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SOME GRAPHIC USES OF AN EVEN NUMBER
OF ODD NODES

by Kathie CAMERON and Jack EDMONDS

In memory of Francgois Jaeger

Perhaps the simplest useful theorem of graph theory is that every
graph X has an even number of odd (degree) nodes. We give new proofs
of several theorems each of which asserts that, for any input G satisfying
specified conditions, G has an even (or odd) number of H’s satisfying
specified conditions. Each proof consists of describing an “exchange graph”
X, quite large compared to G, such that the odd nodes of X are the objects
H which we want to show there is an even number of (or such that all but
an odd number of the odd nodes of X are the objects which we want to
show there is an odd number of).

Each of these theorems is not so easy to prove without seeing the
exchange graph. They include as corollaries, in Section 5, the results of
Andrew Thomason [1] proving the 1965 conjecture of Lin (cf. [6], (7],
[8]) that the union of any two edge-disjoint hamiltonian circuits of any
graph G is also the union of two other edge-disjoint hamiltonian circuits
of G (and hence two edge-disjoint hamiltonian circuits of G can not be
neighbour vertices in the convex hull of the hamiltonian circuits of G,
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(6]). They include, in Section 6, Berman’s generalization [4] of Thomason’s
generalization (1] of the famous Smith theorem, that each edge in a cubic
graph G is in an even number of hamiltonian circuits of G, which seems
to have taken many inspections and years to reach the transparency of
Section 6. Using the exchange graphs, the theorems seem suitable for the
first hour of an introduction to graph theory.

We are thus led to the speculation of what other of the many beautiful
theorems asserting that there is an even number of something, or an odd
number of something, have associated exchange graphs. One of our favorites
for hoping that there is an associated exchange graph is the ancient, but
not yet easy to prove, theorem of Redei which says that every tournament
has an odd number of directed hamiltonian paths. Our simplest of useful
theorems is so simple that any exchange-graph proof can in principle be
replaced by an almost-as-simple counting argument which doesn’t mention
an exchange graph. However having an exchange graph X, besides imposing
special structure on the counting, and making matters transparent, opens
graph theoretic questions about X — like how great can be the shortest
distance from one odd vertex to another in X.

1. THEOREM 1 (Toida [2]). — For any graph G such that the degree
of every node is even, each edge e of G is in an odd number of circuits
of G. (This is equivalent to the fact that every two nodes of G are the
end-nodes of an even number of paths in G.)

An exchange graph X for Theorem 1: Choose a node r of edge e.
The odd-degree vertices of X are the edge e by itself and the circuits
containing e. The even-degree vertices of X are the (simple) paths of G,
of length > 1, which begin with node r and edge e. Two vertices of X
are joined in X if one can be obtained from the other by adding (or by
deleting) an edge of G, or if they are the two maximal paths, rooted at r
and edge e, of a lollipop (not necessarily spanning) whose stick is rooted at
node r and edge e. A lollipop is a graph consisting of a circuit and a path
which intersect in a single node. The path is called the stick.

The lollipops which span a graph G, and which are rooted at a node
r and edge e, were introduced in [1] to be the edges of a simpler exchange
graph than the one above, which Thomason calls “the lollipop graph”. Its
vertices are the hamiltonian paths of G which are rooted at node r and
edge e. Its odd vertices are the ones which end at odd nodes of G and
extend to hamiltonian circuits of G, or which end at even nodes of G
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and don’t extend to hamiltonian circuits of G. It proves the following
generalization of Smith’s theorem:

THEOREM 0 (Thomason [1]). — For any graph G such that the
degree of every node is odd, except possibly the end-nodes of edge e in G,
e is in an even number of hamiltonian circuits H + e of G.

By deleting one of the end-nodes r of edge e in Theorem 0, and thus
deleting all edges incident to r, and leaving the end-node r’ of edge e, we
are left with a graph G’ such that the hamiltonian circuits containing e in
G correspond to the hamiltonian paths of G’ which start at ' and end at
an even node of G’. Thus Theorem 0 is immediately equivalent to

THEOREM 0. — For any node r’ in any graph G’, there is an even
number of hamiltonian paths from r' to an even node of G'.

Each of our exchange-graph proofs consists simply of confirming that
the vertices described as odd in the exchange graph X are indeed joined in
X to an odd number of other vertices of X, and that the vertices described
as even in X are indeed joined in X to an even number of other vertices
of X. For no important reason we use the word “vertex” for a node of the
exchange graph, and the word “node” for a node of the graph G of the
theorem. After seeing the exchange graphs, it may be easier to finish the
proofs oneself than to read what we are calling “proofs”.

Proof of Theorem 1. — From the edge e, joining node r to say node
uwin G (of Theorem 1), we can reach other vertices of exchange graph X
by adding any edge meeting v which is different from e. So the degree of
vertex e in X is one less than the degree of node u in G — that is, odd.

Consider a circuit C' of G containing e. Let ¢’ be the other edge of
C meeting r. From vertex C of X we can reach another vertex of X only
by deleting €’ from C. So the degree of vertex C of X is 1 — that is, odd.

Consider a path P in G of length > 1, beginning with r and e, and
ending with, say, node z. The degree of vertex P in X equals the degree of
node z in G, because for each edge zv joining node z to a node v in G : if
zv is in P, we can delete zv to get a shorter path; if v is not in P we can add
zv to get a longer path; and if v is in P but zv isn’t, then P together with
zv is either a circuit of G containing e (if v = r), or a lollipop whose stick
is rooted at r and e. In the latter event the two maximal paths beginning
at r of the lollipop are P and the path P’ consisting of the lollipop minus
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the edge which follows v on the other side of r in P (that is, P’ is P from
r to v, then vz, then P backwards from z.) So the degree of vertex P in X
is even like the degree of node z in G. ]

Before moving on to some other exchange graphs, up front here is
perhaps the best place to describe a consequence of Andrew Thomason’s
seminal Theorem 0 which we first discovered and presented in early 1996
while we were working at three great universities in Denmark: University of
Copenhagen, Odense University, and the Technical University of Denmark.

COROLLARY 0.1. — Let G be a graph and H a hamiltonian circuit
in G. Let R be one of the connected components of G — E(H). If each
connected component of G— E(H), except perhaps R, has an even number
of nodes, then for every edge e of H which hits a node, say r, of R, there
is a subgraph G(e) of G, containing H, such that e is in a positive even
number of hamiltonian circuits of G(e). In particular, G contains another
hamiltonian circuit containing e. In particular, where G is a graph with a
hamiltonian circuit H such that G — E(H) is connected, every edge of H
is contained in another hamiltonian circuit.

Proof. — For each component K of G—E(H), if K has an even num-
ber of even (degree) nodes, arbitrarily name them u(1),v(1),u(2),v(2),...,
u(m),v(m). If K is R and has an odd number of even nodes which does not
include node r, then arbitrarily give the names, say u(1),v(1), u(2),v(2),...,
u(m), v(m), to all the even nodes of K and node r. If K is R and has an odd
number of even nodes which does include the node r, then give names, say
uw(1),v(1),u(2),v(2),..., u(m), to all the even nodes of K except node r.
For each component K of G — E(H), let P(i) be a path in K between
u(t) and v(i). Let F(K) be the set of edges which are in an odd num-
ber of the paths P(i),i = 1,2,...,m. Each node, u(1),v(1),u(2),v(2),...,
u(m),v(m), of K hits an odd number of edges of F(K). Every other node
of K hits an even number of edges of F(K). [G minus the edges F(K) for
all K] is a subgraph G(e) of G, containing H, such that the degree of each
node in G(e), except possibly node r, is odd. Apply Theorem 0 to G(e).O

There are still more general conditions on G — E(H), where H is
a hamiltonian circuit in a graph G, which imply that there is another
hamiltonian circuit (for example where there are at most two components
R of G—E(H) which have an odd number nodes, and there is an edge e of H
which has a node in each R) but that is not the point of the present paper,
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which is that there is a variety of beautiful exchange graphs, including the
lollipop graph, which prove the existence of second objects without there
evidently being a good algorithm for finding one. To our consternation
and amazement, we have not been able to find any polytime algorithm for
finding a second hamiltonian circuit whenever G — E(H) is connected.

Andrew Thomason [1] proposes tracing the unique path from the
given 1-degree vertex, H, to another 1-degree vertex in the lollipop graph,
as an algorithm for, given a cubic (3-degree) G, an H, and an e, finding
another hamiltonian circuit containing e. If in the more general, not
necessarily cubic, version of Theorem 0, the lengths of paths from one
odd vertex H to some other odd vertex in the lollipop graph were well-
bounded relative to the size of G, then perhaps some algorithm for finding
such a path, together with the algorithmically polytime proof of Corollary
0.1 from Theorem 0, would provide a good algorithm for finding a second
hamiltonian circuit when G — E(H) is connected.

However, Cameron has found a rather complicated proof [5], for a
sequence of cubic graphs G proposed long ago by Adam Krawczyk, that
the length of the path between a pair of 1-degree vertices in Thomason’s
lollipop graph (for Smith’s theorem) grows exponentially with the size of
G. In Sections 5 and 6 we describe some exchange graphs more general
and versatile than the lollipop graphs which could still conceivably provide
polytime algorithms. At least we have not yet shown that they do not, and
at least they seem to work well in practice.

2. THEOREM 2 (Bondy and Halberstam [3]). — For any graph G
such that the degree of each node is even, and for any positive integer k,

each node r of G is the beginning of an even number of length k paths
in G.

In the case where k is one less than the number of nodes of G,
Theorem 2 becomes: For any graph G such that the degree of each node is
even, each node r of G is the beginning of an even number of hamiltonian
paths in G. This is also a special case of Theorem 0. However we have
not been able to find an exchange graph which proves both Theorem 2 and
Theorem 0’, nor have we found a way to prove one of these theorems from
the other.

The exchange graph X for Theorem 2 is not very different from the
exchange graph for Theorem 1: The odd-degree vertices of X are the length
k paths in G beginning at node r. The even-degree vertices of X are the
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paths in G beginning at r and having length from 0 to k — 1. Two vertices
of X are joined in X if one can be obtained from the other by adding (or
by deleting) an edge of G; or if they are the two maximal paths beginning
at r in a lollipop rooted at r, or in a circuit containing r, with at most k
edges (it follows that these two paths have length at most k — 1).

Proof. — Consider a path P of length k beginning at r. The only
way to reach, by an edge in X from vertex P of X, a path of length at
most k beginning at r is to delete the last edge of P. So the degree of P in
X is 1. Consider a path P beginning at r of length from 0 to k¥ — 1. Let 2
be the last vertex of P. The degree of P in X equals the degree of z in G,
because for each edge zv of G : if edge zv is in P, we can delete zv to get a
shorter path; if v is not in P we can add zv to P to get a longer path; and
if v isin P but zv isn’t, P together with zv is a lollipop or a circuit, with
at most k edges, rooted at r, P is one of its maximal paths beginning at
r, and the other is P’, the lollipop or circuit minus the edge of P following
v. Thus degree of vertex P in X is even since the degree of node z in G is
even. (]

3. THEOREM 3 (Bondy and Halberstam [3]). — For any graph G
and node r of G, such that the degree of each node is odd, and for any
integer k > 1, node r of G is the beginning of an even number of length
k paths in G. (The differences between Theorem 2 and Theorem 3 are in
replacing “each node is even” by “each node is odd”, and replacing k > 0
by k> 1.)

Our proofs of Theorem 2 and Theorem 3 are interestingly different
from each other, though they are given as corollaries of the same unified
proposition by Bondy and Halberstam. Their proofs are beautifully simple
counting arguments which are worth comparing with the approaches here.
We strengthen Theorem 3 to:

THEOREM 3'. — For any graph G and node r of G, such that the
degree of each node is odd, except possibly for r which may be even or
odd, and for any integer k > 1, each subset W of k nodes of G, including
node r, is in an even number of length k paths P in G such that r is the
beginning node of P and the other nodes of W are the interior nodes of P.

This follows from Theorem 0, where in the G of Theorem 0 multiple
edges between a node pair are allowed, by pasting together all the nodes
not in W to be a single node 7', and joining 7’ to node r by a new edge e.
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Then the paths P of Theorem 3’ correspond exactly to the hamiltonian
circuits containing e, and Theorem 0 says that the number of these is even.
The only glich to this argument is that in describing exchange graphs, in
particular the lollipop graph which proves Theorem 0, we have assumed for
simplicity that the graph G is simple, i.e., no loops and no multiple edges
between a pair of nodes, whereas the pasting creates loops and multiple
edges meeting node 7. The truth and proof of Theorem 0 is preserved,
where the G can have multiple edges, by refining the description of the
associated lollipop graph. And thus we can say that Theorem 3, and hence
Theorem 3, follows from the multigraph reading of Theorem 0. However
Theorem 0, as well as Theorem 3, follows immediately from Theorem 3'.
And it is simpler, than describing the refinement of the lollipop graph for
proving the multigraph version of Theorem 0, to describe:

An exchange graph X for Theorem 3’. The even vertices of X are the
paths P’ of length k¥ — 1 in G such that P’ begins with node r and such
that the node set of P’ is exactly W. The odd vertices of X are the paths
P as described in Theorem 3’. That is each such path P in G is a path
P’ plus one more edge. The degree of each such vertex P in X is one. P
is joined in X only to the vertex P’ obtained from P by deleting the final
edge and node of P. An even vertex P’ of X is met by one edge of X for
each edge of G which is not in path P’ and meets the final node of P’.
If an edge of X which meets a even vertex P’ does not join P’ to an odd
vertex P, then it is a lollipop rooted at r or a circuit containing r, with k
edges, which joins P’ to another even vertex.

4. THEOREM 4. — For any graph G and a specified pair of odd
numbers (h(v), k(v)) for each node v of G, such that h(v) + k(v) is the
degree of v in G, there is an even number of subgraphs H which have
degrees h(v) at the nodes v of G. (Multiple edges between two nodes are
allowed.)

An exchange graph X for Theorem 4. Choose any node w of G to
be a fixed special node. Each vertex of X is a subgraph H (each using all
nodes of G). The odd vertices of X are H’s having degrees h(v); that is,
the h-factors of G. The even vertices of X are H’s in which node w has
degree h(w) — 1, some one other node u has degree h(u) + 1, and every
other node v has degree h(v). Two vertices of X are joined in X when each
can be obtained from the other by the H and its complement K in G
trading single edges, that is, by removing one edge from H and adjoining
some other edge to H.
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Proof. — Consider an h-factor H, and K, the complement of H in
G, which is a k-factor. There is an odd number of ways to move to K
some edge of H hitting w, say edge e;. Then, where z is the other node
hit by edge e;, there is an odd number of ways to move to H some edge of
K hitting node = which is different from e;, say e;. Thus there is an odd
number of ways to choose e; and then e;. Where u is the other node hit by
edge ez, if u is different from w then the resulting H is as described above
as an “even” vertex of X, and if u = w then the resulting H is another
“odd vertex” of X. There is no other way to obtain a vertex of X from an
“odd vertex” H of X by having H and K trade single edges. Hence the
degree of each “odd vertex” of X is odd. Similarly the degree of each “even
vertex” of X is even. a

5. THEOREM 5 (Berman [4]). — For any graph G and a specified
pair of numbers (h(v), k(v)) for each node v of G, such that h(v) + k(v)
is the degree of v in G, there is an even number of partitions of the edges
of G into a spanning tree H which has degrees h(v) at nodes v and a
spanning tree K which has degrees k(v) at nodes v. (“Partition into H
and K” means that the blocks H and K of the partition are “ordered” or
“labeled”. When H; = K, and Hy = K3, the partition into H; and K;
is still different from the partition into Hs and Ks. Hence Theorem 5 is
trivial when h(v) = k(v) for each node v.)

An exchange graph X for Theorem 5. Choose any node w of G such
that h(w) = 1 to be a fixed special node. Each vertex of X is a pair of
subgraphs H and K (each using all nodes of G) which partition the edges
of G into two sets each of size one less than the number of nodes of G. The
odd vertices of X are (H, K) such that H is a spanning tree of G having
degrees h(v) and K is a spanning tree of G having degrees k(v). The even
vertices of X are (H, K) such that K is a spanning tree of G in which node
w has degree k(w) + 1, some other node u has degree k(u) — 1, and every
other node v has degree k(v); in H node w has degree 0 (= h(w) — 1), node
u has degree h(u) + 1, and all other nodes v have degree h(v), and u is in
the unique circuit of H. Two nodes of X are joined by an edge in X if each
can be obtained from the other by the H and K trading single edges.

Proof. — Consider an (H, K) which is called an “odd vertex” of X,
i.e., where H is an h-degree spanning tree of G and K is a k-degree
spanning tree of G. The only way to get another vertex which is joined
in X to vertex (H, K) is to move from H to K the one edge, say e;, of H
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which hits node w. This creates in K a circuit with two “surplus” nodes, w
and z. To get another vertex of X, the unique edge e, of the circuit which
is different from e;, and which meets node z, must then be moved from
K to H, which creates a unique cycle in H. Where u is the node different
from z which is hit by e, u now has degree k(u) — 1 in K, degree h(u) + 1
in H, and is in the unique circuit of H. That is we do have what we call
an “even vertex”. Hence the degree of any “odd vertex” of X is 1. Now
consider an (H, K) which is called an “even vertex” of X. The only way to
get another vertex which is joined to it in X is to move to K one of the two
edges in the unique circuit of H which hit surplus node u of H. Suppose
we move one of them, say uz. This creates a circuit in K. The degree of u
in K is now k(u), and the degree of z in K is now k(z) + 1. To get the new
vertex we must move, from K to H, the edge e of this cycle which meets
z and which is different from uz. If e hits w, we get a new (H, K) where
H is an h-degree spanning tree and K is a k-degree spanning tree, an “odd
vertex” of X. If e; does not meet w, we get another “even vertex”. Thus
the degree of every “even vertex” in X is 2. O

In each of the following four corollaries, G’ is any 4-regular (4-degree)
graph. (The corollaries are of course vacuously true for other graphs G’.)
These corollaries were proved by Andrew Thomason [1], without exchange
graphs, by induction on the size of graph G’.

COROLLARY 5.1. — For any two edges e; and ey of G’, the edges
of G’ can be partitioned an even number of ways into two hamiltonian
circuits, one containing e, the other containing es.

COROLLARY 5.2. — For any node v of G’, and for each of the
three ways to partition the four edges which hit v into two pairs, {av,bv}
and {cv,dv}, the edges of G’ can be partitioned an even number of ways
into two hamiltonian circuits, one containing edges av and bv, the other
containing edges cv and dv.

COROLLARY 5.3. — The edges of G’ can be partitioned an even
number of ways into two hamiltonian circuits.

COROLLARY 5.4. — For any two edges e; and e3 of G’, the edges
of G' can be partitioned an even number of ways into two hamiltonian
circuits, one of which contains both e; and e,.

Corollary 5.4 follows immediately from 5.1 and 5.3. Corollary 5.3
follows immediately from 5.2. Corollary 5.2 follows from 5.1 applied to
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the graph obtained by deleting node v and the edges hitting v, letting
edge e; join nodes a and b, and letting edge e, join nodes ¢ and d. (Oh
dear! We might again get more than one edge joining the same two nodes,
but a trivial change in the proof of Theorem 5 proves it for multigraphs.)
Corollary 5.1 follows immediately from Theorem 5 by ignoring edges e;
and e to get G from G'.

Doug West in [6], independently of [1], says “Consider the question:
When can the edges in a pair of hamiltonian circuits be redistributed to
form another pair of circuits with the same union and intersection? A class
of pairs is exhibited which intersect in two edges and cannot be rearranged
in this way”.

He observes that for a pair of hamiltonian circuits H; and H, of a
graph G, NOT being able to rearrange them in this way is a necessary
condition for H; and H; to be adjacent vertices in the graph of edges
and vertices of the convex hull of the (usual 0 — 1 representation of)
hamiltonian circuits of G. He says “Determining the adjacency structure
of this polytope is extremely difficult” and “The problem of whether an
arbitrary pair of hamiltonian circuits can be rearranged in this way is
quite difficult. Papadimitriou [5] mentions some complexity results. The
conjecture that all edge-disjoint pairs are rearrangeable was raised by Lin
(in 1965) and has been outstanding for a number of years. We extend this
conjecture to to include all pairs whose intersection contains exactly one
edge.” West’s conjecture can be strengthened to the following corollary
of 5.1:

COROLLARY 5.5. — For a graph G with an edge e which meets
edges d; and dy at one end, and which meets edges f, and f, at the other
end, there is an even number of ways that G is the union of two hamiltonian
circuits, C; and C3, of G such that the intersection of C; and C3 is edge
e, and such that d, and f; are adjacent to e in C;, and such that dy and
f2 are adjacent to e in Cs.

Proof. — Obtain G’ from G by replacing [d1,e, f1] by an edge e; ,
and replacing [da, e, f2] by an edge ez. Apply 5.1 and translate the result
back to G. O

6. THEOREM 6 (Berman [4], when k(v) is odd for every v). — For
any graph G with at least three nodes, and a specified pair of numbers
(h(v), k(v)) for each node v of G, such that h(v)+k(v) is the degree of v in
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G, and such that for each v either h(v) = 1 or k(v) is odd (perhaps both),
there is an even number of partitions of the edges of G into a spanning
tree H of G which has degrees h(v) at nodes v and a subgraph K of G
which has degrees k(v) at nodes v.

An exchange graph X for Theorem 6. The odd-degree vertices of X
are the spanning trees H which have degrees h(v) at all nodes v of G.
Choose any node w such that k(w) is odd to be a fixed special node. The
even-degree vertices of X are the spanning trees H of G which have degree
h(w)+1 at node w, degree h(u)—1 at some node u, and degree h(v) at every
other node v of G. Two vertices of X are joined by an edge in X when
each, a spanning tree of G, can be obtained from the other by exchanging
one edge in the one tree for one edge of the other tree.

Proof of Theorem 6. — Each edge of X corresponds to a spanning
connected subgraph L of G with exactly two nodes, w and say z, which
have degrees different from h, in particular A(w)+1 and h(z) +1, and such
that z is in the unique circuit C of L. Each of the two vertices of X met
by an edge L of X, is obtained from L by removing one of the two edges,
say edge g of GG, which is in the circuit of L and hits node z. If the other
end of g is w, the resulting spanning tree of G is a vertex of the kind called
“odd”. Otherwise the resulting spanning tree is a vertex of the kind called
“even”, and the other end of g is the node u which has degree h(u) — 1
in this tree. Each vertex H called “odd” is of odd degree in X, and each
vertex H called “even” is of even degree in X, because: an edge g of G
can be adjoined to an “odd” H to get an L iff g is one of the k(w) edges
of G not in H which hits node w; and an edge g of G can be adjoined
to an “even” H to get an L iff g is one of the k(u) + 1 edges of G not in
H which hit node u. For “even” H, the degree of vertex H in X is indeed
even, since the number k(u) + 1 is even, since the degree, h(u) — 1, of u in
H is not 0, since u is not an isolated node of H, since H is a spanning tree
of G. O

Theorem 0 is the case of Theorem 6 where h(v) = 2 for all but two
nodes a and b of G (i.e., where in the G of Theorem 6, the odd H’s of
Theorem 6 are the hamiltonian paths from a to b).

Our exchange graphs X for Theorem 6 are more versatile than the
lollipop graph even for Smith’s theorem, i.e., where k(v) = 1 for each node
v of G and where the odd vertices H of X are the hamiltonian paths from
node a to b (h(v) = 2 except for nodes a and b). We suspect it will be
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difficult to prove, one way or the other, whether there exists a sequence of
graphs G, and k(v) = 1 for each node v of G, such that, for every possible
choice of node w in G, the exchange graph X in our proof of Theorem
6 is such that the path between a pair of 1-degree vertices of X grows
exponentially. We suspect it will be difficult to show that the algorithm
provided by these X’s, one for each choice of w, is not polytime for, given
a hamiltonian circuit H + e in a cubic graph, find some other one, H' + e.

7. EPILOGUE. — In [10] we presented the concept of “existentially
polytime theorem” as a generalization of “good characterization” (which
Edmonds presented 25 years previously). The story of our mathematical
life has been trying to learn proofs which provide polytime algorithms for
finding an instance of that which EP theorems say exists. One of the types
of EP theorem for which polytime-algorithm proofs seem elusive takes the
form: “For any R, and T in R, there is another T in R” as a corollary of
“For any R, there is an even number of 7’s in R.” Remarkably, no polytime
algorithm is known for, given a cubic graph G and a hamiltonian circuit
H+eof G containing edge e, finding some other hamiltonian circuit H' +e.

An EP search problem is a problem which can be expressed in the
form “for any input z satisfying condition C(z), find a polynomial-size
output y which satisfies condition D(z,y)”, where there is a polytime
decision algorithm for C(z), where there is a polytime decision algorithm for
D(z,y), and where the corresponding EP theorem says “for any z satisfying
C(z), there is a polynomial-size y satisfying D(z,y).” The appropriate
EP theorem, and corresponding EP search problem, which is corollary to
Theorem 6, is where C(z) says that z is an instance of (G,h,k,H) as
described in Theorem 6, and where D(z,y) says that y is another H as in
Theorem 6. It does not seem likely that there is an “NP-hard” EP search
problem. Even assuming the availability of an oracle for every EP search
problem, it does not seem likely to help in getting a polytime algorithm
for finding a hamiltonian path in any given graph which has one. (“If a
graph has a hamiltonian circuit then it has a hamiltonian circuit” is not
an EP theorem unless it turns out that there is a polytime algorithm for
deciding whether or not a graph has a hamiltonian circuit.) It also seems
unlikely that there is an EP problem which is “complete” in the sense
that polytime solving it will polytime solve all other EP problems. There
may be EP theorems which absolutely have no proofs at all, much less
polytime algorithmic proofs. However for any known EP theorem, or EP
conjecture, it seems reasonable to hope to find a proof which provides a
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polytime algorithm for the corresponding EP search problem. A number of
prominent computing theorists seem to be active in obtaining reductions
involving some kinds of EP search problems which are not known to have
polytime algorithms [11], [12].
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