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AMENABLE GROUPS AND CELLULAR AUTOMATA

by T. G. CECCHERINI-SILBERSTEIN(*), A. MACHI(**)
and F. SCARABOTTI

1. Introduction.

Both the notion of a cellular automaton and that of an amenable
group were introduced by von Neumann ([vNl], [vN2]). The present paper
is an attempt to study the connections between these two notions. Although
we have barely scraped the surface of the subject we believe that these
connections are in fact very deep.

In the classical situation a cellular automaton works on the lattice
U = Z2 of integer points of Euclidean plane. If S is a finite set (the set
of states) a configuration is a map c : U —^ S. A transition map is a map
r : C —>• C from the set C of all configurations into itself such that the state
r[c](a:) at a point x e U only depends on the states c(y) at the neighbours
y ' s of x. In Moore's original paper ([Mo]) two points x = {x^,x^) and
V = (2/1^2) m U are neighbours if either \x\ — y\\ + \x^ — y^\ = 1 or
l^i — Vi | = 1 = \X2 — V2\ whereas in the von Neumann setting ([vNl]) only
the first possibility occurs. In other words, from von Neumann's point of
view U may be regarded as the Cay ley graph of the group Z2 with respect to
the generating system A = {(1,0), (-1,0), (0,1), (0, -1)}, and in the other
one as the Cayley graph of the same group with respect to the generating
system A U {(1,1), (1, -1), (-1,1), (-1, -1)}.

(*) Partially supported, at a final stage of the present research, by "Fonds National
Suisse de la Recherche Scientifique" grant 20-050575.97.
(**) Partially supported by ESPRIT LTR Project no. 20244-ALCOM-IT.
Keywords: Amenable group - Cayley graph - Cellular automaton - Garden of Eden.
Math. classification: 43A07 - 68Q80 - 05C25.
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One often speaks of r as being time: if c is the configuration of the
universe at time t, then r[c] is the configuration of the universe at time t+1.
An initial configuration is a configuration at time t = 0. A configuration
c not in the image of r, namely c C C \ r[C], is called a Garden of Eden
configuration, briefly a GOE configuration, this biblical terminology being
motivated by the fact that GOE configurations may only appear as initial
configurations.

Given a non-empty finite connected subset F C U, a pattern of
support F is a, map p : F —> S. A pattern p is called GOE if any
configuration extending p outside its support F is a GOE configuration:
r(c)\F ¥• P ^OT au c e C. It can be seen, using topological methods, that
the existence of GOE patterns is equivalent to that of GOE configurations
(see [MaMi] Sec. 5).

Two distinct patterns pi and p^ with a common support F are said
to be mutually erasable, briefly ME, if for all configurations ci and 02 that
are equal outside F and agree with pi and p^, respectively, on F^ we have
r(ci) = T(c2).

If we consider the existence of mutually erasable patterns as "non-
injectivity" of the transition map r then the equivalence of surjectivity and
injectivity for maps of a finite set into itself or linear transformations of a
finite dimensional vector space holds also in this setting: this is the content
of the theorems of Moore and My hill.

THEOREM 1 (Moore [Mo] and Myhill [My]). — Let U denote the
lattice Z2 of integral points in Euclidean plane, C the set of all configu-
rations, and T : C —> C a transition map. Then a necessary and sufficient
condition for the existence of GOE patterns is the existence of mutually
erasable patterns.

Necessity is due to Moore and sufficiency to Myhill.

As shown in [MaMi], this theorem depends on the growth of the
universe. In the classical case, the universe is the lattice Z2 of integer points
of Euclidean plane, which has quadratic growth; it is easy to extend this
result to Z^ and more generally to universes, i.e. Cayley graphs of groups
(see Section 2 for the corresponding definitions), of polynomial growth.

In [MaMi] the theorems of Moore and Myhill are proved for uni-
verses of sub-exponential growth: the interest of this result relies on the
existence of groups with non-polynomial sub-exponential growth, namely
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Grigorchuk's intermediate growth groups ([G]). These groups are amenable,
so it is natural to inquire if one can generalize these results to the wider
class of amenable groups, thus extending the results of [MaMi] also to cer-
tain groups of exponential growth such as the Baumslag-Solitar groups
(a,b : a^ba = ̂ ), |n| > 2 (see e.g. [CG]).

As remarked in [MaMi], the original proof of the theorems of Moore
and Myhill relies on the following properties of the standard Cayley graph
6?ofZ 2 :

(a) Given any square L in Q, there exists a nested sequence Bi C
00

B-z C • • • of squares in Q such that Q = \J Bk and such that each Bj, is a
k=l

disjoint union of copies of L.

(b) For any nested sequence Bi C B ^ ' • ' of squares in Q such that
00

Q = \J Bk the ratio
k=l

number of vertices of Q at distance <, 1 of OBj^
number of vertices in B^

tends to zero when k tends to infinity.

The point is that a similar sequence exists also for universes which
are the Cayley graphs of amenable groups (by F0lner's theorem), so that
the theorems of Moore and Myhill hold in this more general setting as well.

2. Cellular automata on Cayley graphs.

In this section we review some definitions and notations from [MaMi].

Let G be a finitely generated group and let A = {01 ,02 , . . . ,a^v}
denote a finite and symmetric (a e A —^ a~1 € A) set of generators. We
assume that A does not contain the unit element e of G. The Cayley graph
Q = GA^G) of G relative to A is the graph with vertex set G and edge set
the set of pairs {g,ag} with g e G and a G A. We denote by B{g\n) the
ball of radius n and center g consisting of all vertices in Q whose graph
distance from g is at most n.

A (deterministic) cellular automaton on a graph Q is a triple A =
{S, G,f) where

(i) S is a finite set, |6'| = s > 1, called the set of states or the
alphabet;
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(ii) Q is the Cayley graph of a finitely generated group G\

(iii) / : SB{e'^ 9 5 = (se, 5ai, .§02, . . . , Sa^) ̂  f(s) € S is a function,
called the JocaJ map.

A configuration is a map c: G —> S that associates a state with each
vertex of G. We shall denote by C the set of all configurations.

The transition map is the function r : C \—> C defined by

^K^) = / (c^ c(aip), c(a-zg),..., c(a^^)).

Note that the state at vertex g in the configuration r[c} only depends
on the pattern c\B{g;i) that is, on the states at the neighborhood B(g\ 1) in
the configuration c.

The notions of GOE configurations and of GOE or mutually erasable
patterns are the same as those described in the Introduction for the
group Z2.

Remark. — Observe that the Cayley graph G == 0A(Z2)? where A =
{±(l,0),d=(0,l)} induces a tessellation of Euclidean plane into squares;
in the classical framework one considers these squares, called cells, rather
than the vertices of these squares (i.e. the vertices of the graph) like in
[MaMi] and here. In this particular situation, the dual graph <7* of G (that
is the graph whose vertices are the cells, and two cells are neighbour if they
share a common edge) is clearly isomorphic to G, so that the two points
of view are the same. On the other side we shall consider groups whose
Cayley graphs might not induce a tessellation of the plane (for instance
free groups) or might even be non planar.

Given a subgraph F of Q we denote by

F^=\J B(^;l), F - = { g € F : B{g, 1) C F} and 9F = F \ F-
g€F

the closure, the interior, and the boundary of -F, respectively.

Let F\ and F^ be two subgraphs of G- We say that F^ contains m
copies of FI if there exist m isometric mappings {embeddings) o-j : Fi —> F^
such that Oj{Fi) n cr^(Fi) = 0 for j ̂  k.

Moreover if c,c' are configurations we say that the pattern c\p
contains m copies of the pattern c\p^ if in addition

c'(a,(p)) = c(g) fo ra l lpeFi .
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For the proof of the main theorem of this paper we shall need the
following lemmas from [MaMi]. The proofs are straightforward.

LEMMA 1. — Let c be a configuration and let F be a subgraph ofQ.
Then the restriction r(c)|jp- only depends on c\p and not on c.

LEMMA 2. — Let F be a finite subgraph and suppose that F~^~ is not
the support of two mutually erasable patterns; then if two configurations
ci and C2 agree on F4" \ F~ and disagree on F~ then r(ci)|j? 7^ T(C^)\F.

3. An example: Conway's game of life.

In order to give the reader an explicit example of a cellular automaton
we present here the game of life of John H. Conway.

The set of states is S = {0,1}; state 0 corresponds to absence of life
while state 1 indicates life-, therefore passing from 0 to 1 can be interpreted
as birth, while passing from 1 to 0 corresponds to death. The universe Q is
the Cayley graph 0A(Z2) of Z2 in the sense of Moore (cf. Introduction), so
that the ball B((0,0); 1) consists of the 9 points (x^.x^) G Z2 with \x^\ <, 1
and \x^\ < 1. The local map is defined as follows:

{ ( either ^ So. = 3
1 if I aeA

/ (5(o,o)^(i ,o)5---^(_^_i)) == ^ or ^ Sa = 2 and «(o,o) = 1
I a(=A

0 otherwise.

In other words [BCG], Chapter 25, thinking of the transition map one has:

- Birth. A point that is dead at time t becomes Jive at time t + 1 if
and only if three of its neighbours are Jive at time t.

- Survival. A point that is Jive at time t will remain Jive at t -h 1 if
and only if it has just two or three live neighbours at time t.

- Death by overcrowding. A point that is Jive at time t and has four
or more of its neighbours Jive at t will be dead at time 14-1.

- Death by isolation. A point that has at most one Jive neighbour at
time t will be dead at time 14-1.

In [BCG] an argument of Moore that we shall generalize in the course
of the proof of the main theorem is used to show that there exist GOE
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patterns with support a square of size 2.325.816.000; in other words, for the
cellular automaton of the game of live, the transition map is not surjective.

PROBLEM (for Lifenthusiasts1). — Generalize the game of life over
other universes such as regular trees (these can be thought of as Cayley
graphs of free groups, if the degree is even, or, more generally of Zs * ̂ 2 *
• • < * Zs (the r-fold free product of the group with two elements) if the
degree is r, with respect to the canonical sets of generators).

4. Amenable groups.

We recall the notion of amenability and the combinatorial character-
ization of discrete amenable groups due to F0lner; for further details we
refer to the monograph [Gr] or [CGH].

A discrete group G is amenable if it admits a G-invariant normalized
measure, that is a map

p. : P(G) -^ R-^-

where P(G) denotes the set of all subsets of G, such that: if A, B 6
P(G), AnB = 0 then f^(AuB) = ̂ (A)-^-fi(B) (finite additivity), ^(G) = 1
(normalization) and i^(gA) = p,(A) (left invariance), where if g e G and
A e P(G), gA = {ga : a e A}.

Finite groups, abelian groups, solvable groups are all examples of
amenable groups. It is easy to see that the free group Fa of rank 2 is non-
amenable, and that subgroups of amenable groups are amenable [vN2].
Thus the class AG of amenable groups is contained in the class NF of
groups which do not contain non-abelian free subgroups. OPshanski [0] has
constructed groups in NF \ AG showing that the inclusion is strict; other
examples are given by the free Burnside groups B(m, n) of rank m > 2 and
odd exponent n > 665 ([A]). F0lner's characterization of amenability is the
following.

THEOREM 2 (F0lner, [Gr]). — A discrete group G is amenable if
and only if given any finite subset F C G and any e > 0 there exists a
finite subset K of G such that

\FK\K\ <e\K\.

1 A word due to Robert T. Wainwright.
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Remark. — It is easy to see that a finitely generated group of sub-
exponential growth (that is limsup ^/|B(e;n)| = 1) is amenable; indeed if

n—>oo
G has sub-exponential growth, given F C G finite and e > 0, it suffices
to take K = B(e; n) with n large enough to satisfy F0lner condition as in
the above theorem. But there also exist amenable groups of exponential
growth (see e.g. [CG]). Therefore Theorem 3 of the next section generalizes
the main result of [MaMi].

5. The theorems of Moore and My hill
for amenable groups.

In this section we state and prove our main result.

THEOREM 3. — Let G be a finitely generated amenable group
and let GA^G) denote the Cayley graph of G with respect to a finite
and symmetric generating system A. Then for any cellular automaton
A = (S.GA^G),/), there exist GOE patterns if and only if there exist
ME patterns.

Proof. — The proof is divided into two steps. In the first one (which
is essentially Theorem 2 in [MaMi] and is included here for the sake of
completeness), we show that, for any cellular automaton on the Cayley
graph of a not necessarily amenable group, if a finite subgraph B contains
m copies of a subgraph L which is support of a GOE pattern or of two
mutually erasable patterns, respectively, then, under suitable conditions,
B^ is the support of two mutually erasable patterns or of a GOE pattern,
respectively. In the second step we show that, by F0lner's theorem, given a
ball L = B(e\ n) of arbitrary radius n, a subgraph B containing m copies
of L under the suitable condition we alluded to above always exists for a
cellular automaton on the Cayley graph of an amenable group; since any
finite subgraph containing the support of two mutually erasable patterns
(of a GOE pattern) is itself the support of two mutually erasable patterns
(of a GOE pattern) the assumption that L is a ball will not be restrictive,
and the proof shall be complete.

Step 1. — Let L and B two finite subgraphs of Q and assume that B
contains m copies o-^(L) of L, j = 1,2,. . . ,m. Let £ = \L\,b = \B\,s = \S\
and u = \QB\ and suppose that
(*) ^-u > (^ - l)^6-^.
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Then

(i) If L is the support of two ME patterns, then B~ is the support
of a GOE pattern;

(ii) if L is the support of a GOE pattern, then B^ is the support of
two ME patterns.

Proof of (i). — Let R (resp. Rj) be the equivalence relation defined
on the set of patterns having support L (resp. o-j(L)) by declaring equiva-
lent two patterns if they are equal or mutually erasable. Under our assump-
tions on L the number of ^-equivalence classes is at most s^ - 1. The Rj's
induce an equivalence relation R* on the set of patterns having support B
as follows: piR*p2 if Pi{v) = p2(v) for v not in one of the copies of L and
Pila^(L) Rj P2\aj(L) fo1' B-II J's. The number of equivalence classes of fi* is
therefore at most (^ - l)771^-771^. if is easy to see that two patterns with
support B that are R* -equivalent are either equal or mutually erasable.
Therefore if C^^R^C^^B Lemma 1 implies that r{c\)\s- = r{c2)\B-' The
number of patterns having support B~ that are of the form r(c)|B- for
some c € C is at most equal to the number of R* -equivalence classes. The
total number of patterns on B~ being ̂ "^ (*) implies that there exists a
pattern on B~ that is not of the form r(c)\B-, that is, a GOE pattern.

Proof of (ii). — Assume the contrary. Lemma 2 applied to B4"
implies that the number of distinct patterns with support B of the form
r{(^\B (and therefore not GOE) is at least equal to the number of distinct
patterns on B~; these are ^"^ in number. On the other hand, there can
be no more than (s^ - i)171^-'̂  patterns on B not containing at least one
copy of the GOE under one of the cr/s. Since a pattern containing a GOE
pattern is also GOE, the number h of non-GOE patterns with support B
satisfies the inequality

s^ < h < (^ - l)771^-^
which contradicts (*).

Step 2. — Denote by U = A U {e} the unit ball of G; then L :== V
is the ball of radius n. By F0lne^?s Theorem, given e > 0 there exists a
finite set K = K(e) C G such that

\UnK\K\ <e\K\.
Since UnK D U^K D K and ̂ K \ K D VnK \ U^K one has

\UnK\Un-lK\ \UnK\K\
\U-K\ ^ K < e '
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Setting B = B{e) = ̂ K one has B- D U^K so that ^ = |J5 \ B-| ^
\B \ U^K} < eb, where b = b(e) = |B|; hence (1 - e)b < b - u and finally

(**) ,—— < -—— -^ 1 when e -^ O^.b — u 1 — e

On the other hand VK = \J Vk is a finite union of balls of radius
k^K

n. Let { A ; i , . . . , km} be a subset of K such that U^ki H U^ky = 0 whenever
i ^ j and such that each g e l^K belongs to U^ki for a suitable i (one
chooses k-t and eliminates all other A;'s such that U^k D Unk^ -^ 0; among
all the remaining k's one chooses k^ and repeats the operation inductively).

m
Thus ̂ K C U U^ki and with £ = ̂  = ̂ k^ one obtains

i=l

m m

^ I^^IJ^^I,^, ^
b \U-K\ -lO^n^]-^^3"!"^3"!'

1=1

We are now able show that inequality (*) holds provided e is small
enough. This inequality is equivalent, by taking logarithms, to

^KO^-O]-
Now m£/b < 1 and log^(^ - ! ) / £ < 1; thus the quantity in square

|r/-n]
brackets is positive and less than 1, and with q := „ ' we have that

\]j-^rt^

i.,C°i4 )̂ .,).,<>
is an upper bound for it.

Choosing e small enough, by (**) one gets -——<s where s = 1/t > 1,
b—u

and the proof is complete. Q

We remark that, given a finite subgraph L which is the support of a
GOE pattern (resp. two mutually erasable patterns), the above proof gives
an upper bound for the size of a minimal subgraph B which contains L
and supports two mutually erasable patterns (resp. a GOE pattern).

As in [MaMi], Sec. 5, we can restate Theorem 3 in the following form.

COROLLARY. — Let G be a finitely generated amenable group and
let GA(G) denote the Cayley graph of G with respect to a finite and
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symmetric generating system A. Then for any cellular automaton A =
(S, GA{G), f), there exist GOE configurations if and only if there exist ME
patterns.

6. Cellular automata on groups with free subgroups.

In [MaMi], Sec. 6, examples of cellular automata on the Cayley graphs
of the non-amenable groups Zs * Z:B and Za * Z2 * ̂ 2 are given for which
Theorem 3 fails to hold. The following examples, slight modifications of
these, yield counterexamples for cellular automata on the free group F^,
i.e. with the universe which is a 4-homogeneous tree.

Examples.

1. Let G be the Cayley graph of the free group F2 with respect to a
free basis {a, 5}; set 6'i = {0,1} and define the local map /i by

{ ( either Sa+Sa-i+Sb+s^-i = 3
/l(5e,^,^-i,^,^-i)= 1 I or 5a+5a-i +^+^-i C {1, 2}and Se = 1

0 otherwise.

Let p\,p2 : B(e;2) —> Si be the characteristic functions of the sets
B(e\ 1) and B(e\ 1) \ {e}; it is easy to check that pi and p^ are mutually
erasable patterns in A\ = (6'i, Q^ f\). On the other side similar (and in fact
even simpler) arguments as in [MaMi], p. 53-54, show the existence of no
Garden of Eden patterns in Ai. This shows that Moore's theorem does not
hold for cellular automata on the free group F2.

2. We now define the second automaton A^ = {S^^G, f^)- The set
of states 5'2 == {0,1,2,3} can be given the structure of a Klein group by
setting % + i = 0 and i + j = k if % , j and k are non zero and all different.
The local map /2 is defined by

/2(5e,Sa,Sa-i ,Sb,Sb-i) = f(Sa, So-1 ? ̂ -^-i )

where / is as in (i)-(iii) of [MaMi], p. 55. The argument given there
shows that for this cellular automaton there are GOE patterns but no
mutually erasable patterns. Thus MyhilPs theorem does not hold for
cellular automata on the free group F^.

We now define the notion of induction for cellular automata.
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DEFINITION. — Let A = (S, Q = QA(H), f) be a cellular automaton
on a group H with finite generating system A = {ai, 02 , . . . , an}- Suppose
that H is a subgroup of a finitely generated group G and choose a (finite)
generating system B for G containing A; set [b\,b'z,..., bm} = B \ A. The
cellular automaton A = (5', <?, /) defined by

S=S

G=GB(G)

j [ ^ e i ^0,1 •> ^02 ^ • • ' •) ^Cin 5 ^^1 •> ^2 •) • ' ' 5 ^bm ) = J \^e 5 ^Ol 1 ^CL^ ^ ' • • f ^Cbn )

is the induced cellular automaton.

Remark that although the edge-structure of Q depends on the choice
of the generating system B for G, the dynamics of the induced automaton is
independent of this choice and therefore A is well denned. Also, denoting
by {^}ieN a ^ft transversal for H in G, with go = e the unit element,
the universe Q is partitioned according to the corresponding partition
G = U giH (disjoint union). Denoting by Ci = {c : giH — ^ S = S }

%CN
the set of configurations with domain the coset giH^ so that in particular
CQ equals the set C of configurations of the automaton A, the mapping
(f)i : C 3 c i—^ <^(c) C Ci given by ct)i[c](gih) = c(/i), h € H , is bijective.
Moreover given a configuration c C C of the automaton A one has

^(c)^H =^i[r(^l{c\g,H)}

where f (resp. r) is the transition map of A (resp. A).

The main interest of the notion of induction is the following lemma
whose proof is immediate.

LEMMA 3. — Let A be a cellular automaton induced from another
cellular automaton A. Then

i) there exist GOE patterns for A if and only if there exist GOE
patterns for A;

ii) there exist ME patterns for A if and only if there exist ME
patterns for A.

From the previous lemma and examples we obtain:

THEOREM 4. — Let G be a finitely generated group containing the
free group of rank two. Then there exist finite and symmetric generating
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sets Ai,A2 for G and cellular automata A\ = (S'i,^Ai(G'),/i), A-z =
(S^QA^G),f2) such that

i) for A\ there are two ME patterns but no GOE patterns;

ii) for A^ there are GOE patterns but no ME patterns.

In other words the theorems of Moore and Myhill fail to hold for
cellular automata on groups containing the free group Fa.

7. Concluding remarks.

We were unable to extend Theorem 4 to non-amenable groups with no
free subgroups like, for instance, OPshanski's groups or the free Burnside
groups -B(m,n), m > 2, n > 665, odd. The impossibility of such an
extension would give a new characterization of amenable finitely generated
groups.

On the other hand H. Furstenberg [F] suggested that entropy argu-
ments may lead to an extension of Theorem 3 to a class of groups wider
than that of amenable groups. In the appendix "Garden of Eden, entropy
and surjunctivity" of a recent paper concerning endomorphisms of symbolic
algebraic varieties, M. Gromov gives a new proof of our Theorem 3 based
on entropy arguments (see [Gro]).

Acknowledgments. — The authors wish to express their warm grat-
itude to Roland Bacher and Pierre de la Harpe for several suggestions and
remarks. Thanks are also due to Misha Gromov for sending us the preprint
[Gro].
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