Let a,b,c be three non-negative integers such that
b < a. We have
(6.15)
k=min(a—b,c) fa— k c (—l)a_b(c;izl) lf cza
Z (—1)( b )(k)= 0 ifb<c<a
k=0 (Z:i) ifcgb.

Proof. — We first prove (6.15) when ¢ > a by induction on a + b.

k=a

For b = 0 (6.15) reduces to Y (-1)*(5) = (-1)2(,') which can
k=0
easily be proved by induction on a.

For b = a (6.15) is trivially true.

Suppose 0 < b < a. For k = 0,1,...,a — b — 1 we have (“;k) =
("7 + (*557)- Hence
k

- X (—1)'“(“ e 1) (Z) + <—1)“_b(a - b)
; kzg_l(—l)’“(“ 0
SE )R B (30

= (—1)"‘1’"1 (Z : l; : 1) + (—l)a’b (Z : 2) (by induction)
- (_1)a-b<c . i‘b 1).

k=a—b
Wehave > (=1)F(*;%)(5) = (=1)+7°(°;%;") for all integers ¢ > a.
k

Both terms of this equality can be considered as polynomials in c. Since
equality holds for infinitely many values of ¢, the corresponding polynomial
identity holds. As easily checked, this identity reduces to (6.15) when
evaluated at non negative integer values of c. m]
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Proof of Proposition 4.5. — Set r = r(M) and let My = M, My,...,
M, = Uy(E) be the Higgs factorization of the matroid perspective M —
Uo(E). We have Tr,_x(M) = M. Hence by Theorem 6.1

t(Trr—k(M); 2, y) = t(My; 7, y)

=k—1 b=r
= > (- D (M, Us(E)) + Y _(z — 1)*Fto(M, Us(E)).
=0 L=k

By Proposition 4.1 we have

t(Ma U()(E);ﬂf,y, )

j=r {f=j ' l=r

=t(M;z+1,y) = Zu]z—l—l)]—Z( @) ) Z(Z(z)uj)
4 j=¢

j=0 ¢=0 =0

j=r .
Hence t;(M,Uy(E); z,y) = Y (})u; and therefore
j=¢
t(Trr—x(M);z,y)
t=k—1

>l

=

T

£

(Dulo-v=+ X[ ()w]e-v+

4

Il

3
<.
1

L

<.

j=£

o
1
ol
<.
1
&

by using Lemma, 6.6. Similarly
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= e:(—l)“‘ [ZX:E (;) uj] [isz(—l)i (g B k) x}

=0

g2 PO e G [

Il
ol
L]
|
ES
<.
M
3
/N
S,
|
| ~.
—
—
N———
-
e
8@

again by Lemma 6.6.

7. Tutte polynomials in terms of lattice of flats.

Let M be a matroid on a set E. We denote by F(M) the lattice of flats
of M and by () the Mobius function of F(M). We shall sometimes use
the standard lattice-theoretic notations 0, 1, AA B, AV B for the elements
Cly(2), E, AN B, Clp (AU B) respectively of the lattice F(M), where

A, B € F(M) and Clp(2) is the set of loops of M.

As well-known, the Tutte polynomial of a matroid M can be expressed
in terms of F(M) and its Mobius function. This result generalizes to
Tutte polynomials of matroid perspectives. We also give a generalization

of Stanley’s factorization theorem.

THEOREM 7.1. — Let M — M’ be a matroid perspective on a set E.

We have

(71) M Msz,y,2)= Y. pran(V, X) (@ — 1) (0
X,YEF(M)

xyIYl(y - 1)_7'M(X)ZT(M)_T(M/)"'(TM(X)"TM’(X))‘

The following lemma is due to Rota.

LEMMA 7.2 [25] (see also [1] Theorem 4.27). — Let P be a poset and

@ : P — P be a closure on P. Let € P and y € p(P). We have

Y () {0 ifz ¢ p(P)
plz,t) = )
tePp(t)=y popy(z,y) ifxz € o(P).
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LEMMA 7.3. — Let ¢ : 2F — 2F be a closure on a set E and F be the
set of closed subsets of E. Let X € F. We have

o - =3 urp(z, X))

YCX ZeF
e(Y)=X

Proof. — The Mobius function of the Boolean lattice B of subsets of
E is given by up(A, B) = (=1)!B\Al if A C B and 0 otherwise. Applying
Lemma 7.2 we have

z (y— ¥ = Z Z(_I)IY\ZlyIZI

YCX YCX ZCY
p(Y)=X p(Y)=X

=3 ( v (_1)IY\Z!)y|Z|

ZCX  zCy
p(Y)=X

= > ur(Z, X"
ZeF
]

Proof of Theorem 7.1. — Set f(k,k') = (z — 1)"M)=F" (y —
1)-—kzr(M)—r(M')—(k—k')~ Then

HM,M5z,y,2) = > flra(X),rar (X)) (y — DX
XCE

- Z Z Form(Y),rae (Y)(y - )Y

XeF(M) YCX

Clu(Y)=X
= Y femX)rwe(X) D -1
XeF(M) yex
Clpy(Y)=X
XeF (M) YeF(M)

The last equality is Lemma 7.3. We have used the fact that rp(Y) =
ra(X) and rpr (Y) = ra (X)) when Clp(Y) = X. The first equality holds
by definition of closure and rank in a matroid. The second uses crucially
the fact that Clp(Y) C Clp(Y) for all Y C E, which holds if and only if
M — M' is a perspective. m]
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COROLLARY 7.4. — Let M — M’ be a matroid perspective. If M has
no loops then

(7:2) (M, M’;0,0,0) = (-=1)"™) > nrn) (0, X)
XeF(M)
M (X) =7 p (X)=r(M)—r(M’)
(7.3)
t(M, M';0,0,1) = (=1)"™) 3™z a0, X) (=) GO (X0,

XeF(M) O

The proof of Corollary 7.4 is immediate by inspection of (7.1). Let
M Dbe a loopless matroid on a set E. From (7.2) with M’ = Uy(F) and
(5.2) we obtain t(M;1,0) = t(M,U(E);0,0,0) = (—=1)" ™) pr1(0,1), a
classical evaluation of the Tutte polynomial.

Let M — M’ be a matroid perspective on E. We define

(7.4) p(M,M';u,w)
= STl a0, X)ur M) a0 ()= (M) ~(rae (X) =300 (X))
XeF(M)

(7.5) (M, M5 u,v,w) = > oYIp(M/Y, MY u,w).
YEF(M)

When M has no loops, we have clearly
(7.6) q(M, M';u,0,w) = p(M, M';u,w).

When M = M’ the polynomials p(M, M') and q(M, M’) reduce respec-
tively to the Poincaré polynomial and the coboundary polynomial of M
(see [12] [13]).

In [13] a different generalization of the coboundary polynomial is in-

troduced, namely the polynomial 3> prar) (Y, X)ur M) =ra (X)yrm (Y)
X,YEF(M)
for a matroid perspective M — M’ (cf [13] Thm.9).

LEMMA 7.5. — Let M — M’ be a matroid perspective, and Y €
F(M). We have

(7.7 p(M)Y,M']Y;u,w)
= E NJ-'(M)(Y,X)uT(M’)_"‘M'(X)wT(M)—T(M')—(rM(X)—TM,(X))‘

XeF(M)
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Proof. — We have

p(M/Y,M']Y;u,w) = Z llf(M/y)(O, Z)
ZeF(M]Y)

M 1Y) =rags 3y (2) r (MY )= (M [ Y ) ~(raa )y (Z) =7 pg1 3 (2))

The mapping Z — X = Cly(Y U Z) is an isomorphism from F(M/Y)
onto the interval (Y, 1] of 7(M). Hence pr(rm/y)(0, Z) = prar)(Y, X).

We have r(M/Y) = r(M) —ry(Y), r(M')Y) = r(M") — rap (Y),
TM/y(Z) = 'I‘M(YU Z) — TM(Y) = ’I‘M(X) — TM(Y), ’I"M//y(Z) = TMI(Y U
Z)—rm(Y) = ry(X) —rp (Y). We point out that the equality rp (Y U
Z) = rp(X) holds because M — M’ is a perspective. Substituting these
different equalities in the above expression for p(M/Y,M'/Y;u,w), we
obtain Lemma 7.5. o

ProPoOSITION 7.6.

(7.8) q(M,M’;U,va) — (’U _ 1)r(M)t (M,M'; " ﬁ T +1,v, v'li) 1) .

When M has no loops

(7.9) p(M, M';u,w) = (=1)"M (M, M';1 — u,0, —w).

Proof. — From Lemma 7.5 and (7.5) we obtain

q(M, M';u,v,w)
= Y (¥, X)ur O Oy IY Ly (M) =r (M) =(rae (X)=rags (X)),
X, YEF(M)

Formula (7.8) follows then from Theorem 7.1. We obtain (7.9) from
(7.6). ]

Stanley’s factorization theorem for modular flats [26] generalizes
to p(M,M'). We recall that a flat A is modular in a matroid M if
rim(AUX) +rpy(ANX) =7y (A) + ru(X) for all flats X of M.

THEOREM T7.7. — Let M — M’ be a matroid perspective and A be
a modular flat of M such that ry(A) — rap(A) = r(M) — r(M’). Then
p(M(A), M’'(A)) divides p(M, M'). We have
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(7.10) p(M,M’;u,w)

=p<M(A),M’(A);u,w)( ) uﬂM)(o,X)u“M)-’M(A)-w(X)).

XeF(M)
XNA=0

Stanley’s theorem is obtained when M = M’'.

LEMMA 7.8 (see Proof of Theorem 2 of [26]). — Let M be a matroid
and A be a modular flat of M. For any X € F(M)

(7.11) pro) (0, X) = > tr) (0, Y) ey (Y, X).
YeF(M)
YAA=0,Y<X<YVA

For any X,Y € F(M) such that Y AA=0andY < X <Y VA

(7.12) rm(X) =rpy(Y) +rpu(X A A).

LEMMA 7.9. — Let M — M’ be a matroid perspective and A
be a modular flat of M such that rap(A) — ry(A) = r(M) — r(M').
Then A is a modular flat of M’ and for any flat X of M we have
T‘M(X) — T'M/(X) = T‘M(X /\A) - T’M/(X A A)

Proof. — Since M — M’ is a perspective, we have r(M) — r(M') =
ra(A) — o (A) < rp(Clpg (A)) — rag (Clag (A)) < r(M) — 7(M'). Hence
rm(A) = ra(Clpr (A)). Therefore since A is a flat of M by hypothesis,
and Clp(A) is a flat of M since M — M’ is a perspective, we have
A=Cly(A)ie. Ais aflat of M'.

Since A is modular in M, for any flat X of M we have rp (X U
A) +ry(X N A) = rpy(A) + ra(X). By submodularity ram (X U A) +
ram (X NA) < ryr(A) + rp(X). On the other hand, M — M’ being
a perspective, we have rpr(A4) — ra(A) S rm(X U A) —ryp (X UA) <
r(M) — r(M’). Therefore since rpr(A) — ra(A) = r(M) — r(M') we have
rm(A) —rm(A) =rm(XUA) —ryp (X UA) =r(M) —r(M'). It follows
that rpy (X NA) —rayp(X NA) 2 ryg(X) — ryer(X). Since M — M’
is a perspective the reverse inequality holds, and we have the equality
rm(XNA)—rm(XNA)=rym(X)— 7y (X). The modularity of A in M’
follows. m]
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Proof of Theorem 7.7. — By (7.11) we have

p(Ma M,; u, ’U))
= Z ltf(M)(O,X)uT(M')—rM/(X)wr(M)—r(M')-(rM(x)_,M,(X))
XeF(M)
= Z ( Z IJ«J-'(M)(O, Y)/"}'(M)(Y, X)) ur(M')_rM,(x)
XeF(M) YeF(M)

YAA=0,YSXKYVA
¢ " (D=7 (M)~ (rag (X)=rpps (X))

B Z Hran(0.Y) ( Z pr oy (Y X yur M= (0
YeF(M) XeF(M)
Yna=0 Y<X<YVA

« wr(M)—r(M')—(rM(X>—rM/(X))),

Let X,Y € F(M) be such that YAA=0and Y < X <Y V A
By (7.12) we have rp(X) =rpm(Y) + 7 (X A A). By Lemma 7.9 we have
rm(X) —rp(X) = rg(XANA) —rpp (X A A) and 7y (Y) = rape (V). Tt
follows that 7 (X) = ray (V) + ra (X A A).

The mapping X — Z = X A A is an order isomorphism of the
interval [Y,Y V A] of F(M) onto the interval [0, A]. Hence pzr(p)(Y, X) =
prm)(0, Z). Using this mapping and the above relations we obtain

S o (%, X)ur )= (X)yr () =r (M)~ 720 (0 =raes ()

XeF(M)
Y<X<KYVA

= WM =) S (0, Z)ue (AT (2)

ZeF(M)
Z<A

x ™M (A)=Tar (A)=(rm(2) =T (2))

= M) = (A =ra V(AL (A), M (A); u, w)
= " M= (A)=ru (V) M(A), M (A); u, w). o

Remark 7.10 — Since p(M,M';u,u) = p(M;u), the Poincaré
polynomial of the matroid M, it follows that in the formula (7.10) the
quotient p(M, M')/p(M(A), M'(A)) is equal to p(M)/p(M(A)). This last
quotient has been identified by Brylawski as the Poincaré polynomial of
the complete Brown truncation of M relative to A divided by u — 1 ([4]
Cor.7.4).
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We recall that the principal extension of a matroid M with respect
to a subset of elements A is the matroid whose flats are all flats of M not
containing A and all sets of the form X U {p} for X flat of M containing A,
where p is a new element. The Brown truncation of a matroid M relative to
a subset of elements A is obtained by first performing a principal extension
of M with respect to A, and then by contracting the new element.

Let us denote by Tr(M; A) the result of this operation. Note that
M — Tr(M; A) is a perspective. The usual truncation is Tr(M; E), when
A is the whole set E of elements. The complete Brown truncation of M
relative to A in the sense of Brylawski is obtained by iterating rps(A4) — 1
times the Brown truncation relative to A. We denote it here by Br(M; A).

COROLLARY 7.11. — Under the hypothesis of Theorem 7.7 we have

(713)  p(M, M'su,) = ——p(M(A), M'(A);u, 0).p(Br(M; A;u). ]

The above proof of Theorem 7.7 follows Stanley’s proof. Using Bry-
lawski’s result, Theorem 7.7 can be derived from Stanley’s Factorization
Theorem by means of Theorem 6.1.

LeEMMA 7.12. — Let M — M’ be a matroid perspective on a set E
and A C E. Then Tr(M; A) — Tr(M'; A).

Proof. — Let N, N’ be the principal extensions of M, M’ respectively
relative to A. By [18], N — N’ is a matroid perspective. Contracting
the new element, we deduce that Tr(M;A) — Tr(M’;A) is a matroid
perspective. O

ProPOSITION 7.13. — Let M — M’ be a matroid perspective and A
be a modular flat of M such that rpr(A) — rpp(A) = d = r(M) — r(M').
Let My = M — M; — ... - My = M’ be the Higgs factorization of
M — M'. Then if M'(A) is loopless, the complete Brown truncations of
My, M, ..., M, relative to A are all equal.

Proof. — Suppose first 7p-(A) = 1. The condition 7ps(A) —rp (A4) =
d=r(M)—r(M'), implies rpr,_,(A) = 2if d > 1 (otherwise Lemma 7.13 is
trivial). Hence the (unique) major of M’ — My_ is an extension of My_;
by an element {e} spanned by A. Since M’ is loopless, the element e is in
general position in A. Suppose e is spanned by a flat F' of My_1. Since A
is modular in My_; by Lemma 7.9, it follows that e € ANF. If A £ F the
intersection AN F' is of rank 1, and hence e is parallel to some element in
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A, a contradiction. Therefore A C F, and by definition {e} is the principal
extension of My_ relative to A. It follows that M’ is the complete Brown
truncation of My_;.

Suppose now 7/ (A) > 2. Then by Lemma 7.12 we have Tr(M; A) —
Tr(M'; A). The Higgs factorization of Tr(M; A) — Tr(M’; A) is given by
Tr(My) — Tr(My) — ... — Tr(My). Observe that for i = 1,2,...,d the
subset A is a modular flat of Tr(M;; A) and that the complete Brown
truncation of Tr(M;; A) relative to A is equal to the complete Brown
truncation of M; relative to A. Using induction and the above case
rar(A) = 1, Lemma 7.13 follows. o

N.B. If loops are permitted, the matroids Br(M;; A) may not be equal, but
they are equal as geometries for all ¢ such that 7,4, (A) is not 0.

Alternative proof of Theorem 7.7. — Let Mo = M — M; — ... —
My = M’ be the Higgs factorization of M — M’. By Lemma 7.9 the
subset A is a modular flat of M; for i = 1,2,...,d. Hence by the theorems
of Stanley and Brylawski applied to M;

P(Miu) = —p(My(A);u)p(Be(M;; A;u).

By Lemma 7.13, if M;(A) is loopless, we have Br(M;(A)) = Br(M; A)
hence p(Br(M;(A))) = p(Br(M;A)). Otherwise p(M;(A)) = 0. Using

formula (6.7) with 2 = v — 1y = 0 and 2 = —w in view of (7.9), we
obtain (7.13) directly by factorizing p(Br(M; A)). Details are left to the
reader. m]

8. Matroid perspectives on ordered sets.
Activities.

The original definition by Tutte of the dichromatic polynomial of a
graph in [28] is not by a closed formula as in Section 2, but uses activities
of spanning trees. Tutte’s definition was extended to general matroids by
Crapo [12].

Specifically, given a matroid M, we have

(8.1) HM;z,y) = Z 24(B)y<(B)
B basis of M



1008 MICHEL LAS VERGNAS

where ((B), €(B) denote the internal and external activities respectively of
B with respect to a given ordering of the set of elements of M.

We give in this section the extension of this formula to matroid
perspectives.

Let E be an ordered set and M be a matroid on E.

Let X C E be independent in M. For any e € E\ X, there is at most
one circuit of M contained in X U {e}, and if such a circuit exists then it
contains e. We denote by ep(X) the number of elements e € E\X such
that X U {e} contains a circuit with smallest element e.

Dually, for any X C F spanning in M and any e € X, we denote by
tam(X) the number of elements e € X such that (E\X) U {e} contains a
cocircuit with smallest element e.

Note that X being spanning in M if and only if F\X is independent
in M*, we have tpr(X) = ep+(E\X).

We say that epr(X) and ¢pr(X) are the external respectively internal
activities of X. In the matroid case, when X is a base - i.e. X is both
independent and spanning - these definitions reduce to the usual ones.

THEOREM 8.1. — Let E be an ordered set and M — M’ be a matroid
perspective on E. We have

(8.2) t(M,M';z,y,z)

= Z mbe(X)yEM(X)ZT(M)—T(M')—(TM(X)—TM'(X))~
XCE

X independent in M
and spanning in M’

The proof of Theorem 8.1 is by deletion/contraction of the greatest
element. It generalizes the proof given by Brylawski in the matroid case [6].

THEOREM 8.2. — Let E be a set with a total ordering and let M be a
matroid on E. Let e be the greatest element of E with respect to the given
ordering.

If X C F is independent in M, then

(8.3) emve(X) =em(X) +ru({e}) —1ife¢g X

(8.4) exje(X) = en(X) ife € X.
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If X C F is spanning in M, then
(8.5) LM\e(X) = LM(X) ife ¢ X
(8.6) im/e(X) = tpm(X) = (r(M) —r(M\ e)) ife € X.

Proof. — For z € E\ X set ep(X;z) =1 if there exists a circuit of
M contained in X with smallest element z, ep(X;x) = 0 otherwise. We
have ep(X) = 3" e p\ x €M (X5 ).

(8.3) Suppose e ¢ X. Clearly for all z € E \ (X U {e}) we have
em(X;x) = ean\e(X;2). On the other hand since e is the greatest element
of E for the ordering we have ep(X;e) =1 if and only if e is a loop of M.
Hence

em(X) = Z em(X;z)

z€E\X

> em(X;z) +em(Xse)
=€ E\(XU{c})

Y anelX;z) +em(Xe)
z€(E\{e})\X
= CM\e(X) —rpy({e}) + 1.

(8.4) Suppose e € X. Let x € E\ X and C be a circuit of M contained
in X U{z}. Then C\ {e} is a circuit of M/e contained in (X \ {e}) U {z}.
This is clear when e € C, and follows from the fact that X is independent
when e ¢ C. Conversely if C’ is a circuit of M/e contained in (X \{e})U{x}
then C' or C' U {e} is a circuit of M contained in X U {z}. Hence e being
the greatest element of E for the ordering we have ep(X;z) = 1 if and
only if epr/e(X \ {e};z) = 1.

(8.5) and (8.6) follow from (8.3) and (8.4) by duality. O.

Proof of Theorem 8.1. — For X C E we set
FM, M'; X;z,y, 2) = gt XD yem (X) prM)=r(M')=(raa (X)=rar: (X).

Let e be the greatest element of E for the ordering. We show that for this
choice of e the function f(M, M’} defined by

F(M,M';3,y,2) = >, F(M,M'; X;3,y, 2)
XCE

X independent in M
spanning in M’
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satisfies the inductive relations of Theorem 5.3. It follows that f(M, M') =
t(M, M') proving Theorem 8.1.

We have
fMMy = > f(M,M;X)
XCE

X indep. in M
span. in M’

= > fMMX)+ > f(MM;X).

XCE\{e} e€EXCE
X indep. in M X indep. in M
span. in M’ span. in M’

In each of the cases (i)-(v) below, which refer to the corresponding
cases of Theorem 5.3, we evaluate the two terms of the above sum. We
denote by the letter X a subset of E independent in M and spanning in
M. Ifee X weset Y = X\ {e}.

(i) e is neither an isthmus nor a loop of M

(ia) If e ¢ X by Lemma 8.2 we have tp(X) = tpan\qe}(X) and
em(X) = epr\fe} (X). Since M and M’ are in perspective, a non-isthmus
of M is also a non isthmus of M’, and hence (M) = r(M \ e) and
r(M') = r(M’\ e). We have thus r(M) — r(M') — (rp(X) — rap (X)) =
r(M\e)—r(M'\e)— (rayne(X) —rmne(X)). It follows that f(M,M'; X) =
f(M\e, M \e; X).

Now a subset X of E \ {e} is independent in M if and only if X
is independent in M \ e, and since e is not an isthmus of M’ we have X
spanning in M’ if and only if X is spanning in M’ \ e. Therefore

o fMiX) YT f(M\e, M\e; X) = f(M\e, M'\e).

XCE\{e} XCE\{e}
X indep. in M X indep. in M\e
span. in M’ span. in M'\e

(i.b) If e € X by Lemma 8.2 we have tp/(X) = tprr/e(Y) and
em(X) = €pr/e(Y). On the other hand r(M) —ra(X) = r(M/e)~rpr/e(Y)
and r7(M') — rap(X) = 7(M'/e) — rpr/e(Y), and hence r(M) — r(M') —
((rm(X) —rm (X)) =r(M/e)—r(M'/e) = (rpr/e(Y) = a7 (Y). Therefore
F(M, M X) = [(M/e,M'/e;Y).

Since e is not a loop of M, we have X independent in M if and only
if Y is independent in M/e, and X is spanning in M’ if and only if Y is
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spanning in M’. It follows that

Yo fMMX)= Y f(M/e,M'/e;Y) = f(M[e,M[e).

e€EXCE YCE\{e}
X indep. in M Y indep. in M/e
span. in M’

span. in M’ /e

(ii) e is an isthmus of M’ (and hence also an isthmus of M since M and
M’ are in perspective).

Every subset X of E spanning in M’ contains e. Hence

> f(MM;X)=0.
XCE\{e}
X indep. in M
span. in M’

If e € X by Lemma 8.2 we have tpr/(X) = tayrne(Y)+1 and e (X) =
éam\e(Y). On the other hand (M) =r(M \e) + 1, r(M’) =r(M'\ e) +1,
rm(X) =rane(Y)+1 and rpp (X) = rpyne(Y) + 1. Hence r(M) —r(M') -
((rme(X) =rp (X)) =r(M/e) —r(M'/e) = (Trr/e(Y) = ragre(Y). It follows
that f(M,M'; X;z,y,2) = zf(M \ e, M’ \ ¢;Y;2,y, z). Since a subset X
of E containing e is such that X is independent in M and spanning in M’
if and only if Y = X \ {e} is independent in M \ e and spanning in M’ \ e
we have

fM,My= " > f(M,M';X)
e€eXCE
X indep. in M
span. in M’
=z Y,  f(M\e,M\gY)=zf(M\e,M \e).
YCE\{e}
Y indep. in M\e
span. in M'\e
(iii) e is a loop of M (and hence also a loop of M’ since M and M’ are
in perspective)

Every subset X of E independent in M is contained in E'\ {e}. Hence

Y fMM5X) =0.
e€EXCE

X indep. in M
span. in M’

If e ¢ X by Lemma 8.2 we have tp(X) = tpne(X) and ey (X) =
€a\e(X) + 1. On the other hand (M) = r(M \ e) and r(M') = r(M'\ e).
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It follows that f(M,M'; X;z,y,2) = yf(M \ e,M'\ €;X;z,y,2). Since a
subset X of E \ {e} is independent in M and spanning in M’ if and only
if X is independent in M \ e and spanning in M \ e we have

FMMYy = N f(M, M X)
XCE\{e}

X indep. in M
span. in M’

=y Y, fM\eM\eX)=yf(M\e M \e).
XCE\{e}
X indep. in M\e
span. in M'\e

(iv) e is an isthmus of M but is not an isthmus of M’

(iv.ia) If e ¢ X by Lemma 8.2 we have tp(X) = tpyn\e(X) and
em(X) = eane(X). On the other hand r(M) = (M \ e) + 1 and
r(M') = r(M’\e), and hence r(M)—r(M")—(rap (X)—rp (X)) = r(M\e)—
r(M\e') = (rane(X) —Tmne(X))+1. It follows that (f(M,M'; X;x,y,2) =
2f(M\e,M'\ e;X;z,y,2). A subset X of E'\ {e} is independent in M if
and only if X is independent in M \ e, and, since e is not an isthmus of
M’, the subset X is spanning in M’ if and only if X is spanning in M’.
Therefore

Yo M MX)=2 Y f(M\e,M'\e; X) = zf(M\e, M'\e).

XCE\{e} XCE\{e}
X indep. in M X indep. in M\e
span. in M’ span. in M'\e

(iv.b) If e € X, since e is neither a loop of M nor an isthmus of M’,
the proof of (i.b) holds.

(v) The case E = @ is immediate. o

When M = M’ Theorem 8.1 reduces to the classical expression of the
Tutte polynomial of a matroid in terms of activities of bases (see [28] [13]).
Theorem 8.1 generalizes also the following less well-known result of Tutte.
Let G be a graph with a distinguished set of vertices S and a totally ordered
set of edges. In [29] Tutte introduces a polynomial W (G, S) obtained as
the generating function of activities of S-trees of G, where an S-tree is a
spanning forest of G with exactly |S| components, each containing exactly
one vertex of S. The main result, [29] Theorem 6.2, is that W (G, S) is
independent of the ordering used to define it.
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For the sake of brevity we do not recall here Tutte’s definitions of
activities of S-trees (the reader is referred to [29] Section 6) but give
equivalent definitions. Let G’ be the graph obtained from G by identifying
all vertices in .S to one vertex, keeping all edges. An S-tree of G is a spanning
tree of G’. Let C(G) and C(G’) denote the cycle matroids of the graphs G
and G’ respectively. The internal activity of an S-tree T in the sense of [29]
is equal to tc(e)(T') and its external activity is equal to eg(g)(T). Hence

W(G, S;z,y) = Z gtew) (T yec@)(T),

T spanning tree of G

Observe that C(G) — C(G’) is a matroid perspective of degree |S| — 1.
With notations of Section 6 we have

(8.7) W(G, 8) = t51-1(C(C), O()).

Therefore Tutte’s Theorem 6.2 is contained in Theorem 8.1.

The coefficients of the chromatic polynomial of a graph have been
expressed in terms of broken circuits by H. Whitney. This result has been
generalized to matroids by Brylawski [6]. A similar result holds for matroid
perspectives.

A broken circuit of a matroid M on a totally ordered set E is a set
of the form C'\ {e} where C is a circuit of M with smallest element e.

THEOREM 8.3. — Let M — M’ be a matroid perspective on a set E
with a total ordering. We have

(8.8) p(M,M(;u,w)

= Z (_1)TM(X)UT(M’)—TMI(X)wT(M)—T(M')—(rM(X)~TMI(X))-
XCE
X contains no
broken circuit of M o

The proof of Theorem 8.3 by deletion/contraction of the greatest
element is analogous to the proof of Theorem 8.1 (see also [6]). We omit it.
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