
ANNALES DE L’INSTITUT FOURIER

DMITRI NOVIKOV

SERGEI YAKOVENKO
Trajectories of polynomial vector fields and
ascending chains of polynomial ideals
Annales de l’institut Fourier, tome 49, no 2 (1999), p. 563-609
<http://www.numdam.org/item?id=AIF_1999__49_2_563_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_2_563_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 2 (1999), 563-609

TRAJECTORIES OF POLYNOMIAL VECTOR
FIELDS AND ASCENDING CHAINS

OF POLYNOMIAL IDEALS

by D. NOVIKOV and S. YAKOVENKO

To Yulii Sergeevich Ilyashenko who taught us so much, on his 55th birthday

Contents

1. Introduction
1.1. Meandering of integral curves: formulation of the problem and the main result
1.2. Complex intersections
1.3. The discrete Risler problem and its ramifications
1.4. Chains of polynomial ideals: effective Noetherianity
1.5. Descending chains of algebraic varieties
1.6. The structure of the paper
Acknowledgement

2. From nonlinear systems to linear equations
2.1. Disconjugacy and oscillatory character of ordinary linear differential equations
2.2. The universal system
2.3. Derivation of a linear equation
2.4. Bounds for degree and height
2.5. Computations and the end of the proof of Theorem
2.6. Demonstration of Theorem 2

3. Discrete Risler problem and descending chains of algebraic varieties
3.1. Bezout inequalities after J.Heintz
3.2. Algorithmic finiteness
3.3. Chains of varieties associated with discrete Risler problem: equivalence of The-

orems 3 and 5
3.4. Demonstration of Theorem 5

4. Convex ascending chains of polynomial ideals
4.1. Primary decomposition, leading terms, multiplicity
4.2. Effective commutative algebra
4.3. Convexity of chains generated by adding consecutive derivatives
4.4. Length of convex chains with strictly ascending leading terms

Keywords: Chains of polynomial ideals — Intersections — Integral curves.
Math. classification: 34A26 - 34C10 - 14Q20 - 32S65.



564 D. NOVIKOV, S. YAKOVENKO

4.5. Revealed growth
4.6. Demonstration of Theorem 4

Appendix A. Gabrielov theorem
A.I. Formulation and general remarks
A. 2. Chain of varieties associated with Risler problem
A. 3. Demonstration of Gabrielov theorem
A. 4. Final remark

Appendix B. Linear systems
B.I. Hyperelliptic integrals and Picard-Fuchs system
B.2. Reduction from linear systems to linear equations
B.3. Ascending chains of ideals generated by linear forms
B.4. Discrete and continuous Risler problem for linear systems

Bibliography

1. Introduction.

The main problem that will be addressed in this paper, concerns os-
cillatory properties of functions denned by polynomial ordinary differential
equations. Geometrically the question is about the number of isolated in-
tersections between an integral curve of a polynomial vector field and an
algebraic hypersurface in the Euclidean n-space.

Despite the fact that, to the best of our knowledge, this problem
was first discussed on Arnold's seminar in Moscow in the seventies, only a
limited progress in this direction has been achieved so far. The most ad-
vanced contribution to this area, an upper bound for the multiplicity of
contact between an integral curve and an algebraic hypersurface, solving
the Risler problem [23], is due to A. Gabrielov [4] (the two-dimensional
case was studied earlier in [6]). Another very recent result [26] concerns the
maximal number of infinitesimally close but distinct intersections ("cych'c-
ity"): Y. Yomdin shows that the above bound established by Gabrielov for
the order of tangency, holds also for the number of intersections that can
coalesce as the parameters of the problem vary. Still this does not give an
explicit answer for the global number of intersections.

This paper was preceded by the conference paper [22], an extended
abstract in which the main result was announced and the principal ideas of
the construction have been already exposed together with motivations, but
the long technical proof of the main (algebraic) Theorem 4, the cornerstone
of the whole construction, was barely indicated.

Below we give a complete demonstration of the results announced in
[22], focusing more on the issue of chains of polynomial ideals and algebraic
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varieties, that plays the key role in the proof. Besides, we improved slightly
the estimates and simplified the proof in several instances. However, for
the sake of readability some parts of the announcement [22] had to be
reproduced below in an abridged form.

1.1. Meandering of integral curves:
formulation of the problem and the main result.

Consider a polynomial vector field in the Euclidean space R72, defined
by a system ofn first order polynomial ordinary differential equations, and
let F C V1 be a compact connected piece of a phase trajectory of this field.
Since F is a real analytic curve, for any algebraic hypersurface II C R71 the
following alternative holds: either F C II, or the number of intersections
#mn is finite and all of them are isolated on F. The problem is to place an
explicit upper bound on the number of isolated intersections between F and
an arbitrary algebraic hypersurface of degree ^ d (e.g., an arbitrary affine
hyperplane). This bound characterizing the curve F, is a natural measure
for its meandering in the ambient space.

It is clear that the bound must depend on several parameters of the
problem, namely:

• the dimension of the phase space,

• the degrees of the polynomial differential equation and the hyper-
surface,

• the size of the integral trajectory, both with respect to the ambient
space W1 and with respect to the natural parameter ("time"),

. the magnitude of the coefficients of the differential equation.

(These parameters are not all independent, due to the possibility of
various rescalings). In order to make the formulation more transparent, it
is convenient to minimize their number, using common bounds, as follows.

Consider the system of polynomial ordinary differential equations of
degree d in n variables with a polynomial right hand side v = ( ^ i , . . . , Vn)'.

/7/T» . ___

(1.1) x = v ( t ^ x ) ̂  -^ = ^ v^tkxa, j = l , . . . , n
H+fc=o

(the standard multiindex notation is assumed). Suppose that the height
(the maximal absolute value of the coefficients) of the polynomials Vj(t, x) C
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R[^,;c] is explicitly bounded from above, i.e. all Vjka e M in (1.1) satisfy
the inequality \Vjka\ ^ ^ fo1' some known R < oo.

Consider an arbitrary integral trajectory r of the system (1.1) entirely
belonging to the centered box Bj? == {\Xj\ < R, \t\ < R} C R7^1 of size
R in the space-time, i.e. a solution t \—> (^ i (^ ) , . . . ,Xn(t)) denned on some
interval t € [to,t-i_] C [—R,R] and satisfying the inequalities |^j(^)| < R
on it.

Finally, let II C IR724'1 be an algebraic hypersurface determined by an
equation {p(ty x) = 0} in the space-time, where p € ]R[^, x] is a polynomial
of degree ^ d:

d

(1.2) n={pM=0}, p(t^x)= ^ jW^.
k-{-\a\=0

Since the polynomial p is denned modulo a nonzero constant factor,
without loss of generality we may always assume that the height of p is
also bounded by the same R, i.e. all coefficients pka satisfy the inequality
\Pka\ ̂  R- Note that R is a common bound for the coefficients and for the
"size" of r, whereas d is a common bound for the degrees of the vector field
and the hypersurface.

THEOREM 1. — For any integral trajectory T of a polynomial vector
field of degree d and height < R in IR71 and any algebraic hypersurface of
the same degree, the number of isolated intersections between F and II,
counted with multiplicities inside the box MR, admits an upper bound of
the form

(1.3) #(F n n n BjQ <, (2 + K)13, B = B(n, d) G N,

where B = B(n, d) is a primitive recursive function of the integer arguments
n and d. As n, d —> oo, the function B grows no rapidly than the tower of
four stories:

(1.4) B(n^d) ^ expexpexpexp(4nlnd + 0(1)).

The assertion of this theorem means the strongest form of effective
computability of the bound. In principle, one can derive from the proof
below an expression for B(n,d) in the closed form (and not only the
asymptotical growth rate (1.4), as above). But there are many reasons
to believe that this bound is highly excessive, so we did not strive for such
closed form bounds.
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1.2. Complex intersections.

The method of the proof of Theorem 1 works also in the complex
settings and yields a similar upper bound for the number of isolated zeros
of an arbitrary polynomial p{t,x) e C[t,x] restricted on the holomorphic
integral curve ^c inside a polydisk B^ = {|.r j ^ R, \t\ ^ R} C C71 x C
(replacing the box of size R). One has to exercise a special care concerning
domains of definitions of r.

Notice that solutions (integral curves) of polynomial systems can blow
up in finite time and hence may exhibit the so called movable singularities
(ramifications at infinity). If we take the integral curve {t h-> x(t)} 6 C7^1

passing through a certain initial point (to^o) ^ ^R, then the set of t in
the disk [\t\ < R} C C, for which the curve remains in Ej^, may be not
simply connected, therefore one has to specify the choice of the branches.

In order to avoid these complications, we formulate the complex
theorem in the "dual form", namely, for every initial point (to ,0-0) e B^ C
(Qn+i ̂  ^u explicitly specify the size of a small disk in the t-plane, in
which the curve has no more than the given number (large than n, in
general) of intersections with a polynomial hypersurface.

THEOREM 2. — For any n and d one can explicitly specify an integer
number £ = £(n, d) and a positive radius p = p(R, n, d) in such a way
that the integral curve of the polynomial vector field (1.1) of height ^ R
in C7^1 through any point (to.xo) € Bj^ extends analytically on the disk
^p = {\t ~ ^o| < p} and, restricted on this disk, can have no more than
£ isolated intersections with any polynomial hypersurface of degree d in
C^1.

The radius p depends polynomially on R: p(R, n, d) = (2 + R)-B^n^ ^
where the functions B(n, d) and ^(n, d) admit primitive recursive majorants
growing no faster than (1.4) and (P n respectively.

1.3. The discrete Risler problem and its ramifications.

A polynomial vector field is a dynamical system in continuous time,
whose discrete time analog is a polynomial map (endomorphism or auto-
morphism of R71 or C77'). The following is an analog of the original problem
on intersections between integral curves (orbits of the vector field) and
polynomial hypersurfaces for the discrete time case. Recall that an orbit



568 D. NOVIKOV, S. YAKOVENKO

of P is the sequence of points {a^}^o c ̂ n obtained by iterations of the
map:

(1.5) ^+i=P(^), z = 0 , l , . . .

Let P: W1 i-̂  R71 be a polynomial map of degree d and 11 C V
an algebraic hypersurface defined by the equation {p{x) = 0}, p € R[a;],
degp ^ d. The problem is to find an upper bound (in terms of d and
n) for the maximal number of consecutive zeros in the infinite numeric
sequence {p{xi) '. i == 0,1,...}, on the assumption that not all members
of this sequence are zeros. Geometrically this problem concerns with the
number of intersections between an orbit of the dynamical system and the
hypersurface II. This problem is the discrete analog of the Risler problem
on the maximal order of contact, and the result is largely parallel to the
Gabrielov theorem.

DEFINITION. — A polynomial map P: C71 —> C71 is called dimension-
preserving, if the image of any semialgebraic k-dimensional variety is again
k-dimensional.

This property is generic, so the theorem below holds for almost
all polynomial maps. If X and Y are two semialgebraic varieties with
P(X) C y, then the assumption that P is dimension-preserving, guarantees
that dimX ^ dimV.

THEOREM 3. — Any orbit {a^}^o C ̂  of a dimension preserving
dynamical system (1.5) of degree ^ d that belongs to a polynomial
hypersurface II = {p = 0} of degree ^ d for i = 0 , 1 , . . . , ^ = £(n,d),
where

(1.6) ^n.d^M^ , M ^ l + c T ,
n times

necessarily remains on II forever.

Remark. — A particular case of the discrete Risler problem was
studied in [3], with P being a linear map and the surface II = {p = 0}
being an algebraic sphere of degree d. However, this case differs radically
from the general one, because the degrees of the polynomials pk(x) =
p ( P ( - ' • (P(x)) • • •)) (k times) remain bounded by d = degp for all fc, and
hence the length of the corresponding chain of ideals (see below) is obviously
bounded by the dimension of the linear space of polynomials of degree d,
using linear algebraic tools only.
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The discrete Risler problem appears naturally in an attempt to solve
the (original) Risler problem, see Appendix B.

1.4. Chains of polynomial ideals: effective Noetherianity.

The proof of Theorem 1 is based on two arguments. The first one is a
nonoscillation condition for high order linear ordinary differential equations
(Lemma 1). An easy Corollary 1 to this lemma allows to place an explicit
upper bound on the number of isolated zeros of any solution of a linear
differential equation in terms of the magnitude of its coefficients.

To reduce our problem on nonlinear systems of differential equations
to that on linear high order scalar equations, we construct an auxiliary
ascending chain of ideals in the appropriate ring of polynomials and use
the Noetherianity of this ring. (This reduction is explained in § 2.3 below).

The second argument of the proof is an explicit upper bound on
the length of ascending chains of polynomial ideals generated by adding
consecutive derivatives, given in Theorem 4 (see also [22, Lemma 6]). The
precise formulation follows.

Let 9^ == C[x} == C[.TI, . . . , Xn] be the ring of polynomials in n variables
and L: ̂  —> ^H a derivation of this ring of degree d. This means that for
some polynomials z » i , . . . , Vn C ̂  of degree d 4-1 we have

VpC^H Lp=^v,9^ 9 , = 9 .
.7=1 j

In other words, L is the Lie derivative along the polynomial vector field
v = (^i, . . . ,^) in C71.

Take an arbitrary seed polynomial po e ̂  and the sequence {p/c}^=i
of its derivatives obtained by iterating L,

(1-7) pk+i=Lpk, k =0 ,1 ,2 , . . .

Having this sequence, one can construct the ascending chain of
polynomial ideals

^ ^ A) C h C • • • C h C 4+i C • • • C ^H,
JA;+I = h + (pfc+i), k = 0 ,1 , . . . , Io= (po).

For simplicity we will assume that the seed polynomial also has the same
degree d.
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The chain of polynomial ideals (1.8) must eventually stabilize, as the
ring 9^ is Noetherian: starting from some £ one should have 7^-i = la =
7^-i = = • • • . The number £ is referred to as the length of the ascending chain
(1.8).

THEOREM 4. — The length of any ascending chain of polynomials
generated by iterated derivatives along a polynomial vector field as in
(1.7)-(1.8), is bounded by a primitive recursive function £ = £(n^d) of
n (the number of variables) and d (the degree of the derivation L and the
seed polynomial po).

As n and d are large, this function grows polynomially in d and doubly
exponential in n2 Inn:

(1.9) £=£(n,d) ̂ d^2^

As with the inequalities given in Theorem 1 , the term 0(n2) can be
made explicit, but the asymptotic upper bound (1.9) seems to be rather
excessive.

This result, being a cornerstone for proof of the bound (1.4), deserves
several comments. The rule (1.7) implies explicit bounds for the degrees
of pk'. obviously, degpk ^ (k 4- l)d. Thus one can in principle apply
an algorithm by A. Seidenberg [25] to obtain a constructive bound for
the length of the chain (1.8). However, the construction of Seidenberg
proves only that the bound £ = £(n^d) is a general recursive function
(not necessarily a primitive recursive one). It was only relatively recently
established by G. Moreno Socias [20] that the estimates implied by the
Seidenberg algorithm, cannot be improved.

More precisely, he constructed an example of ascending chain of
polynomial ideals as in (1.8) with degrees of homogeneous generators pk
growing linearly, degpk = d + A;, whose length is given by the Ackermann
generalized exponential. Recall that the latter is a classical example of
a recursive (constructive) but not primitively recursive function growing
faster than any primitive recursive function (hence faster than any explicit
expression involving n and d). From this we can conclude the bound (1.9)
indicates that the rule (1.7) forces the chains of ideals stabilize much faster
(in some sense, infinitely faster) than in the general case.

Remark. — Strictly formally, the results by Seidenberg and Moreno
refer to strictly ascending chains and place bounds on the maximal length
of the chain until the first equality J^_i = 1^ is encountered. On the
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contrary, Theorem 4 gives an upper bound for the length of the chain
until its complete stabilization occurs.

This peculiarity can be easily explained: the rules (1.7)-(1.8) are very
specific and the very first equality J^_i = lg of the chain constructed using
this rule, implies inductively that 1^ = J^+i and so far. The details can be
found in [22] and in § 4 below.

1.5. Descending chains of algebraic varieties.

The above bound on the length of ascending chains of polynomial ide-
als has a geometric counterpart for descending chains of algebraic varieties,
formulated below. This counterpart is remarkable for two circumstances.
First, it allows for an easy visualization of the reasons why the algorithm
of Seidenberg implies so slow stabilization (as this was explained in [22])
and how a condition parallel to (1.7) forces it to occur much sooner.

Second, this result plays the same role in the proof of Theorem 3 as
Theorem 4 does in the proof of Theorem 1 (and the former reduction is
even simpler than the latter).

Preserving notation of the preceding section, consider a sequence of
polynomials obtained from a seed polynomial po € 9^ by iterations of a ring
homomorphism H: 9^ —> 91. As this is well-known, all homomorphisms of 9^
are produced by polynomial transformations: H = P*, where P: C72 —^ C71

is a polynomial map, in other words,

(1.10) pk+i = Hpk ̂  Pk+i(x) = pk{P(x)) V/c = 0,1, 2 , . . .

Using this sequence of polynomials, one can define the descending chain of
their common zero loci

k

(1.11) C71 D Xo D Xi D • . • D Xk D • • • , X, = Q {p, = 0}.
j=o

Since the ring 9^ = C[x} is Noetherian, the chain must stabilize (which
means that X^_i = X^ = X^+i = • • • = X^k = • • • for some £ < oo). The
problem is to determine the moment £.

THEOREM 5. — Let P: C77^ —^ C^ be a polynomial map of degree d,
po G 91 a polynomial of degree ^ d and the sequence of polynomials pk € ̂
is defined using the rule (1.10). Then the descending chain of algebraic
varieties built as in (1.11) is strictly descending: Xg_\ = Xn implies that
X^ = X^\ = A^-i-2 = • • • forever.
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Under the additional assumption that P is dimension preserving, the
length of this chain is bounded by the primitive recursive function -^(n, d)
as in (1.6).

This result is actually a simple reformulation of Theorem 3 (the
equivalence is established in § 3). It already appeared in [22] with a sketchy
proof. We had to reproduce it briefly here, since the demonstration of a
more technical Theorem 4 is largely parallel to that of Theorem 5. Besides,
we formulate in § 3 a simple theorem that places an upper bound for the
length of an arbitrary descending chain of algebraic varieties of known
(growing) degrees: it can be considered as a geometric counterpart of the
Seidenberg algebraic algorithm.

1.6. The structure of the paper.

In § 2 we derive Theorem 1 and Theorem 2 from Theorem 4. The
construction consists in a series of reductions. As this part was already
discussed in the announcement [22], the exposition in § 2 is rather brief
and concise. All motivations can be found in [22]. It is worth mentioning
that instead of referring to a result from [14] concerning zeros of solutions of
linear equations, we prove by elementary methods a nonoscillation criterion
in Lemma 1 and Corollary 1 bounding the number of roots. This makes
the exposition more transparent compared to [22].

The next section § 3, also rather brief, contains the proofs of the
bounds concerning chains of algebraic varieties (Theorem 5 and a geometric
counterpart of the Seidenberg result, Theorem 6) and a reduction of
Theorem 3 to Theorem 5.

The last section of the main body, § 4, contains a complete detailed
proof of Theorem 4 on lengths of ascending chains of ideals. This is the
core of the paper.

Two subjects somewhat aside are moved to appendices. Appendix A
contains the proof of Gabrielov theorem on maximal order of tangency
between trajectories and algebraic hypersurfaces. Appendix B describes
several refinements and improvements of the main results for the particular
case of systems of linear differential equations.

Acknowledgement. — This work would never be done without help
and support of our friends and colleagues who patiently explained us some
basics and fine points of commutative algebra. We are grateful to Alexander
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Braverman, Marie-Frangoise Coste-Roy, Maria Gorelik, Vladimir Hinich,
Anna Melnikov, Andre Reznikov, Bernard Teissier, Victor Vinnikov, Am-
non Yekutieli.

Yosef Yomdin, Vladimir Golubyatnikov and Andrei Gabrielov were
among the first who discussed this problem with us and by showing constant
and strong interest provided us with additional stimuli.

Our special and cordial gratitude goes to Joos Heintz: he introduced
us into the beautiful realm of effective commutative algebra and taught us
many fundamental results. In particular, he supplied us with the explicit
estimate of the complexity of primary decomposition.

Finally, we are very grateful to the referees for the remarks concerning
the style of presentation of the material and the suggested corrections.

2. From nonlinear systems to linear equations.

2.1. Disconjugacy and oscillatory character of ordinary linear
linear differential equations.

We start with a sufficient condition for a linear ordinary differential
equation of order n to have no solutions with more than n — 1 isolated roots
on a given real interval 7. Such equations are called disconjugate on I .

Consider a linear equation

(2.1) y^ + a,(t) y^ + • • • + a^{t) y " + ae-iW + a,(t}y = 0

on a real interval I = [^0^1] of length r = i\ — to with real bounded
coefficients: dk(t)\ < c/g < oo for all t € I .

LEMMA 1. — If
n i.
— C k r "w E ̂ - < ik\

A;=l

then any C71 -smooth function f(t) satisfying a linear equation (2.1) may
have at most t — 1 isolated roots on I, counted with multiplicities.

Breaking an arbitrary finite real interval on sufficiently short subin-
tervals satisfying the above lemma, we obtain the following corollary.
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COROLLARY 1. — If all coefficients of the equation (2.1) are bounded
by the common constant C ^ 1 on I , then any nontrivial solution cannot
have more than (£ — 1) + —— £rC isolated zeros there.

In. z
Proof of the corollary. — Obviously, our choice of C implies that Ck ^

£
Ck', and therefore for any interval of length h the inequality ^c^/^ / k \ ^

i
exp Ch—1 < 1 guarantees that the equation on this interval is disconjugate:
resolved with respect to /i, this gives h < ho(C) = ln2/(7. Subdividing the

given interval into |_r//ioJ + 1 ̂  ,—^rC + 1 subintervals of disconjugacy,
we establish the required upper bound for the number of roots, n

Lemma 1 has a complex counterpart. Assume that the equation (2.1)
is denned on a convex domain D C C and the coefficients of this equation
are analytic functions bounded by c^ therein. Denote by r the diameter
o^D.

LEMMA 2 (W.J. Kim [15]). — If the diameter r and the magnitudes
Ck of coefficients of the linear equation (2.1) with holomorphic coefficients
in the complex domain D satisfy the inequality (2.2), then any solution has
no more than £ — 1 isolated roots in D.

The proof of Lemma 2 is based on a rather complicate identity from
the complex interpolation theory, that allows to estimate the norm of an
analytic function via the norm of its £th derivative, provided that it has at
least C. zeros [15]. On the contrary, the real version is completely elementary.

Proof of Lemma 1. — Assume that / has £ or more isolated roots on
I . Then by the Rolle theorem, each derivative //, / / / , . . . , f^~^ must have
at least one root on the interval I .

If f^ = 0, then / is a polynomial of degree ^ £ — 1 and the claim is
obviously true. Otherwise without loss of generality we may assume that
|/^[ ^ 1 on J, and the equality |/^(^)| = 1 holds at some point t^.

For an arbitrary point a G I and any k between 1 and n one has
the identity f^^x) = /^-^(a) + f^ f^(t)dt (the Newton-Leibnitz
formula). The choice of the base point a in each case can be made arbitrary,
so we put it at .r^-i, one of the roots of /(A;-l). Then the first term
disappears, and majorizing the integral we conclude with the recurrent
inequalities H/^'^ll < r • ||/^|| for all k = l , . . . , n , between the sup-
norms of the derivatives.
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Iterating these inequalities, one can prove that ||/^~^|| ^ 11/^H^.
In fact, a stronger assertion holds: ll/^'^ll ^ H / ^ H r^/A:!. To see this, we
write the expression for f^~^ as the multiple integral and use the mean
value theorem for the symplex with sides hj = \tj - xj\ ^ r, so that for an
arbitrary t^-k € I

i/^-^^-fc)! = r"" dt^k+i • • • r~1 d^ • fww
J x g - k ^a^-iX£-k ^a^-l

•he-k rhe-i k
i . / T . - • i /.m 1 1 ^^r^ll/^ll- / <-fc <^_fc+i • . • r~1dt^\\fW\\

JO JoJo Jo

Plugging these estimates into the original equation (2.1) we notice
that the leading term is overtaking at the point ^ (hence in the sense of
the sup-norm) the sum of all other terms and therefore the equality (2.1)
cannot hold everywhere—a contradiction, n

The remaining part of this section (until § 2.5) is devoted to the
demonstration of Theorem 1 : we derive it from the assertion of Theo-
rem 4 and Corollary 1. The proof of Theorem 2 is given in §2.6. The
demonstration of Theorem 4 is postponed until § 4.

2.2. The universal system.

The assertion of Theorems 1 and 2 concerns all integral curves inside
the box MR of all vector fields corresponding to a box in the parameter
space (recall that the coefficients vjka m (1.1) and pka in (1.2) are the
natural parameters of the problem, provided that n and d are fixed). We
reduce the question about intersections to that for one universal system
and one universal hypersurface.

Consider the coefficients Vjka in (1.1) and pka in (1.2) as new
independent variables governed by the trivial equations, and add to them
the time variable t:

(2 .3) Vjka ==0, pka = 0, i = 1 Vj = 1 , . . . , n, k + a ^ d.

Together with the equations (1.1) they define a system of autonomous
polynomial ordinary differential equations corresponding to a polynomial
vector field in the new phase space of dimension ^ (n + 1)(1 + (d + l)771'^1)
and of degree d + 1. Each particular choice of coefficients of v(t^x) and
p(t, x) subject to restrictions on the height means choosing a particular
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initial condition for the integral curves of this universal system in the box
Bj? belonging to the new phase space. Thus without loss of generality it
is sufficient to prove Theorem 1 for one universal vector field (1.1) - (2.3)
and one universal algebraic hypersurface (1.2) of degree d + 1.

Note that all polynomials in the right hand side of the universal
equations have only integer bounded coefficients (in fact, only 0 and 1 are
allowed). The same refers to the equation of the universal hypersurface.
This circumstance will play an important role later, in § 2.4.

2.3. Derivation of a linear equation.

From now on we consider only the universal vector field constructed
above. To avoid cumbersome notation, we return to the original notations
for state variables and consider a polynomial vector field defined by
the system of autonomous polynomial equations x = v(x) of degree d
and height R in the space IR^ (or C71) and a polynomial hypersurface
II = {p(x) = 0} C M71 of the same degree and height. Let L be the Lie
derivative of the ring 9^ = C[x} along the vector field v, and define the
sequence of polynomials {pfc}S^=o as ln (^•'^ starting from po = p. The
corresponding ascending chain {7^} C 91 of ideals (1.8) will stabilize after
at most £ steps (the value of £ is given by Theorem 4).

The equality In-\ = If, means that for some polynomials /^o^i? • • • ?
he-i € fH

e-i
(2.4) p^ = ̂  hkpk, hj, € C[x}.

k=0

Now assume that r C B^ is a parameterized integral trajectory of the
vector field v, entirely belonging to the box Bj^. Recall that by construction
of the universal vector field, the time parameter t on r coincides with one
of the coordinate functions, so F is parameterized by a subinterval I of the
interval [-R,R].

Denote by f(t) the restriction of the polynomial p on F: f{t) =
p(x(t)), t C I . Then from the rule (1.7) it follows that the restriction
pk{x{t)) of pk on r is the A;th derivative /^(t). Together with (2.4) this
means that / solves the linear ordinary differential equation (2.1) with
coefficients

(2.5) ak(t) = -he-k{x(t)), k = 1,.... £.
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For successful application of Corollary 1 it remains to place explicit
upper bounds on the magnitude of the coefficients a^;. As the latter are
obtained by restriction of the polynomials hk on the curve F lying in the
box Bj^, it is sufficient to estimate explicitly the degree and height of all
hk' Indeed, if the height H{q) of a polynomial q e 9^ == C[a:i,... ,Xn] of
degree D = deg q is known, then obviously

max \q{x)\ ^ H{q) . (D + l)^! + ̂ D,
xe^n

and this applied to q = hk would yield an upper bound for all Ck =
m8ix\ak(t)\ from (2.5), that can be plugged into the bound given by
Corollary 1 .

Remark. — The identity (2.4) is independent of the choice of F,
provided that the equation remains the same (as this is in our case, since we
consider the universal vector field). But the linear equation (2.1) obtained
by restriction of (2.4) on F, will depend explicitly on the choice of the latter.
Still the magnitude of the coefficients of the resulting linear equation can
be bounded in terms of R uniformly over all curves inside the same box
B^, which is sufficient for our purposes.

2.4. Bounds for degree and height.

The remaining part is purely algebraic. The degrees of the polyno-
mials pk grow linearly with k, degpk ^ (k + l)(d — 1) + 1, so max

/c=0,...,^-l
degpk ^ £d. Knowing these degrees, one can estimate the degrees of hk in
the decomposition (2.4) by the inequality due to G. Hermann [12] shown
to be essentially sharp by Mayr and Meyer [19]:

(2.6) deg hk ^ D = (Cd)2' \/k = 0 ,1 , . . . , i - 1.

(More precisely, one can always replace the initial decomposition (2.4) by
a new one satisfying the above restrictions for the degrees.)

To place an upper bound for the height of ^, we use the method of
indeterminate coefficients. Expand hk and pk explicitly as ^ hka^ and

|a|^D

S Pka^ respectively. Substituting these expansions into the identity
|a|<^d

(2.4), we obtain a non-homogeneous system of linear (algebraic) equations
that is to be solved with respect to N ^ £(D + l)77^1 unknowns {hka}'
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This system is known to possess at least one solution, so one can apply
the Cramer rule to produce it. According to this rule, each component of
the solution can be found as a ratio of two appropriately chosen minors of
the extended matrix of the system, with a nonzero denominator.

All entries of the matrix of this system are integral and explicitly
bounded from above. Indeed, they are expressed in terms of coefficients of
the polynomials pk. But the rule (1.7) preserves integrality of coefficients
(as the derivation L has bounded integer coefficients, see § 2.2) and the

n
height 01 pk grows in a controllable fashion: the formula pk-\-i = S v^ ^x Pk

j=i
implies that

(2.7) H(pw) ̂  degpk x n(degpk + \T(d + 1)" x H(pk)

for all A: = 0 , . . . , ^ — 1. (The first multiplier comes from computing
the partial derivative Qx^Pki th^ second term majorizes the number of
monomials when reducing similar terms in the products Vj9x Pk and adding
them together, and the last multiplier is equal to the height ofp^, since the
height of all vj is 1).

The upper bound for 1~i(pk) provides an upper bound for the numer-
ator of the ratio in the Cramer rule, as the size of the corresponding minor
cannot exceed the dimension N < ^(D+l)7^1 of the matrix, and all entries
therein are already explicitly bounded. On the other hand, the denominator
of this ratio is a nonzero integer number, hence at least 1 in the absolute
value. Thus we obtain an upper bound for every |/^cJ and hence for all the
heights 1~t(hk) by a primitive recursive function of n and d.

2.5. Computations and the end of the proof of Theorem 1.

The recursive formulas for the degrees and heights, together with the
inequality asserted by Corollary 1 already prove the bound (1.3) with a
primitive recursive exponent B(n^d). To find the asymptotical growth of
B(n^d) for large n,d, all computations should be performed explicitly. In
doing that, we use the fact that the bound ^(n, d) for the length of ascending
chains is already very large and can be used in the "absorbing" sense (as
the symbol 0 in the classical calculus):

^(n, d) = d"0^ =^ M = d^ ^ S, r = d^ ^ I, . . .

Using the inequality degpk ^ id for all k = 1,. . . . £, we can simplify
(2.7) to the form T-^+i) ^ n(d£ + I)271 • n(pk) x W{pk)- Therefore for
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all k = 0 ,1, . . . , £ we have the inequality

(2.8) H(pk) ^ ̂  x ̂  = d^0^.

The degrees of the polynomials h^ do not exceed (^d)2^ >^ by (2.6).

The size N of the matrix of the linear system described in § 2.4 is
therefore bounded by the expression -^n+l x L This matrix and the column
in the right hand side are filled by integer numbers not exceeding d^ by
(2.8).

Each component hka of the solution can be found as a ratio of two
minors of this matrix. But any such minor does not exceed the sum of £\
terms, each being at most (d^Y. Since the denominator of the ratio is ^ 1,
we have the upper bound for the height of all hk'. 1~i{hk) < ^(d^Y x c^.

A polynomial of degree £ and height d^ restricted on the box Bj? in
IT, does not exceed ^^(1 + RY x (2 + R)^. This expression is also the
bound for the coefficients of the quasilinear equation.

By Corollary 1 the number of real zeros of any solution of this equation
does not exceed the upper bound asymptotically equivalent to (2 + R)d .
Since d^ is asymptotically overtaken by the tower of three exponents
expexpexp(n3+d+0(l)), after returning to the initial (i.e. before passing
to the universal equation and hypersurface) values of the parameters n and
d, we arrive to the tower of four exponents (1.4) occurring in Theorem 1.

D

2.6. Demonstration of Theorem 2.

Let a be the reference point in the box Bj^ of the phase space of the
universal system (this point is obtained by the obvious suspension of the
initial value point (a:o, to) for the original polynomial system). The complex
solution r passing through the reference point can blow up in a finite time
(exhibit singularities), but the distance to these singularities can be easily
estimated from below: the polar radius r = ||a:|| grows at most as the
solution of the equation r = (^(n.d)?^"1"1, where C is a simple expression
(the number of terms, since each term comes with the coefficient ^ 1). Thus
the trajectory never leaves the box Baj? for all \t < po = (C^n,^)^)"1

(assuming that t = 0 corresponds to the reference point, as the universal
system is autonomous).
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Restricting the identity (2.4) on the part of F C ^>2R parameterized
by this small disk {\t\ < po}^ we obtain a linear differential equation with
bounded coefficients (in the same way, as before—all those arguments were
independent on the ground field). It remains only to choose p <C po in such
a way that the inequality of Lemma 2 be satisfied. Then the equation (2.1)
restricted on this small disk, is disconjugate and hence has no more than £
roots (the number £ is equal to the order of the equation, i.e. to the length
given by Theorem 4). The computations in this case remain the same as in
the real case. D

3. Discrete Risler problem
and descending chains of algebraic varieties.

In this section we prove Theorem 5 and show its equivalence to
Theorem 3. Besides, a geometric analog of Seidenberg theorem [25] will
be established. The main ideas of this section were already discussed in
[22]: here we supply the proofs.

3.1. Bezout inequalities after J. Heintz.

Recall that any complex algebraic variety X C C71 admits a unique
irredundant irreducible decomposition X = X\ U • • • U Xg into the union
of irreducible algebraic varieties of various dimensions (the irredundancy
means that neither component belongs to the union of the others). The
following result allows to place explicit upper bounds for the number of
irreducible components of different dimensions.

LEMMA 3 (See [11]). — Assume that an algebraic variety in C71

is denned by any number of polynomial equations of degree ^ d, and
has an irreducible decomposition with mo ^ 0 isolated points, m\ ^ 0
one-dimensional varieties, . . . , rrin-i ^ 0 irreducible (n — 1)-dimensional
components.

Then rrin-i + rrin-2 + • • • + rrin-k ^ ̂  for all k = 1,... ,n.

In particular, the number of isolated points of any such variety,
regardless of its dimension and the number of determining equations, does
not exceed d71. Thus one can consider Proposition 3 as a generalization of
the Bezout theorem.
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3.2. Algorithmic finiteness.

Consider a descending chain of algebraic varieties (1.11) without any
information about the polynomials pj except for an explicit control over
their degrees. Assume that degpj = (f){j), where (f){j) is a given computable
(nondecreasing) function of j. We produce a recurrent formula for the
length of strictly descending chain of varieties, that would define this length
as a general recursive (but not primitive recursive already in the case of
<^(j) = J + 2) function of n.

Let w^ € Z+ be the number of r-dimensional irreducible components
of the variety Xk, and denote Wk = (w^~1 , . . . , w^) € Z+. We shall use the
strict lexicographic order on Z+, writing Wk -< Wj if w^~1 = w71"1, . . . ,
w^1 = w^1 but w^ < w^ for some r between n - 1 and 1.

PROPOSITION 1. — If the chain (1.11) is strictly decreasing, then
Wfc+i -<: Wk.

Proof. — This is obvious: since X^i = Xk H II^+i, where IIfc+i ==
{pfe+i = 0}, then each r-dimensional irreducible component of Xk either
entirely belongs to the hypersurface IIfc+i and hence enters as a component
of Xfe+i, or intersects the II^+i by the union of irreducible varieties of
dimensions strictly inferior to r, in which case there will be fewer r-
dimensional components in the decomposition of Xk-\-i. D

This is already sufficient to prove finiteness, as every lexicographically
decreasing sequence of vectors ("words") from Z^: must eventually stabilize.
If in addition the norm \\Wk\\ = w^~1 -h • • • -4- w^ admits an algorithmic
upper bound in terms of A:, then the termination moment admits an
algorithmically computable bound. Notice that the assumption on the
degrees degpj ^ (f>{j) together with Lemma 3 implies the bound

M ̂ (^))71, VA;=0,1 ,2

THEOREM 6 (geometric version of Seidenberg theorem [25]). — The
length of strictly descending chain (1.11) of common zero loci of a sequence
of polynomials pk of controlled degrees degpk ^ 0(A;), is majorized by a
general recursive function.

Proof. — Notice that any lexicographically decreasing sequence {wk}
can be subdivided into (finite) subintervals in such a way that the first co-
ordinate remains constant along each subinterval. Then on this subinterval
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the truncations (the "subwords" of length n - 1 containing all but the first
"letter") again form a strictly decreasing sequence in Z71"1.

Let us introduce an auxiliary function of three arguments, F(s, n, k)
being the maximal length of a decreasing sequence in Z^ that begins with
a word of the norm s and contains no more than k subintervals described
above.

Suppose we have a sequence already comprising k subintervals, so
that its length is N = F(s, n, k). Allowing for one more subinterval means
adding a new decreasing sequence of words in Z .̂"1 (as the first letter
is fixed), that begins with a word of norm ^ 6' = ^(N). Thus the
overall length of a sequence comprising A;+1 interval, satisfies the recurrent
inequality

(3.1) F(5, n, k + 1) ^ F(5, n, k) + F(S, n - 1,5'), S = ̂ (F^, n, k)).

The length of a sequence in Z^ starting from a word of norm 5, can be
estimated now by the expression F(s,n,s), as the number of subintervals
cannot exceed w^~1 ^ ||wo|| = s. n

Remark. — The rule (3.1) defines a computable (general recursive)
but not a primitively recursive function, as the right hand contains appli-
cation of the defined function to itself. It is this type of recurrent formulas,
that leads to the Ackermann exponential [20]. The arguments given in [20,
22] show that the rule (3.1) indeed may lead to a function growing faster
than any primitive function, hence faster than any closed form expression.

In fact, it remains to show that there exists a scenario indeed leading
to so long lexicographically decreasing sequences (this is relatively easy)
and, moreover, that this scenario can be realized by an appropriate chain
of algebraic varieties. We refer to [20] for such examples.

3.3. Chains of varieties associated with discrete Risler problem:
equivalence of Theorems 3 and 5.

Consider the dynamical system (1.5) in C71 and let XQ = II be the
hypersurface. The common locus of the first k polynomials po .p i , . . . ,pk
defined recurrently by (1.10), is the set of points x on XQ whose p-orbit
remains on XQ for the first k iterations:

k

^k = H^ = 0} = [x e C^P^) c n v^ = o, i , . . . ,fc}.
j=0
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This dynamic description immediately implies the inclusion

(3.2) P(Xk \ Xfc+i) C Xk-i \X^ k = 1 ,2 , . . .

Indeed, the difference Xk \ Xk+i consists of points that remain on XQ
during the first k steps of their life, and leave it on the (k + l)st step. The
P-image of any such point will remain on XQ for k — 1 more steps and then
leave it.

This (trivial) observation proves equivalence of Theorem 3 and
Theorem 5. n

3.4. Demonstration of Theorem 5.

The strict decrease of the chain (1.11) follows from (3.2): if the
difference X^_i \ X^ is empty, then it can contain the P-image of the
difference Xn \ -A^+i only in case the latter difference is empty, and so far
by induction.

To prove the bound (1.6), we observe that if the polynomial map P
is dimension-preserving, then the sequence of dimensions dim(Xfc \ X^i)
is non-increasing.

This observation implies that the chain (1.11) can be subdivided by
some moments kn-i ^ kn-2 ^ • • • ^ k^ ^ ko into n segments of finite
length,

(3.3) Xp D Xi D ...DXfc,^ D Xk^i D • • • D X^_, D . • •

dimXk\Xk+i=--n—l dim Xk\Xk+i=n-2

• • • D X ^ + i D . . . DX^_, D • • •DX^+iD.^DX^

dimXfc\Xfc+i=s dimXfc\Xfc_|_i=0

such that along the 5th (from the right) segment the differences X^^X^i,
k s + l ^ k ^ k g - i ^ are exactly 5-dimensional semialgebraic varieties (some
segments can be eventually empty).

The length of each such segment does not exceed the number of
5-dimensional irreducible components in the starting set Xj^^i of this
segment, since this number must strictly decrease on each step inside the
segment. Indeed, inside the segment all components of dimension > s must
be preserved, otherwise the difference will be more-than-s-dimensional. On
the other hand, if all 5-dimensional components are preserved on some step,
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this means that the difference Xj, \ X^i is at most (s - l)-dimensional,
and one starts the next segment.

It remains only to notice that the degrees degpk grow exponentially
degpk ^ c^1, whereas the number of irreducible components of Xk can
be estimated using Lemma 3 by the nth power of the maximal degree
(degpfe)71 = (d71)^1. Hence for the lengths ks - ks-i we have the
recurrent inequality, ks-i - ks ^ (d71)^1 for downward going values
of s == n - 1,. . . ,1,0 and the initial condition kn = d (the initial
polynomial po of degree d may have at most d factors). The solution of
this recurrent inequality is majorized by the solution of a more simple one
ks-i + 1 ̂  M^-^, M == d" +1, that gives the tower of height n for ko + 1
with M on each level: thus for the length of the descending chain we obtain
the required estimate (1.6). n

Remark. — The only property of the chain (1.11) used in the proof,
is the monotonicity of dimensions of the differences dim(Xk \ ̂ +1), which
is much weaker than the algebraic rule (1.10).

If (still under the same assumption of monotonicity) we would assume
the linear growth of degrees degpk ^ kd, as follows from the rule (1.7), then
the bound on the length of the chain would be much lower: the inequalities
ks-i - ks ^ [d{ks + I)]71 would imply A^-i + 1 ̂  M(ks 4-1)71 and finally a
double exponential estimate ko ^ d2^^.

4. Convex ascending chains of polynomial ideals.

This section contains the proof of Theorem 4. This proof is largely
parallel to that of Theorem 5 from § 3 and consists in monitoring compo-
nents of the primary decomposition of the ideals constituting the chain.
The source of additional difficulties is twofold: first, in the algebraic con-
text one has to take care of multiplicities of the components and second,
the construction should be modified to avoid explicit and implicit using
of the uniqueness of the primary decomposition that is known to fail in
general (in particular, this circumstance prevents one from speaking about
the number of primary components).

The bound on the length of ascending chains of polynomial ideals
is obtained by combining several results. First we establish the property
called convexity of the ascending chain of ideals generated by adding
consecutive derivatives, namely, we prove that in such chain the colon
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ratios Ik : Ik-\-i constitute themselves an ascending chain of ideals, hence
their (Krull) dimensions must form a non-decreasing sequence. Then we
consider chains in which the ascension can be detected at the level of the
leading terms (primary components of the maximal dimension), so that
dim Jo = dim(Ik : Jfc+i) holds along the chain. For such chains we show
that their length is majorized by the number of primary components in the
leading term of the first ideal in the chain, counted with their multiplicities.
Here we still can use the uniqueness part of the primary decomposition
theorem. The final bound is obtained by a certain "surgery": as soon as
the colon ratios Ii : ^4.1 became less than ^-dimensional, v = dim Jo, we
replace the chain of ideals {Ik} starting from k = I by another chain,
by deleting (in an almost arbitrary fashion) all primary components of
dimension v and above. As the colon ratio, due to its monotonicity, should
remain always less than ^-dimensional, such components would not have
been affected when adding new derivatives pk in any case, so the ascent of
the newly constructed chain would essentially catch that of the initial one
(in particular, their stabilization must occur simultaneously). Performing
such "surgery" at most n times, we arrive to an upper bound for the length
of any convex chain of polynomial ideals with an explicit control over the
degrees of the generators.

4.1. Primary decomposition, leading terms, multiplicity.

After describing the general scheme, we proceed with a formal proof.
In this subsection we collect several technical results which we will need
later.

Dimension. — Any algebraic subvariety in C71 is a stratified set [18]
that has a certain dimension. If I C R is an ideal and X == V(I) == {x G
Cn:p(x) = 0 Vp G 1} its zero locus, then we put dimJ be the (complex)
dimension of its zero locus. This number (between 0 and n) can be given a
purely algebraic description, known as Krull dimension [27].

Primary decomposition and its uniqueness. One of the basic results
of commutative algebra, known as the Lasker-Noether theorem [27, Ch.IV,
§ 4], asserts that any polynomial ideal I C 9^ can be represented as a finite
intersection of primary ideals, I = Qi D • • • H Qs. Recall that an ideal Q
is primary, if pq e Q and p ^ Q implies that qr G Q for some natural
exponent r. The radical ^/Q = [q e ̂ : <f € Q} is a prime ideal called the
associated prime, and by the Nullstellensatz it consists of all polynomials
vanishing on the zero locus V(Q) C C71.
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The primary decomposition in general is not unique, even if we assume
that it is irredundant. However, in an irredundant primary decomposition
the primary components whose associated primes are minimal (i.e. contain
no prime ideals associated with other components), are uniquely denned
[27 Theorem 8, p. 211]. In particular, the leading term

(4.1) l.t. (J) = ̂ ]{Qj:dimQj = dim I},
3

the intersection of all upper-dimensional primary components, is uniquely
defined, since the corresponding prime ideals are minimal for dimensionality
reasons. As an application of the uniqueness part we have the following
simple fact on monotonicity of the leading terms.

LEMMA 4. — Suppose that J C J ' are two polynomial ideals of equal
dimensions with the leading terms

(4.2) l.t. (J) = Qi n... n Q,, l.t. (J') = Q[ n... n Q',,

(as usual, the decomposition is assumed to be irredundant). Then each
component Q^ contains one of the components Qi.

Proof. — We start with the obvious identity J == J D J ' and consider
the decomposition of the leading terms:

(4.3) Qi n • • • n Qs = Qi n • • • n Q, n Q[ n • • • n Q^.

The decomposition in the right hand side is not irredundant. However,
all prime ideals associated with the primary terms Q', must be among the
primes associated with Qj. Indeed, this follows from the simple fact that all
m-dimensional irreducible components of the variety X' = V ( J ' ) c X =
V(J) should be among those of X.

Rearranging if necessary the components of l.t. (J'), we can assume
that Q^ and Qj have the same associated prime for all j = 1, . . . , 5' and
5' ^ s. After collecting "similar terms" in the right hand side of (4.3), we
observe that it becomes

(Qi n Q'i) n • - n (Qs' n Q^) n Q,/+i n • • . n Qs.

From the uniqueness theorem it follows that Qj = Qj n Q' for all
j = 1,. . . . 5', which implies that Qj C Q'. for all such j. D
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Multiplicity. — The notion of multiplicity of an ideal is rather subtle.
However, for our purposes it would be sufficient to use it only in a restricted
environment, where the following construction works.

Let I C ^R be an ideal and assume that 0 6 C^ is an isolated
point of its locus V(I). Denote by m = (.z-i, . . . ,Xn) C ^ the maximal
ideal of the ring and let 9^ni be the corresponding localization (the ring of
rational fractions whose denominators do not vanish at the origin). Then
I is cofinite at the origin, which means that the dimension of the quotient
ring y^m/I • ^m over C is finite [I], i.e. f^o(I) = dim^^m/^ • 9^m < oo-
The number f^o(I) is called the multiplicity of I at the origin 0 G C71. In
the similar way one may define the multiplicity /^a(^) of any ideal I at any
isolated point a € V(I) of its zero locus.

Let a be a regular (smooth) point of the zero locus of a polynomial
ideal I C 9^ of some dimension r between 0 and n. Let II be an affine
subspace in C77' of codimension r, transversal to V(I) at a, and L the
corresponding ideal generated by r affine forms. Then the ideal I + L is
zero-dimensional at a and hence cofinite.

DEFINITION 1. — The multiplicity f^a(I) of I at a is the multiplicity
of I -\-L at a (the complex dimension of the corresponding quotient algebra
in the local ring). The multiplicity p.(I) is the generic value of fia(I) (the
minimum over all smooth points a e V ( I ) ) , and this definition will be
applied to primary ideals only.

The multiplicity of an ideal in 9^ == C[a;i,... ,rCn] generated by
polynomials of degree ^ d, can be easily estimated from above: by virtue
of the Bezout theorem, the multiplicity of such ideal never exceeds d71.

The following (obvious) property of multiplicity allows to control the
length of ascending chains of primary ideals with the same associated prime:
the multiplicities should strictly decrease along such a chain.

LEMMA 5. — If I C J are two non-equal primary ideals in EH with the
same associated prime, then /^(J) > f^(J).

Proof. — Denote by la (resp., Jo) the localizations of the two ideals
(i.e. their images in the local ring 9^)- The proof consists of two steps:
first we show that if for two primary ideals with the same associated prime
the equality la = Ja holds after localization at almost all points, then in
fact I = J, and the second observation is that if for I C J the equality
p,a(I) = ^a{J) holds for almost all points, then la = Ja for almost all
points also.
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l . I fp i , . . . , p5 are generators of J, and q is an arbitrary polynomial in
J, then the condition la = Ja implies that q = ̂  ̂ jpj, where r^ are rational
fractions with the denominators not vanishing at a, hence (by getting rid
of the denominators) we arrive to the representation hq = ̂  hjpj, where
h € ^H is a polynomial not vanishing at a, and hj are polynomials as well.
Consider the colon ideal I : q. The above conclusion means that for almost
all a e X the colon ideal I : q contains a polynomial with h{a) -^ 0. For
obvious reasons, for a ^ X this is valid as well. Since I is primary, then by
[27, Ch. Ill, 69, Theorem 14] the ideal I : q, if not trivial, is also primary
with the same associated prime. But from the above assertion it follows
that the zero locus of I : q is strictly contained in X, so the only possibility
left is that I : q = 9^, i.e. q e I . Since q e J was chosen arbitrary, this
proves the first assertion (note that we used only the fact that I is primary;
the bigger ideal J could in fact be arbitrary).

2. Let a € X be a smooth point, ^Ha and la being the correspond-
ing localizations. Since the situation is local, without loss of generality we
may assume that X is a coordinate subspace. Choose T being the com-
plementary coordinate subspace and denote by L the corresponding ideal.
Let (x,e) be the associated local coordinates, so that X = {x = 0}, and
T = {e = 0}. The point a is the origin (0,0). We will prove that la £ Ja
implies the inequality p.a'{I) ̂  ^ ( J ) tor all nearby points a'.

Let 11 = p ' a ( I ) - If the germs /i,...,/^ € 9^(o,o) generate the local
algebra of the cofinite ideal (J + ^)(o,o)? then any germ q(x) from the
restriction of 9^(o,o) on T Gan be represented as

(4.4) q{x) =^c,/,(^,0)+^^(^(^0),
j=i i==i

where pi = pi{x,e) are generators of the ideal 7, and pi(x,ff) are their
respective restrictions on the transversal L. If this representation is minimal
(i.e. the number of germs fj cannot be reduced), then [L is the multiplicity
of I at the point a = (0,0).

By the Preparation theorem in the Thorn-Martinet version [18,
Chapter I, §3], the representation (4.4) can be "extended" for all small
nonzero e: any element q e 9^(0,0) admits a representation

A4 s

(4.5) q(x, e) = ̂  Cj(e) fj{x, e) + ̂  hz(x, e)pi{x, e).
j=l i==l
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Now assume that the localization <7(o,o) is strictly bigger than ^(0,0)
and take an element q C ^(0,0) v ^(0,0)' By (4.5), it can be expanded after
a certain choice of the coefficients Cj(e).

The situation when all Cj{e) are identical zeros, is impossible, since
this would mean that q G ^(0,0) contrary to our assumptions. Therefore for
almost all values of e the equality

^ s

^ Cj{e)fj(x, e) = q + ̂  hip, e Ja
j=l i=l

means a nontrivial linear dependence between the generators fj ( ' • , £ ) of
the corresponding local algebra ^H(O,£)/^(O,£) • ^(o,e)? so ^nat lts dimension
is strictly smaller than /^. By definition this means that the multiplicity
^ a ' ( J ) is strictly smaller than ^ = /^(J) = /^(-O for all nearby points
a' = (0, e). The proof of the second step (and together with it the proof of
the lemma) is achieved. D

Illustration: chains of ideals of homogeneous dimension. — The above
two lemmas already imply an upper bound for the length of an ascending
chain under rather specific restrictions. We will use this particular case as
a building block for the general construction.

Let P = {Pi, Pa? • • • 5 Pv} be a finite collection of pairwise different
prime ideals, Pi C 9^, of the same dimension m. Consider a strictly
ascending (finite) chain of ideals

(4.6) Jo £ Ji £ J2 S • • • £ Je-i £ ̂

under the additional assumption that each ideal from this chain is an inter-
section of primary ideals with associated primes only from the predefined
collection P. Denoting by Qkj the primary component of Jk with the as-
sociated prime Pj (if there is no such component, we introduce a fictitious
term Qkj = (1) to make our considerations uniform), we can write

Jk =Qki n - - - n Q ^
Qkj is either (1) or primary with ^/Qkj == Pj-

By the uniqueness part of the Noether-Lasker theorem, all ideals Qkj,
whether fictitious or not, are uniquely determined.

LEMMA 6. — The length i of the strictly ascending chain (4.6) does
not exceed the number of primary components of Jo, counted with their
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multiplicities:

^$>(<3o,).
j=i

Proof. — This is an obvious corollary to Lemma 4 and Lemma 5.
Indeed, by Lemma 4, the monotonicity of the chain (4.6) implies the
monotonicity of all the chains

Qoi cQn c • • • cQ^i,
Oo2 cQi2 c • • • cQ^,

Qo^ c Q ^ c ' " cQ^.

Moreover, in every column k at least one inclusion must be strict
(otherwise Jk = Jk+i)' Since all ideals in each line are primary with
the same associated prime (unless they become trivial), the assertion
of Lemma 5 applied to each line, shows that the numbers ^(Qkj) are

v
nonincreasing (by definition we put /^((l)) = 0), and their sum ^ l^(Qkj)

3=1
is strictly decreasing as k ranges from 1 to £.

Since all multiplicities are nonnegative, this last observation proves
the claim.

4.2. Effective commutative algebra.

The chain (1.8) consists of ideals given by their generators p/c. On
the other hand, application of results such as Lemma 6 requires knowing
some numbers (the number of primary components, their multiplicities).
Moreover, our constructions below would require determining (or rather
estimations) of similar numbers for ideals obtained by certain algebraic
procedures (intersections, colon ratios etc) from the initial ideals Ik. Thus
we need some tools for performing explicitly all these manipulations.

We agree that to construct (or define) an ideal in the polynomial
ring tH means to construct (or specify) a set of generators of this ideal.
Then many operations on ideals become algorithmically implement able. In
particular, given polynomials generating some input ideals I and J, one
can explicitly do the following [24]:

• construct the intersection I D J and the colon ratio A : B\
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• decide whether a given polynomial belongs to I and if so, construct
an explicit expansion for the former in the generators of the latter;

• construct some primary decomposition of I and the intersection of
all primary components of upper and lower dimensions,

• and many other (but not all) algebraic operations.

The algorithms performing the above mentioned operations, are
discussed and perfected in a number of works. However, we are interested
here not in the manipulations themselves, but rather in the upper bounds
for the degrees of the generators of polynomial ideals. The result that will
be used in the proof of Theorem 4, describes the algorithmical complexity
of the primary decomposition.

THEOREM ([12, 24, 25, 8, 9, 16, 17]). — If an ideal I of the polynomial
ring y\ = C[a*i, . . . ,Xn] is generated by polynomials of degree ^ d, then
one can effectively construct polynomial bases of all ideals in the primary
decomposition of I . The number of primary components and the degrees of
polynomials in the bases can be majorized by primitive recursive functions
of n and d, and each of these functions grows no faster than dn as
n —>• oo.

This theorem in fact constitutes a synopsis of several references, see
[12], [24], [25] for the primitive recursivity of the bound, [8, 9] for explicit
estimates and [16], [17] for more precise bounds. Combination of this
result with our definition of multiplicity and Bezout inequalities implies
the following.

COROLLARY 2. — For an ideal I generated by polynomials of degree d
in C[a;i , . . . , Xn], and any dimension m < n one can construct a decomposi-
tion I == I ' D S, where J' is of dimension < m and all primary components
of S are of dimension m-\-1 or more, in such a way that the number of pri-
mary components in l.t. (J), counted with their multiplicities, is majorized
by a primitive recursive function v{n^ d) of variables d and n, growing no
faster than d^ as n —> oo. D

4.3. Convexity of chains generated by adding
consecutive derivatives.

The key property of ascending chains, on which the proof of Theorem
4 is based, is that of convexity: the "multiplicative first differences" of the
ideals in the chain monotonously "nondecrease".
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DEFINITION. — An ascending chain of ideals (1.8) is called convex if

(4.7) Jfc-i : Ik C Ik : Jfc+i V/c = 1,2, . . .

LEMMA 7. — Any chain of polynomial ideals {Ik} generated by adding
consecutive derivatives as in (1.7)-(1.8), is convex.

Proof. — Obviously, h : h+i = h : (pfe+i). If q e J^-i : (pfe), then
k— 1

9Pfc = Y, hipi. Applying L, we conclude:
1=0

QPk-^-i = q ' Lpk = L(qpk) - Lq • pk
k-l k k

= ̂  Lhi' pi + ̂  /iz-ipz + Lg • pfc == ̂  ̂ p, e Jfc,
z=0 i=l i=o

which implies that q G Ik : (pfc+i). D

COROLLARY 3. — A convex ascending chain is strictly ascending: if
00

h-i = Ie for some £, then In = J^i == 1^ = ... = \J I j .
3=0

Proof. — If Ii = J^i, then Ii '. 1^ = (1) (the unit ideal, i.e. the
whole ring 9^), so by (4.7) all other colon ratios I^s '• ^+s+i for any natural
5 > 1 are also trivial as they must contain the ideal (1). D

COROLLARY 4. — The sequence of dimensions dim(Ik : Ik+i) is non-
increasing. Q

4.4. Length of convex chains with strictly ascending
leading terms.

Consider the ascending chain (1.8) with an additional assumption
that the colon ratios have the same dimension as the ideals Ik themselves.
We show then that the length of this chain is completely determined by
the leading term of the first ideal in the chain.

LEMMA 8. — Consider a finite strictly ascending chain of ideals has
the form (1.7)-(1.8). Assume that all colon ratios have the same dimension
as the starting ideal of this chain:

dim Jo == dim Jo : Ji = • • • = dimJ^ : J^+i = • • • = dimJ^-i : In.
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Then the length £ of this chain does not exceed the number of primary
components of the leading term Jo = l.t. (Jo) of the starting ideal (counted
with multiplicities).

Proof. — This is a simple corollary to Lemma 6. Indeed, consider the
chain of leading terms {Jk}^=o^ Jk = 1-t- ( I k ) ' Denote by m the common
dimension of all colon ratios.

1. The chain {Jk} is ascending by Lemma 4: all upper-dimensional
primary components of Ik+i can be obtained by enlarging primary compo-
nents of Jk (sometimes making them trivial).

2. Moreover, the chain {Jk} is in fact strictly ascending and this is
where we use the assumption on dimensions. Indeed, if Jk = Jk+i fo1' some
fc, then

Pk-^-l ^ Ik + (Pfc+l) = 4+1 C l.t. (4+l) = Jk-^-1 = Jk = l.t. (4),

which means that pk^-i in fact belongs to all upper-dimensional primary
components of I k . Writing Ik = Jk H Rk 5 where Rk is the intersection of all
primary components of dimension strictly inferior to m, we conclude that

Ik : h+i = Ik •' (Pk+i) = (Jk •' (Pk+i)) H {Rk : (pfc+i))
= (l) n (Rk: (pfc+i)) D Rk.

therefore dim 4; : Jfc+i ^ dim-R^ < m. This contradicts the second
assumption.

3. It remains only to verify that the collection of prime ideals
associated with all primary components of the ideals J k , is non-expanding
(in particular, contained in that of Jo)- We note that the upper-dimensional
associated primes can be detected as ideals of upper-dimensional irreducible
components of the loci Xk = V(Kk) C C71. The chain of algebraic varieties
Xk is descending, Xk D Xk+i.

Each irreducible upper-dimensional component of Xk either belongs
to Xk-\-i, if Pfe+i vanishes identically on this component, or becomes an
algebraic variety of dimension strictly inferior to m after intersection with
the hypersurface {pk+i = 0} C C71. Thus the collections of irreducible
upper-dimensional components of the varieties Xk are non-expanding as k
grows from 0 to £, and the same holds for the collections of prime ideals
associated with the leading terms Jk. Thus all assumptions of Lemma 6
are verified for the chain {Jk}. D
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4.5. Revealed growth.

The next step is to get rid of the assumption that the dimension of the
colon ratios coincides with that of the starting ideal in the chain in Lemma
8. Using the lemma below, one can transform any chain with a constant
dimension of colon ratios, into another chain with strictly increasing leading
terms.

Assume that the dimension of the colon ratios 1^ : J/c+i remains the
same along the strictly ascending chain (1.8):

(4.8) dim Jo : Ji = • • • = dimJ^_i : 1^ = m.

Consider any primary decomposition of the starting ideal Jo written
in the form

(4.9) Jo = IQ H ̂

where IQ is the intersection of all primary components of dimension m
and below, and S is the intersection of all primary components of Jo of
dimensions ^ m + 1.

LEMMA 9. — If the chain of ideals {J^}^o is built from IQ using the
same rule

J^+i=Jfc+(^+i ) , ^=0 ,1 , . . . , ^ -1 ,

and the condition (4.8) holds, then for all k = 0 ,1 , . . . . i — 1

(4-11) PW € ^

(4.12) I k = I ^ S ^
(4.13) J , :Jfc+i=J,:J^.

Proof. — 1. If (4.11) is not true for some k, thenp/c+i would not belong
to at least one primary component of S of dimension m + 1 or more. But
then the colon ratio will be at least (m + 1)-dimensional, contrary to our
assumption. Indeed, for a P-primary ideal Q C ^H and any p e 9^ we have
the following alternative:

f (1), i fpeQ,
Q '• (?) = \ P-primary, ifp G P \ Q,

[ Q. if? t P
In all nontrivial cases the dimension is preserved.
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2. The proof of (4.12) goes by induction: for k = 0 it coincides with
(4.9). The induction step is an application of the modular law [27]: since
pfc+i e 5' by the previous argument, we have (pk-^i)^S = (j^+i) and hence

4+i n s = (4 + (p .̂i)) n s = ̂  n s + (p î) = ̂ +1.

3. The last identity (4.13), equivalent to Ik : (pk+i) = ^ : (pfc+i),
follows from (4.11) and (4.12). This completes the proof of Lemma 9.

4.6. Demonstration of Theorem 4.

According to Corollary 4, any finite strictly ascending convex chain
(1.8) can be subdivided into no more than n finite strictly ascending
segments in such a way that along each segment the dimension of the
colon ratios is the same and equal to n - s, where s = 1, 2 , . . . ,n is the
number of the segment:

Ip C A C • • • C Ik^ C 4,+i C . • . C h, C • ' •
dimJ/c:Jfc_)_i=n—l dim Ik'.Ik+i==n—2

• • • C fc+l C — CZfc^ C • • • C ̂ .-i+i C • • • C 1^

dimlk:lk+i=n-s-{-l dim Ik:Ik+i=0

The length of each segment can be majorized using Lemma 8 and
Lemma 9. Let I = J^+i be the initial ideal of the sth segment. We
decompose it as I = F n S and build an auxiliary (finite) chain 1^ for
k = ks + 2 , . . . , ks+i using the rule (4.10), as described in Lemma 9.

This new chain satisfies all conditions of Lemma 8, so its length
ks+i - ks cannot exceed the number of primary components of I ' = 1^ , . ,
counted with multiplicities. This number, by Corollary 2, does not exceed
v{n, (ks + l)d), as the decomposed ideal 4,+i is generated by polynomials
of degree ^ (ks + l)d:

It remains only to remark that the length of the auxiliary chain
majorizes the length of the sth segment of the initial chain, according
to Lemma 9: as soon as the auxiliary colon ratios become less than m-
dimensional with m = n - s, the same would occur for the initial chain as
well, which means that the new segment in fact began.

This argument proves the following bound for the length of each
segment:

(4.15) ks+i -ks^ v(n, (ks + l)d) x (M)710^.
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This recurrent identity immediately proves that the length of the chain
i = (,(n^ d) == kn is a primitive recursive function of d and n and grows as
asserted in the theorem.

Indeed, the growth of the sequence {ks} as in (4.15) is overtaken (for
large values of d and n) by the growth of the linear difference equation
/s+i == Ml^ with M = d^ n , a = n0^, IQ = 1, whose solutions can be
found and estimated explicitly: since one can always assume a > 2, we
have log L, ^ 2 log M ' 0s so that In ^ M2^ x M710^^ ^ d^^. D

Appendix A. Gabrielov theorem.

A.I. Formulation and general remarks.

Recall that the Risler problem consists in estimating the maximal
order of contact between a trajectory of a polynomial vector field and an
algebraic hypersurface in C71. The answer is to be given in terms of the
dimension n and degree d of the polynomials defining the vector field and
the hypersurface.

In the particular case n = 2 an upper bound for the order of contact
was found in [6] by A. Gabrielov, J.-M. Lion and R. Moussu. Later in [4]
Gabrielov solved the problem in the general case and proved that this order
does not exceed (2d)271 if the degrees of the field and hypersurface are
both equal to d.

The order of contact between a parameterized trajectory t ^—> x(t) and
a hypersurface {p = 0} is the order of zero of the restriction p{x(t)). As this
restriction was shown in § 2 to satisfy a linear ordinary differential equation
of order £ = £(n,d) (the length of an ascending chain), the multiplicity of
a root cannot exceed £ — 1, unless the solution is identically zero.

Note that, while solving the Risler problem, one can skip the univer-
salization step of § 2.2: indeed, the magnitude of coefficients is not impor-
tant, only the order of the resulting equation (2.1) matters.

0(n^)
However, this approach gives the bound of order of magnitude d^

for the maximal order of tangency, which is substantially worse than the
Gabrielov bound. Below we show how the answer can be improved.
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A.2. Chain of varieties associated with Risler problem.

The Risler problem occupies in some sense an intermediate place
between algebraic and geometric versions of the problem on ascend-
ing/descending chains.

Namely, assume that {Ik} is the ascending chain of ideals (1.8)
generated by consecutive derivations (1.7). Then one can associate with this
chain of ideals the chain of their respective zero loci {Xk}, Xk = V(Ik).
Despite the fact that the chain of ideals must be strictly ascending by
Corollary 3, the descent of the chain of varieties should not necessarily be
strict. The easiest example is the sequence of derivatives of the polynomial
x^ in one variable, corresponding to n = 1 and L = 9/9x. The chain of
the respective zero loci drops after fi stable steps: {0} = XQ = Xi = • • • = =
X^_i ^ X^= 0.

However, one may estimate the length of the chain {Xk} along which
the ultimate stabilization must occur. The considerations below provide
arguments sufficient for proving the result described in §A.l. We start
with the following trivial observation.

Let L: 9^ —> 91 be a Lie derivation, v the corresponding polynomial
vector field in C^ and Y a submanifold in C7'1 with the coordinate ring
y\! = 9VJ(V). Denote by TT : 9^ —^ 9^ the canonical projection. Then L
"covers" a well-defined derivation L! of the ring fH' if Y is invariant by the
flow of the field v. This claim admits a local reformulation with all rings
being the rings of germs.

A.3. Demonstration of Gabrielov theorem.

Denote by Xyo the stable limit, the intersection of all varieties Xk,
and consider the decreasing chain of semialgebraic varieties X^ = Xk \Xoo.
The chain {X^} eventually vanishes. Suppose that on some step k = kg the
variety X^ is s-dimensional (recall that each semialgebraic variety has
dimension), and denote by X the set of points at which the field v is
transversal to Xi .Kg

The complement X^ \X is less-than-5-dimensional. Indeed, since the
tangency condition is algebraic, its violation on a relatively open set would
mean that this set is locally invariant by the flow of v and hence belongs to
XQQ. But this contradicts the definition of X^ as a part of the complement
tO Xoo.
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We show that after some number m of steps, any point a on X will
not belong to X^ ,^, and hence the latter semialgebraic variety should be
less-than-s-dimensional. The number m can be explicitly majorized.

Since the integral curve of v through a is transversal to X at a, we can
construct the germ of a codimension s analytic surface (V, a) in C71 such
that X D Y = {a} and Y be invariant by the flow of v. Let ̂  be the local
ring of germs on (V,a). The ascending chain of ideals {Ik} restricted on
V, yields an ascending chain of ideals {1^} C 9̂ \ k = ks, ks + 1,..., in the
local ring, generated by adding consecutive derivatives TrZ^po = {L'Y^PQ
(by virtue of the above observation). Therefore this chain is convex and
hence, by Corollary 3, strictly ascending.

The difference between the type of ascent of the chains {Ik} and {1^}
is twofold:

1. all ideals of the latter chain are cofinite, so the numbers p.k =
dim^ ^H'/^H' - 1^ are finite, and

2. the chain {J^} must terminate by the trivial ideal 1^ _^ = (1) G 9^,
since a ^ Xoo.

Now it is obvious that the codimensions /^ of the cofinite ideals must
be strictly decreasing: otherwise we would have the equality 1^ = J^ /
(1). However, this is impossible since by Corollary 3 this would mean that
Ik stabilize on a non-trivial ideal. Therefore after no more than m = f^ks
steps the chain of local ideals must stabilize on the trivial ideal (1) =9^'.

To place an upper bound for the number of steps m after which the
variety X^^^ must become less-than-5-dimensional, we need to estimate
the multiplicity /^. Note that this multiplicity does not depend on the
choice of the transversal section Y as soon as the latter remains transversal
to X at a. Choosing Y being an affine subspace in C7^, we can majorize the
multiplicity of the ideal (by virtue of Bezout theorem).

The easiest way to do that is by the inequality /^ ^ (ksd)8 x ln~s^
since ksd is the maximal degree of ^ s polynomials determining X^ (the
equations for Y are linear, hence do not contribute to f^ks)- This estimate
leads to recurrent inequalities ks-i — kg ^ (ksd)8 for s = n— 1 , . . . , 2 ,1 and
finally to an upper bound fro ko growing as (2d)n!, as an easy computation
shows.

More accurate arguments (using the fact that each X^ is defined by
equations of different degrees, from k^d to kgd), leads to an upper bound
(260^ , exactly as in [4].
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A.4. Final remark.

Very recently, using completely different arguments, A. Gabrielov
proved in [5] that the order of tangency does not exceed (2nd)2n, which is
a simply exponential in n upper bound.

Appendix B. Linear systems.

The principal result of the paper, Theorem 1 , is formulated for arbi-
trary polynomial vector fields. However, the case of linear (nonautonomous)
systems is of a particular interest, first because linear systems often natu-
rally arise in problems concerning the number of zeros, and second because
in this case one may improve slightly the constructions compared to the
general case.

Three instances are discussed in this appendix. We show that for a
system of linear first order differential equations rationally depending on
time, one can derive a linear equation satisfied by all linear combinations of
components of any trajectory, with the same collection of singular points.
Second, we obtain a simple exponential in n (the number of variables)
bound for lengths of chains of ideals generated by linear forms polynomially
depending on i. Finally, we notice that for linear systems the continuous
Risler problem can be reduced to its discrete counterpart and vice versa.

B.I. Hyperelliptic integrals and Picard-Fuchs system.

The main source of applications (in fact, the problem that motivated
the whole research summarized in this paper) is the problem on zeros
of complete Abelian integrals, sometimes called tangential or weakened
Hilbert 16th problem. Recall that the problem consists in finding an upper
bound for the number of real zeros of a (multivalued) function

(B.I) I ( t ) = l H ^ ( t ) = f> ^, ^ = P ( x ^ y ) d x + Q ( x ^ y ) d y
JH{x,y)=t

where H,P,Q e C[a:,^/] are polynomials of known degrees, and the inte-
gration is carried over a continuous family of real ovals of the level curves
[H = c} C R2. The bound is to be given in terms of the degrees only.
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Almost all approaches to this problem use to a certain extent the fact
that the function I(t) satisfies certain linear differential equations, Picard-
Fuchs equations. However, in one particular case when H has the form

H { x , y ) = y 2 - ^ p ( x ) , p <E R[x], d e g p = n + 1 ^ 3 ,

these equations can be written absolutely explicitly. More precisely, the
column vector I(t) formed by the integrals of the forms xkydx^ k =
0,1, . . . , n — 1, was shown in [10] to satisfy the system of n first order
linear differential equations

(B.2) (tE - C) I{t) = BI{t)^ C, B € Mat,xn(C).

Here B^C are two constant n x n-matrices depending on the polynomial
p only (and E the identity matrix). By examination of the algorithm
suggested in [10] one can verify that the norms of the matrices are bounded
in terms of the height ofp, provided that the latter is a unitary polynomial
(with the leading coefficient 1), and the spectrum of C coincides with the
set of critical values of the polynomials p and H. Notice that the height of
p can be assumed to be bounded by 1 without loss of generality.

The system (B.2) is not polynomial, but becomes rational after a
simple transformation (multiplication by the adjugate matrix to tE — C).
By this transformation it can be reduced to the form (we replace I(t) by
x(t) to return to the notations used throughout the paper)

n d
(B.3) ^(t)'x{t)=A(t)x(t)^ A(^)=]^-^), A(t)=^Akt\

j=l k=0

where A(^) € C[t] is the characteristic polynomial of the matrix C, and
^ i , . . . ^tn the critical values of p (counted with multiplicities). The right
hand side contains the matrix polynomial A(t) € Mat^x^(C[^]) of degree
d = n — 1 and controlled height. The system (B.3) has singular points
t i , . . . , tn (and t = oo). These points are Fuchsian if the critical values tj
are pairwise distinct.

We show that, despite the presence of singular points and occurrence
of denominators, a positive information about zeros of hyperelliptic inte-
grals can be obtained by applying Theorem 1 .

Remark. — The results by L. Gavrielov [7] show that a similar system
of first order equations can be derived also for a general polynomial H
provided that its principal homogeneous part is generic. However, the
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resulting system will not be explicit, and there are almost no chances that
the height of the right hand side would admit an upper bound uniform over
all generic H.

B.2. Reduction from linear systems to linear equations.

Applied to systems of linear equations, the procedure of derivation of
a high order equation described in § 2.3, results in a more accomplished
answer. We formulate it for the case of equations of the form (B.3)
eventually possessing singularities.

THEOREM 7. — With any linear polynomial system (B.3) of degree
^ d having at most d Fuchsian singularities in the finite plane, one can
associate a single £th order differential equation of the form

(B.4) ^(t)y^ + ai (t)^-\t)y^ + ... + a,-i(t)A(^/ + a,(t}y = 0

with the following properties:

1. all finite singular points of the equation (B.4) are Fuchsian and
coincide with the singularities of the initial system;

2. the coefficients a k ( ' ) of (B.4) are polynomial in t and polynomially
depend on the parameters of the problem (matrix elements ofAk and
the coordinates of singular points tj);

3. the order of the equation (B.4), the degrees and heights of the poly-
nomial coefficients a^ are bounded by primitive recursive functions of
n,d;

4. any linear combination y(t) = {(i,x(t)} = ^x-^_(t) -}- . . .+ ^n(t),
^ € C, of coordinate functions of any solution x(t) of the initial
system (B.3) satisfies the equation (B.4).

COROLLARY 1. — The number of isolated intersections between any
trajectory x(t} of a linear system (B.3) of height ^ R and an arbitrary
linear hyperplane (^, x) = 0 over any simply connected subdomain of the set
{t e C: \t-tj\ > 1/R, \t\ < R} is bounded by (2+^)5, where B = B(n,d)
is a primitive recursive function ofn, d growing no faster than (1.4).

In other words, the assertion of Theorem 1 for linear polynomial
systems admits direct complexification provided that zeros are counted
away from eventual singular points. In this case one can also suppress all
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requirements on the geometric size of the trajectory, except for proximity
to singular points in the t-plane.

Proof of Theorem 7. — The system (B.3) after introducing the new
independent variable r can be put into the "true" polynomial form

( x ' =A(t)x^ ^^ t^C\
(B•5) L'»A(,), -,-'-.

dr

As in § 2.2, we consider the system (B.5) as a single polynomial vector
field whose right hand sides belong to the polynomial ring C[^,:r,^,A, E],
where A = { A o , . . . ,A^} is the collection of all coefficients of the matrix
polynomial A(t) and S = { t i , . . . ,tm} the variables replacing coordinates
of all singular points.

Let ^ = ^o ^ C^* be an arbitrary linear functional and po(x) =
{^x) C C[t,x^} the corresponding polynomial. The rule (1.7) for the
extended system (B.5) yields a sequence of polynomials pk C C[^, rr, ^, A, S],
that are all bilinear in x and ^ simultaneously.

Let i = £(n, d) be the moment of termination of the chain (1.8) and
ho,..., hi-\ € C[t, x, ̂  A, S] the coefficients of the decomposition (2.4). A
priori the constructions of § 4 do not guarantee that the polynomials hk in
do not depend on x and ^ but one can always achieve this independence.
Indeed, expanding all polynomials pk and hk in x and using the fact that all
pk are linear homogeneous, we see immediately that after replacing hk by
their free (with respect to x) terms preserves the identity (2.4): all higher
order terms must cancel each other. In the same way one can get rid of the
dependence ofhk on ^. Thus we see that the identity (2.4) after substitution
pk ^—> d k y / d T k , y(t} = {^x{t)), yields the equation

d^y d^^v^+ai(^A,E)^^+—+a^,A,E)^=0

for the function y . Returning to the initial independent variable t, we obtain
the equation

(B.6) (^^y+a^(^t)^~ly+...+

a^^{t)(^(t)d)y+ae(t)y=0, afc6C[^,A,E].
\ "" /
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It is obvious that

1. this equation has only Fuchsian singular points in the finite plane,
provided that A(^) has only simple roots,

2. the magnitude of the coefficients a^ = dk(t, A, S) is bounded in terms
of the height of the matrix polynomial A(t) and the maximal modulus
of the singular points: if ||Afc|| ^ R and tj ^ R for all k,j, then
|a^,A,E)| ^ (2 + R)3^ on the disk MR = {\t\ ^ R} (see (1.3)-
(1.4));

3. after reduction to the standard form ^/+&i(t) ̂ -l^+• • -+^_i(t) y ' -\-
b£(t)y = 0 the (rational) coefficients bk(t) of the reduced equation are
bounded by similar expressions on the set \t — tj\ ^ 1/.R, \t\ < R.

This allows for application of Lemma 1 or Lemma 2, implying upper
bounds for the number of zeros away from singular points of the linear
system (B.3).

Remark. — The singular point at infinity of the equation (B.6) is in
general non-Fuchsian, as the degrees of the polynomials dk(t) are in general
greater than allowed by the Fuchs conditions at infinity.

Remark. — One can generalize results of this subsection for intersec-
tions between trajectories of linear systems with arbitrary polynomial hy-
persurfaces as follows. The collection of all monomials {x0'}^^ of degree
^ d satisfies a Fuchsian system of linear polynomial equations, provided
that (B.3) holds:

^•i^-E^^E^^)^- E -w^-
j=l 3 k=l |/3|=H

Theorem 7 can be applied to count zeros of arbitrary linear combina-
tions of monomials (iaXoi^ i.e. arbitrary polynomials in x.

B.3. Ascending chains of ideals generated by linear forms.

The problem on length of ascending chains of polynomial ideals under
additional assumption that the degrees of polynomials are bounded, belongs
to linear algebra. If d is a uniform upper bound for degp^, then the chain
(1.8) must stabilize after at most N = (d + 1)^ steps: indeed, the space
of all polynomials in n variables of degree ^ d is less than TV-dimensional,
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therefore at that step or before the newly added polynomial will be a linear
combination of preceding ones.

If the degrees degpk are growing, this argument fails and the bound
depends in the most heavy manner on the dimension n (the number of
variables). For n = 1, obviously, the number of points in the zero loci of
ideals, counted with multiplicities, should decrease monotonously, therefore
the length of the chain cannot exceed degpo. The case n > 1 is in general
completely different, however, in one particular case the problem can be
reduced to the univariate case.

We already noted that for a system of linear equations the chain of
polynomials generated by the rule (1.7) will be linear in a;, provided that
po(x) = (fi,x) is a linear form.

n
PROPOSITION 2. — The chain of linear forms pk{x) = ^ £,k,i{t)xi €

2=1

C[t, x] = C[^, x\,..., Xn] whose degrees deg^pk grow at most linearly in k,

degtpk ^ (A;+l)r f , deg^pk =1, i = l , . . . ,n ,

stabilizes after at most (n -j-1)!^ steps.

i-i
Proof. — An identity p^(t,x) = ^ hk(t,x)pk(t,x) with hk € C[^,rr]

k=0
i-\

implies that p^(t,x) = ^ \k(t)pk(t,x), if we let \k = ^(•,0) € C[t],
k=o

which means that the chain stabilizes if the non-homogeneous system of
linear algebraic equations

£-1

(B.7) ^iW="E^iW
k=0

possesses a polynomial solution \{t) = ( A i ( ^ ) , . . . . \n(t))'

Let Sfc € Matfcxyi(C[^]) be the rectangular matrix with n rows and k
columns, formed by the first k column vectors ^ i (^) , . . . ^k(t): its entries
are polynomials in one variable. Consider the auxiliary ideals Wk,z C C[t]
formed by all i x z-minors of the matrix 5^;. (For i < k we put W^.z == {0}
by definition). The following criterion of solvability of linear systems over
the ring C[t] generalizes the well-known Kronecker-Capelli criterion for
systems over fields.

LEMMA 10 ([13, Bk I, Ch. II, §9]). — The system (B.7) possesses a
solution if and only if W^^ = H^-i,z for all i = 1, . . . , n.
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In other words, application of Lemma 10 reduces the problem on
chains of ideals spanned by linear forms, to that of simultaneous stabiliza-
tion of n chains of univariate ideals.

Recall that the ring C[t} is a principal ideal domain, therefore for each
ideal Wk,i we can define the "number of points counted with multiplicities"
p,k,i, equal to degg^z if C[t] D (g^) = H^. For W^k = {0} we put
^^ = 4-00 by definition. The obvious monotonicities

w^i c Wk+i^ Wk^i c w^z

(the second follows from the expansion formula for minors) imply the
inequalities

(B.8) ^k,i ^ /^c+1,^ /^z+l ^ l^k.i,

and the moment when the system (B.7) is solvable, occurs when /^ =
/^_i^ for all i = 1,. . . , n.

Denote by fik = ( / ^ i ? ' • ' •> l^n) ^ (^+ U {oo})77' the sequence of vectors,
and let ||/^|| be the sum of all finite coordinates of the vector /^. The
integer sequence ||/^|| is monotonically decreasing with k unless one of the
infinite coordinates of the vector becomes finite (and hence remains finite
for larger k).

Let i be between 1 and n and denote ki the first time when f^k,i
becomes finite. The second inequality in (B.8) implies that A;i ^ k^ ^
• • • ^ kn. On the interval between ki and ki-\-\ the "norms" \\^k\\ decrease
monotonously by definition of the moments ^, and at each of the moments
ki the "norm" ||/^|| may increase by ̂ ,1- As the degrees of the polynomials
pk generating the ideals Wk,i are known, we can estimate ̂ ^ ^ i(ki + l)d.
Thus, as H/^l l must remain nonnegative, we have the balance inequality

(B.9) 0 ^ d(A;i + 2A;2 + • • • + iki) - /c,+i,

which means that the sum of all jumps of \\f^k\\ occurring at the moments
A^, should match the number of regular steps when \\f^k\\ decreases at least
byl.

The growth of the sequence majorized by the inequalities (B.9) can
be easily estimated: if we introduce Si == k\ + 2&2 + • • • + iki, then (B.9)
implies

6^+1 = S, + (z + l)k^ ^ S, + (z + l)dSi = Si(l + d(i + 1)),
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so that Sn ^ (1 + 0(1 + 2d) • • • (1 + nd) ^ 2d • 3 d ' • ' (n + l)d = (n 4- l)!d71.
This implies the upper bound claimed in the proposition, a

Remark. — Notice that the established bound is roughly simple
exponential in n and polynomial in d, and does not depend on the rules
determining the sequence of polynomials pk, provided only that the latter
remain linear in x an of degrees in t growing linearly with k.

Remark. — The method can obviously be generalized for chains
of ideals spanned by homogeneous forms of any degree in x^ that are
polynomial in one variable t. It is important that the degrees in all variables
but one are bounded. Linear systems constitute an example when such
situation occurs naturally.

Remark. — One cannot in general majorize the height of polyno-
mials \k(t) occurring as the coefficients of the decomposition p^(t,x) =
t-i
^ \k(t)pk(t^x). Unless the coefficients were integral from the very begin-
o

ning (i.e. if the matrix polynomial A(t) had all integer coefficients), the
procedure of universalization from § 2.2 is required. But this procedure
increases the number of independent variables, therefore the approach de-
veloped above becomes unapplicable. Working instead over the field of ra-
tional functions of the parameters A, E, see § B.2, we can construct a linear
equation

ao(A, S)^) + ai (^ A, S)^-1) + • . • + a,(^ A, E)y = 0

with the leading coefficient independent of t^ all other polynomial in t^ A, E
of bounded degrees and heights. The values of the parameters for which
the leading coefficient do is vanishing, correspond to singularly perturbed
linear equations which require additional considerations for study.

B.4. Discrete and continuous Risler problem for linear systems.

We conclude this appendix by a simple observation: for linear systems
the continuous Risler problem can be reduced to discrete one and vice versa.

Consider a system of nonautonomous linear differential equations
x = A(t)x^ polynomially depending on time (so that A is a matrix
polynomial of degree d). Let II = {p = 0} C R71 be a linear hyperplane:
p ( x ) = {^x), where ^ 6 ]R71*. Any solution of this system can be

oo ^
expanded in a convergent Taylor series x(t) = ^ — Xk where x^ e R71

A;=O Kl
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are vector coefficients, k = 0,1,.... Substituting this expansion into the
equation, we obtain recurrent formulas for coefficients {xk} of order d,
Xk-^-i = AoXk + kA^Xk-i + • • • + k(k - 1) • • • (k - d + l)AdXk-d, that can
be easily reduced to a first order linear difference scheme in R^ with
coefficients polynomially depending on the number k of the step. After the
obvious suspension by the map t \-> t + 1 we see that the Risler problem
on how many Taylor coefficients of the function p(x(t)) = ̂  (^Xk) ̂ 7 A;!
can vanish, gets reduced to the question on how many points of the orbit
{x^^o of the suspended polynomial map can belong to the (properly
suspended) hyperplane {(^x) == 0}.

Remark. — The Taylor coefficients of the restriction p(x(t)) for linear
systems are obtained by iterating the ring homomorphism as in (1.10). If £ is
the moment of stabilization of the corresponding chain of ideals (1.8), then
vanishing of the first £ Taylor coefficients Co, c i , . . . , Q-i ofp(x(t)) = ̂  c^
implies identical vanishing of the latter series. If the expansion (2.4) is
known explicitly, this in principle allows to majorize the magnitude of all
coefficients c/c for any k = £,£ + 1,... via the maximum among the first £
of them. Then the methods developed in [2], [26] would allow for certain
explicit bounds for the nuber of zeros of the restriction.

Remark. — For systems of the form (B.2) the recurrent system is
simpler than in the general case: the recurrent formulas take the form

Cxk+i = (kE - B)xk, k = 0 ,1 , . . . ,

that are "dual" to the discrete time system (B.2).
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