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SYMMETRIC FLOWS AND
BROADCASTING IN HYPERCUBES

by J.-C. BERMOND, A. BONNECAZE,
T. KODATE, S. PERENNES and P. SOLE

1. Introduction.

The problem we consider here is motivated by communications in
interconnection networks. Broadcasting (also called One to All) is a commu-
nication scheme in which a given node (called initiator) sends its information
to all the other nodes of the network. We consider here broadcasting in
hypercubes under a circuit switched model.

Several multiprocessors with hypercube or hypercube-like topology
have been designed. This topology is widely accepted as it has a logarithmic
diameter and regular structure and offers high communication bandwidth.

DEFINITION 1 (Hypercube). — The Hypercube H(n) of dimension n
is defined as the graph whose vertices are words of length n on the
alphabet {0,1} and where two vertices are adjacent if and only if they differ
exactly in one coordinate.

Hypercube H(5) is displayed in Figure 1.

In the circuit-switched model, a node x sends its information to a
node y via a directed path (called " circuit" in the telecommunications
terminology). There exist different ways of implementing such a model like
wormhole routing; they mainly differ in the manner the circuit is established
and released and how the acknowledgments are done.

Keywords: Circuit switched model - Broadcasting - Hypercube - Connectivity -
(Symmetric) Flow networks - Error correcting codes.
Math. classification: 05C40 - 68Q22 - 90B12 - 94B05 - 05E20 - 94A10 - 90B10.
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Here we consider a generic model in which the communication
protocol consists of rounds (or steps). A new round starts only when
the preceding one is completely finished. During a round, vertices which
have the information can send it to as many vertices they want (model
called A-port, all-port or F^), but all the paths used for communication
should be arc disjoint Figure 1 shows a broadcast scheme in some spanning
subgraph of the hypercube of dimension 5 in two rounds. In the first round,
the initiator 00000 sends the message to the five other black nodes; five
disjoint paths can easily be found as H(5) is 5 edge-connected. In the
second round the six informed vertices inform all the others, the paths used
are shown on the figure.

00010 00011 01010 01011

Figure 1. Scheme for H(5) in two communication rounds

Note that other models exist like store-and-forward model (where
a vertex can only communicate with a neighbor at distance 1) or 1-port
models (in which a vertex can send only one message): see the book [25] or
the surveys [10], [16], [18]. In first approximation the number of rounds of a
broadcasting scheme represents the time needed to realize the scheme. In a
more precise model, one should also consider the size of the message and
the length of the communicating dipaths (as some time is needed to set up
the switches in the intermediate nodes).
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Broadcasting schemes under this model have been considered by many
authors who studied various topologies; surveys on communication schemes
under circuit switched model can be found in [6], [9].

Let us define bp^(G) as the minimum number of rounds needed
to complete broadcasting in the network G. Note that in a graph with
maximum degree A, an informed vertex can inform, via edge-disjoint
paths, at most A other vertices. Hence, a lower bound on the number
of steps necessary to broadcast in a graph G with maximal degree A is
at least log^+i |^(G)|. This bound has been proved to be attained for
cycles (see [25]), 2-dimensional toroidal grids in [23] and almost attained
for n-dimensional grids in [7]. For H{n)^ the lower bound becomes

n
bpWn))^

log2(n+ 1) I
Different algorithms have been given for broadcasting in H(n): McKinley
and Trefftz [22] presented an algorithm of |"-n'| rounds, based on edge-
disjoint spanning trees. The best known algorithm has been proposed by
Ho and Kao [17]. It is recursive and uses special routing (called e-routing);
the algorithm is asymptotically optimal but the broadcasting time does not
match the lower bound. Another problem such as multicast (where a node
has to send a message to some subset of nodes) in hypercubes under the
same model is examined in [24]. We prove here that:

THEOREM 2. — For every n :

bp (H(n)) < \-,———n———r1.
A v / / - ' ^2^+1)1 I

Our result improves all the preceding ones (see Table 1 for numerical
values), is optimal for n = 2A; — 1, and is the best in a class of natural
schemes.

The rest of the paper is organized as follows. First, we show that
the problem can be formulated in the context of undirected graphs. In
Section 2, the problem is related to the design of a good sequence of multi-
broadcasts and to flow networks. In Section 3 we show how symmetries can
be used to simplify the study of flow networks. This part is strongly related
to previous work on connectivity in symmetric networks. In Section 4 the
results obtained are applied in order to derive a simple condition insuring
that a sequence of multi-broadcasts can be done. In Section 5 we construct
two different schemes, their validity is proven by using the condition derived
in Section 4.



790 J.-C. BERMOND, A. BONNECAZE, T. KODATE, S. PERENNES, P. SOLE

We make use of classical tools from graph theory (see [I], [3], [25] for
an introduction).

Undirected and directed models.

Usually, we model a communication network as a symmetric digraph
G = (V, E) where the vertex set V represents the nodes of the network
and the arc set E the links between nodes. Note that communicating
dipaths used during one round are arc-disjoint. But we can for simplicity
consider undirected graphs and undirected communicating paths. Indeed
in a broadcasting scheme useful communications are only from an informed
vertex to a non-informed vertex and so a vertex can be either sending
or receiving during one round but not both. Furthermore, suppose that
there exists two dipaths, one from x\ to y\ and the other from x^ to y^
using two arcs in opposite directions say (u,v) and (v^u) (the dipaths
cross the same edge but in opposite direction). Let the first dipath be
PI == P\[x\^u}{u^v)P\[v^y\\ and the second be ?2 = P^x^.v^v.^P^u^y^].
Then x\ can inform y^ along Pi[x-i^u}P'z[u,y'z] and x^ can inform y\ along
^[•^^l-Pih^i]' So, we obtain a scheme with one less pair of opposite
arcs. By repeating it we obtain dipaths which do not contain opposite arcs.
Hence, it can be assumed that we use edge-disjoint paths on the undirected
graph.

2. Valid sequences and flows.

Given a graph G, designing a broadcast scheme ending in T
communication rounds is equivalent to define a valid sequence of sets

DEFINITION 3. — A sequence S = Go, Gi , . . . , CT of sets of vertices is
valid if and only if

1) Co={0} ;

2) Ct C Q+i;

3)Gr=V(G);

4) vertices in Ct can inform the vertices in C^+i \ Ct in one communi-
cation round^ via edge-disjoint paths.

Note that it is always easy to fulfill conditions 1), 2), 3) from
construction, and we will always construct sequences S such that these
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conditions are ensured. Hence, the problem reduces to ensure that Ct can
inform C^-i \ Cf in a single communication round. When the sequence S
is known, the question is indeed exactly a multi-broadcast problem.

DEFINITION 4 (multi-broadcast). — In a graph G, given a set of
originators 0 and a set of destinations D such that D D 0 = 0, the multi-
broadcast problem (0, D) consists in finding \D\ edge-disjoint paths from 0
to D ending at different nodes in D. In this case we will say shortly that 0
can inform D.

According to this definition, we have to solve T successive multi-
broadcast problems (Q, C^+i \ Ct), for 0 < t < T - 1.

Note that at the first round, Co reduces to the initiator; and the
initiator can inform any set of A vertices or less, if A is the edge-connectivity
of G. Indeed, in a A edge-connected graph, there exists by Monger's theorem
(or flow theorem) A edge-disjoint paths from any vertex to any set of A
vertices.

Multi-broadcast and flows.

The multi-broadcast problem (0,P) is easily reduced to a flow
problem. By a flow network N we will always mean a triple N = (H, s, t)
where H is a capacited^) graph, and s (resp. t) a specific vertex of H called
the source (resp. the sink).

Let us recall some terminology and properties regarding graphs, and
flow networks.

• Given a graph G and S C V(G), the border 6c(S) of S denotes the
set of edges between S and S == V{G) \ S (in [1] it is denoted m(S, S ) ) .

• Given a flow network H , a cut is a set F C V(H) such that s € F
and t ^ F. The border of the cut F is the set of edges <^(F). The capacity of
the cut F, denoted c(F), is the sum of the capacities of the edges belonging
to the border 6(F). If the capacities are all equal to 1, it is simply the
number \6{F)\ of edges between F and F.

THEOREM 5 (Ford-Fulkerson). — In a flow network N the maximum
value of a flow from s tot is equal to the minimum capacity of a cut.

^ To each edge is associated a positive integer called capacity of the edge.
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DEFINITION 6. — Given a multi-broadcast problem (0, D) in a
graph G, the now network associated N(0^ D) is defined as follows :

• the vertex set ofN{0, D) is V{G) U {s} U {t};
• to each edge ofG we associate an edge of capacity 1 in N(0, D) ;
• for each vertex o € 0 we add the edge [5, o] with capacity +00;
• for each vertex d 6 D the edge [d, t] with capacity 1.

LEMMA 7. — The multi-broadcast (0, D) is possible if and only if the
maximal flow in N{0, D) is \D\.

Proof. — The value of the flow is at most \D\ (which corresponds to
the cut V(G) \ {t}), and this value is clearly achieved if and only if there
exists |D | edge-disjoint paths in G starting in 0 and ending at each vertex
of D. D

According to Lemma 7, given a sequence <?, deciding if S is valid
and if so finding the paths that allow to perform the multi-broadcast
in T communication rounds, takes at most T times the maximum flow
complexity (0(ne\og(n2 / e ) ) in a graph with n vertices and e edges with
Goldberg and Tarjan algorithm [12]).

However, that does not tell us how to construct the sequence «S; one
way would be to use a non-constructive method and to consider random
subsets of V(G). When G has nice symmetry properties there exists a
better constructive approach. As example, when G is a toroidal mesh one
can use a sequence <S made up of linear codes over a vector space Z^ (for
broadcasting in the ^-dimensional torus [7], for gossiping in respectively
the 2 and 3-dimensional tori [8], [5]). Here, in the case of the cube, the
sequence will be built from linear binary codes. The high symmetry and the
algebraic properties of the sequence will enable us to reduce condition 4) so
that it becomes easy to check.

3. Symmetric flow graph, symmetric cut.

In this part, our aim is to show that in a flow network having
symmetries there exists a symmetric minimum cut. In a graph G an
automorphism is a one to one mapping V(G) —> V(G) which preserves
the edges {i.e. [x, y] e E(G) if and only if [(f)(x), (/)(y)] e E(G), see [2]). In a
flow network N = (^f, s, t) a symmetry is simply an automorphism <f) of the
capacited graph H {i.e. 0 preserves also the capacities) fixing both s and t.
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Note that in [27] Watkins studied connectivity properties of a
transitive graph. In particular, he proved that, when a graph is both vertex
and edge transitive then it is superconnected (i.e. its edge-connectivity
equals its degree). Since that many related results have been derived
(see [II], [21], [15]). This question is very related to our multi-broadcast
problem (0,D), which is a connectivity problem between the two sets 0
and D.

Atoms and fragments.

The following definitions and lemmas are exact counterparts of the
ones introduced by Watkins [27], Mader [21] and Hamidoune [15] to study
connectivity, the only difference is that we consider flow networks that is a
graph labeled with a source and a sink. For a comprehensive treatment on
connectivity we refer to the work of Hamidoune [14].

Let

Cmin = min{c(F), F a cut of N}.

DEFINITION 8 (Fragments). — In a flow network a cut F such that
c(F) = Cmin is called a fragment.

LEMMA 9. — Let Fi and F^ be two fragments of a flow network. Then,
Fi D F^ and Fi U F^ are also two fragments.

Proof. — We have

c(Fi U F2) < c(Fi) + c(F2) - c(Fi H ^2),

and then

C(FI U ̂ 2) + C(FI H F2) < 2Cmin.

Furthermore, Fi U F^ and Fi D F^ both contain s and not t, hence they
are cuts. It follows that c(Fi U F^) >, Cmin and c(Fi H F2) > Cmin, which
implies c(Fi U F2) - c(Fi H F2) = c^. D

DEFINITION 10 (Atoms). — An atom is a fragment F of minimum size
(i.e. |F | is minimum).

LEMMA 11. — In a flow network there exists a unique atom.
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Proof. — Let A be the intersection of all the fragments; from Lemma 9,
A is a fragment. Moreover it is contained in any fragment so it is both
minimal and minimum. Q

PROPOSITION 12. — Let (/ ) be a symmetry of a flow network TV, then
the atom A of N is invariant by (j) (i.e. <^(A) = A).

Proof. — By definition, a symmetry maps an atom on another atom.
As the atom of N is unique, 0(A) = A. Q

The above lemma shows that in order to find the minimal cut in a
flow network N it is enough to consider the capacity of a symmetric cut.
Indeed there exists a minimum cut which is symmetric. In the next section
we will show that, instead of considering the flow problem on N , it is
possible to consider a reduced flow network, obtained by quotienting by its
symmetries.

4. Sequences for the cube.

In the case of the hypercube the sequence

S = Co = {0} c Ci c • • • C CT = V(Hr,)

will be made of linear codes of length n over Za (i.e. linear spaces of the
vector space Z^ ^). We will note Span{^} the linear space generated
by a family T of vectors. Given two independent linear spaces A and B,
A © B denotes their sum (that is combinations of vectors in A and in B).
We will denote

e, = 00.. . 010... 0
i-l

the z-th vector of the natural basis of Z^.

As our codes are nested, we have

Cw=Ct^Vw and \C^\ = l^+il • \Ct\;

moreover, as the number of informed nodes is multiplied by at most n + 1
during a round, we must have

__________ dim(V,+i) < [log^n + 1)J.

^ A linear space of dimension k contains 2^ elements which are the linear combinations
of k independent elements.
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Let K = [log2(n+l)J. We will always choose V^+i with maximum
dimension; that is dim(V(+i) = K for any t < T - 1 and dim(Vr) ==
n — \n/K,\ K <, K.

As an example for n = 9, let

/i == 110000000, /2 = 011000000, ... , /g = 000000011.

We will use the codes

Ci = {0} C V, = Vi, Vi = Span{/i,/4,/7},

€2 = Ci C V2, ^2 = Span{/2, /5, /s}.

So, 62 = Vi © 1̂ 2 contains the 26 combinations of /i, /2, /4, /5, /7, /8- Note
that this is the set of vectors abc where a, 6, c are three words of length 3
having an even number of 1. The last code is

63 = C2 C Vs, Vs = Span{ei, 64, ey} ;

note that €3 = Vi C ^2 C ^3 = Zj.

We consider the multi-broadcast (C(,Q+I \ Cf) in ^(n), and the
associated flow network N(Ct,Ct+i \ Ct). We want to derive a condition
ensuring that there exists a flow with value

\Cw\Ct\=(\Vi^\-l)\Ct\

mN(C^Cw\Ct).

The hypercube H(n) is a Cay ley graph and this structure is the key
one.

DEFINITION 13. — Given an Abelian group Q and a multi-set S C Q
the Cayley multi-graph on Q with generators 5, denoted Cay (^,5), is
defined by :

• the vertices are elements ofQ;

• the neighborhood ofx is the set x + S.

In order to get an undirected graph we must have -S = S. Note that
if we choose for S a multi-set (repeating some generators) we get a Cayley
multi-graph. Note that in Cay(^, S) the mapping (f)y: x ^ x + y is an
automorphism. For simplicity we restrict ourselves to the Abelian case,
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but similar notions and results both exist for non-Abelian groups. For an
overview of applications of Cayley graphs to interconnection networks we
refer to the chapter of Heydemann in [13].

The hypercube H(n) is indeed Cay(Z^, { 0 1 , 0 3 , . . . , en}), where
{01 ,02 , . . . ,0^} is the basis of Z^ previously denned. The application
(f)c: x i—> x 4- c, c G Ct is an automorphism of the cube. Moreover it lets
both Ct and C^i \ Ct invariant. Hence, <j)c, c € Ct is a symmetry of
7V(Q,Q+i \ Ct). Now, the set {(f)c \ c G Q} is an Abelian subgroup of
the group of automorphisms of H(n). According to Proposition 12, there
exists a minimal cut of N(Ct, Cf+i \ Ct) which is invariant by any mapping
(f)ci c G Ct, that is there exists a minimal cut invariant modulo Ct. This
property is indeed equivalent to a connectivity property of the quotient
multi-graph H(n)/Ct defined below.

DEFINITION 14. — The quotient multi-graph H{n)/Ct is denned as
follows:

• The vertex set is Z^/Ci ~ Z^ and each vertex corresponds
to a coset of Ci;

• x = x 4- Ct will denote the coset of x.;
• for all i 6 {l,2,...,n}, we add one edge from x to y along

"dimension f i f e i ^ y — x .

The quotient H(n)/Ct is a Cayley multi-graph on Z^~ with
generators e^, i == { 1 , 2 , . . . , n}. Indeed there exist a edges between x and y
if there are a\Ct edges in H(n) between the two sets x + Ct and y + Cf.
Note that we can have ei = ej for some i ̂  j\ so H(n)/Ct is an Abelian
Cayley multi-graph. Note also that ife^ € Q then H(n)/Ct contains a loop.

In our example, the quotient H(9)/C-^ is a multi-hypercube H(6) with
some edges having multiplicity 2: e\ = 62 as e\ -\- e^ = /i, similarly 64 = 65
and 67 == eg.

The mutltiset of generators is {ci , €1,03, €4,04, €6,07,07,09}.

The quotient H(9)/C^ is simply the hypercube H(3) where each edge
is repeated three times, as now,

{ 6 1 = ^ 2 = 6 3 ; ^ 4 = ^ 5 = 6 6 ; 67 = Og = Og}.

Note that in general H(n)/Ct is not necessary a multi-hypercube. As
example, if Ct == (00... 0,11... 1), we obtain for H(n)/Ct the "Halved
cube" by identifying antipodal vertices; this graph is not a multi-hypercube
(see also [4] for other examples of quotient).
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Both H{9)/C^ and H{ff)/C'z have edge-connectivity 9.

LEMMA 15. — If H(n)/Ct has edge-connectivity at least |V(-n| - 1,
then Ct can inform Gt-n \ Ct.

Proof. — By Lemma 7 and the Ford-Fulkerson Theorem (Theorem 5),
we simply need to check that the capacity of the border of a minimum cut
of N{Ci,Cw \ Ct) is at lea^t |C,+i| - \Ct\ = (|Vf+i - l)\Ct\, whenever
the edge-connectivity of H(n)/Ct is at least |Vt+i| - 1.

According to Proposition 12, we can consider the unique symmetric
atom A of N(Ct, Cf^-i \ Ct), having by definition minimum border capacity
(i.e. the capacity of the border of A equals the maximum value of flow in
N{Ct, Ct+i \ Ct)). Note that A = U U {s}, where U is a subset of V(H(n))
such that (f)c(U) = U, for all c € Ct. This means that ^(U) = U + c = U
for all c € Ct. Hencefore, U is invariant by translation in Ct, and is a union
of cosets: U =U -{- Ct.

Note also that U must contain all the vertices in Ct, otherwise, as
edges [5, c] for c € Ct have infinite capacity, the border of A would have
infinite capacity. If U contains a vertex c' € Cf+i \ Ct then we find the
edge.^.t] in the border of A. We also find in the border of A the border
^H{n)(U) of U in the hypercube. On the total

(i) CN^C^\C^A) = \un(Cw\Ci)\ + |^(,)((7)|.
As U and C^+i both contain Ct, we have

|l/n(Ct+i\Q)|=|[7nc,+i|-|C,|.

Now let us consider H(n)/Ct. We have

\^Hw{U)\=\6HW/c,(U)\'\Ct\.
Hence Equation (1) can be written:

CN^C^\C^(A) = \Ci\. (\unCi^\ - 1 + \6Hw/c,{u)\).
As, U^ contains Ct, U contains the vertex 0 in H(n)/Ct, we have
\U H Ct+i | - 1 > 0, and it follows that:

CN^c^)(A)>\Ct\^6HW/c,(U)\.

Now, the condition on the connectivity of H(n)/Ct implies that
^HW/CtW)^ ^ l^+i - 1| implying.the lemma. D
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The lemma above allows us to reduce the condition Ct can inform C^-n
to a simple condition on the connectivity of the quotient graph H(n)/Ct.

We will now construct sequences of linear codes over ^ such
that H(n)/Ct has high enough edge-connectivity to ensure the condition
of Lemma 15.

5. Constructions.

5.1. Case of cyclic codes.

For some values of n it is easy to construct an optimal scheme by using
a sequence made of cyclic linear codes of appropriate dimension. A cyclic
code is simply a subspace of Z^ which is invariant by left-shift. Note that
our first proof, in the case n == 2? - 1 was made using more coding theory
and special properties of BCH codes (see [19], [20]). With the technique
used here the result is more straightforward.

LEMMA 16. — IfCt is a cyclic code and \C^i\ ^ (n + 1)|̂ | then d
can inform C^-n.

Proof. — Consider the quotient graph H(n)/Ct, it is a Cayley multi-
graph. Consider the left shift, a defined as the linear mapping of Z? such
that

^fe) = Cz+l mod n.

As Ct is cyclic, a(Ct) = Ct, and the mapping a acts also on the vertices
ofH(n)/Ct. Now, ifx is adjacent to y in H(n)/Ct along dimension i (that is
x = y + Ci) then a(x) is adjacent to a(y) along dimension i + 1 mod n. So a
is an automorphism ofH(n)/Ct. It follows that H(n)/Ct is edge transitive.
According to the result of Watkins [27], H{n)/Ct is superconnected, or
its edge-connectivity equals its degree. Note that if the degree of H{n)/Ct
is less than n, then, for some z, a e C^ since the code is cyclic it
implies Q = Z^. So H{n)/Ct has degree n and edge-connectivity n. n

Cyclic Codes.

To complete we need to find some good sequence of codes. For this we
briefly recall some basics of the theory of error correcting codes. The reader
will find more information in [20] or [26]. Cyclic codes are very convenient
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since they can be viewed as principal ideal of the ring R == F^x]/^ - 1).
In other words, a cyclic code C consists of all multiples of a polynomial
g(x), called generator polynomial. Note that this polynomial must be a
factor of x71 - 1. The code C is then totally defined by g(x) and we write:
C = (9(x)}' O^ can find all the possible cyclic codes by considering the
factorization of xn — 1 over F^.

Decomposition ofx71-! over F^. — We consider only binary codes
of length n==2p -1. Let a be a primitive n-th root of unity over a suitable
extension of Z2. We have:

n-i
^-1= JJ^-a1).

1=0

Furthermore, it is well known that over Zs

(2) ^- l=(^-l) / i - /T-i=n^
t

where ft denotes the minimal polynomials corresponding to the cyclotomic
classes. Then we consider the cyclic codes generated by ft.

• The Hamming code can be generated by anyone of the primitive
polynomials ft. Its parameters are

[NH = y - l,kH = V - 1-p^dH = 3],

where NH denotes the length, kfj the dimension (seen as a linear space)
and dn the minimum Hamming distance of the code.

• The simplex code is defined as the (algebraic) dual of the Hamming
code. Then its parameters are [n,p, 2P~1].

• A BCH code of length n = 2P - 1 and designed distance d' is a
cyclic code generated by the product (without repetition of factors) of the
minimum polynomials of o^', a7^1,..., a7"^'"2, where r is a non negative
integer.

Note that all these codes are defined up to equivalence.

Nested BCH codes. — Let n = 2P - 1, that is K = p. If p is
a prime number, one can use a family of BCH codes that have the
required dimensions {i.e. a sequence of nested codes with dimensions
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0, /^, 2^ , . . . , |_n//^J K, n). In this case, the partition of H(n) can be done as
follows: We set

Co={071},

Ci=((^-l)/r. . /r-2),
C2=((^- lVi—/r-3) ,

Cr-2 == (/i/2}?

Cr-i = (A),

Gr = ̂ n.

The polynomials fi in (2) are sorted in a way so that we obtain the
Hamming code for CT-I-, the simplex code for C\ and BCH codes for the
other codes. We have Co = {0}, \Ct^\\ = (n + l)|Ci| and CT = Z^. So, this
sequence of codes gives an optimal scheme for n = 2^ — 1 (see in [19] for
more details).

PROPOSITION 17. — Forp a prime,

b^H(y-i)}=\2^-].

5.2. A connectivity condition on the quotient graph.

In many other cases one can prove that the connectivity of H(n)/Ct is
high enough. As the graph H{n)/Ct is a Cayley multi-graph the following
result makes the determination of its edge-connectivity relatively easy.

PROPOSITION 18 (Hamidoune). — In a Cayley graph Cay(<?,<?) the
atom containing {0} is a subgroup ofQ.

Proof. — Let A be the atom containing {0}, and note that
(f>a '- x i—^ x 4- a is an automorphism of G. Hence A 4- a is an atom of (5, and
it contains a + 0 = a . Soa- t -A and A are two atoms with a non empty
intersection, they must be equal. So a + A = A for all a G A. In the same
way, (f)-a maps A on A so A — a = A. It follows that A is a subgroup of Q. D

DEFINITION 19. — Let W be a subgroup ofZ^/(7i, and let denote e^
the Cf coset associated to ei (indeed the set e^ -t- C^), then the number
ofe^W is denoted £(W).
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PROPOSITION 20. — If\W\£(W) ^ A for every subgroup W ofZ^/C^,
then H(n)/Ct has edge-connectivity at least X.

Proof. — Consider a subgroup W of Z^/C^. If e, ^ W, then for
any w € W, ei + w ^ W, so each edge [w, w + e;] is in the border of W.
IfeiCW then all the edges [w, w + e;], w e TV are inside W. Consequently
the border of W contains |TV|^(iy) edges. Note that if some e, belongs
to Ct, then ei == 0 and any subgroup W contains ei. D

5.3. An ad-hoc construction.

We propose here a sequence of nested linear codes of length \n/i^~\;
such a sequence is optimal among sequences made of linear codes.

PROPOSITION 21. — One has

r T? ~i
^ {H(n)) ^ | ̂  | , where K = [\og^n + 1)J.

Note that for n = 2k - 1, [log2(n+ 1)J is the integer k and our
scheme is optimal {i.e. bp^H^ - 1)) = [(2^ - V)/k\) this generalizes
Proposition 17 valid for k prime. The proposition will follow from the
construction of valid sequences of length fn//^.

The sequence.

Let n = (p + l)/t - x, 0 < x < ̂  so that p + 1 = \n/K\; we have
n = (p+ 1)(/^ - x) +px.

As in our example of Section 4, let

• fl = 6l + 62, /2 = ^2 + 63, • . . , /n-l = Cn-1 + Cn;

• fl = fpx+1, /2 =:: fpx+2, ' - • , /(^_a;)(p+i)_i = /n-1;

• ^ = ez+pa-

Our sequence of codes is defined as follows (see the example after
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forn= 17):

^ Vi = Span{/i, /i+p, /i+2p,... , /i+(^-i)p}
C Span{/{, /^(p+i),..., f[^_^_^p^},

V^ = Span{/2, /2+p, /2+2p, . . • , /2+(rr-l)p}
rounds

l ,2 , . . . ,p- l C Span{/2,/2_^p_^,... ,/2+(^-o;-i)(p+i)}^

^ = Span{/,, /,+p, /,+2p,..., /z+(a;-i)p}

e Span{/,', /J+(p+i),... , ̂ -K/,-a;-i)(p+i)} 5

round p J Vp = Span{/;, /;+(^i),..., /;+(,_,_D(^ = /,_i}

roundp+l ^ ^p+i = Span{ei, ei+p,.. . ,ei+(a;_i)p},
I C Span{e'i,e^^i),... ,e^^_^_i)^^}.

To prove that the sequence is valid, we write Z^ as a sum of K
independent subspaces, x of dimension p and K - x of dimension p + 1.
We will call these spaces blocks. Let:

Ai =Span{ei,e2,. . . ,Cp},
A2 = Span{ei+p, e2+p, . . . , e^p},

A^ = Span{ei+(^_i)p, e2+(a;-i)p, • • . , e^p},
A'i =Span{e /l,e2,...,ep+l},
A^ = Span{e^^^, e2+(p+i), . . . , e^+i)},

A^ = Span{e^^_^_^^^e2+(^_^_i)^i),... V(fc-a;-i)(p-n)+(p+i)}-

From definition

z^ = Ai e A2 e • • • e A^ e A'i e A^ e • • • e A'̂ .
JKxampJe.

For n = 9, we find the example of section 4, in this case
K = 3,p == 2, a; = 0 and /,' = /„ e\ = e,; we find

Vi = Span^J^/^} = Span{Aj4,/7},
y2 == Span{/2, /5. fs} = Span{/2, /5, /s},
¥3 = Spa^e^e^e^} = Span{ei,e4,e7}.
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We also give the example for H(17):

• n = 17, K, = 4, p = fn/^1 — 1 = 4, so a: = 3 and n = 5 • 1 + 4 • 3;

• the vector space Z^7 is the direct sum of the following subspaces:

> three spaces of dimension 4:

AI = Span{6i,62,63,64},
A2 = Span{65,66,67,6g},
As = Span{e9, eio,en, 612} ;

> one space of dimension 5: A[ = Span{6i3,614,615,6i6,617};

• sequence of codes:

Codes added Ai A2 As A[

Ci = Co e Vi
C72 = Gi © ^2

^3 = G2 e ̂ 3
€4 = C3 e V4
65 = €4 e V5

î
Vi

Vs

v^
Vs

fl h /9 /13

/2 /6 /10 /14

/3 /7 /II /15

/16

61 65 69 613

Connectivity of the quotient graphs.

For t < p, the codes Ci have the following property: if a subspace
W C Z^/Ct contains some set of vectors ei located in d different blocks
then dim(W) >. d.

LEMMA 22. — The edge-connectivity of H(n)/Ct is at least 2^ — 1.

Proof. — According to Proposition 20, we only need to check that for a
linear space W ofZ^/Gf, ^(W)|IV| > 2^-1. Let d(W) denote the dimension
of the linear subspace W, and note that if d(W) ^ Kihen£(W)\W\ > 2" and
the condition is ensured. So we can restrict ourselves to the case d(W) ^ K.

Rounds 1,2,.. . p. — According to the property of the sequence, if
d(W) is less than d, W can contain only the e^ of d distinct blocks. Hence,
if d(W) <: /^, the worst case space W is clearly obtained by picking vectors
of the basis in d(W) different blocks as a generating set for W. So doing
we add at most p vectors (the ones of the bloc) of the basis in W when we
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pick a new block. Hence, we find at most pd(W) vectors of the basis in W'.
Consider the function

e(W)\W\=2d(w\n-pd(W)).

It is easy to check that the minimum of such a function is attained either
for d(W) = K, then d(W) = K and \W\ ̂  2^, or for d(W) = 0, \W\ = 1 and
then ^(TV)|iy| = n ̂  2^ - 1 (by definition K, = [\og^(n + 1)J).

In both cases -^(iy)|lV| > 2\ We conclude that the edge-connectivity
of H{n)/Ct is at least 2^ for t < p.

Round p+1. — Note that, Hn/Cp is a multi-hypercube of dimension K
with x dimensions with multiplicity p and the K, — x others with
multiplicity p + 1. Due to symmetry, the minimal cut contain all the
dimensions of capacity p (or p -\-1). So the minimum cut has value 2K~xxp
(or 2x(p + 1)(/^ - x). This value must be larger than |Vp+i| - 1 = 2K~X - 1.
So, if there exists some contradiction, it is in one of the two extremal cases:
x = 0 (in this case dimensions are all equal and the only cut is {0} and has
capacity (p + l)/-c) or x == K — 1. In both cases the cuts are large enough. D

Distance 3 codes,

One can easily use other kind of schemes. As an example, if Ct has
minimal distance at least 3 one can show, using results of Sections 3 and 4
that the connectivity of H(n)/Ct is n. It follows that it is possible to
inform any distance 3 codes in (n — 6(log(n)))/^ communication rounds.
As distance 3 codes with dimension n — 9(log2(n)) do exist, a scheme first
informs such a code, at that point the broadcast is almost completed, and
one has then to add a few rounds (e(log(n)2/log(r^)) ~ log(n)) to inform
the whole cube.

6. Conclusion.

In this paper we have derived some efficient, and sometimes optimal
scheme to broadcast information in the cube in wormhole like models (see
Table 1). It turns out that high symmetry of our solution made the proof
of our scheme possible. Our scheme does not use the e-cube routing but we
can mention that it defines implicitly a routing function which is not too
complicated. Our scheme uses a non immediate sequence of nested codes;
let us point out that in their algorithm Ho and Kao used such a sequence,
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but the simplest possible one: the set of informed nodes at a given round
was a sub-cube (that is a very simple linear code). Hence, the vertices
informed were packed in the same area of the cube, and the algorithm was
not very efficient. However the analysis was simple and the scheme was
using e-routing. Our scheme is more efficient as vertices informed at round t
are better spread in the cube, but it is also more complex. As an example,
for n = 31 our scheme uses 7 rounds and their scheme 10.

n

Low. Bound

MT [22]

HK [17]

Our

2

2

2

2

2

3

2

2

2

2

4

2

2

2

2

5

2

3

3

2

6

3

3

3

3

7

3

4

3

3

8

3

4

4

3

9

3

5

4

3

10

3

5

4

4

11

4

6

5

4

12

4

6

5

4

13

4

7

5

5

14

4

7

6

5

15

4

8

6

4

16

4

8

6

4

31

5

16

10

7

Table I. Comparison of the different algorithms

Note that our scheme is optimal among schemes such that at a given
round the set of informed nodes is a linear code. Hence to improve it one
would need to have informed at round t a set having a structure more
complex than a linear one, the analysis would certainly be complicated.
The example given for H(5) in Figure 1 uses non-linear set of vertices and
two rounds, and any scheme using linear sets takes at least three rounds.

It would be interesting to use non constructive approach (using
random subsets of the cube) to improve our bound, but this would certainly
be only an existence result.

At least we believe that our result demonstrates once again that
symmetries can be used in order to simplify graph problems (for an overview
of symmetry technique: see [13]), the key point being that symmetric flow-
problems admit symmetric minimum cuts.
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