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ON A PROBLEM OF WALKS

by C. DELORME and M.-C. HEYDEMANN
in collaboration with F. JAEGER

1. Introduction.

It was such a rainy day in Aussois after the workshop on Graph
Theory (May 1995), that walks in the mountains were impossible. So
F. Jaeger and M.-C. Heydemann began to work together on a conjecture
from [9] on binary operations which are related to homomorphisms of de
Bruijn digraphs. But very quickly, they considered the following problem
of walks.

PROBLEM 1. — Characterize the class of digraphs G such that for
any k > 0, G has exactly m walks of length k.

Since the number of walks of length & of a digraph G is equal to the
number of vertices of its k-iterated line digraph, Problem 1 is related to
the characterization of periodic iterated line digraphs. These digraphs have
been studied by several authors and this article recalls results from the
survey on line digraphs [7].

We give in Section 2 definitions and explain in Section 3 the motiva-
tion for such a study. Section 4 and Section 5 contain results on Problem 1.
The main common result of Frangois Jaeger and M.-C. Heydemann was
Theorem 1 and Problem 2. Frangois never commented the first draft writ-
ten at the end of 1995. Charles Delorme brought recently some results
about the main conjecture.

Keywords: Digraphs — Walks — Semigroups.
Math. classification: 05C20 — 05C38 — 20M99.
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So this article contains more questions than answers.

2. Notation and preliminary results.

Definitions not given here can be found in [2]. Algebraic notions can
be found in [8] and [10].

2.1. Sequences.

A sequence (wg)k>0 is periodic if there exists a positive integer p such
that, for any k > 0, wig4p = wg. The smallest integer p with this property
is called the period of (wk)k>o0-

A sequence (wg)k>o is ultimately periodic if there exists an integer n
such that (wg—n)k>n is periodic.

2.2. Digraphs.

Definitions not given here can be found in [2].

In this paper, we deal only with directed graphs without multiple
arcs (digraphs). A digraph G with vertex set V = V(G) and arc set
A = A(G) is written G = (V,A). An arc from vertex u to vertex
v is denoted (u,v) (or [u,v] if the vertex u or v is expressed with
parenthesis). If (u,v) is an arc, then u is said to be an in-neighbour of
v and symmetrically v is an out-neighbour of u. The set of in-neighbours
of uis g(u) = {v € V(G) : (v,u) € A(G)} and g (u) = [T (u)| is called
the in-degree of u. Similarly, the set of vertices of out-neighbours of u is
I'E(u) = {v e V(G): (u,v) € A(G)} and 6% (u) = |T'5(u)| is the out-degree
of u.

A trivial digraph is a subdigraph with only one vertex and no loop.

K} denotes the complete digraph on n vertices with a loop at each
vertex. Any digraph G with n vertices is isomorphic to a subdigraph of
K}

Let n,D be two positive integers. Z, denotes the set of integers
{0,1,...,n — 1}. The de Bruijn digraph B(n, D) is defined by

V(B(n,D)) = Z;
A(B(n,D)) = {(z1z2...zp,22...TpTp+1)|T;i € Zp,1 <i < D+ 1}
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M (G) denotes the incidence matrix (also called adjacency matrix) of G. It
is a square matrix n x n, with entries given by M(G); ; = 1 if (4,7) is an
arc of G and M(G); ; = 0 otherwise.

2.3. Walks.

A walk of length £ from vertex u to vertex v in digraph G is a sequence
of vertices u = ug, u1, ..., us = v such that (u;,u;+1) is an arc of G for any
i, 0 < i< {—1.If ug = up the walk is said to be closed.

A directed elementary path (for short, dipath) is a walk in which all
vertices are distinct; if the only vertex repetition is ug = uy, it is a directed
cycle. '

We denote by Wi (G) the number of walks of G of length k and by
ax(G) the number of closed walks of length k.

Notice that Wi (G) is also the sum of entries of M(G)* and o4 (G) is
the trace of the matrix M(G)k.

2.4. Line digraphs.

Let G be a digraph. We denote L(G) the line digraph of G. The
vertices of L(G) are the arcs of G, i.e. V(L(G)) = A(G), and the arcs of
L(G) are all the couples [(z,y), (y,2)], z € V(G), y € T&(x), 2 € TE(y).
A survey about line digraphs can be found in [7].

The p-iterated line digraph is defined recursively:
L*(G) = L(LP7Y(G)) for p>2.

Following [1], a digraph is said to be periodic if there exist some
integers k,n, n > 0, such that L*(G) & L"**(@). In this case, the smallest
value n for which it is true is called the period of G. Thus, a digraph is
periodic of period n if and only if the sequence (L*(G))k>o is ultimately
periodic of period n.

Considering G as a subdigraph of K, by the following proposition,
LP(G) can also be considered as a subdigraph of the de Bruijn digraph
B(n,p+1).

PROPOSITION 1 ([3]). — Forn > 2 andp > 2, K, = B(n,1) and
B(n,p) = L(B(n,p — 1)) = LPF7H(K}).
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Therefore LP(G) is isomorphic to the digraph with vertices ugu - - - up,
for (ui,uiy1) € E(G), 0 < i < p, and arcs of the form (uqui---up,us---
UpUp+1). In the following we will consider that vertices of LP(G) are walks
of length p of G written shortly uou; - - - up. We will also use the following
equality and property:

(1) Wi(G) = [V(L*(G))!.

LEMMA 1. — For any k, k > 0, G contains m walks of length k + 1
iff L(G) contains m walks of length k, i.e. Wi (L(GQ)) = Wi4+1(G).

Proof. — By Equation (1),
Wii1(G) = [V(LF(G))] = [V (LF(L(G)))| = Wi(L(G)).

3. Motivation.

The motivation for our work is a conjecture from [9] on binary
operations on Z,, which are related to uniform homomorphisms of de Bruijn
digraphs. We first explain the original conjecture by recalling results from

[9]-

DEFINITION 1 ([9]). — Let D be an integer, D > 2. Let o be a
binary operation on Z, such that for any y1,...,yp—1 € Zn, the set of
D — 1 equations
(2) Ti O Tit1 = Yiy 1<i<D-1

for unknowns x1,x2,...,Zzp has exactly n distinct solutions such that
x; € Zy, for all i. Then it is said that operation o satisfies Property (Pp).

It is easy to obtain binary operations on Z, satisfying Property (Pp)
for any D. For example, take z ¢y = x, for any z,y € Z,. More generally,
if operation o satisfies at least one of the two properties:

(B) VYa € Z, the mapping z — a ¢z is a bijection on Zn;
(B’) Va € Zy, the mapping z — x ¢ a is a bijection on Zy;

then ¢ satisfies Property (Pp) for any D. The problem is to find all binary
operations on Z, satisfying Property (Pp) for any D. Are there such
operations satisfying neither Property (B) nor Property (B’)?
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The answer is positive if n is not prime. Before giving such examples,
we translate binary operation on Z, and Property (Pp) in terms of arc-
colorings of K, and arc-coloring property.

Let G be a digraph and ¢ an arc-coloring of G with n colors, i.e.
a mapping ¢ : A(G) — Z,. We say that c satisfies the uniform path
coloring property if, for any ¢ > 1, and for any ¢-sequence of colors
€1,Coy...,Ct, ¢ € Zpn,1 < i < ¥, there exist n distinct walks in G,
(uﬁ,u{,...,ui), 0 < j < n-—1, colored with colors ¢, ca,...,ce in good
order, i.e. c(uf,u{H) =cip1, for0<i <L —1.

Notice that an arc-coloring c of K} satisfies the uniform path coloring
property on K, if and only if the binary operation ¢ defined by i0j = c(3, 5)
satisfies Property (Pp) for any integer D > 2.

Therefore we consider the problem of finding arc-colorings ¢ of K;*
with the uniform path coloring property. Notice that the translation of
Property (B) gives examples of colorings such that each color appears
exactly once on the out-going arcs of each vertex (in other words by taking
{c(u,v);v € T (u)} = Z,). Similarly, a binary operation with Property
(B’) corresponds to a coloring such that each color appears exactly once
on the in-going arcs of each vertex ({c(v,u);v € I~ (u)} = Zy,).

If n is not prime, it is possible to construct less obvious examples.
Before giving them, we introduce another way of considering the Pp

property.

Let c be an arc-coloring of K;'. We may use the matrices M Kl 0 <
k < d — 1, where M* is the adjacency matrix of the digraph defined by
the arcs of color k (in the o setting, the entries are (M), ; = §(k,i o j)
with 6 the Kronecker symbol). Hence counting the solutions in a system of
equations z; ¢ ;41 = ¥;, 1 <4 < D — 1, or counting the paths of length
D —1 with prescribed colors, amounts to summing the entries of the matrix
M,=M vl prlv2] ... plvp-1], Thus finding an arc-coloring ¢ of K& which
satisfies the uniform arc-coloring property is equivalent to find a set S of
n x n matrix filled with 1’s and 0’s such that

— for any ordered pair %, j, exactly one matrix M € S satisfies M;; = 1,
— for any product p of elements of S, 1,p1} = n (where 1, is the 1 xn

matrix filled with 1s).

LEMMA 2. — If ¢ satisfies the uniform path coloring property on
K, then all the products of matrices of S have entries in {0, 1}.
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If a is the maximum number of 1’s in a row and b is the maximum
number of 1’s in a column, then ab < n.

Proof. — The entries of the products are obviously nonnegative
integers, and one cannot have a product of the adjacency matrices with
an entry larger than 1. If such a product has entry p; ; > 1, then some
adjacency matrix corresponding to a color has an entry m;; = 1, and since
all matrices m have entries 0 or 1 only, all entries of ¢ = mp are nonnegative
integers, and thus g; ; > 1, and (¢*); ; > (g;,;)* grows too fast and prevents
1,412 to be n.

If the product A has a row, say row « with a 1’s and B has column 8
with b 1’s, the product BC A, where Cs o = 1 has a submatrix of size b x a
filled with 1’s. o

COROLLARY 1. — Ifn is 2 or 3, Property (B) or (B') is satisfied.

Example 2. — Let n = pq with integers p > 1 and ¢ > 1. We choose
M) (the matrix of the color k) in the following way. Let ¢, be the matrix
of size p x p made from null entries, but for the column u, 0 < u < p filled
with 1’s. Let £,, the matrix of size ¢ X ¢, made from null entries, but for the
row v,0 < v < q filled with 1’s. Then, the set of matrices M lqu+v] — Cy ® Ly
(tensor product of matrices), 0 < u < p,0 < v < g, satisfies: dZIM (k]

k=0

is the n x n matrix filled with 1’s and Mlautlpglaw’+v]1 — prlew'+o],
Since each matrix M9%+%] has p non null rows, each of which has ¢ non
null entries that all fall in the same g columns, the cardinality of 1’s in
the matrix is equal to d = pq. Thus, any product MWl .. prlyp—1
has exactly n 1’s and n? — n 0’s. The associated arc-coloring of K
satisfies the uniform path coloring property, but neither Property (B) nor
Property (B’). The corresponding binary operation ¢ is of course given by
(qu+v) o (qu' +v') = qu’' +v.

If two couples of set and binary operation (A,¢) and (C, ) with
property Pp for any D are given, it is possible to build a new one by a

cartesian product with set A x C' and operation (a, ¢)<$ (b, d) def (aob,cod).

If o on A has not property (B) and ® on C has not property (B’)
then ¢ has neither.

In particular, when aob = a and cod = dfor alla,b € Aand ¢,d € C,
we have an operation isomorphic to the one of Example 1.
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Example 2. — Another generalization of Example 1 is given in [9)].
An illustration of this construction for n = 6 is the following:

lelloJt]2[3]4]5]
055 ][5 111
1 4[4a]d]2]2]2
2[00 [0 [3(3]3
3333 ]2]2]2
4[4 [4]0 00
5 [T [111]5]5]5

We now translate the construction of [9] in terms of colored paths.

Let n = pq with integers p > 1 and ¢ > 1. Consider a partition of the
vertex set V of KT into subsets V;,1 < i < p, each one of cardinality gq.

For each color ¢, 0 < ¢ < n — 1, for each subset V;,1 < ¢ < p,
successively

~ choose one vertex b; . € V; , such that not all its outgoing arcs are
already colored,

— choose one subset Vj; ¢y such that all the arcs (b; ¢, z), = € Vj,), are
still not colored,

— color all the arcs (b; ¢, ),z € Vj(; ) with the color c.
Then c is an arc-coloring such that

— for each color ¢, 0 < ¢ < n — 1, and for each subset V;,1 < i < p,
there exists exactly one vertex b; . with out-going arcs colored c,

— if ¢(i,j) = c and j € V,,, then for any arc (3,5') with c(3,;5') = ¢,
j' € Vi, and for any vertex j' € Vp,, ¢(i,5') = c.

For the above example: p = 2,9 = 3, Vi = {0,1,2}, V5, = {3,4,5},
bio =2,b11=0b12=1,..., Viao = V1,Via1) = Via2 = Va,...
In other words, for each subset Vj, each color colors the out-going arcs of
exactly one vertex and these arcs cover exactly one set V,,. Since ¢ > 1, it
is clear that the arc-coloring does not satisfy Property (B) (the out-going
arcs of each vertex are colored with at most p < d colors). It is sufficient
to choose one color ¢, two integers ¢ # ¢’ and j(¢,¢) = j(¢', ¢) in order that
Property (B’) is also not satisfied.

With this formulation, it is easier than in [9] to prove that the con-
structed digraph satisfies the uniform path coloring property. Considering
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one sequence of colors yi,...,Yyp-1 € Z,, once the first vertex is cho-
sen among the p possible b;,,, 1 < i < p, the following vertices of the
path are unique except the last one for which there exist g possibilities.
Therefore there exist exactly pg paths colored with the sequence of colors
Y1,--.,Yp—1. Notice that the same construction applies with in-going arcs
instead of out-going arcs.

Problem 18 of [9] asks whether other types of constructions than
Example 2 exist if n is not prime. The answer is yes:

Example 3. — Let S be a set of matrices P;, with entries in {0, 1},
of size (n x n), with some subsets such that the sum of the matrices in
them is the matrix J (filled with 1’s), such that any product M of these
matrices P; satisfies 1,M1} = n, and a set of m matrices Q; with entries
in {0,1} of size m x m summing to J,,, such that any product N of Q,’s
satisfies 1,, N1}, = m, we can build new sets of matrices of size mn x mn
by building from each @); a set of n new matrices, say R;; by replacing
each null entry in the Q; by a null block of size n x n and each other entry
by some matrix from S, in such a way that > R;; is J ® Q; (each null

Jj
entry of Q; is replaced by the null block and the other entries by J).

1
For example, with m = n = 2, let M be the matrix [

1
00
10
be the set {I,J —I,M,J — M}, Qo = [1 0] and Q; = J — Qo, and the

description by blocks of the R;’s (other choices are of course possible):

O L B X P L)

];let S

In this example the set of (non void) products of matrices R has 16
elements.

Note that the operation obtained that way is neither of the kind of
example 2, nor the reverse kind.

For n prime, the constructions given in the preceding examples do

not work. We now formulate the conjecture which motivated our work.

CONJECTURE 1 ([9]). — Let n prime and ¢ be a binary operation
on Z,, which satisfies (Pp), for any integer D > 2. Then operation ¢ satisfies
at least one of the two properties:

- Ya € Z,, the mapping x — « ¢z is a bijection on Z,,.
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- Va € Zy, the mapping x — z ¢ « is a bijection on Z,.

Conjecture 1 can be formulated in terms of colored walks in the
digraph K, as follows.

CONJECTURE 2. — Let n prime and ¢ an arc-coloring of KT, such
that c satisfies the uniform path coloring property on K. Then coloring ¢
satisfies at least one of the two properties:

— For any vertex u of K;&', the n in-going arcs are colored with all the
n colors of Zn, i.e. {c(v,u);v € I~ (u)} = Zp.

— For any vertex u of KT, the n out-going arcs are colored with all the
n colors of Zn, i.e. {c(u,v);v € I'T(u)} = Zp,.

If ¢ satisfies the uniform path coloring property on K, , then each
color induces a subdigraph of K, with exactly n walks of each length. Our
hope was to find necessary conditions on digraphs with constant number of
walks in order to obtain necessary conditions on ¢ and solve Conjecture 2.
In a first approach, we consider digraphs with ultimately periodic number
of walks.

4. Digraphs with ultimately periodic number of walks.

Notice first that it is easy to construct digraphs with ultimately
periodic number of walks.

PROPOSITION 2. —  For any periodic sequence (wi)k>o of period p,

P
there exists a digraph G such that Wi(G) = wrp +p+ 1+ Z w; for k > 2.

=1

Proof. — Consider the digraph G with vertices a, ci,df,O <i<
p—1,1 < j < w49, consisting of a directed cycle co,cy,...,cp—1,Co, arcs

(¢i,d?),0<i<p-1,1<j < w, and another arc (a, c).
For any k > 0, the number of walks of length k£ in G which begin at
P
a vertex ¢;,0 <4 < p — 1, is independent of k£ and equal to p+ ) wi. The
1=1

number of walks of length k& which begin at vertex a is equal to wy + 1 for

P
k > 2. Thus, for any 2 < k, Wx(G) =wr +p+ 1+ Y wg. O
=1
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Notice that, for the graph G constructed in the proof of Proposition 2,
LP+1(G) is isomorphic to L(G) plus isolated vertices and LP*2(G) = L?(G).
Thus G is periodic and the period of the sequences (wg)r>0 and (LP(G))k>0
are the same.

More generally, digraphs with ultimately periodic number of walks
are exactly periodic digraphs according to Theorem 1 below.

THEOREM 1. —  For a digraph G the following properties are
equivalent:

(i) The sequence (Wi(G))x>0 is bounded;
(ii) The sequence (Wi (G))k>o is ultimately periodic;
(iii) G is periodic, i.e. the sequence (L*(G))x>0 is ultimately periodic.

(iv) The strongly connected components of G are directed cycles
or trivial subgraphs. Moreover there exists no directed path joining two
distinct directed cycles.

Characterizations of periodic digraphs are given in [7]. The equiva-
lence of (iii) and (iv) is exactly Theorem 9.1 (iii) of 7], but we give proofs
which are not available in [7]. In order to prove Theorem 1, we begin with
two lemmas.

LEMMA 3. — Let G be a digraph such that the sequence of the
number of its closed walks of length k is bounded. Then the strongly
connected components of G are directed cycles or trivial subgraphs.

Proof. — We will prove that if G is strongly connected with at least
one arc and if the sequence (ax(G))k>o of the number of its closed walks
of length k is bounded, then G is a directed cycle.

We apply Perron-Frobenius theorem to A(G) (see for example [4] or
[8]), which is an irreducible matrix (owing to the strong connectivity) with
nonnegative entries. The maximum eigenvalue of G, A1, is real positive.

We first prove by contradiction that A; = 1.

A1 < 1 would imply A¥ — 0 with k& — oo and imply also the trace
tr(A(G)¥) — 0, which is impossible since the number of closed walks of
length k is at least 1 for k multiple of 4.

A1 > 1 would imply A¥ tends to infinity with k£ and tr(A(G)*) is not
bounded, which is impossible since the number of closed walks of length k
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is bounded.
Thus A\; = 1.

Now, if G is a non-trivial, strongly connected digraph that is not a
cycle, then each vertex belongs to at least one elementary cycle. Then if L
is the least common multiple of the lengths of these cycles, each diagonal
entry of A(G)” is at least 1, and since some vertex = has 6% (z)65(z) > 1,
and thus lies on more than one cycle, we see that the trace satisfies
nAf > tr A(G)F > n, hence A\; > 1. o

LEMMA 4. — Let G a digraph such that the sequence (Wi(G))k>0
is bounded. Then there exists no directed path joining two distinct directed
cycles of G.

Proof. — By contradiction. Assume G contains two directed cycles
C (of length I) and C’, joined by a path beginning at vertex u on C and
ending at a vertex of C’. The number of walks of length k > | beginning
at u is at least |k/l| + 1, and therefore is not bounded. O

We now prove Theorem 1.

Proof.
(i) = (iii): By Equation (1), for any k > 0,
IV(L*(G))| = Wi(G).

Hence digraphs L¥(G), k > 0, belong to a finite set of (isomorphism
types of) digraphs and there exist integers k > 0, p > 0 such that
L¥P(G) = L¥(G).

(iii) = (ii): Trivial by (Wi(GQ))ks0 = (|V(L*(G)) k0.
(ii) = (i): Trivial.
(i) = (iv): By Lemmas 3 and 4.

(iv) = (i): For k large enough, every walk of length k meets exactly
one directed cycle. Let WkC the number of walks of length k of G which
meet C. Such a walk is of the form P; P, P3 (concatenation of arcs), with
P; and P3 walks of G — E(C) ending and beginning on C respectively, and
P, a walk on C. Moreover, given P; and Ps there exists at most one walk
P, on C such that the length of the walk P, P, P; is a given integer k.
Since the number of such walks Py, Ps, is independant of k, (W¢))k>o is
bounded, and therefore (Wi (G))x>0 is bounded. O
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Notice that, if G is periodic, by property (iv), the connected compo-
nents of L¥(G) contain only one directed cycle for k sufficiently large. The
structure of a periodic digraph with a single directed cycle is described in
[7] as follows.

An eddy digraph is defined as a digraph which consists of a directed
cycle C together with trees rooted in the vertices v;,0 < i < £ — 1, of
C and oriented either from the root to the leaves (out-tree A; with root
v; € V(C)), or from the leaves to the root (in-tree B; with root v; € V/(C)).
The out-tree index (resp. in-tree index) of an eddy digraph is the minimum
positive integer r such that A;;, = A; (resp. Bj,, = B;).

If G is a periodic digraph, for k sufficiently large each connected
component of L¥(G) consists of an eddy digraph plus paths obtained by
the Heuchenne condition (whenever there are vertex-disjoint paths of length
n from u to w, v to w, u to x, then there is one path —disjoint from the
others— from v to z). Then L*¥+1(G) has the same sequence of in- and
out-trees as L¥(G), but with the in-trees shifted one step forward on C
with respect to the out-trees.

By Equation (1), the period of sequence (Wy(G))k>0 divides the
period of sequence (L¥(G))k>o. This last one can be precised in the case
of digraph with a single directed cycle.

ProprosITION 3 ([6]). — Let G be a periodic digraph with a single
directed cycle. Then the period of (L*¥(G))k>o is the greatest common
divisor of its out-tree and in-tree indices.

Now a remaining problem in the study of digraphs with ultimately
periodic number of walks is the following:

PROBLEM 2. — Are the (ultimate) periods of the two sequences
(Wk(G))k>0 and (LF(G))k>0 always the same?

5. Digraphs with ultimately constant number of walks.

We now come back to our first study: digraphs which have the same
number of walks of length & for any k. We first introduce some notation. Let
m, £ be integers, m > 2,£ > 0. Let us denote by G, ¢ the class of digraphs
G such for any k > ¢, G has exactly m walks of length k: Wi(G) = m.
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Thus we are looking for graphs of G, 9. Lemma 1 has the following
easy corollary which shows how to obtain digraphs of G, ¢ from digraphs
of G p-

COROLLARY 2. — If G belongs to G, p, then LP(G) belongs to
gm,O'

Proof. — By induction using Lemma 1, Wi(L?(G)) = Wi4,(G). O
We now give some examples of digraphs of G, o.

Example 4. — A digraph G such that 6%(u) = 1 for any vertex u
belongs to Gm o since the number of walks of length k beginning at any
vertex is equal to 1. Similarly, a digraph G such that §;(u) = 1 for any
vertex u belongs to G, 0.

The digraphs of Example 4 satisfy furthermore G = L(G). It is known
that a connected digraph satisfies G = L(G) if and only if G is satisfies
6&(u) =1 for any vertex u or 65 (u) =1 for any vertex u [5].

COROLLARY 3. — If G = L(G), then for any integer k, Wi(G) =
Wo(G). Thus G belongs to G, o for m = |V(G)|.

Proof. — By induction on k, G & L*¥(G). By Equation (1), Wi(G) =
[V(L*(G)) = Wo(G). o

A particular case is obtained by taking for G the vertex-disjoint union
of a periodic digraph H such that H & LP(H) and its iterated line-digraphs
L(H),L*(H),...,LP~1(H).

Notice that the converse of Corollary 3 is false since there exist
digraphs G in G, o with G 2 L(G):

Example 5. — Take a directed cycle C with, for any vertex ¢ €
V(C), an out-going arc (¢, c'), c € V(C),d € V(C). Add two new vertices
a, b and two arcs (a, ¢p), (a, b), with ¢cg € V(C). Denote by G the constructed
digraph. For each vertex u of V(C) U {a}, the number of walks of length
k beginning at u is exactly 2. Thus G € G0, but G ¥ L(G) (but
L?(G) = L(G)).

Let us denote by G,, the union of the classes G, ¢,¢ > 0, i. e. the
class of digraphs with ultimately constant number m of walks (digraphs
G such that there exists ¢ and for any k£ > ¢, G has exactly m walks
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of length k). Notice that this class is strictly contained in the class
of digraphs with ultimately periodic number of walks since there exist
digraphs not belonging to G,,, and with ultimately periodic number of walks
(see Proposition 2).

Notice that the class G,, is large, since it is stable by line-digraph
operation and vertex-disjoint union. Furthermore, Proposition 2 has the
following corollary.

COROLLARY 4. —  Any digraph with ultimately periodic number
of walks is an induced subdigraph of a digraph with ultimately constant
number of walks.

Proof. — Let H be a given digraph with ultimately periodic number
of walks. Let G be the digraph constructed in Proposition 2 with the
sequence given by wy = (m>ag((Wi(H ))) — Wi(H). Then the union of the

k3

two digraphs H and G is a digraph of G,, containing H. ]

Results of Section 4 applies to the class G,,. In particular,

COROLLARY 5 ([7]). — IfG is strongly connected with at least one
arc and belongs to the class G,,, then G is a directed cycle.

By Proposition 3, we get

COROLLARY 6 ([7]). — A digraph with a single directed cycle has
period 1 and therefore belongs to G,,, if and only if its out-tree and in-tree
indices are relatively prime.

In [7] it is said that

the only other way in which digraphs of period 1 can occur is for there
to exist a collection of its connected components forming all iterated
line digraphs of a unicyclic digraph with period greater than 1.

But we do not know if a digraph of G, or even of G, o has necessarily
a period equal to 1. This particular case of Problem 2 can be formulated
as follows.

PROBLEM 3. — If G belongs to the class Gy, o, does there exist an
integer p such that LP(G) & LP*1(G)?
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Conclusion.

In this article, we have formulated in terms of colored walks in
digraphs a conjecture of [9] on some binary operations and given some
related already known results on the class of digraphs with ultimate
periodic iterated line-digraphs.

Besides the conjecture, a remaining problem is either to prove that,
for a digraph which has the same number of walks of length &k for any k,
the sequence of its iterated line digraphs is ultimately constant or to find
a counterexample.
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