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IRREDUCIBLE COMPONENTS OF RIGID SPACES

by Brian CONRAD

Introduction.

Let A; be a field complete with respect to a non-trivial non-archime-
dean absolute value and let X be a rigid analytic space over k. When
X = Sp(A) is affinoid, it is clear what one should mean by the irreducible
components of X: the analytic sets Sp(A/p) for the finitely many minimal
prime ideals p of the noetherian ring A. However, the globalization of this
notion is not as immediate. For schemes and complex analytic spaces, a
global theory of irreducible decomposition is well-known ([EGA], Oi, §2,
[GAS], 9.2). Some extra commutative algebra is required in order to carry
out the basic construction for rigid spaces.

In [CM], §1.2, Coleman and Mazur propose an elementary definition of
irreducible components for rigid spaces (as well as a related notion that they
call a "component part"). This definition has some technical drawbacks. For
example, it is not clear that a global decomposition theory exists, and in
order to prove that every point x G X lies on an irreducible component
([CM], 1.2.5) one is forced to go through an unexpectedly complicated
argument which requires that X is separated and k is perfect. Also, this
definition is sensitive to replacing X by its underlying reduced space.

There is a well-behaved definition of "normal" rigid spaces (analogous
to normality for schemes and complex analytic spaces) and one can give
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the rigorous construction of the normalization of an arbitrary rigid space
X. This is a certain finite surjective map X —>• X with X normal,
and (like in the case of complex analytic geometry) one can define the
irreducible components of X to be the images of the connected components
of X. On the basis of this definition, we develop the theory of the
irreducible components on arbitrary rigid spaces, and give shorter and more
conceptual proofs of the results in [CM], 1.2,1.3, on irreducible components,
"component parts", and Fredholm series (in greater generality). Since
we want results valid over ground fields such as Fp((^)) which are not
algebraically closed and not perfect, our methods differ somewhat from
the methods over C, which sometimes rely on the facts (whose analogues
are false in rigid geometry over a non-perfect field) that reduced complex
analytic spaces are smooth outside of a nowhere dense analytic set and all
points on a complex analytic space are "rational". The main point is to use
some non-trivial commutative algebra properties of the rings which arise in
rigid geometry. We could sometimes get by with less algebra if we appealed
to the work ofKiehl on analytically normal rings [K2]; however, the algebra
results we use are interesting in their own right and provide a more natural
point of view, so we base our exposition on these. Ultimately, we deduce
everything we want from facts about normal rings and connectedness.

By analyzing behavior with respect to base change of the ground field,
sometimes questions can be reduced to the case of an algebraically closed
base field, where complex analytic methods are more often applicable. It
should be noted that studying changes of the base field in rigid geometry
is somewhat more subtle than in algebraic geometry, because power series
(unlike polynomials) have infinitely many coefficients and we use completed
tensor products in place of ordinary tensor products. Thus, the scheme-
theoretic methods of [EGA], IV2, §4.5ff, are sometimes insufficient.

When I mentioned to Coleman that a very simple and general
development of the theory of irreducible components in rigid geometry
can be given by using commutative algebra, he suggested that the details
of the present article should be systematically worked out, due to its basic
geometric significance. I would like to thank him for this suggestion. I am
grateful to the Institute for Advanced Study for its hospitality, and to
Siegfried Bosch, Johan deJong, Pierre Deligne, and Mark Kisin for some
helpful discussions.

Notation and Terminology. Our notation from algebra is as
follows. We denote by Z, Q, and R the ring of integers, the field of rational
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numbers, and the field of real numbers respectively. If S is a ring, Sred is
the quotient by the ideal of nilpotent elements and if S is a domain, Q(S)
is the fraction field. For basic facts about the theory of excellent rings,
see [Mail], Ch 13 and [EGA], IV2, 7.8. We denote by k (resp. ^, kp) an
algebraic closure (resp. a separable closure, a perfect closure) of a field k
(usually equipped with the unique absolute value extending that on A; if A;
is complete with respect to a given absolute value) and A; is the completion
of a field k with respect to a given absolute value, again algebraically closed
if k is (see [BGR], 3.4.1/3 for the non-archimedean case; the archimedean
case is classical). For example, C = R, Qp is the completion of Q with
respect to the p-adic absolute value for a prime p, and Cp = Qp.

A complete field A; is a field k which is complete with respect to a
non-trivial non-archimedean absolute value, and we say that a complete
field k ' is an extension of k if it is an extension of A; as a field and if k —^ k'
is a topological embedding. We often let R denote the valuation ring of k.

We use [BGR] as a reference for terminology, notation, and basic
results in rigid geometry over a complete field k. In particular, Tn is the
Tate algebra k < a- i , . . . , Xn > of formal power series f = Y, aix1 e k[x]
over k in n variables for which |a/| —>• 0 as the "total degree" \I\ =
zi + . . . + in —> oo; sometimes this is denoted Tn(k} if several base fields
are being considered. We define the unit ball Bn = B^ to be Sp(T^). An
analytic set in a rigid space X is what is called an "analytic subset" in
[BGR], 9.5.2; i.e. the zero locus of a coherent ideal sheaf.

If k1 I k is an extension of complete fields, then for any (quasi-)
separated X over A;, the (quasi-)separated rigid space X x^ A;' over k ' is
defined as in [BGR], 9.3.6, where it is denoted X^kk1'. Of course, this base
change functor is naturally "transitive" with respect to a tower of several
extensions of the ground field, and is compatible with formation of fiber
products and takes closed immersions to closed immersions. Moreover, for
such base changes there is an analogous theory of an exact "pullback" func-
tor on coherent sheaves (described in the obvious manner over affinoids)
and when applied to ideal sheaves this returns the fact that base change
takes closed immersions to closed immersions. One delicate point is deter-
mining whether the base change of an open immersion i : U c-^ X is again
an open immersion when i is not quasi-compact (the essential problem
seems to be to show that the image of U x^ k' in X x^ k ' is admissible).
I do not know if this is true in general. The only case which we need is
when U is a Zariski open in X, but this case is easy (and a more precise
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statement is true), as we will see in Lemma 3.1.1.

If X is a locally finite type scheme over Spec(A:), we denote by X^
the "associated rigid analytic space" over k. The underlying set of X^
is the set of closed points of X, just like in the complex-analytic case.
Some details concerning the construction and properties of this important
functor are given in the appendix, due to lack of an adequate reference. If
X is a formal scheme over Spf(J?) which is admissible in the sense of [BL1],
§1, p.297, (i.e. "flat" and locally topologically of finite presentation over
R)^ we denote by X^ the "associated rigid analytic space" [BL1], §4.

When the valuation on k is discrete, so R is a discrete valuation
ring, one can define (following Berthelot) the functor X ^ X^ for the
more general class FSp, of formal schemes X over Spf(R) which are locally
noetherian adic formal schemes for which the closed formal ("discrete")
subscheme cut out by topologically nilpotent functions is locally of finite
type over the residue field of R-, that is, X is covered by affines of type Spf(A)
with A a quotient of one of the ^-algebras R < € ; r i , . . . , Xn ^> [^ / i , . . . , y-m\-
This is carefully explained in [deJ], §7]. Note that the excellence of the
formal affines considered in [deJ], §7 follows from [VI], Prop 7, [V2], Thm 9
(the proof in [V2] only makes sense to the author when the ring C there
is normal, which suffices for our needs). The functors ( t)an and (-^s have
the usual functorial properties with respect to fiber products, open/closed
immersions, finite maps, open coverings, and change of the base ring, and
behave as expected on affines.

If A is a subset of B, we denote the set-theoretic complement of A in
B by B — A. We use similar notation for the complement of a Zariski closed
subset in a scheme, formal scheme, or rigid space, and we always regard
this as an "open subspace" of the ambient space in the unique way possible.
Given a morphism / : X —> Y of "geometric objects" and i : U —> X an
"open immersion", we denote by f\u the composite / o i.

1. Commutative algebra.

1.1. Excellence results.

In order to construct the normalization of a rigid space, we recall
some properties of the rings which arise in rigid analysis. If A is A;-affinoid,
X = Sp(A), and x € X corresponds to the maximal ideal m of A, then
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there is a natural map Anz —> Ox,x of local rings. This is a local map of
local noetherian rings which induces an isomorphism between completions
[BGR], 5.2.6/1, 7.3.2/3, 7.3.2/7. Thus, in order to most conceptually relate
properties of the structure sheaf Osp(A) and the ring A, it is natural to
hope that the stalks Osp^A),x and the localizations of A at maximal ideals
are excellent local rings; by [EGA], IV2, 7.8.3 (v) this ensures that most
interesting properties can be detected on the level of completions of these
local rings, which are canonically "the same" in both cases. It should be
noted that for what we need later, one could bypass some of our excellence
arguments, instead using earlier work ofKiehl on normality [K2]. However,
it seems more natural to systematically argue via excellence when one can
do so.

Excellence of affinoids is known, as we will explain, and our goal
here is to use this to establish the excellence of the stalks of the structure
sheaves on rigid spaces. The case of excellence of A;-affinoids in characteristic
0 follows readily from applying [Mail], Thm 102 to Tate algebras over k
(note that regularity of Tate algebras in all characteristics is readily seen
at rational points and is deduced in general by making finite extensions of
the base field and using [BGR], 6.1.2/3, [Mat2], Thm 23.7; in a similar way
we see that all maximal ideals of Tn have height n). In characteristic p, the
excellence property for affinoids holds when [k : k^ is finite, by applying
[Mat2], Thm 108 to Tate algebras. Excellence of affinoids in characteristic
p was proven in complete generality (i.e. without restrictions on [k : k13})
byKiehl [K3].

Kiehl uses a critical regularity criterion [K3], Satz 2.2 whose proof
wasn't published in readily available form. Due to the importance of this
fact in KiehPs proof, and since our proof of excellence of stalks Ox x on
a rigid space will depend on the excellence results for affinoids, we begin
by first carefully explaining KiehPs proof of [K3], Satz 2.2. We then also
prove a faithful flatness result which will be useful later when we consider
general change of the base field.

Before we give KiehPs regularity criterion, note that since every
affinoid is the quotient of a Tate algebra, which is regular, all affinoids
are universally catenary [Mat2], Thms 17.8, 17.9. Thus, the essential issue
for proving excellence of affinoids is the problem of proving regularity
properties. More precisely, one needs only to prove that the Tate algebras
are excellent, and so by [EGA], Fv2, 7.8.2(ji7), [Mat2], Thms 24.4, 32.4, it
is enough to show
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- the regular locus in Spec (A) for an affinoid domain A contains a non-
empty open set,

- the localizations of the Tate algebras at closed points have geometri-
cally regular formal fibers.

A close look at the proof of [Mat2], Thm 32.5 shows that the formal
fiber problem is reduced to checking that for any domain A finite over
Tn, any t G Max(A), and any p € Spec(Ar) with p D A = (0), the local
noetherian ring (Ai)p is regular. The proof of these claims in characteristic
p is what requires KiehFs regularity criterion. Before stating this criterion,
we define the rank p(M) of a finite module M over a local ring (A, m) to be
the size of a minimal generating set (i.e. the dimension of M/m over A/m).

THEOREM I.I.I (Kiehl). — Let T be a noetherian ring, S a
regular noetherian T-algebra, C a finite type S-algebra. Assume that
the S-module ^g/T ls ^ree wlt^ nmte ran^ P- Choose q € Spec(C) over
p € Spec(5'). Assume that the Cq -module f^ /y, which is necessarily
finitely generated due to the first fundamental exact sequence, has rank
at most p 4- dim Cq — dim 5p. Then Cq is regular.

Proof. — The assertion may seem a little unusual, since we are
not claiming any map is smooth and therefore we would just expect to
prove regularity of quotients via differentials, not regularity of more general
algebras. Thus, we first want to put ourselves in this more familiar setting.
The following proof is due to Kiehl. Choose a surjection

5/=5[Xl,...,X,]-^C,

and let p' € Spec(5") be the contraction of q, po the contraction of all of
our primes to T. Define A == Tpo, B = S'p/, B = Cq. Then we have a local
map of local noetherian rings A —> B, with B regular, and B a quotient
ofB.

Since ^5/4 ^ B 0s' ^ s ' / T and ^/ = ^P^ • • • ̂ n], we get a split
exact first fundamental sequence [Mat2], Thm 25.1

0 ̂  fl^T ^s S' -^ ̂ ,/^ -^ ̂ /s -^ 0.

Using the freeness hypothesis on f^/y, it follows that ^ s ' / T ls ^ree °^ ran^
n + p over 5". Thus, ^74 is a finite B-module with rank n + p. Also,

^B/A ̂  ̂ /^ so

P(^B/A) - P^/A^ = n + p ~ P^R,/T) ^ n + dim ^P - dim c^
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Since 5p -^ S^ is a local flat map, the dimension formula [Mat2], Thm 15(ii)
gives

dim^p, = dim5p 4- dim(S7p)p/
<dim^p+dim/<p)[Xi, . . . ,X,]
= dim 6p + n.

Combining these relations, we get

(1) P(^B/A) - P^/A) ̂  d[mB - dimR

We will now show that for any local map of local noetherian rings
A —> B for which ^5/4 is a finite £?-module and B is regular, and any
quotient B = B / x for which the inequality (1) holds, the ring ~B is regular.
This clearly specializes to the theorem we want to prove. For ease of
notation, let M = ̂ /A and ^ = B/m^ with m the maximal ideal of B.

Applying (g)-g-A; to the (right exact) second fundamental exact se-
quence, we get an exact sequence

(t/r2) ̂ k ^ M/m -^ ̂  0^ k -> 0.

Choose 61, . . . , bt C r whose image in (t/t2) 0-g A; is a basis for the kernel
of M/m -> ̂  0-g- k. Define I to be the ideal generated by the &^s in
B. We will show that B / I is regular and that dimB/J < dimB. Since we
have a surjection B / I -^ ~B and B / I is a local domain (as it is regular),
the kernel will be forced to be 0, so I = r and B = B / I will be regular, as
desired.

Since the images 6(bi (g) 1) = d6, are /c-linearly independent in M/m,
it follows that the bi are A:-linearly independent in m/m2. Thus, they form
part of a regular system of parameters in the regular local ring B. This
proves the regularity of B / I , as well as the equality dim B / I = dimB -1.
But the choice of the bi also shows that t = P ^ p / ^ ) — p(^ ), so
dim B — t < dim B. D

A special case of this theorem is:

COROLLARY 1.1.2 ([K3], Satz 2.2). — Let T be a noetherian ring,
S a regular noetherian T-algebra, C a finite S-algebra. Assume that ̂ /y is
free of finite rank p over S. Choose q e Spec((7). Assume that p(f^ ,y) ^ p
and Cq is fiat over S. Then Cq is regular.

Proof. — Let p e Spec(5') be the contraction of q, so Sp —^ Cq
is local and flat, with a 0-dimensional fiber over the closed point. It
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follows from the dimension formula that dim Cq = dim <Sp. Now use Theo-
rem I.I.I. D

We now deduce the desired excellence theorem.

THEOREM 1.1.3. — Let X be a rigid space over k, x € X. The
local noetherian ring Ox,x ls excellent.

Proof. — We know that Ox,x is a local noetherian ring. Since we
can locally get a closed immersion of X into a unit ball, we can express
^x,x as the quotient of the stalk at a point on the unit ball. These latter
rings are regular, since they are noetherian with regular completions. Thus,
Ox,x is a quotient of a regular local ring, so it is universally catenary
[Mat2], Thms 17.8, 17.9. By [EGA], IV2, 7.8.3(i), it remains to check
that Ox,x —^ Ox,x has geometrically regular fiber rings. That is, for
p G Spec(0x,x)^ we want Ox,x ^Ox,x ^(P) to De geometrically regular
over ^(p).

We first reduce to the case p = (0) (so Ox,x is a domain) and
X = Sp(A) with A a domain. Let / i , . . . , fr be generators of p. Without
loss of generality X = Sp(A), with x 6 X corresponding to a maximal ideal
m in A. Since Ox,x is the direct limit of the localizations at x of the rings
of the affinoid opens around .r, if we choose X small enough then we can
suppose that there are hj C Am mapping to fj C Ox,x- Since Am —> Ox,x is
faithfully flat, Am/(^-j) —> Ox,x/P is faithfully flat and therefore injective.
This implies that the hj^s generate a prime ideal in Am. This gives rise to a
prime ideal q in A contained in m, with qm = (hj). Replace X by Sp(A/q).
This reduces us to the case with A a domain and p = (0).

For a finite extension K of the fraction field F of Ox.xi we want
to show that the noetherian ring Ox,x ^Ox,x ^ is regular. First consider
the special case K = F. Then Ox,x ^Ox,x ^ is ^e localization of Ox,x
at Ox,x — {0}' This is a localization of the localization of Am c± Ox,x
at Am — {0}. That is, the ring of interest is a localization of the fiber of
Am —> Am over (0). But this is regular since the affinoid (domain) A is
excellent!

Now let's reduce to the case K = F. Let S denote a finite Ox,x-
subalgebra in K whose fraction field is K. Suppose for a moment that we
know that the Ojc,a;-algebra S has the form Oy^y for some rigid space Y
equipped with a map Y —^ X taking y € Y to x. Since Ox,x — ^ S = Oy^y
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is then finite and local, with K the fraction field of S, we have

^X.X ®0x^ K ^ (<^ 00x,. S) 05 K C± O^y 00y,y K.

By the special case just treated (applied to y € V), this ring is regular, as
desired.

It remains to show that 6' in K has the form asserted above. We
first make the general claim that for any rigid space X, x € X, and finite
^x, x -algebra 5, there exists an affinoid neighborhood U around x and a
finite map of rigid spaces f : Y —> U with f^{0y)x ^ S over Ox,x' If
this is known for 5, then it follows for any quotient of 5, so by writing
S as a quotient of a ring of the form Ox,x[Ti,..., Tr\/{p\,... , p r ) with
Pi ^ Ox,a;P^] monic, we see that it suffices to treat rings of this latter
type. It is enough to treat the case S = Ox,x[T]/(p) (and then take fiber
products over a small neighborhood of x). Now suppose without loss of
generality that X = Sp(A) and that there is a monic q € A[T] inducing
p. Since B = A[T}/p is finite over A, hence is affinoid, we can define
f : Y = Sp(B) —> X. There is a natural map S —> /*(0y)o; between finite
^x, x -modules, so to prove this is an isomorphism we can check modulo m^
for all n. But this is clear.

We claim that the canonical map

^:/*(0y).^ n OY^
f{y)=x

is an isomorphism. Assume this for a moment. In our case of interest we
would then have that S is isomorphic to such a product. But 6' is a domain,
so the product of local rings must be a single local ring. This completes the
proof. To see that ^ is an isomorphism, let {h\,..., hr} be generators of m^,
so the f*(hjYs cut out /-l(aQ on Y. Using the proof of [BGR], 7.2.1/3, we
can find disjoint open affinoids in Y around each of the points of f~l(x).
Let V denote the disjoint union of these. By Lemma 1.1.4 below, there
exists an e > 0 such that V contains the locus on Y where all |/*(^j)| < £ '
Thus, V contains /^(L^) where Ue = {x e X \ \hj(x)\ < e}.

Choosing a small e so that e = \a\ for some a C A^, Us is an affinoid.
Replacing X by Ue allows us to assume (using [BGR], pp. 345-346) that
B == Y[Bi with any two distinct y ^ y ' € f~l(x) in different Sp(^)'s, so

f^0v)x ^ B 0A Ox,x ^ r[(^ 0A ox^^
where Bz 0A Ox,x is a finite Oj^-algebra. Moreover, (B^ 0^ Ox.x^l^x ^
Bi/m^ is equal to 0 if no y € f~l(x) lies in Sp(I^), and is a local ring if
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some (necessarily unique) y G f~l(x) lies in Sp(B^). If some y € /~ l(^)
lies in Sp(B^), we conclude that Bi 0^ Ox,x is a local ring. As long as the
canonical map ( p i : Bi 0^ ^x,x —)> ^Y,y is an isomorphism, we recover the
map (p as an isomorphism.

To see that (pi is an isomorphism, we claim more generally that if
/ : Y —>• X is a finite map of affinoids and /~ l(^) = {y} is a single
point, then the natural map /*(0y)a; —> Oy,y is an isomorphism. It suffices
to show that every admissible open neighborhood of y contains one of
the form /~l([7) for some admissible open U around x. This follows from
Lemma 1.1.4 below. D

LEMMA 1.1.4 (Kisin). — Let A be k-affinoid, I = (/i,.. . , fr) an
ideal of A, X = Sp(A), Z = Sp(A/J), U an admissible open ofX containing
Z. There exists e > 0 so that U contains {x € X [ |/i(^)| < e}.

Proof. — This is Lemma 2.3 in [Ki]. The proof uses Raynaud's
theory of formal models [BL1], though one can give a direct argument
purely in terms of rigid spaces at the cost of somewhat lengthening the
proof. It should be noted that the definition of W^ in the proof of Lemma 2.3
in [Ki] is slightly incorrect. In the notation there, it should be defined to
be the neighorhood where one has \fi\ <_ e for some z, not for all i. D

In our later considerations of change of the base field, we will want
to know that if k ' / k is an extension and A is A;-affinoid, then A —> k'^^A
is faithfully flat (that this map is a topological embedding is somewhat
simpler [BGR], 6.1.1/9). KiehPs arguments in [K3] also seem to require
this. Since the completed tensor product is not an ordinary tensor product,
there is something to prove. This type of flatness assertion was studied in
[BKKN], 1.4.4 by induction arguments. We give a more "intrinsic" proof,
and check how codimensions behave. Before stating the lemma, we refer
the reader to [BGR], 3.7.3 for a discussion of the basic facts concerning the
normed module structure on finite modules over affinoids.

LEMMA 1.1.5. — Let k' I k be an extension of complete fields, A a
k-affinoid.

1. The natural map A —> k'^^A = A' is faithfully fiat and for any
finite A-module M, the natural map A' 0A M —)> A'^A^ is a topological
isomorphism.

2. For any m € Max(A), there exist only finitely many m' G Spec(A')
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over m, all maximal, and there is a natural isomorphism of topological k ' -
algebras

A^A^^^
m'

(the left side completed tensor product is taken in the sense of [EGA] Oi,
7.7.5, where k' and k are given the discrete topology, and the topology on
the right side is the semilocal one).

3. If Z ^-> X is a closed immersion of quasi-separated rigid spaces
over k and Z is of codimension at least d at all points (i.e. dim Ox z —
dim0z,z >. d for all z € Z ) , then the same holds for the base change
Z ' <->X' overk'.

Proof. — First consider the faithful flatness claim. By [BGR],
6.1.1/12 we have A'/m ^ A/d^A/m, and since A/m is finite dimensional
as a A;-vector space, the natural map k' (g)^ (A/m) —^ A/<§)/.; (A/m) is an
isomorphism. It follows that A'/m is non-zero and finite over k1', so there
exists prime ideals in A' over m, all maximal and corresponding to the
points of Spec(A/ 0^ (A/m)). Thus, to check faithful flatness, it is enough
to check flatness [Mat2], Thm 7.3(ii). For an injection M —^ N of finite
A-modules, we need to check that A! <S>A M —^ A! (g)A N is injective. By
[BGR], 3.7.3/5,6, the natural map of A-modules A' 0^ M -^ A'^M is
a topological isomorphism (and likewise for N). Thus, it is enough (by
functoriality) to check that

A'0AM -^ A'^AN
is injective.

Since M —> N is an injection of finite A-modules, it is necessarily a
topological isomorphism of M onto a closed subspace of N as A;-Banach
spaces. Also, M and N are A;-Banach spaces of countable type (i.e. have
dense subspaces with countable ^-dimension). By [BGR], 2.7.1/4, the map
M —> N therefore has a continuous Aj-linear section. Thus, the map
k'^kM —>• k'^kN has a continuous ^'-linear section, so it is injective.
But by [BGR], 2.1.7/7, this is identified with the map A^M -> A'^AN.
This completes the proof of the first part of the lemma.

Now we consider the assertion about fibers over a maximal ideal m
of A. We have already seen that the set S of primes {m'} of A' over m is
non-empty, finite, and consists solely of maximal ideals. There is a natural
map of topological /^-algebras (where k' and k have the discrete topology)
(2) A^A, -^ JJ (%

m'CE
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which we claim is a topological isomorphism. Since A'/ni is artinian,
the right side is naturally identified with the mA'-adic completion of the
noetherian ring A'. Meanwhile, the left side is defined to be

lim k' (^k (A/m").

In the same way we saw above that k ' <S>k (^/m) ~^ A'/mA' is an
isomorphism, we see that k ' ^)k (A/m"') —> A' / x ^ A ' is an isomorphism
for all n. Passing to the inverse limit, we get an isomorphism which is
readily seen to coincide with the map (2).

Finally, to handle the last part of the lemma, we may assume that
X = Sp(A) is affinoid and Z = Sp(A/J). Let A' = A/ci^A, F = k ' ^ I , so
F is an ideal of A' and (A/J)^' ̂  A ' / I ' [BGR], 6.1.1/12. Since affinoid
rings are catenary, the closed immersion Z ^-> X is of codimension at least
d at all points of Z if and only if every minimal prime over I has height at
least d, which is to say that the codimension of Spec(A/J) in Spec(A) is at
least d. Since A —> A' is faithfully flat, it suffices to show that if Z c—^ X
is a closed immersion of locally noetherian schemes of codimension at least
d and X' —> X is a faithfully flat quasi-compact base change with X' a
locally noetherian scheme, then the induced closed immersion Z ' c-^ X'
after base change has codimension at least d. We immediately reduce to
the case where X = Spec(A), Z = Spec(A/p), X' = Spec(A') with p a
prime ideal of A with height d. Since A —>• A' is faithfully flat, pA' -^ A'.
We want to show that for any minimal prime p' of A' over pA', p' has
height at least d. By the going-down theorem for the faithfully flat map
A —> A', p7 lies over p. Thus, Ap —> Ap, is a faithfully flat local map of local
noetherian rings, so by the dimension formula or the going-down theorem,
dim Ap, > dim Ap = d. D

It should be noted that in the above lemma, the maximals in A' which
lie over maximals in A are in some sense quite rare; this corresponds to the
overwhelming presence of points in B^ which have coordinates that are
not algebraic over Qp.

1.2. Normality.

Let P denote any of the following standard homological properties of
noetherian rings: reduced, normal, regular, Gorenstein, Cohen-Macaulay,
complete intersection, J^, Si [Mat2]. If A is a noetherian ring, we denote
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by P(A) the statement that the property P is true for the ring A. It is well-
known that P(A) is true if and only if P(Anz) is true for all maximal ideals m
of A, and for a local A, P(A) is equivalent to P(A) for the above properties
P aside from normality, reducedness, Ri, and 5^; equivalence between P(A)
and P(A) for local noetherian A holds for all of our P's if the local ring A
is excellent [EGA], IV2, 7.8.3(v). If X is a rigid space, scheme, or formal
scheme, we define the non-P locus of X to be {re € X | P(0x,x) fails}, and
P(X) denotes the statement that the non-P locus on X is empty.

For a A;-affinoid A, with m 6 MaxSpec(A) corresponding to x € X,
the local map Am •—> Ox,x induces an isomorphism between completions,
so P(Sp(A)) is equivalent to P(A). By a similar argument, we see that
in the rigid case (as in the case of excellent schemes which locally admit
closed immersions into regular schemes) the non-P locus of X is a Zariski-
closed set (use [Mat2], Exercises 21.2, 24.3 for the Gorenstein and complete
intersection cases, and use excellence for the rest [EGA], IV2, 7.8.3(iV)).
Moreover, if X is a locally finite type scheme over Spec(A;), then P(Xan) is
equivalent to P(X), since we may compare completions at closed points and
use the fact that schemes locally of finite type over a field are excellent.
In fact, the analytification of the non-P locus on X (given its reduced
structure, say) is the non-P locus on X1"1.

The case of formal schemes is a little more delicate. Although this
seems to be implicit in [deJ], §7 and is presumably well-known, we give
some details due to lack of a reference.

LEMMA 1.2.1. — Suppose R is a complete discrete valuation ring.
Let X be in ¥Sp.

1. The non-P locus in X is a Zariski-closed set.

2. I fX^ Spf(A) is affine, then P(X) is equivalent to P(A).

Proof. — It suffices to consider X = Spf(A). As we have noted
earlier, A is excellent (using [VI], [V2]). Let I be an ideal defining the
separated and complete topology of A. Let p be an open prime ideal (i.e.
I C p). Using the multiplicative set S == A — p, we define A^s} and
A{S~1} as in [EGA], Oi, 7.6.15, 7.6.1, and for simplicity we denote these
by A{p^ and A{p~1} respectively. Thus, A{p~1} is the Jp-adic completion
of Ap and A{?} ^ Ojc,p. By [EGA], Oi, 7.6.17, 7.6.18, there is a natural
local map A{?} —^ A{p~1} of local noetherian rings (with maximal ideals
generated by p) which induces an isomorphism of completions. The local
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map Ap —>• Afp\ of local noetherian rings also induces an isomorphism on
completions. To see this, recall that by definition,

A{?} = limA^},
f^

with A^ the Jy-adic completion of Af. Since p is open, it is therefore clear
that Ap/p^ —> A^/p^ is an isomorphism for all n ^ 1. In particular, we
deduce that the local map of local noetherian rings Ap —> A{?} is flat.

For an open prime p of A (such as a maximal ideal), we claim that
P(Ap) is equivalent to P(A{?}). Since the property of a local noetherian ring
being regular, Cohen-Macaulay, Gorenstein, and a complete intersection
ring can be checked on completions, we only have to consider the properties
Ri and Si. The map Ap —> A{?} induces an isomorphism on completions,
so there is a flat local map of local noetherian rings A{?} —^ Ap. Since we
also have a flat local map of local noetherian rings Ap —> A{?} , we can use
[Mat2], Thm 23.9 to deduce the implications P(Ap) =^ P(A{?}) •=> P(Ap).
But P(Ap) =^ P(Ap) since Ap is excellent [EGA], IV2, 7.8.3(v), so P(Ap)
and P(A{p}) are equivalent.

This argument show that the non-P locus of Spf(A) is exactly the
set of open primes in the non-P locus of Spec (A). But A is an excellent
noetherian ring which is the quotient of a regular ring, so the non-P locus of
Spec(A) is the Zariski-closed set cut out by some ideal J. Thus, Spf(A/J)
is the non-P locus of Spf(A). In particular, this locus is empty if and only
if J = A, so P(X) is equivalent to P(A). D

To conclude our commutative algebra discussion, we want to establish
the basic algebraic fact which will ensure that we can globally construct
normalizations of rigid spaces and formal schemes in FSj? (in case k has
discrete valuation), much like in complex analytic and algebraic geometry.
If A is an excellent noetherian ring, we denote by A the normalization of
Ared O'-e. the integral closure of Ared m its total ring of fractions). This is a
finite A-module. There is no risk of confusion of this with the quotient of the
subring of power-bounded elements by topologically nilpotent elements in
the affinoid case (also denoted A in [BGR]). Before we can get a good global
theory of normalization, we must check how affine/affinoid normalization
behaves under passage to open affines/affinoids.

THEOREM 1.2.2. — Let A be a reduced Japanese ring, A' a flat
noetherian A-algebra, A the normalization of A (which is finite over A).
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Assume that A! (g)A A is normal and that A'/P is reduced for all minimal
primes p of A. Then the natural map f : A' —> A' 0A A is a normalization.

Proof. — Since A —^ A' is flat, and A —^ A is an finite injection,
we see that / is a finite injection into a normal ring. In particular, A' is
reduced. Let S denote the multiplicative set of elements of A' which are
not zero divisors. Since A' is reduced, S~lAf is the product of the finitely
many fraction fields of A' at its generic points. If we localize A' 0A A at 5,
then we also invert elements of A which aren't zero divisors (since A —^ A'
is flat), so / becomes an isomorphism after localizing at S.

In order to conclude that / is a normalization map, we must show
that it is an isomorphism at generic points, which algebraically amounts
to showing that the elements of S are not zero divisors in A' 0A A (i.e.
no generic points of A' 0A A lie over non-generic points of A7, so we don't
lose any factor rings of the total fraction ring of A' 0A A by inverting 5').
Since A —> A is not flat, some argument is needed. Let {p^} be the finite
set of minimal primes of A. Suppose s G A' kills a non-zero element of
A' 0A A. We want to conclude that s is a zero-divisor in A', so s ^ S.
Since A = ]~[ A/pi and A/p^ c-^ A/p^ induces an isomorphism of fraction
fields, s must kill an element of some A' 0A (-^/Pzo) = ^-VP^O (^te that
A —^ A' is flat, so we may "kill" denominators in normalizations to detect
if an element is a zero divisor).

By hypothesis, A'/p^ is reduced. Since s can be viewed as a zero
divisor in the ring A'/P^ s imist lie in a minimal prime q over pzoA'.
The going-down theorem holds for flat maps [Mat2], Thm 9.5, so q must
contract to p^y. Since p^y is a minimal prime of A, it therefore follows that
q is a minimal prime of A'. This implies that s G A' is a zero divisor, as
desired. D

COROLLARY 1.2.3. — Let Sp(A7) —^ Sp(A) be an open immersion
of k-affinoids, A the normalization of A. Then Sp(A' 0A A) —^ Sp(A')
is a normalization. If k has discrete absolute value, Spf(A') —> Spf(A)
is an open immersion in FSj^, and A is the normalization of A, then
Spf(A' 0A A) —» Spf(A') is a normalization.

Proof. — We may replace A by Ared; which has the effect of
replacing A' by A^. It remains to check the hypotheses in Theorem 1.2.2.
Note that a maximal ideal of A' contracts to a maximal ideal of A. In the
rigid case this is clear (since the residue fields at maximal ideals are finite
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over k) and in the formal case this is because a maximal ideal in a formal
affine is a closed point in the formal spectrum, but our formal affines have
the property that their underlying topological spaces are Spec of finite type
rings over a field (so the property of a point being closed is local). Thus,
if m is a maximal ideal of A' then its contraction to A is a maximal ideal
n, and the natural map An —> A^ is faithfully flat because it induces an
isomorphism on completions (the rigid case is [BGR], 7.3.2/3 and in the
formal case this arises from the fact that A^i —> Ar^ is an isomorphism).
The flatness of A —^ A' follows.

We know that A is Japanese (even excellent), and A' 0A A is normal
because Sp(A'0AA) is an open in the normal space Sp(A) in the rigid case
and likewise with Spfs in the formal case. Finally, if p is a prime of A, then
Sp(A/p) is a reduced space in the rigid case and Spf(A/p) is a reduced
space in the formal case, but Sp(A'/p) —» Sp(A/p) is an open immersion
in the rigid case and likewise with Spfs in the formal case, so A'/P is also
reduced. D

2. Global normalizations.

2.1. Basic constructions.

Let X be a rigid space over k or (if k has discrete valuation) an
object in FSp. If X is affinoid/affine and A = r(X,C^c), we define
the affinoid/affine normalization of X to be the canonical finite map
X ^= Sp(A) —> Sp(A) c± X in the rigid case and likewise with Spfs in
the formal case. If V C U is an inclusion of affinoid/affine opens in X,
then by Corollary 1.2.3, there is a unique isomorphism V ^ V Xu U over
V. Using this as gluing data, we glue the U's, and call the resulting finite
surjective map X —> X the normalization of X (see [EGA], IIIi, §4.8 for
the theory of finite morphisms of locally noetherian formal schemes). We
say that a morphism Y —> X is a normalization if Y ^ X over X (in
which case the isomorphism is unique, so the notion of Y —> X being a
normalization is local on X). Of course, the same construction for locally
finite type A-schemes gives the usual normalization for such schemes. The
normalization of a rigid space "localizes well" in the following sense:

LEMMA 2.1.1. — Let X be a rigid space, x € X, p : X —> X a
normalization. Then p| : Ox, x ~^ (p^^y)x is a normalization map.
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Proof. — Without loss of generality, X = Sp(A) is a reduced
affinoid, so p^ is the map Ox,x —^ A 0A ^x,a;- By Theorem 1.2.2, we just
have to check that A 0A Ox,x ^ (p*0y}x is a normal ring. The argument
at the end of the proof of Theorem 1.1.3 shows that the natural map

(p*<^).- n °x,y
yep-^x)

is an isomorphism, and the right side is a finite product of normal do-
mains. D

In order to study the behavior of irreducible components on rigid
spaces (once they are defined) with respect to the analytification of schemes
and formal schemes, we will first need to see how the formation of the
normalization morphism behaves with respect to the functors X ^ X^
and X ^ X^. For this, an intrinsic characterization of normalization
morphisms is useful. Before we give the characterization, we review some
terminology. A closed set Z in a topological space X is said to be nowhere
dense if Z contains no non-empty opens of X. This can be checked locally
on X. If X is a locally noetherian scheme, this is equivalent to requiring
dim Oz,z < dim Ox,z for all z 6 Z. For a noetherian ring A and ideal I in
A, Spec(A/J) is nowhere dense in Spec(A) if and only if I is not contained
in any minimal primes of A. An analytic set Z in a rigid space X is said to
be nowhere dense if dim Oz,z < dim Ox,z for all z € Z (or equivalently, Z
does not contain a non-empty admissible open in X). This can be checked
locally on X and when X = Sp(A) is affinoid and Z is defined by an ideal
J, it is easy to see that this is equivalent to Spec(A/J) being nowhere dense
in Spec(A).

THEOREM 2.1.2. — Consider the category of locally finite type k-
schemes or rigid spaces over k. A map f : Y —> X of reduced objects is a
normalization if and only iff is finite, Y is normal, and there is a nowhere
dense Zariski-closed set Z in X with f"1^) nowhere dense in Y such that
f is an isomorphism over the open X — Z complementary to Z.

When f is a normalization, Ox —^ /*(0y) ls injective and we may
take Z to be the support of the coherent cokernel sheaf.

Proof. — We handle both cases simultaneously. First, assume / is a
normalization, so certainly / is finite and Y is normal. Since our spaces are
reduced, the map of coherent sheaves Ox —^ /*(0y) ls a monomorphism.
Let Z be the Zariski-closed support of the coherent cokernel sheaf. By the
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construction of normalizations, trivially / is an isomorphism over X — Z,
and any open over which / is an isomorphism lies inside of X — Z. In fact,
Z is exactly the "non-normal locus" (i.e. Z is the set of all x € X such
that Ox,x 1s Tl0^ normal), so it remains to check that in the affine/affinoid
cases, the non-normal locus on a reduced space is nowhere dense and its
preimage in the normalization is nowhere dense. In the case of reduced
excellent schemes this is obvious, and we thereby deduce the same result
in the rigid case.

Conversely, consider a finite map f : Y —> X with the given
properties. Since an isomorphism Y c^ X over X is unique if it exists, we
may work locally over X and so in the rigid case we can assume X = Sp(A)
is affinoid, so Y = Sp(B) is affinoid (and likewise we need only consider
the affine case in the scheme setting, again denoting the rings by A and B
respectively). Clearly ip : A —^ B is finite. Also, (p is injective. To see the
injectivity of y?, we need that in both cases, if Z is a Zariski closed set in a
"reduced space" X which is nowhere dense, and U is the complement of Z,
then F(X,Ox) -^ F(U,Ox) is injective. If / € F(X,Ox) vanishes on £7,
then the zero locus Z(/) of / is a Zariski-closed set which contains £7, so
its complement is a Zariski-open set inside of the nowhere dense Z, which
forces the complement to be empty. Thus, Z(/) = X as sets, so / = 0 since
X is reduced.

In both cases, Spec(y?) induces a bijection on maximal ideals away
from Z and f~l(Z). Let I be the radical ideal in A corresponding to the
Zariski-closed set Z. Consider a maximal ideal m of A not containing J, so
B has a unique maximal n over m. Since (^ is a finite injection, Bm == Bn.
We claim that (pm '• Am —^ Bm = Bn is an isomorphism. This is clear in the
scheme case. In the rigid case, (pm induces an isomorphism on completions.
Since B is finite over A, (pm becomes an isomorphism after the faithfully
flat base change 0An,An5 so (pm is an isomorphism.

We conclude that in both cases Spec((^) is an isomorphism over the
Zariski-open complement of Spec(A/J) in Spec(A). Since (p is a finite
injection with B normal, it suffices to check that no minimal prime of A
contains I and no minimal prime of B contains I B (so (p induces a bijection
on generic points and an isomorphism between the resulting residue fields
at these points). This is clear, by the hypothesis that Z and /^(Z) are
nowhere dense. D

Note that there seems to be no analogue of the above theorem in the
case of formal schemes. Indeed, if k has discrete absolute value and A is
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the completion of a reduced finite type .R-scheme at a non-normal point
over the maximal ideal of -R, then Spf(A) is reduced and not normal, but
consists of a single point!

THEOREM 2.1.3. — IfX is a locally finite type scheme over Spec(A;)
and f : X —> X is a normalization, then /an is a normalization of X^.
Likewise, ifk has discrete valuation and X is a formal scheme in FSR, and
f : X —> X a normalization, then /rlg is a normalization ofX^.

Proof. — The normality of X^ follows from excellence, as we
have already observed in §1.2, and the finiteness of /an in this case
is a consequence of the behavior of coherent sheaves with respect to
analytification and the description of finite morphisms via coherent sheaves
of algebras in both the scheme and rigid case cases (or see Theorem 5.2.1).
The normality of X^ follows from [deJ], 7.2.4(c), and finiteness of /rlg in
this case follows from [deJ], 7.2.4 (e), or an argument with coherent sheaves
of algebras.

Consider the scheme case. By Theorem 2.1.2 and the basic properties
of the analytification functor on schemes, it remains to check that if
i : Z '—> Y is a "nowhere dense" closed immersion of locally finite type
^-schemes, then the closed immersion i^ is "nowhere dense". For any
z 6 Z^, viewed as a closed point of Z, the map of local noetherian rings
Oz,z —^ Oz^.z induces an isomorphism on completions, so these two local
rings have the same dimension. The same statement holds on Y. Since i^
on the level of sets is the map induced by i on closed points, we see that
dim Oz,z < dim(9y^(,2;) if and only if dim0z^,z < dimOyan^an^). This
settles the scheme case.

Now consider the formal scheme case, so k has discrete valuation and
R is a discrete valuation ring. Let X be an object in FS^, with normalization
X. We will prove directly that X1'18- —> X^ is a normalization. Using [deJ],
7.2.2, 7.2.4(c), formation of the "underlying reduced space" commutes with
(^"s, so we may assume X is reduced. We may also work locally over X^,
so we may work locally over X [deJ], 7.2.3. Thus, it is enough to consider
the case where X = Spf(A) is affine, with A reduced. Letting A denote the
normalization of A, we will prove directly that Sp^A)^ —-> Sp^A)^ is a
normalization. Let C^(A) = Bn(A)<^Rk^ with Bn(A) the J-adic completion
of the subring Ap^/Tr] in A0p k generated by the image of A and elements
of the form J / T T with j e J71 and TT a fixed uniformizer of R. By [BGR],
7.1.2(a), Cn(A) is flat over A, and by construction the Sp(Cn(A))'s give an
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"increasing" admissible cover of the reduced space Sp^A)^. In particular,
all Cn(A) are reduced.

By [deJ], 7.2.2, if A' is any finite A-algebra, the preimage under
Sp^A')^ -> Sp^A)^ of Sp(C^(A)) is the affinoid Sp(Cn(A) 0A A').
Taking A' = A, Sp(Cn(A) 0A A) is an admissible open in the normal
space Sp^A)^, so Cn{A) 0A A is normal. Taking A' = A/p for a prime p
of A, Sp(Cn(A)/p) is an admissible open in the reduced space Sp^A/p)^,
so Cn(A)/p is reduced. By Theorem 1.2.2, the maps Cn(A) —> Cn(A) (g>A A
are normalizations, so Sp^A)^ —> Sp^A)^ is a normalization. D

We will define irreducible components in terms of connected compo-
nents of a normalization. Before doing this, we need to recall a few facts con-
cerning connected components and connected normal spaces. Recall that a
rigid space Z is said to be connected if an admissible open cover {£/, V} with
disjoint U and V must have U or V empty, or equivalent ly if F(Z, Oz) has
no non-trivial idempotents (this is equivalent to the definition of connect-
edness given in [BGR], 9.1.1). For example, an affinoid Sp(A) is connected
if and only if Spec(A) is connected.

Choose z € Z. A straightfoward argument shows the admissibility of
the set of all z ' € Z such that there is a finite set Z\,..., Zn of connected
affinoid opens in Z with z G Zi, z ' G Zyi, and Zi Fl Z^+i non-empty for
all 1 < i < n. This is called the connected component of z. It is not hard
to check that the connected components of any two points z ^ z ' € Z are
either disjoint or equal, and that for any set {Zi\ of such components, UZi
is an admissible open and {Zi} is an admissible covering of this union. We
define the connected components of Z to be the connected components
of the points of Z (and if Z is empty, it is viewed as its own connected
component).

It follows that Z is connected if and only if all points have the same
connected component, and any non-empty connected admissible open in
an arbitrary rigid space Z lies in a unique maximal such open, which is
a connected component. The connected components of any Z are analytic
sets and are "locally finite" in the sense that any quasi-compact admissible
open meets only finitely many connected components. We noted above that
if {Ui}i^ is a subset of the set of connected components of Z, then the
union of these U^s is an admissible open with the Ui for i G E its connected
components; the admissible opens of Z obtained in this way are exactly the
admissible opens of Z which are also analytic sets ("open and closed"). We
call such subsets clopen sets.
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Before we define the irreducible components of a rigid space, we make
a useful observation about the connected components on a normal rigid
space. This will later be extended to irreducible spaces, once they are
defined.

LEMMA 2.1.4. — Let X be a connected normal rigid space, U a
non-empty admissible open. The only analytic subset Z ofX which contains
U is X itself, and ifX == Z-^UZ^ is a union of two analytic sets, then X = Z\
or X ==^2.

Proof. — Give Z its reduced structure. To show that Z = X, we may
replace U by an affinoid subdomain which we may take to be connected,
and we may replace Z by its connected component containing U. Since X is
normal and connected, it is not hard to see (using Lemma 2.1.5 below) that
all Ox,x^ have a common dimension n. Let A = {z 6 Z \ dim0z,z = n}
and let B = [z e Z [ dim0z,z < n}.

Since Z is a reduced analytic set in a purely n-dimensional normal
rigid space X, if A meets a connected affinoid subdomain U C X then A
contains U (here we use normality). Thus, {A,B} is an admissible cover
of Z by disjoint admissible opens. But Z is connected and A is non-empty,
so Z == A. Thus, Z contains every connected open affinoid of X which it
meets, so {Z, Z — X} is an admissible cover of X. But X is connected and
Z is non-empty, so Z = X.

Now suppose that X = Z\ U Zs for analytic sets Zi. If Z\ =^ X, then
Z-z contains the non-empty admissible open X — Zi, so Z^ = X. D

Due to lack of a reference, we include a proof of the following lemma,
the first part of which was used above.

LEMMA 2.1.5. — Let A be a k-affinoid domain of dimension d.
Then all maximal ideals of A have height d. I f k ' f k is a complete extension
field, then A^^k' is equidimensional with dimension d.

Proof. — If A = Td{k)^ then all ^-rational maximal ideals clearly
have height d, by computing the completions at such points. For general
maximal ideals, we may make a finite base change on k to reduce to the
case of rational points. This settles the case of Tate algebras. By Noether
normalization [BGR], 6.1.2/2, there is a finite injection of domains Tn ̂  A.
Since Tn is factorial [BGR], 5.2.6/1, hence integrally closed, we may use the
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going-up and going-down theorems [Mat2], 9.4 to deduce that all maximal
ideals of A have the same height n. Thus, n = d.

Now let k' / k be a complete extension and let A' = A^^k\ Since
Td(k) -^ Td(k') is flat and A' = A^{k)Td{k') = A 0^(fc) Td(k') (by
the finiteness of Td(k) —» A and the first part of Lemma 1.1.5), we
see that the injection Td(k) c-^ A induces an injection Td(kf) ̂  A' by
base change. Let p' be a minimal prime of A'. If p' contracts to (0) in
Td{k')^ then Td(kf) —» A'/p' is a finite injection, so the A/-affinoid domain
A'/p' has the same dimension d as Td(k'). Thus, it suffices to show that
Spec(A') —^ Spec(rd(A/)) takes generic points to generic points.

Since Td(k) —^ A is a finite injection of noetherian domains, there
exists some non-zero / € Td(k) so that Td{k)f —^ Af is a (finite) flat map.
Base change by Td{k) —> Td{k') implies that Td(k')f —> A'r is a finite flat
map, so Spec(A'r) —> Spec(^d(A:/)y) sends generic points to generic points.
It remains to show that / is a unit at each generic point of Spec (A') and
Spec(Trf(A/)). Since / is not a zero-divisor in either Td(k) or in A, by the
flatness of A —> A' and Td(k) —> Td(k') we see that / is not a zero divisor
in A' or Td{k'). Thus, / does not lie in any minimal primes of A' or Td(k'),
as desired. D

In the terminology of [CM], Lemma 2.1.4 says that the "Zariski
closure" of a non-empty admissible open in a connected normal space is
the whole space. This will later imply that for reduced rigid spaces, the
definition of "irreducible component" in [CM] is equivalent to the one we
will give.

2.2. Irreducible components.

Let p : X —> X be the normalization of a rigid space X and Z an
analytic set in X. Since p is a finite map, p(Z) is an analytic set in X,
always understood to have its canonical structure of reduced rigid space.
A useful preliminary lemma is:

LEMMA 2.2.1. — Let p : X —)• X be the normalization of a rigid
space X.

1. If U is a clopen set in X, then the analytic set p~l(p(U)) — U is
nowhere dense in X. In particular, ifV^U are distinct clopen sets, then
p(U)^p(V).
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2. If Xi is a connected component of X , then p i : Xi —> p(Xi) = Xi
is a normalization.

3. Assume X is reduced and give all Xi = p(Xi) the reduced
structure. Then Xi ^ X j for j ^ i, any quasi-compact admissible open
in X meets only finitely many Xi ^s, and there is an analytic set Zi C Xi
such that the admissible (Zariski) open Xi — Zi in Xi is non-empty, normal,
and disjoint from all X j 's for j 7^ i. In particular, Xi — Zi is an admissible
(Zariski) open in X .

Proof. — For the first part, we can work locally on X, so without
loss of generality X is affinoid. Then we may appeal to the explicit
construction of normalizations in the affinoid case and the analogue for
Spec of noetherian rings.

For the second part, we may assume X is non-empty. Let Xi = p(Xi),
an analytic set in X. By the first part, Xi ^ Xj for z -^ j. It is obvious from
the definitions that {Xi} is a "locally finite" set on X, in the sense that
a quasi-compact admissible open meets only finitely many X^s. To show
that pi : Xi —> Xi is a normalization, we may certainly assume that X
is reduced. Clearly pi is finite. Also, by Lemma 2.1.4 and the surjectivity
of pi, formation of preimage under pi takes nowhere dense analytic sets
to nowhere dense analytic sets. In fact, this same reasoning shows that
any analytic set in Xi which is not the whole space is nowhere dense. By
Theorem 2.1.2, it therefore remains to check that there is a proper analytic
set Zi in Xi satisfying the conditions of the third part of the lemma.

Define
Wi=\J(Xinx,).

3^

This is an analytic set, by the local finiteness of the set of irreducible
components of X. If Wi == Xi then the clopen union U C X of the X/s
for j ^ i has the property that p~l{p{U)) == X. By the first part of the
lemma, the complement Xi of U in X must therefore be nowhere dense in
X, an absurdity. Thus, Xi — Wi is a non-empty admissible open set in Xi.
Moreover, since p is surjective, Xi — Wi is an admissible open (even Zariski
open) in X, since it is equal to the complement in X of the analytic set
which is the "locally finite" union of the Xj's over j ̂  i.

The non-normal locus Ni of Xi is a proper analytic set (since Xi
is reduced), so the union Zi = Ni U Wi is a proper analytic set in
Xi (by considering preimages in Xi under the surjective pi and using
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Lemma 2.1.4). But Ni meets Xi — Wi in the non-normal locus of Xi — Wi
as an admissible open in X (not just in X^), so Xi — Zi is a non-empty
admissible open in X (even Zariski open) which is normal. Thus, p (and
hence pi) is an isomorphism over this open. D

In complex analytic geometry, one develops the global theory of ir-
reducible decomposition by using the connected components of the nor-
malization [GAS], 9.2.2. However, the proofs typically make use the of the
fact that a reduced complex analytic space is manifold (i.e. smooth) on the
complement of a nowhere dense analytic set. Since this is not true in rigid
geometry over a non-perfect field, we need to argue differently in order to
get similar results in the general rigid case. We begin with the following
fundamental definition.

DEFINITION 2.2.2. — The irreducible components of a rigid space
X are the reduced analytic sets of the form Xi = p(X^), with Xi the
connected components of the normalization p : X —> X. We say that X is
irreducible if it is non-empty and has a unique irreducible component. An
analytic set Z in X is said to be irreducible if it is irreducible as a rigid
space with its reduced structure.

Clearly the notions of irreducibility and irreducible component are
unaffected by passing to the reduced space, and any non-empty rigid space
is covered by its irreducible components, only finitely many of which meet
any quasi-compact admissible open (so clearly any union of irreducible
components of a rigid space is an analytic set). By Lemma 2.1.1, Spec(0x,x)
is irreducible if and only if there is a unique irreducible component of
X passing through x. Also, by the second part of Lemma 2.2.1, the
irreducible components of a non-empty rigid space are irreducible! By abuse
of notation, if Z c—^ X is a closed immersion whose underlying reduced
analytic set is an irreducible component of X, we may sometimes say that
Z is an irreducible component of X.

For any normalization p : X —^ X and x 6 X, there is some
x ' C p"1^) such that dim0~ , == dim Ox x, so it is clear that if X is

y\ ,X '

irreducible, then dim0x,x is the same integer for all x C X, called the
dimension of X (and this is equal to the dimension of X). In particular,
a rigid space is equidimensional if and only if all irreducible components
have the same dimension. We first want to relate the above definition with
the usual notion of irreducibility from algebraic geometry.
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LEMMA 2.2.3. — Let X be a non-empty rigid space. Then X is
irreducible if and only if X is not the union of two proper analytic subsets.
Also, X is irreducible if and only if the only analytic set Z in X which
set-theoretically contains a non-empty admissible open of X is Z = X .

Proof. — Let p : X —> X be the surjective normalization map.
Suppose X is irreducible in our sense and X = Z\ U Z^ for analytic sets
Zi, Z^ in X. Thus, X is a connected normal space surjecting onto X and
X = p~l(Z-i) ̂ p~l(Z^). By Lemma 2.1.4 and the surjectivity of X —> X,
X == Z\ or X = Z^. Conversely, suppose that X is not the union of two
proper analytic sets and {U\,U^} is an admissible cover of X with U\
and [/2 disjoint and non-empty. Consider the images Zi = p(Ui), where
p : X —>• X is the normalization map. These are analytic sets since p is
finite, and their union is X. By hypothesis, some Zi = X = p(X)^ so by
Lemma 2.2.1 some Ui has nowhere dense complement in X, an absurdity.

For the last part, suppose that X is irreducible, U is a non-empty
admissible open in X, and Z is an analytic set containing U. Then p~^(Z^
is an analytic set in the connected normal space X containing the non-
empty admissible open p~l(U). Thus, p~^{Z') = X by Lemma 2.1.4, so
Z = X. Conversely, if X is not irreducible, so X is the union of two proper
analytic sets Z\ and Zz; then the non-empty admissible open X — Z\ set-
theoretically lies inside of the proper analytic set Z^. D

THEOREM 2.2.4. — Let X be a rigid space over k.

1. The mapping' Xi i—> p(Xi) is a bijection between connected
components ofX and irreducible components of X.

2. Each irreducible analytic set in X lies in an irreducible component
ofX.

3. If S is a set of distinct irreducible components of X, then the
union X^ of the Xi € S is an analytic set in X. Giving X^ its reduced
structure and defining Xy, to be the union of the connected components of
X corresponding to the elements of S, ps : XE ~^ Xs ls a normalization.
In particular, the irreducible components of X^ are exactly those Xi € S.

Proof. — The first part follows from Lemma 2.2.1. For the second
part, let Z be an irreducible analytic set in X, and z 6 Z a point.
By considering an affinoid open U in X around z and the construction
of normalizations, we can certainly find a finite set S of irreducible
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components Xi of X whose union contains U H Z. Since Z is irreducible,
by Lemma 2.2.3 the union of the finitely many Xi e S contains Z, so at
least one of the Xi e S must contain Z.

Now let S be as in the third part. By the local finiteness of E, Xy, is an
analytic set. Using the reduced structure, we want the finite map Xs —^ X^
to be a normalization map. For each Xi e S, let Zi be an analytic set in
Xi as in the third part of Lemma 2.2.1. Let Zs be the union of Z^s for
Xi e S. By the local finiteness of S, Zs is an analytic set in X and clearly
is nowhere dense in X^. Likewise, p^{Z^) is nowhere dense in X^. By
Theorem 2.1.2, we just have to show that Xy, —> X-s is an isomorphism
over the complement of ZE. It suffices to check that the union X^ - Zs of
the disjoint Zariski opens X, - Z, in X (for Xi e S) is itself an admissible
open, with the Xi — Z^s giving an admissible cover. This follows from the
next lemma. D

LEMMA 2.2.5. — Let W be a rigid space and {Wi} a set of mutually
disjoint Zariski opens. Assume this set is locally finite in W (i.e. only finitely
many Wi 's meet any quasi-compact admissible open in W). The union U of
the Wi ' s is an admissible open and the Wi ' s are an admissible cover of U.

Proof. — This can be checked in the case of affinoid W, so we reduce
to the claim that if W = Sp(A) is an affinoid and Ji , . . . , In are ideals in
A, with Zi = Sp(A/J,), Wi = W - Z,, then the union U of the Wi's is an
admissible open and the Wi's are an admissible cover of U. Since U is a finite
union of Zariski opens, it is also Zariski open. Thus, the admissibility of U
and of any covering of U by Zariski opens follows from [BGR], 9.1.4/7. D

In [CM], a component part of a rigid space X is defined to be the
minimal closed immersion Z c—^ X through which a fixed admissible open
U ^ X factors; it is easy to see by a noetherian argument that such a
minimal Z exists. It is reduced if X is reduced. The following theorem
relates the terminology in [CM] to our setup.

COROLLARY 2.2.6. — Let X be a reduced rigid space. The com-
ponent parts of X are exactly the unions of irreducible components of X
(with their reduced structure). An irreducible component part is the same
thing as an irreducible component.

Proof. — Let U be an admissible open in X, and let E denote the
set of irreducible components of X which contain U. If p : X —> X is the
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normalization, then E is in canonical bijection with the set of connected
components of X which meet p~^(U). Let Z be an analytic set in X which
contains U. By Lemma 2.1.4, p'^Z) is contains all connected components
of X that meet p"^?/), so Z contains all elements of S. By the final part
of Theorem 2.2.4, we conclude that Z is a union of irreducible components
of X. Since X is reduced, every component part of X must be as claimed.

Conversely, for each irreducible component Xz of X, there is a non-
empty Zariski open Ui in X disjoint from Xj for all j ̂  i (by Lemma 2.2.1).
If E is a non-empty set of X^s, then by Lemma 2.2.5, the union £/s of the
Ui's for Xi € S is an admissible open with the Ui's for Xi € S giving an
admissible cover. Since X is reduced, the smallest closed immersion Z *—>• X
through which U^ —> X factors is X^ c—^ X, where the union XE of all
Xi € S is given its reduced structure. Thus, X^ is a component part. D

The following corollary (when combined with the preceding one)
generalizes [CM], 1.2.3 in the reduced case.

COROLLARY 2.2.7. — Let X be a rigid space which is equidimen-
sional of dimension d. The analytic sets in X which are a union of irre-
ducible components of X are exactly those which are equidimensional of
dimension d.

Proof. — We just need to show that if X is irreducible and Z is
an irreducible analytic set in X, then Z fills up all of X if Z has the
same dimension as X. Let p : X —> X be the normalization and d the
common dimension of X and X. Since p is finite and surjective, if z € Z
has dim0z,z = d then there exists z ' € p~l(z) with dimOp-i^z^z' = d.
But X is normal of dimension d, so p~l(Z) must contain an open around
z ' . By the connectedness of X and Lemma 2.1.4, p"1^) = X. Therefore
Z =X. D

We can now formulate the uniqueness of global irreducible decompo-
sition.

COROLLARY 2.2.8. — Let X be a non-empty rigid space, S = {Yj}
a set of distinct irreducible analytic sets in X which is locally finite in the
sense that each quasi-compact admissible open U in X meets only finitely
many Yj 's. Assume that the union of the Yj 's is X and that S is minimal
in the sense that no Yj is contained in the union of the Yi 's for i ̂  j. Then
S coincides with the set of irreducible components of X.
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Proof. — Without loss of generality, X is reduced. Let {Xi} be the
set of (reduced) irreducible components of X, and choose (by Lemma 2.2.1)
a non-empty normal Zariski-open Uz in X which is disjoint from all
irreducible components of X aside from Xi. By the local finiteness and
covering assumptions on E, some Yj contains a non-empty open in L^, and
hence contains all of Xi. By the second part of Theorem 2.2.4 and the
third part of Lemma 2.2.1, Yj = Xi. Thus, S contains as a subset the set
of irreducible components of X. By the minimality assumption, S is the
set of irreducible components of X. D

We end this section by recording a useful easy fact which generalizes
[CM], 1.2.4 in the reduced case.

COROLLARY 2.2.9. — Let X be a, rigid space, with irreducible
components {Xi}. For each non-empty admissible open U in X, each
irreducible component Uj ofU is contained in a unique Xi. For all i, Xi D U
is a (possibly empty) union of irreducible components ofU.

Proof. — Since the formation of the normalization is local on the
base, Xi H U is the image of a clopen under the normalization map for [/,
so the last part is clear. Lemma 2.2.1 implies that Uj contains a non-empty
connected normal admissible open Uf which is also an admissible open in
[7, and hence in X. The existence and uniqueness of the Xi containing Uj
therefore follows from Lemma 2.2.3 and the construction of the X^s. D

2.3. Relation with irreducible components
on schemes and formal schemes.

Let X be a non-empty locally finite type A;-scheme and, in case k has
discrete absolute value, X a non-empty object in FSp which is R-flat. Let
{Xi} and {Xi} denote the set of irreducible components of X and the set
of connected components of the normalization X respectively, given their
canonical reduced structure.

Our goal in this section is to prove the following theorem:

THEOREM 2.3.1. — The set of irreducible components of X^ is
{X^} and the set of irreducible components ofX^s is {^ig}, where ̂ ig

is the image ofX^ in X^.
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Proof. — Note that O^ and {'Y^ take finite surjections to finite
surjections. Indeed, the case of ( ' ) a ' n is clear and for ('Y^ use [deJ],
7.2.2, 7.2.4(e). Thus, by Theorem 2.1.3, it is enough to consider the case
where X and X are connected, normal, and non-empty, and we want to show
that the normal rigid spaces X^ and X^ are connected and non-empty.
In the case of formal schemes, X^ is connected by [deJ], 7.4.1 and X"®
is non-empty by [deJ], 7.1.9 and our Jl-flatness assumption. Thus, we now
concentrate exclusively on the scheme case, with X a normal connected
locally finite type ^-scheme. Clearly X^ is non-empty and normal. We
want X^ to be connected.

As a first step, we want to reduce to the case when k is algebraically
closed and X is affine. Let {Uz} be an open affine covering of X, so the
Ui are irreducible opens in X, any two of which can be "linked up" by a
finite chain of opens in this covering (since X is connected). Thus, {U^}
is an admissible covering of X^, any two of which can be "linked up"
by a finite chain of opens in this covering, so it suffices to show that the
U^ are connected. Hence, we may assume X is affine, so in particular is
quasi-compact. Therefore, by [EGA], IVs, 4.5.11, there is a finite Galois
extension k 1 / k such that the irreducible (= connected) components of the
normal (affine) A/-scheme X' = k' x/g X remain irreducible after arbitrary
change of the base field over k ' . Since X' —> X is a Galois covering with
Galois group G = Gal(A;'/A;), so is X'^ -^ X^. By the following lemma,
G acts transitively on the connected components of X ' , so it is enough
to handle the connected components of X' (viewed as schemes over A;').
This will allow us to assume that X is a normal affine ^-scheme which is
geometrically irreducible over k.

LEMMA 2.3.2. — Let f : Z ' —> Z be a finite map of rigid spaces
over k, with Z connected. Assume that f is Galois with Galois group G.
That is, there is a map of groups G —> Aut(Z'/Z) such that the canonical
map G x Z ' —>• Z ' xz Z1 given by { g ^ z ' ) '—)> { z ' ^ g z ' ) is an isomorphism.
Then G acts transitively on the connected components of Z 1 . In particular,
Z ' has only finitely many connected components.

Proof. — If U ' C Z ' is the union of the (7-orbits of a connected
component of Z', then U ' is a non-empty G-stable admissible open.
Working over an admissible open affinoid covering of Z, we see by Galois
descent of rings that U ' = f~^(U) for a unique non-empty clopen U C Z.
But Z is connected, so U = Z. Thus, U1 = Z', so G acts transitively on
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the connected components of Z ' . D

Let k' = k, so X' = X x^ k ' is an irreducible affine A/-scheme.
In particular, the normalization of Xf is affine and connected, so if we
can handle the case of a normal connected affine over an algebraically
closed complete ground field, then by Theorem 2.1.3 it will follow that
X^ X f c k ' ^ (X Xk A/)^ is connected (this isomorphism of rigid spaces is
explained in the appendix). To deduce the connectedness of X^ from this,
we claim more generally that if Y is a quasi-separated rigid space over k
and k' / k is an extension field such that Y x^ k ' is connected, then Y is
connected. Let [U, V} be an admissible cover of Y by disjoint admissible
opens, so we get by base change and Lemma 3.1.1 an analogous such cover
{U^ V ' } of the connected space Y x^ k1. Thus, one of U ' or V is empty.
By the injectivity of A —> A^^k! for A;-affinoids A, we see that U or V is
empty, so Y is connected. This completes the reduction to the case where
k is algebraically closed and X is normal, affine, and connected.

Now that we have an algebraically closed ground field, the method
of proof in the complex analytic case [SGAl], XII, Prop 2.4 can be carried
over. The only extra input we need from rigid geometry is a theorem of
Liitkebohmert [LI], Thm 1.6 which asserts that if Y is a normal rigid
space over an algebraically closed field and Z is a nowhere dense analytic
set in Y with complement [7, then every bounded element in r((7,0y)
extends uniquely to T(Y,Oy). Applying this to to idempotents, it follows
that V is connected if and only if U is connected. This applies in particular
to the analytification of a dominant open immersion X ̂  P with P a
normal projective /^-scheme, thereby reducing us to the case in which X is
projective. Then one needs rigid GAGA in the case of projective schemes
over a (possibly non-discretely-valued) complete field. A proof of this based
on Serre's arguments over C can be found in [Ko], Satz 4.7 (though it
should be noted that once the base is not a field, the formulation of GAGA
in [Ko] is not an analogue of the complex-analytic version [SGAl], XII,
but instead is more in the spirit of GAGA for noetherian formal schemes
[EGA], IIIi, 5.1.2). D

3. Behavior with respect to base change.

We want to study how formation of irreducible components behaves
with respect to base change (always understood to mean extension of the
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base field, rather than formation of a fiber product with a rigid space
over the same base field). For example, if X is a quasi-compact quasi-
separated rigid space over k (such as a proper rigid space over A;), or more
generally has only finitely many irreducible components, does there exist
a finite separable extension k ' / k such that the irreducible components of
X X f c k ' remain the irreducible components after arbitrary base change to
a complete extension of A/? In [EGA], IV2, 4.5ff this type of question is
systematically studied in the case of schemes, particularly those locally of
finite type over a field. We want to obtain similar results, but must deal
with the fact that elements of Tate algebras (in contrast to polynomial
rings) typically have infinitely many non-zero coefficients.

3.1. Preliminary remarks on base change.

The basic construction and local properties of the functor (•) x/e k1 on
quasi-separated rigid spaces are given in [BGR], 9.3.6. The reason for quasi-
separatedness in this construction is that we know how base change should
be defined for affinoids (i.e. we should define Sp(A) x^; k1 = Sp(A^kkf) for
any /s-affinoid algebra A), and in order to globalize this to more general rigid
spaces X, it seems necessary to require that the overlap of any two open
affinoids is quasi-compact (i.e. covered by finitely many open affinoids).
Such spaces are precisely those for which the diagonal map X —^ X x k X
is quasi-compact, which is to say that X is quasi-separated. The essential
reason why we need this quasi-compactness condition to define (•) x/c k '
is because of the finiteness conditions built into the definition of the
Grothendieck topology on affinoid rigid spaces.

Before investigating geometric questions, it seems worthwhile to make
some remarks which clarify the role of the quasi-separatedness condition
in our study of base change below. If X is an arbitrary rigid space over k,
k ' / k is a complete extension, and {Xi} is an admissible covering by affinoid
opens, then the overlaps Xzj = Xi H Xj might not be quasi-compact (if X
is not quasi-separated), but they are open in an affinoid and so are at least
quasi-separated (even separated). Thus, the base change X^ = Xij x/c k '
makes sense. If the maps X^ —> X[ = Xi x^ k ' and X^ —^ X'j = Xj Xk k '
induced by functoriality are open immersions, then we can glue X[ and X^
along X_ and thereby (with a little care) define X x ^ k ' without a quasi-
separatedness condition. If it were always true that for any open immersion
L :U c—^ X into a quasi-separated rigid space, the base change i' = i x^; k '
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is again an open immersion, then we could define a base change functor
(•) x/c kf on arbitrary rigid spaces over k, with all of the usual properties
one expects.

It is immediate from the construction of the base change functor that
L ' as above is always an injective local isomorphism and that L' is an open
immersion when L is quasi-compact. This enables us to reduce the general
problem of whether L ' is an open immersion to the case where X is affinoid.
From the "classical" point of view (as in [BGR]), the case of non-quasi-
compact L appears to be rather difficult to settle, even when X is affinoid.
However, the only case of non-quasi-compact L which we need is when U is
the complement of an analytic set Z in X; that is, when U is Zariski open.
In this case, we have a more precise statement, given by the following easy
lemma:

LEMMA 3.1.1. — Let i : U ̂  X be a Zariski open set in a quasi-
separated rigid space X over k. Let k' /k be a complete extension field, let
i1 : U' —> X' be the base change of L, and let Z c-^ X be a closed immersion
whose underlying space in X is the complement of U. The analytic set
Z/ = Z x^k' in X' is the complement ofL'(U') and i' is an open immersion.
In particular, i^U') is a Zariski open set in X ' .

Proof. — Keeping in mind how the base change functor is defined,
it is not difficult to reduce to the case where X = Sp(A) is affinoid, so
Z = Sp(A/J) for some ideal I in A. Choose generators /i , . . . , /n of J,
so by the Maximum Modulus Theorem, U has an admissible covering by
Laurent domains of the form Ue = Sp{A(e/fi)) = [x C X \ \fi(x)\ ^ e}
for e ^ \kx\ (i.e. e = |c| for some c € kx). By the construction of the
base change functor, U1 has an admissible covering by the open affinoids
U^ = Sp(A/(^/^)), with f[ = fi§l € A' = A^kk1. By restriction, the
map U/ —^ X' induces a map U^ —> X' which corresponds exactly to the
canonical map A' —» A ' { e / f[), so ^ ( U ' ) is exactly the complement of the
analytic set in X' cut out by the f^s. But this analytic set is exactly the
one corresponding to Z'. Moreover, the affinoid opens i'{U1^) in X' clearly
form an admissible covering of i ' ( U ' ) = X' — Z ' , so V —> ^ ( U ' ) is an
isomorphism. D

Because of the technical problem that we do not know if the base
change functor for (quasi-) separated rigid spaces takes open immersions to
open immersions, we are forced to impose quasi-separatedness conditions
whenever we discuss base change questions (unless [k1 : k] is finite, but
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this is not the case which interests us). However, all proofs in §3.2-§3.4
are written so that the only role of the quasi-separatedness hypothesis is
in the definition of the functor (•) x^ k ' . If the above technical question
about open immersions can be resolved in the affirmative, then everything
we say about base change in § 3.2-§ 3.4 will carry over verbatim without
any quasi-separatedness conditions.

3.2. Geometric connectivity.

We begin by studying connected components, as these are somewhat
simpler than irreducible components (and constitute a necessary prereq-
uisite, due to how irreducible components are defined). The following is
analogous to a special case of [EGA], IVs, 4.5.13.

THEOREM 3.2.1. — Let X be a quasi-separated connected rigid
space over k. Assume that X has a k-rational point. For any extension
k ' / k , X' = X X fc k' is connected.

Proof. — As we saw near the end of the proof of Theorem 2.3.1,
a quasi-separated rigid space is connected if it is so after an extension of
the base field. In particular, to prove the theorem for some A;', it suffices
to check it after replacing A/ by any desired extension. We first treat the
case where k ' / k is a finite extension, so we may consider just the two cases
when the finite extension k ' / k is Galois and when it is purely inseparable.
The purely inseparable case follows from the more general fact that if k ' / k
is a finite purely inseparable extension, taking images and preimages under
the natural finite bijective map TT : X' = X x^ k ' —>• X sets up a bijection
between admissible opens (resp. admissible covers) on X and admissible
opens (resp. admissible covers) on Xf (so TT is a "homeomorphism" of
Grothendieck topologies). This assertion can be checked in case X = Sp(A)
is affinoid, and it is enough to check that if U ' is an affinoid open in
X' = Sp(A 0/(; A;'), then U ' = U Xk k ' for a quasi-compact admissible open
U in X (necessarily unique). We may assume k has positive characteristic
p. By the Gerritzen-Grauert Theorem [BGR], 7.3.5, U ' is a finite union of
rational subdomains, so since (A 0/c k'Y C A for some n, it is easy to
define a finite union U of rational subdomains in X (necessarily a quasi-
compact admissible open in X [BGR], 9.1.4/4) such that U ' = U x^ k ' as
opens in X ' . In fact, extra work shows that U is affinoid since U ' is, but
we don't give the proof since we don't need this.
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Now suppose k' / k is finite Galois with Galois group G, so X' —> X
is Galois with Galois group G. By Lemma 2.3.2, G acts transitively on
the connected components of Xf'. Since the fiber of X' —> X over a k-
rational point of X consists of a single point on X ' , Xf must have only one
connected component. This proves the theorem for finite extensions of k.
Thus, it is enough to prove the theorem after replacing k by any desired
finite extension.

There is an admissible cover of X by connected affinoids Ui = Sp(A^),
and since X is connected there is a finite chain of these "linking up" any
Ui and Uf. Some U^ has a ^-rational point, so joining this up to any other
Ui we easily reduce to the case where X is quasi-compact. Let {Ui} be an
admissible covering of X by finitely affinoids. We need the following lemma.

LEMMA 3.2.2. — Let A be a non-zero k-affinoid. There exists a
finite extension k' /k such that the connected components of Sp(A 0^ k')
have k'-rational points.

Proof. — Let B = A^kk. Since B is noetherian and the natural
map A 0^ k1 —> B is injective for any finite k' / k inside of A;, the number of
idempotents of Ac^kk' is bounded by the number of idempotents of B (more
geometrically, Spec(B) —>• Spec(A 0^ k ' ) is surjective, by Lemma 1.1.5).
Thus, we can find a "sufficiently large" kf of finite degree over k such that
the connected components ofSp(A0fcA/) remain connected after any further
finite base change over k ' ' . Enlarging k ' a little more, we may assume that
all connected components of Sp(A 0^; k ' ) have rational points. D

By Lemma 3.2.2, we can choose a finite extension k ' / k so that each
connected component of each Ui x/e k ' has a ^'-rational point. Replacing X
by X x/c A/ and k by A/, we may assume that the connected non-empty X
has an admissible covering by finitely many connected affinoids {^}, each
of which has a ^-rational point. Since X is connected and the covering
{Ui} is admissible, each U^ can be "linked up" to each U^ by some chain
of Uj^s, so it suffices to treat the Ui's separately. Thus, we reduce to the
case where X is affinoid, say X = Sp(A), so X remains connected after
any finite extension of k. The rest of this proof follows a suggestion by
Bosch, and it is simpler and more geometric than my original proof (which
used Noether normalization and an algebraic analysis of Tate algebras and
power series rings).

Let K = k. If we can prove that X = K Xjc X is connected,
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then we may replace k by the algebraically closed field K. Suppose that
e e A = K^^A is an idempotent on X. Replacing k by a suitably
large finite extension inside of k and using the definition of the completed
tensor product, we can suppose that there is an element eo € A with
|l0eo ~ G\~^ = £ < 1. Here, | • \-^ is some norm defining the X-Banach
topology on A. Since A might be non-reduced even if A is reduced, we
generally cannot use the sup-norm to define the topology on A. However,
by [BGR], 6.2.3/3, we at least have \eo(x) -e(x)\ <, e < 1 for all x e X, and
of course for each x G X, either e{x) = 0 or e(x) = 1. Consider the disjoint
open affinoids U = {x € X \ \eo(x)\ = 1} and V = {x € X \ \eo(x)\ < e} in
X. The open affinoids U x^; K and V Xk K cover X, so by Lemma 1.1.5 we
see that U and V set-theoretically cover X. Thus, {U, V} is an admissible
covering of X by disjoint (affinoid) opens, so by the connectedness of X we
see that X = U or X = V. By base change to K, \eo(x)\ = 1 for all x € X
or |eo(^)| < ^ f01' ^l x e X. Since |eo(^) — ^(^)| < £ < 1 for all x C X, it
follows that |e(^)| = 1 for all x e X or \e(x)\ ^ e < 1 for all x € X. But
e is an idempotent in A, so e = 0 or e = 1, as desired. This completes the
reduction to the case where k is algebraically closed.

For any affinoid algebra B over a complete field K^ let B denote
the "reduction" of B, which is defined to be the quotient of the subring
of power-bounded elements in B by the ideal of topologically nilpotent
elements. B is an algebra over the residue field K of the valuation
ring of X, and there will be no risk of confusion with our notation
for normalization. The JC-algebra B is reduced and is functorial in B
in an obvious manner. It is less obvious, but true, that B is a finite
type algebra over K [BGR], 6.3.4/3 (and in particular, B is a Jacobson
ring), so scheme-theoretic results can often be used to study B. This
concept of "reduction" is carefully studied in [BGR], §6.3-§6.4. Questions
about affinoid spaces can sometimes be reduced to questions about the
"reduction". For example, we claim that Spec(B) is connected if and only
if Sp{B) is connected. There is a canonical surjective "reduction" map of
sets TT : Sp{B) = MaxSpec(J3) —> MaxSpec(B) with the property that for
any power-bounded element b C B (e.g., an idempotent) with image b € B,
the preimage of {x € MaxSpec(£?) | b(x) ^ 0} under TT is the Laurent
domain Sp(B{l/b)) [BGR], 7.1.5/2,4. Also, we note that since B is of finite
type over field,

{x e MaxSpec(B) | b{x) ̂  0} = MaxSpec(B[l/^])

and this is empty if and only if b is nilpotent. Thus, if Spec(B) is
disconnected and e € B is a non-trivial idempotent, then taking b == e
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and b = 1 — e gives a set-theoretic covering of Sp(I?) by disjoint non-
empty Laurent domains. This covering is necessarily admissible, so Sp(-B)
is disconnected. Conversely, if Sp(B) is disconnected and e € B is a non-
trivial idempotent, then the image e of e in B is an idempotent which is
obviously non-trivial, so Spec(B) is disconnected.

Back in our above setting with an algebraically closed k and a con-
nected affinoid Sp(A), let A! = A^kk'. The scheme Spec(A) is connected
and we want to prove that Spec (A') is connected. The residue field k is
algebraically closed since k is algebraically closed [BGR], 3.4.1/5, so by
[EGA], IV2, 4.4.4, the scheme Spec(A) x . A / is connected. Thus, it suffices
to show that the canonical map of A/-algebras

A^^'-^A'

is an isomorphism. This map is visibly an isomorphism when A is a Tate
algebra over k. In general, A is reduced and k is perfect, so the ring A(^,k'
is always reduced [EGA], IVa, 4.6.1. Therefore, the general case can be
deduced from the case of Tate algebras by means of a well-chosen surjection
(called a distinguished epimorphism in [BGR], 6.4.3/2) from a Tate algebra
onto A. The details are given in [B], §6, Satz 4, and the basic technical facts
needed in this argument are also explained in [BGR], 2.7.3/2, 6.4.3. D

As in the case of schemes over a field, we say that a quasi-separated
rigid space X over k is geometrically connected (relative to A:, or over k) if
X X f e A/ is connected for all finite extensions k ' / k . By Theorem 3.2.1 and
its proof, it suffices to consider just finite separable extensions A;' / k in this
definition, and for any geometrically connected and quasi-separated X over
k^ X X fc A;' is connected for arbitrary k1 / k . We summarize the basic facts
concerning geometric connectedness, analogous to what one knows in the
case of schemes over a field:

COROLLARY 3.2.3. — For a connected quasi-separated X and
x e X , with k' the separable closure of k in k(x), there is a finite
separable extension k" /k such that the connected components of X x^ k"
are geometrically connected over k" and there are no more than [k' : k]
such components.

Proof. — Using Theorem 3.2.1, one can modify the proofs of [EGA],
IVa, 4.5.14—4.5.17 to apply in the rigid setting. D
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3.3. Geometric reducedness and geometric normality.

Our study of "geometric irreducible components" will require some
preliminary facts about "geometric reducedness" and "geometric normal-
ity" . We say a quasi-separated rigid space X over k is geometrically reduced
(relative to k, or over k) if X x^ k' is reduced for all k 1 / k and X is geomet-
rically normal over k if X x^ k ' is normal for all A/ / k . In this section, when
we write kp for a field k, we mean the field of j^th roots of elements of
k in case k has characteristic p > 0, and we mean k if the characteristic is
0. Note that kp is complete, though it might not have finite degree over
k. After the results in this section were worked out, I found that [BKKN]
considers questions along the lines of Lemma 3.3.1 below, but in a slightly
less general context.

The perfect closure kp of our ground field k is typically not complete
if k has positive characteristic, so it is better to consider its completion
kp. Note that this is again perfect. Indeed, we may assume k has positive
characteristic p and then if a G kp is the limit of a sequence 0,1 C kp^ the
sequence of pth roots a^ C kp is Cauchy, with limit a pth root of a (on
a related note, if k s / k is a separable closure of a complete field k, then by
[BGR], 3.4.2/5 the completion ks is separably closed).

It is instructive to begin with two examples. Let A; be a complete
field of characteristic p > 0 such that the complete field kp is of infinite
degree over k (e.g., k = F((t))^ where F is a field of characteristic p for which
[F : FP] is infinite). Let ai, as, . . . be a countable sequence of elements in k
whose pth roots generate an extension of k of infinite degree, and such that
a,i -^ 0. Let / = ̂  aiX'P 6 Ti, and A = T^[Y}/(YP - f). This is an affinoid
algebra over k and for any extension k ' / k of finite degree, A^A/ is reduced.
However, A^^k? is non-reduced. For p ^ 2, the two-dimensional affinoid
B == k <^x^y,t^> / { t 2 — (yP — ^diX^)) remains normal after any finite
extension of scalars and B^k^P is reduced (so by Lemma 3.3.1 below, B
is even geometrically reduced over A:), but B<^kkp is not normal. Indeed,
over kp we can define y ' = y — ̂  a^ x1 and have

BSkk^ ^kP~1 <^,^,,/>/(t2-^),

a domain which is not normal (look at t / y ' ) . Thus, B is not geometrically
normal over k. Unlike the case of "geometric" properties such as geometric
connectedness or geometric regularity (i.e. smoothness), we cannot expect
to determine geometric reducedness for rigid spaces by looking only at base
change by finite extensions of A;, and likewise for geometric normality (even
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if we assume geometric reducedness). The above examples are as bad as
things can get, as Lemma 3.3.1 and Theorem 3.3.6 make clear.

LEMMA 3.3.1. — Let X be a quasi-separated rigid space over k.

1. Assume that X Xj^ kp is reduced. Then X x^ k ' is reduced for
any k1 / k . In particular, if k is perfect then any reduced rigid space over k
is geometrically reduced.

2. If X is quasi-compact, then (X x/g kp n)red is geometrically
reduced over k? n for large n.

Proof. — We first consider the case where k is perfect, and we want
to show that X Xk k ' is reduced for any k ' / k . It is not difficult to see
that we may study the normalization of X instead of X, so without loss
of generality, X is normal, connected, and even affinoid, say X = Sp(A)
for a (normal) domain A. Let U be the regular locus of X, which coincides
with the ^-smooth locus since k is perfect [BL3], Lemma 2.8(b) (the point
is that if X is a rigid space and x € X is a regular point with the
finite extension k { x ) / k separable, then Ox,x is k-isomorphic to a formal
power series ring over k{x) in d = dim0x,x = dimC^a; variables, so
^x/k x ^>0x x ^x,x ^ ^1—- is a finite free Oj^-module with rank d,

/ ' ' ' ^X,x/k

which implies that ^/^ ^ is a finite free 0^-module with rank d). Thus,
we have an open immersion i: U ^-> X with the complement Z of U in X
an analytic set given by a proper ideal I in A. Let g\,..., gn be generators
of I . By Lemma 3.1.1, for any k ' / k and A' == A^/pA/, the base change
i' : U ' ^-> X' == Sp(A7) is again an open immersion with U ' reduced and
the complement of U ' is defined by the g[ = ̂ 01 € A'. If we can show that
the map A' = r(X', O x ' ) —^ ^(V', Ou') is injective, then A' is reduced, as
desired.

Suppose that // € A' vanishes on U ' . We want to show that ff=0.
For every maximal ideal m7 of A' which does not contain some g[ (i.e.
m' G Sp(A') lies in [/'), /' vanishes in A^,. Any maximal ideal m7 of A'
containing the annihilator of // must then contain some g^ or in other
words must contain g ' = g[ ' ' • 9n' Since A' is a Jacobson ring [BGR],
6.1.1/3, it follows that the annihilator of /' contains a power of </. To
deduce that // = 0, we just need to check that g ' is not a zero divisor in
A'. But g = g\ • • • gn G A is non-zero and A is a domain, so g is not a zero
divisor in A. The flatness of A —> A' (see Lemma 1.1.5) then implies that
g ' G A' is not a zero divisor, as desired. This settles the case of a perfect
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base field k.

Now we may assume k is not perfect, or more generally that k
has positive characteristic p. Without loss of generality, X = Sp(A) is
affinoid. For a general affinoid A over k with positive characteristic p,
let An = A^k^ n and kn = A^ n. The nilradical Nn of An generates
an ideal in A0kkp. This latter ring is noetherian, so Nn and Nn-^-i
generate the same ideal in A^^kp for large n. Since A0kkp is faithfully
flat over An for all n (by Lemma 1.1.5), Nn generates the nilradical of
An+i for large n. Using [BGR], 6.1.1/12, we conclude that for large n,
(A^red^fen^n-i-i ^ (An4-i)red? which is reduced. It remains to prove the
first part of the lemma.

Assume that Aci^A^ is reduced and fix an extension A/ / k . Define
A' = Aci^A;'. To show that A' is reduced, it suffices to show that if a' c A'
with a'^ = 0, then a' = 0. Choose a (countable) topological basis {ei} of
A over A; [BGR], 2.8.2/2, so A ^ (Bfce^ as A;-Banach spaces and therefore
(by [BGR], 2.1.7/8) A' c^ (BA/e^ as A/-Banach spaces, where we identify
Ci € A with e^0l € A'. Writing a' = ̂ a^, with a^ € A:' tending to 0, we
want to show that if ̂  a^e^ = 0 in A! then a\ = 0 for all z. It suffices to
show that the canonical continuous map <p : (Bke^ —> A is injective with a
closed image (an assertion that has nothing to do with any A//A;), for then
there is a continuous section to (p [BGR], 2.7.1/4 and so the natural map
y/ : ©A/e|3 —> A' is injective. Since i p ' sends (Ba^e^ to ̂ a^e^ € A', when
this sum vanishes we get that all a'^ = 0, so all a\ =0, as desired.

To see that (p is injective, choose a^ € k with ai —> 0 and ̂  a^ = 0.
We want G^ = 0 for all z. Clearly ̂  a^^ € A^A;^ has pth power equal
to 0. Since A0kk1^ is assumed to be reduced, ^ ^ ^ z = 0 in A0kk1^.
This implies that all a1^ = 0, so all ai = 0. Thus, y? is injective. To see that
the image of (p is closed, consider A' = A^^A;1^. The natural map A—> A!
is a topological embedding [BGR], 6.1.1/9 and this map sends the image of
ip onto the subring (A')^ ofpth powers in A'. It therefore suffices to show
more generally that in characteristic p > 0, the subring of pth powers in
a reduced affinoid B (such as A') is a closed subset. If {bi} is a sequence
in B with b^ —> 6, we just need to show that the sequence {bi} converges.
The Banach topology on a reduced affinoid can be defined by the power-
multiplicative sup-norm. Since {b^} is Cauchy, the power-multiplicative
property of the sup-norm implies that {bi} is Cauchy in characteristic p
and therefore {bi} is convergent. D

As we noted in the proof of Lemma 3.3.1 above, over a perfect (e.g.,
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algebraically closed) base field, the non-smooth locus on a rigid space is the
same as the non-regular locus, and on a reduced space this is a nowhere
dense analytic set (thanks to the excellence of affinoids). On the other
hand, the first part of Lemma 1.1.5 and the criterion for smoothness (over
any base field) in term of the flatness and rank of the coherent sheaf ^/^
show that the formation of the (Zariski open) smooth locus commutes
with change of the base field. Combining these facts with the last part of
Lemma 1.1.5, we see that the smooth locus on a geometrically reduced
(quasi-separated) rigid space over any complete field is the complement of
a nowhere dense analytic set.

The "topological invariance" of base change by purely inseparable
extension^ of the base field in the scheme setting suggests that base change
by k —^ kp should in some sense have no topological effect. Before proving
a result in this direction, we establish two preliminary lemmas.

LEMMA 3.3.2. — Let k be a complete field, F / k a finite separable
extension, k p / k a perfect closure. Give the algebraic extension fields kp and
F 0k kp their unique absolute values extending the one on k, and give the
finite reduced kp-algebra F 0k kp its unique absolute value extending the
one on kp ([BGR], 3.2.2/3). Then the natural injection of kp-algebras

i : F 0k kp ̂  F 0k kp

is an isometry with dense image, so it identifies the kp-algebra F0k kp with
the completion of the field F 0k kp. In particular, F 0k kp is a field.

Proof. — Since F 0k kp has a unique absolute value extending the
one on k, the injection i must be an isometry. By the "equivalence of norms"
on finite-dimensional vector spaces over complete fields ([BGR], 2.3.3/5),
the topology we are considering on F 0k kp coincides with the topology
defined by using the "sup-norm" with respect to the kp-basis {ej 01},
where {e^..., en} is a A;-basis of F. Thus, i has dense image since kp is
dense in kp. Q

LEMMA 3.3.3. — Let X be a non-empty connected rigid space over
k which admits an admissible covering {Ui} by admissible opens Ui which
are irreducible. Then X is irreducible.

Proof. — We may assume X is reduced. Let XQ be an irreducible
component of X, and let Z be the (perhaps empty) union of all other
irreducible components of X. By Theorem 2.2.4, Z is an analytic set not
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containing XQ. Thus, Z H XQ is a proper analytic set in Xo, so it does
not contain any non-empty admissible open in XQ (by Lemma 2.2.3). If
z G Z D XQ, then z lies in at least two distinct irreducible components
Xi and XQ of X. One of the admissible open Ui's contains z. Then
Corollary 2.2.9 implies that Ui is not irreducible, an absurdity. We conclude
that Z D XQ is empty, so Z and XQ are disjoint analytic sets which set-
theoretically cover X. Each of Z and XQ must therefore be a Zariski-open
in X, so {Z, Xo} is an admissible cover of X by disjoint admissible opens.
Since X is connected and XQ is non-empty, we conclude that X = XQ is
irreducible. D

THEOREM 3.3.4. — Let {Xi} be the set of reduced irreducible
components of a quasi-separated rigid space X over a field k with positive
characteristic p. Then {Xi x^ kp} is the set of irreducible components of
X x k kp. Also, if X is connected then X x ^ kp is connected.

Proof. — We begin by proving the last part. By Corollary 3.2.3,
there is a finite Galois extension A/ / k such that the connected components
X[ of X' = X X fc A/ are geometrically connected over A/. Since X is
connected, the Galois group G = GQ\.(k' / k ) must act transitively on these
components (by Lemma 2.3.2). Similarly, Y = X x^ ( k p ^ k k ' ) is Galois over
X Xk kp with Galois group G and G acts transitively on those connected
components of Y lying over a common connected component ofX x/g kp.
But the finite ^'-algebra k ' ^ k k p is a field by Lemma 3.3.2, so the connected
components of Y are the X[ x^ (k' 0^ kp) ̂  X[ x/c kp. The action of G is
clearly transitive on these (after one checks a couple of compatibilities), so
X x/c kp is connected.

For the first part of the theorem, it is easy to see that the analytic sets
Xi x/c kp in X Xk kp satisfy all of the conditions in Corollary 2.2.8 except
perhaps for their irreducibility. Thus, it is enough to consider the case
where X is irreducible, and even normal, so X has an admissible covering by
connected normal affinoids. By Lemma 3.3.3 and the connectedness part we
have already shown, we may assume X == Sp(A) is affinoid and irreducible
(even normal and connected). The map A —> A^k^ is injective, integral,
and radicial (every element of the larger ring has its j^tli power inside of
A), so Spec(A®fcA>p n) —> Spec(A) is a homeomorphism. It follows that
X Xk k13 is irreducible for all n. We may therefore replace k by any ^p

and X by the normalization of X Xj^ k1^ , so by Theorem 3.3.6 below, we
can assume that X = Sp(A) is an irreducible, geometrically normal affinoid
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over k. Thus, X x^ kp is normal and is also connected (by the last part of
the theorem, which we have already proven). This implies that X x^ kp is
irreducible. D

Recall that if R —> S is a faithfully flat map between noetherian
rings and S is normal, then R is normal ([Mat2], Cor to 23.9). Thus, by
Lemma 1.1.5, if X is a quasi-separated rigid space over a field k and k' / k
is an extension such that X Xk k' is normal, then X had to be normal
in the first place. In order to go in the reverse direction (i.e. establish
geometric normality), it turns out that things are very similar to geometric
reducedness: we only have to verify normality after base change to k1^.
Before we prove this, we need the following lemma which is motivated by
the condition R\ in Serre's criterion for normality.

LEMMA 3.3.5. — Let X be a quasi-separated rigid space and
assume that X x^ A;1/23 is normal. Then the smooth locus in X has
complementary codimension at least 2 everywhere.

Proof. — Without loss of generality, X = Sp(A) is affinoid and non-
empty. By our hypotheses, we know that X is normal and geometrically
reduced, so A is regular in codimension 1 and the smooth locus of X has
nowhere dense complement. Taking X to be connected without loss of
generality, so A is a normal domain with some dimension d >_ 0, we know
that the finite A-module ̂ \/^ °f "continuous differentials" is free with rank
d precisely over the Zariski open, non-empty ^-smooth locus. We want to
show that the stalk of ^/^ at each height 1 prime p of Spec(A) is free
over Ap, necessarily with rank d (by comparison with the generic rank), for
then the Zariski-closed non-smooth locus would have to have codimension
at least 2 everywhere, as desired. In particular, we may assume d >_ 1.

If k has characteristic 0, or more generally k is perfect, then the k-
smooth locus on Sp(A) coincides with the regular locus, and this already
has codimension at least 2 everywhere by the normality of A. Thus, we now
assume that k has positive characteristic p. Recall that the finite A-module
^\t^ ana tne ^-linear derivation

dA/fc : A -. ̂ /^

is universal for fc-linear derivations from A to a finite A-module, and that k-
linear derivations from A to a finite A-module are automatically continuous
[BKKN], Satz 2.1.5. The construction of ^\/^ involves completed tensor
products. Our first step is to identify ^t\^ with another module of



IRREDUCIBLE COMPONENTS OF RIGID SPACES 515

differentials whose construction involves no topological conditions. Let
A' = A^k^^F. Since A' is reduced by hypothesis, the pth power map
sets up an isomorphism between A' and its subring (A')^ ofpth powers. By
the proof of [BGR], 6.1.1/9, the map A —> A' is a topological embedding
with a closed image (here we use that k is closed in A:7), so we may conclude
from a continuity argument that the domain A contains (A')^ as a closed
subring (see the end of the proof of Lemma 3.3.1 for why (A'Y is closed in
A'). The canonical map of fc-algebras k^kpAP —> {A'Y is therefore easily
seen to be surjective, so (by continuity!) any fc-linear derivation from A
to a finite A-module must kill (A')^. Also, since (A')^ C A is a closed
A-subalgebra of A which contains A^, it follows from [BGR], 6.3.3/2 that
{A'Y is fc-affinoid and the inclusion of fc-algebras (A')73 ^-> A is a finite
map.

At this point, we can conclude that (A')33 is a fc-affinoid subalgebra
of A over which A is finite and on which any fc-linear derivation from A to
a finite A-module must vanish. Thus, we obtain a canonical identification
of finite A-modules

^A/k = ̂ A/(AQP5

where the right side is the purely algebraic A-module of Kahler differentials
for the finite ring extension (A'Y ^-> A. It remains to prove that the stalk
of the finite A-module ^-\i(^\p is free at each height 1 prime of A.

Note that (A')^ is normal^ because of the abstract ring isomorphism
A' c± {A'Y (here is where we use the hypothesis that A' is normal). Since
AP C (A')33, the finite injective map (A'^F ^-> A of normal domains is
radfciaJ, so Spec(A/) —> Spec^A')^ is a homeomorphism. Thus, we get a
bijection between height 1 primes of {A'Y and A, and localizing the map
(A')33 —> A at a height 1 prime of (A'Y automatically causes A to be
replaced by its localization at the corresponding height 1 prime of A. We
are now reduced to a purely algebraic assertion: if R C S is a finite injection
of discrete valuation rings with characteristic p > 0 and Sp C R^ then the
finite 5'-module ̂ g/^ is free over S. We may base change throughout by the
completion of R, so we can assume that R and S are complete. In particular,
R is Japanese. Since Q{S)P C Q{R), we have [Q{S) : Q(R)} = p^ for some
m, and we may assume m >_ 1. By field theory, Q(S) = Q(J?)(ai,. . . , dm)
with a\ 6 Q(R) - Q(R)P and the natural map

Q{R)(a^) 0Q(^ ... 0^) Q(R)(am) -^ Q(S)
is an isomorphism. In other words, we have a Q(-R)-algebra isomorphism

Q(5)^Q(J?)[Xi,...,X^]/(Xf-<),
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so Q{S) 05- ̂ /^ = ^of^)/ofj?) ls a Q(S)-yector space with dimension m
(and basis dXi, . . . , dXm)' By the structure theorem for finite modules over
a discrete valuation ring, if we can show that ^/j^ has m generators over
S, then we obtain the desired freeness of ^/^ over 6'.

Granting the case m = 1 for a moment, we argue by induction on
m, so assume m > 1. Choose an intermediate field K\ C Q(S) with
degree p over Q{R) and let J?i be the integral closure of R in J^i. By
the Japaneseness of the complete discrete valuation ring jR, the ^-algebra
J?i is finite and is a discrete valuation ring. By the inductive hypothesis
and the case m = 1, f^ ,^ is free over R\ with rank 1 and ^/o is free
over 5' with rank m — 1. The "first fundamental exact sequence" ([Mat2],
25.1) is a right exact sequence of 5-modules

^R^IR ̂ Ri s -> ^S/R -^ ^S/Ri -^ °
and from this it is obvious that ^/j^ has m generators as an 5'-module.

There remains the case m = 1, so Q(S) == Q^R^X]/^? — a) where
a 6 Q(R) is not a pth power. By suitably rescaling a, we may assume
that a € R. We want to put a in a good form for computing the integral
closure S of R in Q{R)[X}/{XP — a). We claim that a can be chosen to
be either a uniformizer or a unit whose image in the residue field of R is
not a pth power. Suppose we have such an a. It is easy to check that the
1-dimensional local noetherian ring R[X]/(XP —a) has a principal maximal
ideal and therefore is regular (or equivalently, is a discrete valuation ring),
so S = R[X}/(XP - a). In fact, the quotient of R[X}/(XP - a) by (X) is a
field if a € -R is a uniformizer and the quotient by the (principal) maximal
ideal of R is a field if a 6 R is a unit whose image in the residue field of R
is not a pth power. When S = R[X}/{XP — a), one then checks by direct
calculation that ^/j^ is free over S on the basis dX. Now we show that
a can be chosen in the desired form. Since R is complete, by the Cohen
structure theorem ([Mat2], 29.7) we can write R == K[t] for some field K
with characteristic p. Thus, a = ̂  a^t1 for ai € X. Since a € -R is not a pth
power but we can add any pth power in R to a, without loss of generality
any non-zero coefficient dip is not a pth power in K. We argue by induction
on the least io for which a^ 7^ 0. If ZQ = 0, then the image a^ of a in the
residue field of R is not a pth power, so we are done. If io > 0 and %o ^s
divisible by p, then replace a by a|ip € R and induct. If io > 0 and io is not
divisible by p, then choose n,77/ G Z for which nio + n'p = 1. The element
b = a^f^ p G Q(R) has order 1, so b is a uniformizer of R and the order
p subgroups in (^(^^/(^(-R)^ generated by a and b are the same. We
may replace a with the uniformizer b. D
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THEOREM 3.3.6. — Let X be a quasi-separated rigid space over
k . I f X is quasi-compact, then for sufficiently large n, the normalization of
X Xk kP n remains normal after base change to k^ for m > n. Without
any quasi-compactness assumption, ifXxj, k1^ is normal, then X Xj, k' is
normal for any complete extension k' / k (i.e. X is geometrically normal over
k). In particular, i f X x k L is normal for some perfect complete extension
L / k , then X is geometrically normal over k.

Proof. — In order to prove the first part of the theorem, it suffices
to consider only "sufficiently large" extensions of k, and we may replace
k by any kP n and X by the normalization of X x^ kp~n. In particular,
by Lemma 3.3.1, we may assume that X is geometrically reduced. We now
find a large n so that that the normalization of X x^ k^" remains normal
after any further extension of the base field to some A^"771 for m>_n. The
idea is the same as that in the proof of Lemma 3.2.2: use the noetherian
property of affinoids over a very large extension field. We may assume that
X = Sp(A). Let B == A^kkp, a reduced excellent noetherian ring. Let
B be the normalization of B, so B is a finite ^-module which contains
B as a subring. The ring An = A^kk^ is a reduced Japanese ring, so
its normalization An can be viewed as a finite extension ring of An. We
will embed An^^p-nkp into B as an extension ring of B and then use
the noetherian property of the finite B-module B to see that formation of
An is compatible with extension of scalars from kp n to k^^ once n is
sufficiently large.

Since An is reduced, there exists an element / e An which is not a
zero divisor such that / • An C An, so An0^p-n kp can be viewed as a .finite
extension ring of B such that multiplication by / takes An^k^p mto B.
By Lemma 1.1.5, / C B is not a zero divisor in A^0^-nA;p, so An^^p-rzkp
is a subring of B and these form an increasing chain B-submodules of the
finite B-module B as n grows. Such a rising chain must terminate, so for
some n and all m > n, the finite inclusion maps of kp m -affinoids

An^p-n kP m ̂  Am

must become isomorphisms after applying 0^,-m kp. Hence, for such a large
n, the normalization of An == A^A^"71 remains normal after any further
extension to k'P m for m > n.

Now we assume that X is a quasi-separated rigid space over k
such that X Xk k1^ is normal and we show that X Xk k ' is normal for
any complete extension k 1 / k . Let U be the A;-smooth locus on X, so by
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Lemma 3.3.5, the complement of U is an analytic set with codimension
at least 2 everywhere. Let k ' / k be a complete extension field, and we will
show that X' = X Xjc k ' is normal.

By the last part of Lemma 1.1.5, the smooth locus U ' = U x ^ k ' of the
reduced space X' has complementary codimension at least 2 everywhere.
Without loss of generality, X = Sp(A) is affinoid, so X' = Sp(A') for
A' = A^k^' a reduced affinoid which is regular in codimension ^ 1. By
Serre's "7?i + S^' criterion for normality ([Mat2], 23.8), we just have to
prove that A' satisfies condition 52. We know that A satisfies condition 62
(since A is normal) and A —> A' is flat (by Lemma 1.1.5), so by [Mat2], 23.9
it is enough to prove that the fibers of Spec(A/) —> Spec(A) satisfy 52. More
generally, for any affinoid algebra B over A;, we define B' = B^^k' and we
claim that the fibers of the faithfully flat map Spec^B') —> Spec{B) are
Cohen-Macaulay (i.e. satisfy Si for all i >_ 0). The reason to expect this is
that the analogue for locally finite type schemes over a field is true ([EGA],
IV2, 6.7.1). To prove this result in the affinoid setting, choose p € Spec(-B)
whose fiber we want to prove is Cohen-Macaulay.

Replacing B by B/p and B' by B f / p B f = (B/p)^7 [BGR], 6.1.1/12,
we can assume that B is a domain and p == (0). Let d be the dimension
of B. By Noetherian normalization, there is a finite injection of affinoids
Td(k) ^—> B, inducing a finite extension Q(Td(k)) ^-» Q(B) of fraction
fields. Since Spec(B') = Spec(B) Xspec(Td(fc)) Spec(^ri(A;/)) by Lemma 1.1.5,
the generic fiber of Spec(B') —> Spec(B) is obtained as a base change
by Spec(Q(B)) -^ Spec(Q(Td(k))) on the generic fiber of Spec^A;')) ->
Spec(Td(k)). This latter generic fiber is just a localization of the regular
ring Td(k')^ so it is regular and therefore Cohen-Macaulay. For any field
K, any finite extension field E / K ^ and any noetherian J^-algebra R^ the
finite map Spec(£' 0j< R) —^ Spec{R) is faithfully flat with 0-dimensional
fibers (which are therefore Cohen-Macaulay), so R is Cohen-Macaulay if
and only if E 0j< R is Cohen-Macaulay ([Mat2], Cor to 23.3). Applying
this with the finite field extension Q{B)/Q(Td(k)), we are done. D

We remark that our method carries over to the scheme setting to show
that for a locally finite type scheme X over a field k^ X is geometrically
normal over k if and only if X x^; k ' is normal for all finite extensions
k1 / k for which k^ C k (here, p is the so-called characteristic exponent of
fc, equal to 1 if k has characteristic 0 and equal to the characteristic of k
otherwise). Surprisingly, this result is not in [EGA].



IRREDUCIBLE COMPONENTS OF RIGID SPACES 519

3.4. Geometric irreducibility.

We are now in position to answer the original question of how
irreducible components behave under change of the base field. A quasi-
separated rigid space Z over k is said to be geometrically irreducible
(relative to k^ or over k) if Z x/c k ' is irreducible for all extensions k ' / k .

LEMMA 3.4.1. — Let X be a rigid space over k with finitely many
irreducible components {Xi}. Let k' /k be a finite extension. Then the
Xi Xk k^s have finitely many irreducible components and these are the
irreducible components of X x/c k1'. When k1 /k is purely inseparable, the
Xi x k k' are irreducible.

Proof. — We can assume X is non-empty. It is enough to treat
separately the cases when the finite extension k ' / k is purely inseparable and
when it is separable. First consider the purely inseparable case, so without
loss of generality k has positive characteristic p. We claim that the analytic
sets Xi Xk kf are irreducible and are the irreducible components of X x^ k ' .
By Corollary 2.2.8 and the fact that Xi contains a non-empty admissible
open disjoint from all Xj -^ Xi, it suffices to consider an irreducible X and
to show that the non-empty space X x^ k ' is irreducible. Choose a non-
empty admissible open U ' in X x k k ' and a closed immersion Zf ̂  X x k k '
which set-theoretically contains U ' . By Lemma 2.2.3, it suffices to show
that Z9 must set-theoretically fill up X x/g k ' .

If we replace the coherent ideal sheaf of Z ' by its pnth power
for suitably large n (depending on k ' ) , we can find a closed immersion
Z ^-> X whose base change is Z 9 . Thus, the base change of the Zariski-
open complement of Z is the Zariski-open complement of Z ' . As was
noted in the beginning of the proof of Theorem 3.2.1, X x/g k ' —>• X is a
"homeomorphism" with respect to admissible opens and admissible covers,
so there is a non-empty admissible open U in X whose base change is U ' ' .
Since U ' is disjoint from the X' — Z ' , it follows U is disjoint from X—Z. The
irreducibility of X forces Z to fill up all of X, so the coherent ideal sheaf
of Z is locally nilpotent. Thus, the same holds for Z', so X' is irreducible.

Now assume that k 1 / k is a finite separable extension. Since k —>• k ' is
finite etale, the formation of the normalization of X commutes with base
change by k ' / k (by Theorem 1.2.2). Thus, we may assume that X is a
connected normal rigid space and need to check that X x/c fc' has only
finitely many connected components. This follows from Corollary 3.2.3. D
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THEOREM 3.4.2. — Let X be a quasi-separated rigid space over k.

1. IfX has finitely many irreducible components, then there exists
a finite separable extension k ' / k such that the finitely many irreducible
components of X X k k ' are geometrically irreducible over k1.

2. If {Xi} are the irreducible components of X and K/k is an
extension, then the irreducible components of the Xi x^K^s are irreducible
components of X Xk K and every irreducible component of X Xk K is
contained in a unique Xi x^ K, in which it is an irreducible component.

Proof. — We begin with the first part. Suppose we can construct a
finite extension E / k such that the irreducible components of X Xk E are
geometrically irreducible over E. By Lemma 3.4.1, it is easy to see that we
may take k1 to be the separable closure of k in E. Thus, we may now search
for k ' finite over k without requiring separability over k. In particular, we
may replace k by any finite extension (note that this does not affect the
hypothesis on X, by Lemma 3.4.1).

By Theorem 3.3.4, X x^kp has finitely many irreducible components.
Suppose we have established the first part of the theorem in the case
of a perfect ground field, so there exists a finite extension E / k p such
that the irreducible components of X Xk E c± ( X Xjc kp) x.- E arekp
geometrically irreducible over E. Since E has a primitive element over
kp, by an approximation argument [BGR], 3.4.2/4,5 we may assume (after
replacing A; by a finite purely inseparable extension) that there is a finite
separable extension k ' / k such that k ' 0k kp c± E. By Lemma 3.3.2, this
identifies E with the completion of the perfect closure of k ' . Replacing k
by k ' , we may assume that each irreducible component Xi of X has the
property that Xi Xk kp is geometrically irreducible over kp. If k ' / k is any
complete extension, then all

(Xi Xk k') x^ kp c± (Xi Xk kp) x^ kp

are irreducible. Thus, by Corollary 2.2.8 we are reduced to showing that if
Z is a rigid space over a complete field k ' and Z x^ kp is irreducible, then
Z is irreducible. This follows from Lemma 2.2.3 and Lemma 1.1.5.

Now we may assume that k is perfect. We may assume (by hypothesis
on X) that X is irreducible, and even connected and normal (so it is normal
after any extension ofscalars on fc, by Theorem 3.3.6). By Corollary 3.2.3,
we can replace A; by a finite extension and suppose that X is geometrically
connected. Thus, for any fc'/fc, X x ^ k ' is connected and normal, hence
irreducible.
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Finally, we prove the second part of the theorem. Let K / k be an
arbitrary complete extension, {Xi} the irreducible components of X. Since
{Xi x kK} is a locally finite set of distinct non-empty analytic sets in X x ̂ K
whose union is X x ^ K^ it is clear that any irreducible analytic set in X x h K
lies inside of one of the Xi x^ K ' s . Since the irreducible components in a
non-empty rigid space are the maximal irreducible analytic sets, all that is
left to show is that an irreducible component of X x ^ K cannot lie inside of
X, XkK and Xj Xj,K for i ̂  j. Since {X, XkK)n{Xj XkK) = (XiHXj) x^K
is nowhere dense in X x^ K (by Lemma 1.1.5, because Xi D Xj is nowhere
dense in X), yet irreducible components of non-empty rigid spaces are never
nowhere dense, we are done. D

4. Applications to Fredholm series.

We want to apply the theory of global irreducible decomposition
to deduce results of Coleman-Mazur on Fredholm series ([CM], 1.3).
We work over general complete ground fields and give more concep-
tual/geometric proofs. Also, by abuse of notation we let A^ == A^1 denote
Spec^Ti,...,^])^.

4.1. Basic definitions.

Let X be a rigid space over k. We call F(X x A^O^xA^ tne Tm^
of entire functions in m variables over X. Using pullback along the zero
section of X x A171 == X Xk A^ —^ X, any such / induces an element
denoted /(O) e F(X,(9x). Moreover, /(O) C Y{X,OxY if and only if
the zero locus of / on X Xjc A.^ does not meet the zero section, in which
case we can scale / by a unit so that /(O) = 1. A Fredholm series over
X in m variables is an entire function / over X m m variables for which
/(O) = 1. When m is understood from context, we omit mention of it. For
any / 6 F(X x Arn,OxxAm)^ we denote by Z(/) ̂  X x A771 the closed
immersion cut out by the coherent ideal sheaf on X x A771 generated by /.

For a A:-affinoid A, we have an isomorphism
A^(A;<Ti,...,r^>) ^A<Ti,...,r^>

([BGR], 6.1.1/7), so there is an injection

A^k{k <Ti,..., T^>) -. A[ri,..., Tm}
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functorial in A. Thus, there is an injection of Ojc(X)-algebras F(X x
A771, C^xxA-) ̂  OxPOPi,..., r^] which sends Fredholm series to units
and is functorial in X. In particular, we see that a Fredholm series F is
nowhere a zero divisor in OxxA^-

When m is fixed, we will sometimes pick TT € kx with 0 < |7r| < 1
and define

Xn=Xn^=XxBm^\7^\-n)^

with B^O.I?!-!-71) the "closed" ball in A771 around the origin of radius
ITI'I"'"'. The choice of TT is fairly unimportant; the X^s give an "increasing"
admissible open covering of X x A771.

The basic facts we need are summarized by the following lemma:

LEMMA 4.1.1. — Let X be a rigid space over k.

1. If {Ui} is an admissible covering of X x A771 and F, G are two
Fredholm series over X such that G\u^ divides F\u^ in ̂ (Ui.O^xA-^ ^or

all i, then F = GH for a unique Fredholm series H over X.

2. If X is reduced and H is a Fredholm series with no zeros on
X x A171, then H = 1. In particular, if H ^ 1, then H must vanish
somewhere.

3. IfX is reduced and equidimensional and F, G are Fredholm series
with Z(G) C Z{F) as analytic sets in X x A771, then Z(G)red is a union of
irreducible components of Z(F)red-

If X is the product of an affinoid and an affine space and C is an
invertible sheaf on X x A771 such that C\Xn ls trivial for all n > 0, then £
is trivial

Proof. — The first two parts are essentially ([CM], Lemma 1.3.2).
To be precise for the second part, we may reduce to showing that any
/ G r^A^.O^m) with /(O) = 1 and / 7^ 1 must vanish somewhere. By

suitable scaling of the affine variables, we may assume / = 1 + ^ aiT1

J/O

with all \ai <^ 1 and some |aj| = 1. Then by [BGR], 5.3.1/1, / has a zero
inside of the unit ball B771.

The third part follows from Corollary 2.2.7, once we observe that
if A is a A'-affinoid domain of dimension d, then all maximals of A
have height d by Lemma 2.1.5 and the A;-affinoid domain A <^T^> has
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dimension d + 1. To prove the latter point, note that the map of domains
A -^ A < T >^ A(3)k(k < T ») is flat (use the method of proof of
flatness in Lemma 1.1.5), so by the dimension formula [Mat2], 15.1 and
Lemma 2.1.5, A <^T^> has dimension d+ 1.

For the last part, we note that one can carry over to rigid geometry
many basic facts from the theory of Stein spaces [TSS], often by much
simpler arguments (due to the non-archimedean inequality and the more
"algebraic" nature of coherent sheaves in the rigid analytic setting). In
particular, the cohomology of a coherent sheaf vanishes on the product of
a A;-afflnoid and the analytification of an affine /^-scheme (see [Kl], Satz 2.4
for a proof of a more precise general theorem). Thus, to see that C is trivial
we may assume that X is reduced, since if A/" is the coherent ideal sheaf of
nilpotents on X and s is a generator of C/J\f£ (viewed as a coherent sheaf
on Xred)? any lift of s to a global section of £ is a global generator of C.
Since X x A771 ^ (X x A'm~l) x A1, we can also use induction to reduce
to the case m = 1.

Let C,n = £\Xn anc^ pic^ a generator Sn of Cn' For each n > 1, we
can rescale Sn by an element of Ox(X)x so that the pullback of Sn to the
zero section agrees with the pullback of SQ to the zero section. If we write
(for n > 0) Sn+i\Xrz = snUn for a unit Un on Xn C X x A1, we must have
Un(0) = 1. Since X is reduced, the convergence argument in the proof of
[CM], 1.3.3 (which applies over open affinoids of X when m == 1) shows
that Vn = Un • 'UH+I • • • • makes sense as a unit on Xn C X x A1. Thus, the
sections Sn^n °f ^-n glue to a global generator of £. D

4.2. Relatively factorial rings.

In this section, we fix an integer m > 1. Following [CM], a /c-affinoid
X == Sp(A) is said to be relatively factorial (or perhaps relatively factorial
in m variables to be more precise) if X is reduced and irreducible (so A
is a domain) and for every / G A < Ti , . . . , Tm > with /(O) =! , ( / ) is
a product of principal prime ideals, in which case such a factorization is
unique and the generators of the prime ideals can be taken to have constant
term 1. Tate algebras are relatively factorial [BGR], 5.2.6/1.

LEMMA 4.2.1. — Let A be relatively factorial over k, f 6
A <Ti,... ,T^> with /(O) = 1, f not a unit. Let (/) = \\(pjY3 be the
prime factorization. Then (/) = H^)67 and rad((/)) = n(j^) = nO9?)-
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Proof. — Let B = A < Fi,...,!^ >. The local ring B(?.) is
a noetherian local domain with non-zero principal maximal ideal, so by
[Mat2], 11.2, B(^.) is a discrete valuation ring. Thus, g € B is divisible
by p^ if and only if the image of g in B^) lies in the e-th power of the
maximal ideal. Since pi maps to a unit in B^p^ for i ̂  j, the assertions in
the lemma are clear. D

The following result is obtained in [CM], 1.3.4, 1.3.6 by a delicate
analysis of limiting arguments over larger and larger Xy^s. From our point
of view, all such limiting arguments are embedded in the proof of the last
part of Lemma 4.1.1, and the global theory of irreducible decomposition
thereby enables us to argue more "geometrically".

THEOREM 4.2.2. — Let X be a relatively factorial affinoid over
k, and F ^ 1 be a Fredholm series over X in m variables, so Z(F) is
non-empty.

1. There is a unique Fredholm G over X with Z(F)red = Z(G) and
moreover G\F in the ring of entire functions over X in m variables.

2. Z{F) is irreducible if and only ifF == Pe for some e > 1 and some
irreducible Fredholm series P (i.e. P -^ 1 and P does not factor non-trivially
in the ring of entire functions over X). When this occurs, P = G.

3. The irreducible components of Z(F) are in bijection with irre-
ducible Fredholm series P\F, via P i-> Z(P).

Proof. — The uniqueness of G follows from Lemma 4.1.1. For
existence, let J = rad((F)). If J is principal, with some generator H,
then H does not vanish along the zero section, so by scaling by a unit we
can assume H(0) = 1. Then it is easy to see that we can take this H to
be G. By the last part of Lemma 4.1.1, we just have to show that J is
free of rank 1 on each Xn. But X is relatively factorial and (F)|xn has a
generator with constant term 1, so this is clear by Lemma 4.2.1.

Before handling the second part, we check a special case: if F -^ 1
is Fredholm over X and Z = Z(F) is reduced, then Z is irreducible if
and only if F is an irreducible entire function over X. Since F(0) = 1,
any factorization of F into a product of two entire functions can be scaled
by units so that both entire functions have constant term 1. Thus, by
Lemma 2.2.3, the second part of Lemma 4.1.1, and the hypothesis that
Z{F) is reduced, it is enough to prove that any (reduced) union W of
irreducible components of Z(F) is of the form Z{G) for a (necessarily
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unique) Fredholm G, and moreover G\F. If the ideal sheaf of W is globally
free with a generator G, then since W does not meet the zero section we
can assume G(0) = 1 and then since Z(F) is reduced we may use the first
part of Lemma 4.1.1 to deduce that G\F. Thus, we just have to check that
the coherent ideal sheaf Tw 01 W is globally free of rank 1. By the last
part of Lemma 4.1.1, we only need Tw\Xrz to De globally free of rank 1
for all n > 0. By Corollary 2.2.9, this follows from the relatively factorial
condition and Lemma 4.2.1.

We conclude that for general Fredholm F ^=- 1, Z = Z{F) is
irreducible if and only if Zred = Z(P) ^OT an irreducible Fredholm P, in
which case (P) = rad((P)) as coherent ideal sheaves on X x A771 and
F = PH\ for some Fredholm H\. Assuming this to be the case, we want
to conclude that F = Pe for some e >, 1. Suppose H^ 7^ 1, so Z{H^)
is a non-empty analytic set in Z(F). By the third part of Lemma 4.1.1,
Z(H^ed = Z{P), so Tifi = PH-z and F = P2^ (note in particular that
H\ vanishes everywhere F does). To see that this process must stop, choose
some n such that P|xn has a zero. We will find an upper bound on the
power of P\x^ which divides F\Xn- Since X is relatively factorial and P|xn
is a non-unit with constant term 1, by Lemma 4.2.1 we see that P\Xn
is just the product without multiplicity of the distinct prime factors of
F\x^ ("distinct" meaning "taken up to unit multiple"). Thus, the highest
exponent occuring in the prime factorization of F\x^ gives the desired
upper bound. D

Note that as a consequence of this theorem, if P is an irreducible
entire function in m variables over a relatively factorial affinoid X, then P
generates a prime ideal in the ring of entire functions over X in m variables.
Indeed, if P|PG, then the irreducible reduced rigid space Z(P) is contained
in the union of the analytic sets Z(F) and Z(G), so the reduced space Z(P)
lies inside of Z(F) or Z(G). Thus, P|F or P|G.

Consider a set {Pi} of distinct irreducible Fredholm series over X in
m variables which is locally finite in the sense that only finitely many of
the (distinct!) analytic sets Z{Pz} meet any quasi-compact admissible open
in X x A771. It makes sense to form the product FI^T' ^or ^Y choice of
integers rii > 1 (this is entire, hence Fredholm). We can then ask if there
is a unique factorization theorem. This was obtained by Coleman-Mazur
using limit arguments ([CM], 1.3.7), but we can deduce this in a slightly
more precise form from the above by thinking geometrically in terms of
global irreducible decompositions:
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COROLLARY 4.2.3. — Let X be a relatively factorial affinoid,
F -f- 1 Fredholm over X in m variables. Then there is a unique non-empty
set of positive integers {rii} and non-empty locally finite set of distinct
irreducible Fredholms {Pi} such that F = ]~[ P^. Moreover, the irreducible
components ofZ(F) endowed with their reduced structures are the Z(Pi) 's.

Proof. — If P is an irreducible Fredholm series with P|P, so
Z(P) C Z(F), by Lemma 4.1.1 we have that Z(P) is an irreducible
component of Z(F). Moreover, by the last part of Theorem 4.2.2, every
irreducible component of Z(F) has the form Z(P) for a unique irreducible
Fredholm series P over X, and P F. By the existence of global irreducible
decomposition, it follows that the only possible set {Pi} is the set of
irreducible Fredholm series which cut out the irreducible components of
Z(F). Taking this to be the set {Pi}, let us show that this works. This set
is locally finite. From the proof of Theorem 4.2.2, we see that for fixed z,
there is an upper bound on the exponents n for which P^\F. Let n^ > 1
be the largest such n and G = n^T1' Once we show that F = GH for
some Fredholm H , then it is clear that Z(H) cannot have any non-empty
irreducible components, so Z(H) is empty and H = 1.

By Lemma 4.1.1, it suffices to show G\x^ divides F\x^ for all n > 0.
But G\Xn ls J118^ a fimte product and the restriction of an irreducible
Fredholm to Xn is a product of prime elements which generate distinct
prime ideals and have constant term 1. By Lemma 4.2.1 we are done. D

4.3. Consequences of global factorization.

The following result is a more precise version of [CM], 1.3.8.

THEOREM 4.3.1. — Let X be a relatively factorial affinoid, F a
Fredholm series over X, U a non-empty admissible open in Z{F). If E is
the non-empty set of irreducible components Z{Pi) of Z(F) which meet U,
then the "smallest" closed immersion in X through which U —> X factors
is Z(F^) ̂  X, where F^ is the product of P^ for the Z(P,) € S.

Proof. — Without loss of generality, F = F£. By Corollary 2.2.9, for
each irreducible Fredholm Pi\F, UHZ{Pi) contains a non-empty admissible
open Ui which does not meet any Z{Pj) for j ^ i. By Lemma 4.2.1
and Corollary 2.2.9, the coherent ideal sheaf (F) is the (locally finite)
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intersection of the coherent ideal sheaves (P^1), so it is enough to replace U
by Ui and F by P^. Thus, we may consider an irreducible Fredholm series
P, an integer e > 1, and a non-empty affinoid open U in Z{Pe). If a coherent
ideal sheafZ vanishes under pullback via U —^ X, we want Z C (P6). Since
the open immersion U ̂  X x A771 factors through the closed immersion
Z(I) ̂  X x A171 cut out by Z, the analytic set Z(I) H Z(P) contains
a non-empty admissible open in the irreducible reduced space Z(P). By
Lemma 2.2.3, Z(P) C Z[T\ sol C (P). Thus, I == (P)J for some coherent
ideal sheaf J . If e = 1, we are done, so suppose e > 1. By induction, it
is enough to show that J vanishes on a non-empty admissible open of the
rigid space Z(Pe~l).

Choose large n so that Z{P) Fl Xn meets U. Let An = OxxA^-^n),

In = r(Xyi,Z). Then Sp(An/(P\Xn)) ls a reduced non-empty rigid space,
so we may write P\Xn as a product of primes p i , . . . ,pr^ with constant
term 1 and all (pj) distinct prime ideals in An' Some Z(pjo) must meet
U. The ring (An\p- ) is a discrete valuation ring by Lemma 4.2.1. Since
U is an admissible open in the rigid space Z(P6) and it meets Z(pj^)^
by Lemma 2.2.3 we see that U contains a point in Z(pjo) not in any
other Z(pjVs. Thus, U contains a non-empty admissible open in the
rigid space Z ( p ^ ) ^ so all elements of In vanish in some local ring of
{An)/{pjY- Localizing to the generic point of this ring, we see In lies in
(Pjo)6 (^y Lemma 4.2.1). Thus, T vanishes on the non-empty admissible
open complement of |j Z(pj) in Z^ ), which is even an admissible open

3^30
in Z(Pe). It follows that J vanishes on a non-empty admissible open of
^(P6"1), as desired. D

For the last result, we somewhat globalize the above considerations
and generalize [CM], 1.3.11 with a proof that uses global irreducible de-
composition in place of intricate limit arguments (combining the following
with [CM], 1.3.10 recovers [CM], 1.3.11).

THEOREM 4.3.2. — Let X be a rigid space over k which has an
admissible covering by relatively factorial affinoid opens {Uj}. Let F 7^ 1
be a Fredholm series over X. The irreducible components of Z(F) have
the form Z(Pz) for unique irreducible Fredholm series Pi over X , and there
exist positive integers n^ such that F = ]~[ P^. Up to ordering, this is the
unique factorization ofF into a product of irreducible Fredholm series over
X whose zero loci are locally finite on X x A771.

In particular, an irreducible Fredholm series P over such an X
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generates a prime ideal in the ring of entire functions over X in m variables.

Proof. — Let {Zi} be the set of irreducible components of Z(F),
given their reduced structure. Working over each Uj and using Corol-
lary 2.2.9, the "radical" coherent ideal sheaf Ti of Zi is locally free of rank 1
and Ti\Uj is generated by a Fredholm series over Uj (this Fredholm series is
1 or a product of irreducible Fredholm series over Uj). By the second part
of Lemma 4.1.1, these generators glue, so Iz = {Pi) for a unique Fredholm
series Pi over X. But Z(Pi) = Zi is a reduced irreducible space, so Pi gen-
erates a prime ideal in the ring of entire functions over X in m variables.
Since Fredholm series are not zero divisors, Pi is clearly irreducible in this
ring as well. By construction and the first part of Lemma 4.1.1, Pi\F. In
particular, if F ^ 1 is a Fredholm series, then F is irreducible if and only if
F generates a prime ideal in the ring of entire functions over X in 771 vari-
ables. Thus, irreducibility and primality are the same concept for Fredholm
series over X.

If P is any irreducible Fredholm series dividing F, then Z(P) lies
inside of Z(F), so by Lemma 4.1.1 it follows that Z(P) must be an
irreducible component of Z{F). Thus, P must be one of the P^s. It is
equally clear from the global theory of irreducible decomposition that if
Ci >_ 0 are integers such that F = n^?^ then ei >_ 1. For each z, choose
a Uj so that Zi meets Uj x A771. The restriction of Pi to Uj x A971 is a
product of distinct irreducible Fredholm series, so by Corollary 4.2.3, there
is a maximal exponent n^ > 1 such that P^|F. It follows that there is at
most one possible factorization of F of the desired type.

Defining G = ]~[ P^, we are reduced to showing that G\F. This can be
checked locally over X. Working over each Uj and noting that each Pi\u-
is either equal to 1 or else factors as a locally finite product of distinct
irreducible Fredholm series over Uj with order of multiplicity in F\jj . x A ™
at least n^, we may appeal to the factorization theory already treated over
a relatively factorial affinoid base. D

5. Analytification of schemes.

In this appendix, we want to discuss some fundamental facts con-
cerning the analytification functor from locally finite type fc-schemes to
rigid spaces over k. The analogous questions in the complex analytic case
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are treated extensively in [SGA1], XII. Thanks to excellence results in the
rigid setting, many of the proofs in the complex analytic case carry over, but
extra care is needed for others. We want to indicate here where difficulties
arise. We will need to use Theorem 2.3.1 at one point, for example.

5.1. Preliminary facts.

Let X be a locally finite type A:-scheme and Y a rigid analytic space
over k. A morphism f : Y —>• X is a continuous map of Grothendieck
topological spaces (i.e. a map of sets f \ Y —> X which pulls Zariski
opens and Zariski covers of Zariski opens back to admissible opens and
admissible covers of admissible opens) and a map /tt : Ox —> /*(0y) of
sheaves of A;-algebras. For any y e V, there is an induced map of A;-algebras
/I : ̂ x,f(y) ~^ ^Y,y Since the residue field at y is a finite extension of fc,
it is easy to check that f^ is automatically local and f(y) is a closed point
on X. Thus, morphisms Y —> X are automatically maps of locally ringed
spaces. We denote by Hom^;(Y, X) the set of such morphisms. The following
lemma is essentially a special case of [EGA], II, Errata, 1.1.8.1. The only
difference is that rigid spaces have a mild Grothendieck topology instead
of an ordinary topology, but the same proof carries over.

LEMMA 5.1.1. — Let Y be a rigid space over k and X an affine
k-scheme of finite type. The natural map of sets

Hom^y.x) ^Hom,(r(x,0x),r(y,0y))
is an isomorphism.

For a fixed locally finite type ^-scheme X, Y ^ Homfc(V,X) is
a functor from rigid analytic spaces to sets. The basic fact is that this
functor is representable. We define an analytification of X to be a morphism
i : X^ —> X which represents the functor Hom^-, X). Lemma 5.1.1 implies
that rigid analytic affine n-space, constructed as in [BGR], 9.3.4/1 by gluing
balls, admits a unique morphism to the fc-scheme A^ which pulls back
coordinate functions to coordinate functions (with the same ordering).
This morphism is readily checked to be an analytification because rigid
affine n-space has the expected universal mapping property in the rigid
analytic category (thanks to the maximum modulus theorem for affinoids).
Combining this with Lemma 5.1.1, the method in [SGA1], XII, 1.1 carries
over to construct analytifications in general. If F is an Ox-module, we
define yan=i^J^).
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LEMMA 5.1.2. — Let i : X^ -» X be the analytification of a
locally finite type k-scheme X.

1. The map i is a bijection onto the set of closed points of X.

2. For x e X^, the natural local map of local noetherian rings
^x,i{x) —)> ^x^.x induces an isomorphism on completions, so i is a flat
map.

3. For morphisms X -^ Z,Y —> Z of locally finite type k-schemes,
the canonical map

(X XzY)^ -^X^ Xz^Y^

is an isomorphism

The functor T ^ ^ran from Ox-modules to O^an -modules is exact,
faithful, takes coherent sheaves to coherent sheaves, and .̂ an == 0 if and
only if ̂ =0.

Proof. — Since i has image inside of the closed points of X, as
indicated above, the first part is a trivial consequence of the fact that
Spec^')^ = Sp^k') for finite extension fields k ' / k and the characterization
of closed points on X as the images of A:-morphisms Spec(A/) —^ X for
variable finite extension fields k ' / k . For the second part one reduces to the
case X = A^ and by scaling the variables we can assume x lies in the closed
unit ball. Then the comparison of completions follows from the fact [BGR],
7.1.1/3 that every maximal ideal in Tn(k) is generated by polynomials in
k[x^,...,Xn\.

The comparison of fiber products is reduced to the case where all
three schemes are affine, and then we can use universal mapping properties
and Lemma 5.1.1. The properties of T ^ T^ can be proven as in [SGA1],
XII, 1.3.1, once we verify the exactness of the functor z* on arbitrary Ox-
modules. This is a delicate point because in the rigid setting one cannot
use stalks as nicely as in usual topological settings (there are problems with
admissibility of coverings). It should be noted that such general exactness
is useful if one wants to prove a relative (rigid) GAGA theorem along
the lines of [SGA1], XII, §4, since the use of spectral sequences requires
the "analytification" of injective sheaves, which are very non-coherent.
Since the sheafication functor from presheaves to sheaves preserves exact
sequences, it suffices (due to how z* is defined) to show that \fX= Spec(B)
is affine and W = Sp(A) is an open affinoid inside of X^, then the map
of rings B = Ox(X) —^ Ox^(W) == A is flat. Pick a maximal ideal m
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of A (corresponding to a point x 6 Sp(A) C X^), so this contracts back
to a maximal ideal n of B. It suffices to show that the map Bn —^ A^ is
flat for all m. But Am —> Ox^.x is faithfully flat, so it is enough to study
JE?n —)> Ox^^x- This is exactly the map i^ which we have seen is flat. D

Beware that even though all locally finite type ^-schemes are quasi-
separated, it is not true that the analytification of such a scheme is a
quasi-separated rigid space. The problem is that quasi-compactness on
the analytic side is a much stronger condition that on the algebraic side
(consider an infinite sequence of copies of Sp(A;) mapping to a "discrete"
subset of the rigid affine line). As an example, the analytification of the
affine line with a "doubled" origin is not quasi-separated. However, since
schemes are covered by affine Zariski opens and extension of the base field
on a quasi-separated rigid space takes Zariski opens to Zariski opens (by
Lemma 3.1.1), we can define X^ x/c k ' for a locally finite type /^-scheme
X and a complete extension k' / k . However, this is somewhat ad hoc and
seems to be a functor of X rather than of X^ if X^ is not quasi-separated,
so we will only consider this construction when X^ is quasi-separated (the
separatedness of X seems to be the only reasonable general condition which
ensures that X^ is quasi-separated, though it even yields separatedness of
j^an ^y Theorem 5.2.1 below). By studying the case of affine spaces and
unit balls, it is easy to construct a functorial isomorphism

(3) X^Xhk1 ̂ (XXkk^

for any complete extension k ' / k and any locally finite type A:-scheme X
with X^ quasi-separated, and this isomorphism respects formation of fiber
products and composite change of the base field. If Z is any quasi-separated
rigid space over A:, by working over affinoids one can define a "pullback"
functor from coherent sheaves on Z to coherent sheaves on Z x^ kf with
nice properties with respect to standard sheaf-theoretic constructions on
coherent sheaves, and it is easy to check that this "pullback" is compatible
with the (•)an functor on coherent sheaves via the isomorphism (3).

THEOREM 5.1.3. — Let X be a locally finite type k-scheme.

1. Each of the following properties holds for X if and only if it holds
for X^: non-empty, discrete, Cohen-Macaulay, Sz, regular, R^, normal,
reduced, of dimension n, connected, irreducible.

2. Let T be a locally constructible set in X , i : X^ —> X the
analytification of X. Then ̂ ~1(T) = i~l(T), where the closure on the right
is taken with respect to the "naive" (not the rigid analytic) topology on
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X^; that is, taking opens to be arbitrary unions of admissible opens.

For T as above, T is closed (resp. open, resp. dense) if and only if the
same holds for ^~1(T), again using the naive topology on X^.

Proof. — Thanks to the excellence results in §1, the proofs in
[SGA1], XII, §2 carry over for everything except for the last two properties
in the first part. In both the scheme and rigid cases, a space X is connected
if and only if for any two irreducible components Z and Z', there exists
finitely many irreducible components Xi. . . . . Xn of X such that Z = X\,
Z ' == Xn and Xi H X^ is non-empty for 1 < i < n. Thus, we can use
Theorem 2.3.1. D

5.2. Properties of morphisms.

If / is a morphism of locally finite type /c-schemes, one can ask if /
has a certain property (e.g., open immersion, separated, etc.) if and only if
/an does. There is a long list of such properties in [SGA1], XII, 3.1, 3.2, and
most of the proofs there carry over verbatim. However, due to the special
nature of the rigid topology, some of these require extra care. In particular,
the deduction of properness of /an from properness of / is a very delicate
issue.

THEOREM 5.2.1. — Let f '. X —>Y be a morphism of locally finite
type k-schemes.

1. The following properties are equivalent for both f and /an:
flat, unramified, etale, smooth, flat with geometrically normal fibers, flat
with geometrically reduced fibers, injective, separated, open immersion,
isomorphism, monomorphism.

2. Suppose f has finite type (i.e. f is quasi-compact). Then the fol-
lowing properties are equivalent for both f and /an: surjective, having dense
image (with respect to the naive topology on the rigid side), closed immer-
sion, immersion (i.e. an open immersion followed by a closed immersion),
quasi-finite (i.e. finite fibers), finite. Moreover, if /an is proper then so is f.

Proof. — Using [EGA], IVs, 12.1.1(yii), (viii) and the discussion in
§1.2, for the first part, the methods in the complex-analytic case work
for all but the last four properties, and the deduction of the last two
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cases in the first part from the "separated" and "open immersion" cases
is also done as in the complex analytic case. Thus, we want to check that
/ is an open immersion (resp. separated) if and only if /an is an open
immersion (resp. separated). The "only if" directions are proven easily as
in the complex-analytic case. Conversely, assuming that /an is separated
or an open immersion, we want to deduce that / has the same property.
Working locally on V, we can assume that Y is affine, so Y^ and X^
are trivially separated (and hence quasi-separated). Thus, isomorphisms
such as (3) make sense. Since we do not know if extension of the base
field on the rigid side takes open immersions to open immersions, we will
instead show that if /an is separated (resp. an injective local isomorphism
between separated rigid spaces), then / is separated (resp. an injective local
isomorphism). This alternative implication is certainly sufficient for the first
part of the theorem, since injective local isomorphisms are open immersions
in the context of schemes. Moreover, by using [BGR], 7.3.3, 8.2.1/4 and the
construction of the base change functor, it is not difficult to check that if a
map between separated rigid spaces is an injective local isomorphism, then
the same property holds after extension of the base field.

Using [EGA], IVs, 2.7.1(i),(x) and the isomorphism (3), we may base
change to k and thereby reduce to the case in which k is algebraically
closed. Once the base field k is algebraically closed, etale injective maps
between locally finite type ^-schemes are radicial (hence open immersions)
and fiber products of rigid spaces over k are fiber products on the level
of underlying sets. This allows the complex-analytic proofs to carry over
for the "if" direction in the case of open immersions (or injective local
isomorphisms) and separated maps.

Now we treat the second part of the theorem. The "surjective" and
"dominant" cases are handled as in the complex-analytic case, and likewise
for the deduction of the "immersion" case from the "closed immersion"
case. The quasi-finite case is seen by using [EGA], IVs, 9.6.1(yiii), which
implies the local constructibility of {y 6 Y | dlmf~l(y) = 0}. Finally, we
can carry over the complex-analytic proof that / is proper when /an is
proper, using [EGA], II, 5.6.3 and KiehPs theorem that the image of an
analytic set under a proper rigid morphism is again an analytic set [BGR],
9.6.3/3.

It remains to show that a finite type map / is a closed immersion
(resp. finite) if and only if /an is a closed immersion (resp. finite). The
"only if" direction for closed immersions is trivial, and for finite maps it
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follows from the observation that a finite / can (locally over Y) be factored
as a closed immersion followed by a map Y[T^,..., T m ] / ( g i , . . . ,9m) -^ Y
with each gi a monic in Ti (the analytification of which is trivially finite over
Y^ by using the fiber product compatibility of (')an). One now proves just
as in the complex-analytic case that / is a closed immersion (resp. finite)
when /an is. Q

On both the scheme and rigid sides, one can "classify" finite mor-
phisms to a space X in terms of coherent sheaves of (9^-algebras. The
functor (•)an and the isomorphism (3) are compatible with these construc-
tions. The details are fairly straightfoward and are left to the reader.

We end this section with a closer look at the properness issue. Let
/ : X -^ Y be a finite type map between locally finite type ^-schemes. It is
a non-trivial matter to determine whether /an is proper when / is proper
(note that this fact is not needed to prove a relative rigid GAGA theorem
using the method in [SGAl], XII, §4). To carry over the complex-analytic
proof, it suffices to show the following facts in the rigid setting:

- a composite of proper maps is proper,

- a separated quasi-compact / is proper if / o TT is proper for some
surjective morphism TT

(actually, one only needs the second claim). One can immediately reduce
this to the case in which all of the rigid spaces involved are quasi-compact
and separated. Since formal admissible blow-ups of "admissible" formal
schemes over Spf(R) in the sense of [BL1], §2 are proper, a proof of both
assertions above would follow if one could show that for a map f : X —^ Y
of quasi-compact quasi-separated rigid spaces over k with a formal model
f : X —> 2), / is proper if and only if f is proper and f is surjective if / is.

Using rig-points as in [BL1], Prop 3.5, the "surjective" part is clear.
Although Lutkebohmert's proof that properness of / implies properness of
f [L2], 2.5, 2.6 is given in the case when the valuation on A; is a discrete
valuation, the method of proof works for arbitrary k by using the formal
model setup in [BL1] and the non-trivial fact that an open immersion
between quasi-compact quasi-separated rigid spaces has a formal model
which is an open immersion [L2], 5.4(b). Conversely, the deduction of
properness of / from properness of f is given in [L2], Thm 3.1 under the
hypothesis that the absolute value on A: is a discrete valuation. The proof
of this converse implication is much more difficult and it is unclear to what
extent one can modify the methods there to work without the noetherian
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conditions.

For the purpose of proving that the analytification of a proper scheme
map is proper, one can use the Nagata Compactification Theorem for
finitely presented ^-schemes (in conjunction with Theorem 5.3.1 below
and direct limit arguments descending to the noetherian case [EGA],
IVs, 8.9.1, 8.10.5) to bypass the complex-analytic method and reduce to
the purely formal scheme problem of proving that X^ is a proper rigid
space when X is a proper admissible formal scheme over Spf(R). However,
there seems to be no reason why this should be any easier to prove for
general R than Lutkebohmert's [L2], Thm 3.1 for general R.

5.3. Analytification and rigidification.

Let X be a locally finitely presented scheme over R. It makes sense to
form the formal completion X of X with respect to an ideal of definition I of
R (the result is a locally topologically finitely presented formal scheme over
Spf(J?) and is independent of the choice of J). To work with this type of
construction, we need to make essential use of the fact that large parts of the
"noetherian" theory in [EGA], I, §10 carry over to locally finitely presented
^-schemes and locally topologically finitely presented formal schemes over
Spf(J?) (and in particular, the process of taking formal completions of
locally finitely presented JP-schemes transforms open immersions and closed
immersions into open immersions and closed immersions respectively). This
generalization of [EGA], I, §10 is already needed in the foundations of the
theory of formal models of rigid spaces over arbitrary complete fields, and
one can work out the lengthy but mostly straightfoward details by using
the results in [BL1], §1 and some cohomological facts in [EGA], Om, IIIi.
We omit the details.

If X is not J?-nat, then the formal scheme X over Spf(7?) might not
be J?-flat (and so might not be "admissible" in the sense of [BL1], §1). Of
course, replacing X by the J?-flat closed subscheme cut out by the J-power
torsion would in general probably lose the locally finitely presented property
for X over R which is needed in order to have a good theory of formal
completion. For any locally topologically finitely presented formal scheme
5 over Spf(jR) which is J?-flat, we define the associated rigid space 3^ as
in [BL1], §4. Without assuming 3 to be ^-flat, by [BL1], 1.4 the /-power
torsion ideal sheaf on the formal scheme 3 is coherent, so we can define
the locally topologically finitely presented formal R-scheme y cut out by
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this ideal sheaf. This formal scheme is R-fiat and we define 3^1g = (3/)^lg

in general. If 3 = Spf(A), then 3^ = Sp(A 0^ k). This is functorial in 3
in the obvious manner, and by reduction to the formal affine case we see
that (•)rlg commutes with the formation of fiber products.

For X as above, we can now construct two rigid spaces over k: X^
and {X x^ k)'^. We want to explain the relationship between these. This
is probably rediscovered by everyone who studies rigid geometry, and one
such construction is given in [Ber], 0.3.5 (which seems to say "finite type"
where it should say "finite presentation"); we want to give a more "pure
thought" construction which we found before becoming aware of [Ber].
In general there will be a morphism ix '• ^rlg — ^ { X x ^ k)^ which is
an isomorphism for proper X over R and an open immersion when X
is separated and admits a locally finite affine covering. As an example,
consider X = A^ = Spec(A) with A == R[T^,... ,7^]. In this case,
j^rig ^ gn ̂ j ̂  ̂  ^an ^ (A^)^, and ix will be the canonical open
immersion of the unit ball around the origin into rigid affine space.

Before we look at the general case, we first consider the affine case. Let
I be an ideal of definition of R. Let A be a finitely presented ^-algebra, A
its 7-adic completion, and A^ = A^p^k. We want to construct a morphism

^A:Sp(A(g)^)-^Spec(Afc)an

which is functorial in A.

Using Lemma 5.1.1, the ^-algebra map ̂ A '' A/c —^ A(3)pk arises from
a unique morphism Sp(A 0^ k) —^ Spec(A^). By the universal mapping
properties of analytifications of schemes, this induces a canonical morphism
ZA '• Sp(A(S)pk) —> Spec(AA;)an. To check that this is functorial in A, we can
use universal mapping properties with rings of global functions to reduce
to the obvious fact that for a map A —^ B of finitely presented J?-algebras,
the diagram of rings _

Ak —> A 0j? k

^ ^
Bk —> B 0R k

commutes. By using the universal mapping property of rigid affine space
(as well as the construction of rigid affine space), it is clear that when
A = -R[TI, . . . , Tn}, ZA is just the canonical open immersion from the unit
ball B71 around the origin into rigid affine n-space.

THEOREM 5.3.1. — Let X be a locally finitely presented R-scheme
with generic fiber X^ and formal completion X with respect to an ideal of
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definition of R. There is a unique way to define a morphism of rigid spaces
ix : X^ -^ X^

which is functorial in X, respects the formation of fiber products, and is
the canonical map B1 ̂  (A^)^ when X = A^. The following additional
properties hold:

1. For finitely presented R-algebras A, ispec(A) = ^A-

2. I f Z ^ X i s a closed immersion of finite presentation, with formal
completion 3 ̂  X, then i^(Z^) = 3ris as dosed analytic subspaces of
X^.

3. When X is separated and admits a locally finite affine covering, ix
is a quasi-compact open immersion; in particular, ix is a local isomorphism
for general X.

4. When X is proper over R, ix is an isomorphism.

Proof. — The existence of a functorial IA yields a functorial mor-
phism ix : X^ -^ X^ satisfying zspec(A) = ZA for finitely presented
.R-algebras A. Since every affine X of finite presentation over R admits
a finitely presented closed immersion into some A^ ^ A^ x ... x Ac,
uniqueness is clear. Beware that for an open affine U = Spec(A) in X,
bc1^11) is typically much larger than the open affinoid Sp(A(g)^A;) in X^
(consider X = A^ and U the complement of the origin). To check that ix
respects formation of fiber products, it suffices to consider the affine case.
Since analytification commutes with fiber products, we are reduced to the
obvious fact that for maps C —> A, C —^ B of finitely presented .R-algebras,
the diagram of rings

Ak^c.Bk — (A^Rk)S^ ^B^nk)
T f

{A^cB)k —> {A(S)cB)^)Rk
commutes (the columns are isomorphisms).

Compatibility with respect to a finitely presented closed immersion
Z c-^ X is easily reduced to the case of affine X. We have to show that if
B -» A is a surjection of finitely presented .R-algebras, then the diagram

Sp(A^A;) ^ Spec(Afc)an

I I
Sp(B^nk) ^ Spec^)^

(with columns closed immersions) is cartesian. This is seen by using the
universal mapping properties of analytifications and the universal mapping
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properties of closed immersions for both affinoid rigid spaces and affine
schemes.

Every affine X admits a closed immersion into some A^, so by the
compatibility with respect to closed immersions and fiber products, ix is a
quasi-compact open immersion for affine X provided i^ i is a quasi-compact

R

open immersion. Since i^ 1 ls tne canonical open immersion of the unit ball
around the origin into rigid affine space, we see that ix is a quasi-compact
open immersion for affine X.

Now assume that X is separated and admits a locally finite covering
by affines. We want to prove that ix is a quasi-compact open immersion.
For now, do not assume that X admits a locally finite affine covering. The
first step is to use the valuative criterion for separatedness to show that ix
is injective on the underlying sets. Suppose that x\,x^ € X^ map to the
same point x € X^ under ix- Pick open affines Uj = Spec(A^) in X with
Xj G Sp(Aj 0R k). Letting k ' be a sufficiently large finite extension of k
with valuation ring R', xj corresponds to a A:-algebra map Aj (g)j? k —> k1,
which (by the continuity of maps between affinoids) is equivalent to an R-
algebra map Aj —^ R ' ' . We claim that the corresponding elements in X(Rf)
are equal. Since X is separated over R, it suffices to check that the two
resulting maps Aj ^>pk —> k ' give rise to the same element in Xk{k/). Using
Xk[k') = Xjm(kf), we get x in both cases. Thus, x-^ = x^, so ix is injective.

Now we check that ix is quasi-compact when X is separated and
has a locally finite affine open covering {Spec(A^)}. Since each Spec(A^)
meets only finitely many other Spec(A^)'s, it follows that {Sp(A^- 0^ k)}
is a locally finite admissible affinoid covering of X^. Letting U be an
open affinoid in X^, it suffices to check that the overlap of U with each
Sp(Aj ^R k) C Spec(A^•)jm C Xj^ is quasi-compact (note this overlap is
empty for all but finitely many j). Since X^ is separated (because Xk is
separated), the overlap of any two open affinoids is an open affinoid, hence
quasi-compact. Thus, ix is quasi-compact.

To see that ix is an open immersion as well, choose an open affinoid
U in X^1. Using the locally finite affine covering {Spec(A^)} of X, we
get a locally finite admissible covering of X^ by the Spec(A^)]m's. Thus,
there are only finitely many j for which the quasi-compact U meets
Spec(A^•)^n, and so only finitely many j for which U meets the admissible
open Sp(Aj^Rk) ̂  Spec(A^)^11. Let Vj = UnSp(Aj0pk) when this is non-
empty. This is an intersection of open affinoids in the separated space X^,
so Vj is affinoid, with the canonical maps Vj —^ X^ and Vj; —» U C X^
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both open immersions. Since X^ and X^ are separated, any finite union
W of affinoid opens Wi in either of these spaces is an admissible open
and the finitely many such affinoids Wi give an admissible cover of W'.
Thus, i~^(U) = UVj is an admissible open in X^ with the Vj's giving an
admissible cover, and ix{i~^(U)) == Uix(Vj) is an admissible open in X^
and the ix(VjY^ give an admissible cover. Since Vj == ^(^(Y?)) ~" ^(Vj)
is an isomorphism, we conclude that i~^(U) —^ U has an admissible open
image and i~^(U) maps isomorphically onto this image. Therefore, ix is an
open immersion. This completes the proof that ix is a quasi-compact open
immersion when X is separated and has a locally finite affine covering.

Finally, suppose that X is proper over R. Since ix is an open
immersion, it is an isomorphism as long as it is surjective on the underlying
sets. To prove this surjectivity, we will use the valuative criterion for
properness. A point x e Xj^ is the image of a A:-morphism x : Sp(k/) —^
X^ for a finite extension field k ' / k . The integral closure Rf of R in k ' is
the valuation ring of the complete field k1', so it is J-adically complete. By
the universal mapping property of analytifications, such a morphism x is
equivalent to giving a map Sp(A/) —> X^ as locally ringed Grothendieck
topological spaces of ^-algebras, which is equivalent to giving a map of
schemes Spec (A;') —> Xk over k. By the valuative criterion for properness,
there is a unique JP-morphism '0 : Spec^R') —^ X such that ^j^ : Sp(A/) -^
X^ is our original map x.

Let ^ : Spf(^) —> X be the induced map on formal J-adic comple-
tions. We want to apply (•)I'lg and appeal to the functoriality of the Z(.)
construction with respect to the map '0. The only problem is that R' might
not be finite over R (hence not finitely presented). However, this is easy to
circumvent. Choose an open affine U = Spec(A) in X around the image
of the closed point under '0, so for topological reasons '0 factors through
[/. Thus, we get a map h : A —> R ' . The map h induces a ^-algebra map
Ak —^ k ' whose kernel corresponds to the point x (under the identifica-
tion of closed points on Xk with points of X^). But h also induces a
map A —> R' on J-adic completions, and therefore a map A 0^ k —> k ' .
This gives rise to a point x ' on Sp(A 0^ k) C X^ and it is obvious that
u(^) == x. By the functoriality of Z( . ) with respect to the open immersion
Spec(A) = U ̂  X, i x ( x ' ) = x must hold. D

If we do not assume that X is separated, then it can happen that ix is
not injective (and so is not an open immersion), even when X^ is separated.
This arises from the failure of the valuative criterion. A typical example
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is the following (essentially [Ber], 0.3.6). Let X be the finitely presented
flat jR-scheme obtained by gluing two copies of A^ via the identity map
along the complement of the origin in the closed fiber. In this case, X^
is obtained from gluing two copies of B^ via the identity map along the
"boundary" [\t\ = 1} and X^ is the rigid affine line. The map ix is the
obvious map, and this collapses the two "open unit balls" in X^ to the
single "open unit ball" in X^ = (A^)^.
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