
ANNALES DE L’INSTITUT FOURIER

LUIS PARIS

DALE ROLFSEN
Geometric subgroups of surface braid groups
Annales de l’institut Fourier, tome 49, no 2 (1999), p. 417-472
<http://www.numdam.org/item?id=AIF_1999__49_2_417_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_2_417_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 2 (1999), 417-472

GEOMETRIC SUBGROUPS OF
SURFACE BRAID GROUPS

by L. PARIS and D. ROLFSEN

1. Introduction.

The classical braid groups Bm were introduced by Artin in 1926
(see [Arl], [Ar2]) and have played a remarkable role in topology, algebra,
analysis, and physics. A natural generalization to braids on surfaces was
introduced by Fox and Neuwirth [FoN] in 1962. The surface braid groups,
for closed surfaces, were calculated in terms of generators and relations
during the ensuing decade (see [Bil], [Sc], [Va], [FaV]). Since then, most
progress in this subject has been in its relation with mapping class groups
and the general theory of configuration spaces (see the surveys [Bi3], [Co]).
However, recently there is renewed interest in these fascinating groups in
their own right, in part because of the action of surface braid groups on
certain topological quantum field theories.

The purpose of this paper is to continue the study of the structure
of the surface braid groups, with emphasis on certain naturally-occuring
subgroups. A subsurface of a surface gives rise to inclusion maps between
their braid groups. We determine necessary and sufficient conditions that
these inclusion-induced maps are injective in Section 2. The remainder of
the paper is devoted to a detailed study of these "geometric" subgroups. In
particular, we calculate their centralizers, normalizers and commensurators
in the larger surface braid group. Commensurators, in infinite groups, are
of importance in their (unitary) representation theory. It is our hope that
these results will be useful in the further study of surface braid groups,

Keywords: Braid — Surface — Commensuration — Normalizer — Centralizer.
Math. classification: 20F36 - 57M05 - 57M60.
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their representations and applications. In the remainder of this introductory
section we present definitions, basic properties of surface braid groups, and
a brief review of the literature.

1.1. Surface braids and configuration spaces.

Let M be a topological manifold and choose distinct points
PI, • • • , Pm € M (later we will specialize to dim(M) = 2). A braid with m
strings on M based at (Pi,.... P^) is an m-tuple b = ( & i , . . . , bm) of paths,
bi: [0,1] —^ M, such that

1) bi(0) = P, and b,{l) C {Pi, ...,?„} for all i e { 1 , . . . , m},

2) bi(t) ̂  bj(t) for ij e {1 , . . . ,m}, i ̂  j, and for t C [0,1].

There is a natural notion of homotopy of braids. The braid group with
m strings on M based at (Pi,.... Py^) is the group

BmM=BmM(P^...^Pm)

of homotopy classes of braids based at (PI, . . . . Pyn). The group operation
is concatenation of braids, generalizing the construction of the fundamental
group. Indeed, for the case m = 1 we clearly have BiM(Pi) = 71-1 (M, Pi).
For m > 1, it is useful to consider the class of pure braids, which have the
property ^(1) = P,. These form a subgroup of Bm which we will denote by

PBmM=PBmM{P^..^Pm).

Let T^m be the group of permutations of {Pi , . . . . P^}. There is a natural
epimorphism a:BmM —^ Ey^; its kernel is the pure braid group, so we have
an exact sequence

1 ̂  PBmM —— BmM ̂  E^ -^ 1.

Note that, if M is a connected manifold of dimension at least two,
then BmM and PBmM do not depend (up to isomorphism) on the choice
of Pi, . . . , Pm. An m-braid naturally gives rise to m different paths in M
under the map b i-̂  (61,. . . . bm)' In the case of pure braids these are loops,
so there is a natural homomorphism

PBmM ——— 7Ti(M,Pi) X . . . X 7Ti(M,P^) ^ TT^M^,

where M171 denotes the m-fold cartesian power.
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PROPOSITION 1.1 (see [Bil]). — If M is a connected manifold with
dim(M) > 2, the above map is an isomorphism. For dim(M) = 2 it is
surjective.

The proof is straightforward when one views braids from the
configuration space point of view (see [FoN], [FaN].) Let FmM denote the
space of (ordered) distinct points of M, in other words FmM = (M^V,
where V is the big diagonal, consisting of m-tuples x = (a;i,... ,Xm) for
which Xi = Xj for some i ̂  j. Then we clearly have an isomorphism

PBmM^TT^FmM).

Proof of Proposition 1.1. — The map in question is induced by the
inclusion FmM == (M^V -^ (M)771. Noting that V = \J {xi = Xj}

l<:i<j<m
is a union of submanifolds of codimension dim(M), the proposition follows
from well-known general position arguments. Q

Because of Proposition 1.1, braid theory (as formulated here) is of
marginal interest for dimension ^ 3 and we concentrate on dimension two,
i.e. surface braid groups.

In the remainder of the paper, M will denote a connected surface,
possibly with boundary and possibly nonorientable. To avoid pathology, we
will assume M is either compact, or at least that it is a "punctured" compact
manifold, i.e. M is homeomorphic to a compact 2-manifold, possibly with
a finite set of points removed.

By permuting coordinates, there is a natural action of S^ upon FmM
and we denote the orbit space, the space of unordered m-tuples, or
configuration space, by

FmM = FmM/^m.

We may view the full braid group as its fundamental group

BmM^TT^FmM).

The inclusion PBmM C B^M may thus be interpreted as the
mapping induced by the covering space map FmM —> FmM, which has
fiber S^. Fox and Neuwirth noted that Bm(D), the braid groups of the
disk D2, coincide with the Artin braid groups.
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One of the most useful tools in studying braid groups is the Fadell-
Neuwirth fibration and its generalizations. As observed in [FaN], if M is a
manifold and 1 < n < m the map p: FmM —> F^M denned by

p ( x ^ , . . . , X m ) = (^l , . . . ,a^)

is a (locally trivial) fibration which has the fiber Fm-n{M\{P^,..., Pn}).
This gives rise to a long exact sequence of homotopy groups of these spaces.
For example, in the case n = m — 1 we have the exact sequence

... —— TT^FmM —— TT^Fm-lM ——— TTi (M\{PI, . . . , P^-l})

—— PBmM -^ PBm-iM -^ 1.

The punctured surface M\{Pi , . . . , Pm-i} has the homotopy type of
a one-dimensional complex, and we see immediately from the above long
exact sequence that

^k(FmM) ̂  7Tk(Fm-lM) ^ • . . ̂  7Tfc(M), k > 3

and

7T2(PmM) C ̂ (Fm-lM) C • • • C ̂ (M).

Because they are the only surfaces with nontrivial higher homotopy
groups, the sphere S2 and the projective plane P2 are exceptional cases in
the general theory.

PROPOSITION 1.2. — Suppose that M is a connected surface^ M ̂  S2

or P2, and k > 2. Then TTkFmM and TT^F^M are trivial groups.

Proof. — Since FmM —^ FmM is a covering map, it suffices to prove
the proposition for FmM. But this follows from the observations made
above, since TT^M) = 1 for k > 2. D

Combining this with the Fadell-Neuwirth fibration:

PROPOSITION 1.3. — Suppose that M is a connected surface, M ̂  S2

or P2, and 1 <_n < m. There is an exact sequence

1 -^ PBm-nM\{P^ ... ,?„} —— PBmM ̂  PB^M -^ 1. D



L. PARIS AND D. ROLFSEN 421

Let Eyi be the group of permutations of {P i , . . . , Pn} and let Yim-n
be the group of permutations of {Pn+i , . . . , Pm}- The Fadell-Neuwirth map
gives rise to a (locally trivial) fibration

p:FmM/(^n X ^m-n) ——— FnM/^n = FnM

which has the fiber

(^-,M\{PI, . . . , Pn}}/^-n = î -nMUPi, . . . , P,}.

So:

PROPOSITION 1.4. — Suppose that M is a connected surface, M ̂  S2

or P2, and 1 ̂  n < m. There is an exact sequence

1 -̂  Bm-nM\{P^, . . .,Pn} ——— CT~\^n X ^m-n} ——— B^M -^ 1. D

1.2. Torsion.

Except for M = S2, P2, the configuration space FmM is an Eilenberg-
Maclane space, i.e. a classifying space for B^M. As is well-known, a
group which has elements of finite order must have an infinite-dimensional
classifying space (see, e.g. [Br, Chap. VIII]). Since FmM has dimension 2m,
we can then conclude.

PROPOSITION 1.5. — If M is a connected surface, M ̂  S2 or P2, then
its braid groups BmM have no elements of finite order.

The braid groups of S2 and P2 do have torsion (with the exception
the trivial group Bi(5'2)). We give a quick review of these, following [FaV]
and [Va]. For S2 take all the basepoints to lie in a disk D2 C S2 and let
< 7 i , . . . , o-m-i be the standard braid generators of Bm(D2); o-i exchanges Pi
and Pz+i. They satisfy the famous braid relations

J aiaj =ajcri, \i - j\ ̂  2;

(jidi^Oi = a^+icr^+i, 1 :< % < m - 2.

The same Oi can also be taken to be generators of Bm(S2) where they
still satisfy these relations. The word (J\a^ " ' ^m-i^m-i • • • ̂ 2^1 may be
interpreted as the (pure) braid in which Pi circles around ?2,.. . , Pmi while



422 GEOMETRIC SUBGROUPS OF SURFACE BRAID GROUPS

those points stay fixed. This is clearly homotopic in S2 to the identity
braid, so we have the additional relation

CTi<72 • • • (Tm-lO'm-1 ' • • ̂ 2^1 = 1-

It is shown in [FaV] that this, together with (*) are defining relations
for Bm(S2). The element r = a^ • • • (Tm-i has order 2m in Bm(S2); it
can be pictured as a simple braid which permutes the basepoints cyclically.

For the projective plane, take Oi as above corresponding to a disk
engulfing the basepoints, and let pj to be a braid in which the basepoint
Pj travels along a nontrivial loop in P2 while the other basepoints sit still.
See [Va] for a more precise description and a proof that Bn(P2) is presented
by the 2m-1 generators 0-1, . . . , o-^_i, p i , . . . , pm and relations (*) together
with

' Oipj = pjOi, j ^,z+l,

Pi = aipi^ai,

^ = P^lP71 Pi-^-lP^
2

Pi == 0-10-2 • - '(Tm-lO'm-1 • ' • CF'2.^1-

The element r as defined above, but considered an element of B^(P2),
again has order 2m. Thus we have the theorem of Van Buskirk, that for
each m >, 2, the surface braid group BmM has elements of finite order
if and only if M = S2 or P2.

Some of these braid groups are actually finite:

. B^S2) ̂  Z/2Z,B3(S'2) has order 12,

. ^(P^Z^Zand

• B-z(P2) is a group of order 16 whose subgroup PB-z(P2) is
isomorphic with the quaternion group {=L1, =H, =Lj, ±k},

But Bs (P2) is infinite, as are all the other higher braid groups of P2

and 52.

For the braid groups of higher genus closed surfaces, we refer the
reader to [Sc], and only mention how to produce a generating set. After
removing a disk from a surface M of genus g^ the remainder can be
modelled as a disk with g twisted bands attached, in the nonorientable
case, or 2g bands if the surface is orientable. Then Bm(M) is generated by
o- i , . . . , (Tm-i as above, plus pij which represents the basepoint Pi running
once around the jth band, while the others are fixed. A finite set of relations
can be found in [Sc].
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1.3. Centers and large surfaces.

The center Z{G) of a group G is the subgroup of elements which
commute with all elements of the group. Chow [Ch] proved that the groups
Bm = Bm{D2) have infinite cyclic center, for m > 2. Some other surface
braid groups also have nontrivial centers: those of S2 [GV], P2 [Va]. If r
is defined as in the preceding section, the element T^ is central in BmS2.
Birman stated in [Bi2] that the torus braid groups BmT2 have center which
is free abelian with two generators, but did not include a complete proof.
We will prove this, and also calculate the center of the braid groups of the
annulus S1 x I in Section 4. However, apart from these and a few other
exceptions, most surface braid groups have no center. Our proof is the same
as given in [Bi2].

DEFINITION. — A compact surface M will be called large if

M ^ S2, P2, D2, S1 x J, T2 = S1 x S1,

Mobius strip S l x I , or Klein bottle SlxSl.

In other words, we call a surface large if its fundamental group has no finite
index abelian subgroup.

PROPOSITION 1.6. — Let M be a large compact surface. Then the
center Z{Bm{M)) is a trivial group.

Proof. — First, we prove by induction on m that Z[PBmM) = {1}.
The case m = 1 is well-known: the only surfaces whose fundamental groups
have nontrivial centers are P2, S'1 x J, T2, the Mobius strip, and Klein
bottle.

Let m > 1 and M large. We consider the following exact sequence:

1 -^ TTi (M\{PI, . . . . P^-i}) ——— PBmM -p-. PBm-lM -> 1.

Since p is surjective, it takes center into center, and by induction,
Z{PBm-iM) = {1}. So

Z(PBmM) C TTi (M\{PI, . . . . P^-i}).

But this latter group has trivial center, so Z(PBmM) = {1}. Now, let
g C Z(BmM). There exists an integer k > 0 such that gk € PBmM.
Then g1' € Z(PBmM), thus ̂  = 1. By Proposition 1.5, g = 1. D
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2. Subsur faces.

A subsurface TV of a surface M is the closure of an open subset
of M. For simplicity we make the extra assumption that every boundary
component of N either is a boundary component of M or lies in the interior
ofM.

Let Pi C N. The inclusion N C M induces a morphism

^:7ri(7V,Pi)——7ri(M,Pi).

The following proposition is well-known.

PROPOSITION 2.1. — Let N be a connected subsurface ofM such that
Ti-i (TV, Pi) ^ {1}. The morphism -0:71-1 (TV, Pi) -^ 71-1 (M,?i) is injective if
and only if none of the connected components of the closure M\N ofM\N
is a disk. D

Let Pi, . . . , Pn C N , and let P^+i, ...,Pm e M\N. The inclusion
N C M induces a morphism

^:B^N——BmM.

PROPOSITION 2.2. — Let M be different from the sphere and from the
projective plane^ and let N be such that none of the connected components
ofM\Nisa disk. Then the morphism ̂ :BnN —> BmM is injective.

Remark. — Proposition 2.2 is proved in [Go] in the particular case
where N is a disk.

Proof. — Let P^n'-PBnN —)• PBnM be the morphism induced by
the inclusion N C M. We prove that P^n is injective by induction on n.
The case n = 1 is a consequence of Proposition 2.1.

Let n > 1. By Proposition 2.1, the inclusion

TV\{P i , . . . . P,_i} C M\{Pi , . . . , P,_i}

induces a monomorphism

a:7ri (7V\{Pi,..., P,_i}) —— TTI (M\{Pi,..., P,_i}).
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The following diagram commutes:

1 -. 7ri(7V\{Pi,.. . ,P,_i}) —— pB^N -^ PBn-iN -^ 1

a | ̂ n | P^-l
^ - 4 / 4 -

1 -. 7ri(M\{Pi,.. . ,P,_i}) —— p^M -^ PBn^M -> 1.

By induction, P^n-i is injective. By the five lemma, P^ is injective, too.

Let P^'.PB^N -^ PBmM be the morphism induced by the inclusion
N C M. The following diagram commutes:

PBnN -^ PB^M

1" 1-
PBnN -pv^ PB^M.

The morphism P^n is injective, thus P-0 is injective, too.

Let i:^n —)> Sy^ be the inclusion. The following diagram commutes:

1 ^ PB,7V —— 5,7V ̂  E, -^ 1

\p^ L [.
1 -> PBmM —^ BmM -^ E^ -> 1.

Both P^ and </ are injective, so, by the five lemma, -0 is injective, too. D

Let 7 V i , . . . , 7 V r be the connected components of M\N. For z =
1,... ,r, we write

^={P,+i,...,p^}n7V,.

THEOREM 2.3. — Let M be different from the sphere and from the
projective plane. The morphism ̂ : B^N -> B^M is injective if and only if
either N, is not a disk or Pi -^ 0, for all i = 1, . . . ,r.

Proof. — We suppose that there exists i C {1 , . . . ,r} such that N,
is a disk and such that P, = 0. We consider the following commutative
diagram:

7Ti(7V\{P2,...,P,}) -^ BnN

V V

7Ti(M\{P2,...,P^}) —— B^M.
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By [FaN], the morphism 7r^(N\{P^,..., P^}) -^ B^N is injective. On the
other hand, the morphism ^:^(N\{P^,..., Pyj) -^ 7i-i(M\{P2,. . . , Pm})
is clearly not injective. Thus ^:BnN —^ BmM is not injective.

We suppose that either Ni is not a disk or Pi ̂  0, for all i = 1,.. . , r.
We consider the following commutative diagram:

BnN -^ B,M\{P,+i,...,P,Ji" i^ ih ^
BnN ————————> BmM.

By Proposition 2.2, the morphism ^'.B^N -^ BnM\[Pn+i,... ,Pm} is
injective. By [FaN], the morphism B^M\{P^+i,.. . ,P^} -^ B^M
is injective. Thus ^:BnN —^ BmM is injective. D

3. Cornmensurator, normalizer, and
centralizer ofTTiA^in TTiM.

Let N be a subsurface of a connected surface M. We say that N is a
Mobius collar in M if TV is a cylinder S1 x I and M\N has two components
7Vi,7V2 with one of them, say A^i, a Mobius strip (see Figure 3.1). Then
Mo = N U TVi will be called the Mobius strip collared by N m M.

N

Figure 3.1

Let G be a group, and let H be a subgroup of G. We denote by

• Cc(H) the commensurator of H in G', by
• Nc{H) the normalizer of Jf in G, and by

• Zc(H) the centralizer of J^f in G.
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That is,

Zc(H) = [g € G: gh == hg for all h e H},

NG(H) = {g € G: gHg-1 = H},

Cc(H) = {g e G: gHg~1 H H has finite index in pi^"1 and ft}.

The goal of this section is to prove the following theorem.

THEOREM 3.1. — Let PQ C N. We write

7riM=7Ti(M,Po) and Ti-iTV = 71-1 (TV,Po).

(i) JfM is not large or if 71-1 TV = {1}, then C^^M^iN) = TTiM.

(ii) JfM is large, if 71-1 TV 7^ {1}, and if TV is not a Mobius collar in M,
then C^M^iN) = TriTV.

(in) JfM is Jarge and if TV is a Mobius collar in M, then C^M^I^O =
7ri Mo, where Mo is the Mobius strip collared by N in M.

COROLLARY 3.2.

(i) JfM is either a cylinder, or a torus, or a Mobius strip, then

C^M^N) = N^M^iN) = Z^M^iN) = TTiM.

(h) JfM is large, if TV is not a Mobius collar in M, if 71-1 TV ̂  {1}, and if
TV is not large, then

C^M^N) = TV^M^lTV) = Z^M(TTlTV) == Z(7TiTV) == TTiTV.

(iii) JfM and TV are both large, then

C^M^iN) == N^M^iN) = TTiTV,

^M(^iAO=Z(7riTV)={l}.

(iv) JfM is iarg-e and if TV is a Mobius collar in M, then

C^M^lN) = N^M^lN) = Z^M^lN) = TTiMo,

where Mo is the Mobius strip collared by N in M.

Before proving Theorem 3.1, we recall some well-known results on
graphs of groups.
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An (oriented) graph F is the following data:

1) A set V(T) of vertices.

2) A set A(F) of arrows.

3) A map' s:A(F) -> V(F) called origin, and a map t:A(T) -^ V(T)
called end.

A ^mp/i of groups G(F) on F is the following data.

1) A group Gy for all v e V(T).

2) A group Ga for all a € A(F).

3) Two monomorphisms ^s'-Ga -^ Gs(a) and (pa^'-Ga -^ G^a) for all
aeA(r) .

We refer to [Se] for a general exposition on graphs of groups.

Let T be a maximal tree of F. The fundamental group 7Ti(G(r), T) of
G(F) based at T is the (abstract) group given by the following presentation.
The generating set of 71-1 (G(T), T) is

{e,;aeA(r)}u( |j G,),
vev(r)

where {ea;^ € A(F)} is an abstract set in one-to-one correspondance
with A(F). The relations of7Ti(G(r),r) are

1) the relations of Gy for all v € V(T),

2) e a = l f o r a l l a e A ( r ) ,

3) e^1 • (j)a,s{g) • ea = 0a,t(^) for all a € A(F) and for all g € Go.

There is a morphism ^:G^ ̂  7Ti(G(r),r) for all i; € V(r). By [Se],
this morphism is injective.

The fundamental group 71-1 (r,T) of r based at T has the following
presentation. The generating set of 7Ti(r,r) is {e^; a e A(F)}. The set of
relations of7Ti(r,T) is {ea = 1; a C A(T)}.

Let p:r —^ r be the universal cover of F. Let G(F) be the graph of
groups on F defined as follows:

1)Gy=Gp^ fora l l^ey(r ) .

2) Ga = Gp(a) for all a e A(F).

3) <^,5 = <^p(a),s and ^a,t = 0p(a),t for all a € A(F).
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We fix auction S-.T -^ r of p over T. We extend S to a section
S-.ACT) -^ A(F) as follows. Let a e A(F). Then S(a) is the unique lift of a
such that t(S(a)) = S(t(a)).

We define an action of 7Ti(r,r) on 7n(G(r),r) as follows. Let
v e V(F), let g € Ge, and let u 6 7i-i(r,T). Then

u(g)=geG^).

We consider the corresponding semidirect product 7i-i(G(r),r) xi 71-1 (r,T').
By [Se], there is an isomorphism

7ri(G(r),r) -^7ri(G(r),r) x7ri(r,r)
which sends Gv isomorphically on Gs(v) for all v e V(F), and which sends
Co on €a for all a e A(F). So, we can assume that

7n(G(r),r) =7ri(G(r),r) x7ri(r,r),
that G^ = Gs(v) for all v € V(T), and that Ga = Gs(a) for all a 6 A(F).

Let G = 7ri(G(r),r), and let G = 7n(G(r),r). The universal cover
of G(T) is the graph F defined as follows:

V(T) = (v(r) x G)/ ~,
where ~ is the equivalence relation defined by

(vi,gi) ~ (v2,ff2) if vi = v-i = v and g^gi 6 Gv.

We denote by [v,g] the equivalence class of (v,g).

A(T) = (A(F) x G)/ ~,

where ~ is the equivalence relation defined by

(ai,ffi) ~ (02,92) if ai = 02 = a and (j^ffi e Ga.

We denote by [a. 9] the equivalence class of (0,5). The origin map
s:A(T) -^ V(F) is defined by

s([^g})= [s(a),g]
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for a e A(F) and for g € G. The end map t:A(T) -^ V(T) is denned by

t{[a^g}) = [ t ( d ) ^ g ]

for a € A(F) and for (7 e G. By [Se], F is a tree.

The group G acts on F as follows. Let u e 71-1 (r,T), let h,g e G, let
i) G V(r), and let a € A(F). Then

^([^])=ML ^(M])=[a,^],

^d^^]) == [^)^^~1], ^([a,^]) = [n(a),^n-1].

The isotropy subgroup of a vertex v € ^(F) is

Isot(^) = { p e G ; ̂ ) ==v}.

The isotropy subgroup of an arrow a e A(F) is

Isot(a) = {g e G; ^(a) = a}.

Let v € V(T) and let a e A(F). By [Se],

Isot([5(^), 1]) = G,, Isot([5(a), 1]) = Ga.

Now, we come back to our original assumptions. M is a surface (with
boundary) different from the sphere and from the projective plane. N is a
subsurface of M such that none of the connected components of M\N is a
disk. Without lost of generality, we can also assume that N is not a disk.
Let N - t , . . . , Nr be the connected components of M\N.

We define a graph F as follows. Let

y(r)={n),^i , . . . ,^}.
For i e { 1 , . . . , r}, we fix an abstract set A^(r) in one-to-one correspondance
with the connected components of N H A^. We set

r

A(r)=|jA,(r).
t=i

If a C A^(r), then s(a) = VQ and t(a) = ̂ .
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We define a graph of groups G'(r) on F as follows. Let i € { 1 , . . . , r}.
We fix a point Pz 6 Ni and we set

G^=C?,=7ri(M,P,).

We fix a point Po € N and we set

G^=Go=7Ti(7V,Po).

Let a € A^(r). We denote by Ca the connected component of N D Ni which
corresponds to a. The set Ca is a boundary component of both N and Ni.
We fix a point Pa G Ca and we set

Ga=7Ti(Ca,Pa)^Z.

We fix a path 7a,s:[0,l] —> ./V from Po to Pa. This path induces a
monomorphism (f)a,s''Ga —> Go. We fix a path ^a,^^!] —> Ni from Pi
to Pa. This path induces a monomorphism (l)a,t''Ga —^ Gi.

We fix an arrow ai € A^(r) for all i e {1 , . . . ,r}. We consider the
graph T defined as follows:

i)v(r)={^i,...,M-
2)A(r)={ai , . . . ,a ,} .

3) s(a,i) = VQ and t(a^) = Vi for all % 6 { 1 , . . . , r}.

The graph T is a maximal tree of T. We write

To = /'ya,s/7a,t 5 A^a == '^0,^0,1

for all a € A^(r). For z = 1,..., r, the path 701 induces a morphism

^:C?, = 7ri(A^P,) —— 7Ti(M,Po).

We denote by

^o:Go=7ri(A^Po)——7ri(M,Po)

the morphism induced by the inclusion N C M.

The following theorem is a well-known version of Van Kampen's
theorem.
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THEOREM 3.3. — The map

{ea; a€A(r)}——7Ti(M,Po)
Co. '——^ l3a

and the morphisms -0,:G, -> 71-1 (M,?o) (i = 0,1, . . . , r) induce an
isomorphism

^:7ri(G(r),r)^7ri(M,Po).

Let r be the universal cover of G(r). Let q: F —> F be the map denned
as follows. Let v e V(F), let a e A(F), and let p e G. Then

9([^^]) -P^), 9([a^]) =p(a).

The following lemma is a preliminary result to the proof of
Theorem 3.1.

LEMMATA — Let i € { ! , . . . ,r}.Letv e V(T) be such that q{v) = Vi.
Let a,b e A(r) be such that t(o) == t(b) = v (see Figure 3.2):

(i) Ifq(o) = q(b) and Isot(a) H Isot(6) ^ {1}, then M is a Mobius strip.

(ii) Jf9(a) 7^ 9(6) ajnd Isot(a) D Isot(6) 7^ {1}, then Ni is a cylinder and
both boundary components of Ni are included in N D N^.

a b
-)——•——<-

v

Figure 3.2

Proof. — (i) We suppose that i == 1 and that a = [6'(ai), 1]. Then

v=t(a)=[t(S(a,))^]=[S{v,)^l].

Let 6= [6,^]. Then

^)=[^),^]=[5(^),1],

thus 6 = 5'(ai) (since q(a) = q(b) = ai), and g G G'^i = Gi. Note that
^ ^ Gai, otherwise

6=[5(ai),^]=[5(ai),l]=a.
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So,

Isot(a) = Gai and Isot(S) = gGa^g~1-

Let hi be a generator of Gai • There exist A;i, k^ € Z\{0} such that

/^^/^r1.
We suppose that TVi is not a Mobius strip. Let F be the subgroup

of Gi generated by h\ and g . The subsurface JVi has non-empty boundary,
thus Gi is a free group, therefore F is a free group of rank either 1 or 2.
Since F is a hopfian group (see [LS, Prop. 3.4]) and since h^ = g h ^ g ' 1 ,
the group F has rank 1. By [Ep, Thm. 4.2], h\ generates F. In particular,
there exists £ e Z such that

g=h[ eGar

This is a contradiction. So, TVi is a Mobius strip.

(ii) We suppose that i = 1 and that a = [5(ai), 1]. Then

,;=^(a)=[^(ai)),l]=[^i),l].

Let 6 = [6,^] and let 6 = q(b) -^ ai. Then

^)=[^]=[^i),l],

thus & = 5(6) and g € G^ = Gi. So,

Isot(a) = Gai and Isot(6) == gGbg~1-

Let ^i be a generator of G(^, and let h be a generator of G^. There exist
A;i,A;2 € Z\{0} such that

î =gh^g-1.

Let F be the subgroup of Gi generated by h\ and ghg~1. Since Gi is a free
group, jF1 is a free group of rank either 1 or 2. Since -F is a hopfian group
and since h^ = (i^"1)^2? ̂ e group F has rank 1. The subsurface A^i has
at least two boundary components, Gai and G&, thus -/Vi is not a Mobius
strip. By [Ep, Thm. 4.2], both h\ and ghg~1 generate F. So, we can assume
that

hi = ghg~1.

By [Ep, Lemma 2.4], it follows that N^ is a cylinder and that Ca^ and Cb
are the boundary components of N^. D
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Proof of Theorem 3.1. — (i) It is obvious, as all the non-large surfaces
have abelian fundamental groups, except the Klein bottle, which has an
abelian subgroup of index 2.

(ii) We suppose that there exists g € C^iM^i^O such that g ^ Ti-iTV,
and we prove that either M is not large, or TV is a Mobius collar in M.

Let VQ = [S(vo), 1] € V(T). We have g(vo) ^ VQ since g ^ 71-1 TV =
Isot(^o)' Let

a^ay • • • a^ (a, € A(r) and a € {±1})

be the (unique) reduced path of F from VQ to p('yo) (see Figure 3.3). For
j = 1,..., f, we denote by vj the end of the path a^ ' ' ' a - 3 . Note that £ ^ 2
since 9(^(^0)) = 9(^0) = ^o- If /i € Go H gGog~1^ then fa € Isot(^o) and
h C Isot(^(vo)), thus /i € Isot(^) and /i € Isot(a^) for all j € {1 , . . . , I}. We
suppose that q(v-^) = v\.

{1} ̂  Go H gGog~1 C Isot(ai) n Isot(a2),

thus, by Lemma 3.4, either N-^ is a Mobius strip, or TVi is a cylinder and
both boundary components of TVi are included in N H A/i.

ai 02 ^
•——)——•——<——•————•— • • • ———•——<—•
VQ -DI V2 V£-l 9(vo)

Figure 3.3

The group Go n gGog~1 has finite index in Go = TriAT, it is included
in Isot(di), and Isot(ai) is an infinite cyclic group. So, TT-^N has an infinite
cyclic subgroup of finite index, thus either TV is a cylinder, or TV is a Mobius
strip.

If TV is a Mobius strip, then TVi is also a Mobius strip and M = TVuTVi
is a Klein bottle (see Figure 3.4).

Figure 3.4
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If N and TVi are both cylinders, then M = TV U TVi is a torus (see
Figure 3.5).

Fig-ure 3.5

If TV is a cylinder and if TVi is a Mobius strip, then N is a Mobius
collar in M (see Figure 3.6).

Figure 3.6

(iii) We suppose that TV is a cylinder, that TVi is a Mobius strip, and
that M is large (see Figure 3.6). Let MQ = N U TVi be the Mobius strip
collared by N in M. The subsurface MQ is not a Mobius collar in M, thus,
by (ii),

C^M^iMo) = TI-i MO.

The group 71-1 TV has finite index in Ti-iMo, thus

C^M^lN) = C^M^iMo) == TTiMo. D

4. Centers.

The goal of this section is to describe the center of -BynM, where M is
either a cylinder or a torus.
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Let C be a cylinder. We assume that

C = [z eC; 1 < \z\ < 2},

and that

Pi = 1 + ———- for i = 1 , . . . ,m.
771+1

Let di: [0,1] —^ C be the path defined by

^) = fl + — — — ) e2^ f o r t €[0,1].
\ l i b ~\~ -L /

Let a be the element of PBmC represented by d = (d i , . . . ,dyn) (see
Figure 4.1).

Figure 4.1

PROPOSITION 4.1. — With the above assumptions^ the center of BmC
is the infinite cyclic subgroup generated by a.

Proof. — Let

D = { z ^ C ^ \z\ < 2}.

Let Po = 0. The inclusion C C D\{Po} induces an isomorphism
BmC —> Bm(D\{PQ}). Let S^+i be the group of permutations of
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{Poi PI, . . . , Pm}i a^d l^t ^m be the group of permutations of {Pi , . . . , Pm}-
We consider the morphism a: Bm^-iD —> Syyi+i. By Proposition 1.4, we have
the following exact sequence:

1 -. B^{D\{Po}) —. a-\^m) - 7ri(D, Po) -^ 1.

Moreover, 7Ti(D,Po) = {1}. Thus the inclusion D\{Po} C D induces
an isomorphism Bm(D\{Po}) —> (T'^E^). The image of a by this
isomorphism is the element of Brn-\-\D^ denoted by a, represented by the
braid b = (Po.di, . . . ,d^). By [Ch], we have Z(Bm-^iD) = Z(PJ^+iD),
and this group is the infinite cyclic subgroup generated by 5. From the
inclusions

PBm+iD C a-^E^) C B^+iD,

it follows that the center ofa'^Syn) is equal to the center of Bm+iD which
is the cyclic subgroup generated by a. Thus, by the preceding isomorphism,
the center of BmC = Bm(D\{Po}) is the infinite cyclic subgroup generated
by a. D

Now, we describe the center of B^T, where T is a torus. We assume
that

T= D2 /^2

We denote by (x, y) the equivalence class of (x, y). We assume that

/ z + 1 z + 1 \ . . .
Pi == ( ————— 5 ————— I0r Z = 1, . . . . 771.

Vm+3 m+37\ m + 3 m + 3

Let ai: [0,1] —> T be the path defined by

z + 1 i-\-1
^(^)=(^——-^———) for te [0,1],

\m +o m -\- 6/

and let bi: [0,1] — ^ T be the path defined by

biW=(^—,^—-t) fort 6 [0,1].
\m + 3 m + 3 /

Let a be the element of PBmT represented by a = (ai , . . . ,a^) (see
Figure 4.2), and let (3 be the element of of PBmT represented by
b = (^ i , . . . ,bm)'
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a-m
—————————<———•——

^m
d2

——<—•————

Oi ?2

Pi

PROPOSITION 4.2. — With the above assumptions, the center of BmT
is the subgroup generated by a and (3. It is a free abelian group of rank 2.

Proof. — The proof of Proposition 4.2 is divided into 4 steps. Let Zm
denote the subgroup of PBmT generated by a and (3.

Step 1. — Zm is a free abelian group of rank 2.

By [Bil, Thm. 5], a and (3 commute, thus Zm is an abelian group. We
consider the following exact sequence:

1 -> PBm-lT\{P^} ——— PBmT -^ 7Ti(r,Pi) -^ 1.

The group 7Ti(r, Pi) is a free abelian group of rank 2 and {p(a), p(/3)} is a
basis of Ti-i (T, Pi), thus Zm is also a free abelian group of rank 2.

Step2.—Zm^Z(BmT).

Let

^f———^^lx f———^^lcT.
Lm+3 m+3J Lm+3 m+3J -

By Proposition 2.2, the inclusion D C T induces a monomorphism
BmD —> BmT. The following diagram commutes:

1 ̂  PB^D —^ B^D -^ S^ ^ 1

1 1 1"
1 ̂  PB^T -^ BmT ^ J:m -^ 1.

Thus BmT is generated by PBmT U BmD.

By [Bil, Thm. 5], a commutes with all the elements of PBmT.
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Let

C = (R x [-
\ Ly

1 m+2a/1
cr.

L m + 3 m4-.
By Proposition 2.2, the inclusion C C T induces a monomorphism
B^C -^ ̂ T. Moreover, a e 5^(7 and B^D C ̂ (7. By Proposition 4.1,
Z{BmC) is the infinite cyclic subgroup generated by a. So, a commutes
with all the elements of BmD.

This shows that a e Z(BmT). Similarly, /? € Z(BmT).

Step 3. — Z(PBmT) C Zm.

We prove Step 3 by induction on m. Let m = 1. Then PB^T =
Ti-i (T, Pi) = Zi, thus Z(PBiT) = Zi.

Let m > 1. Let g e Z(PBmT). We consider the following exact
sequence:

1 ̂  TTi (r\{Pi, .... P^-i}) —— PBmT -^ PBm-lT -^ 1.

We have p{g) 6 Z(PBm-iT). By induction, Z(PB^-iT) C Zm-i. Moreo-
ver, p{Zm) = ^m-i- Thus we can choose h 6 Zrn such that p{K) = p(^). We
write g ' = gh-\ Then ^ € Z(PBmT) and ^ € 7Ti(r\{Pi,. . . ,P^-i})
(since p(^) = 1), thus g ' e Z(7Ti(r\{Pi,... ,Pm-i})) = {1}, thus
g ' = gh~1 = 1, therefore g = /i e Zm.

Step 4. — Z(B^T) C PB^T.

Let ^ 6 -Bm^- We suppose that there exist % , j € {! , . . . ,m}, 2 7 ^ ^
such that a(g)(Pi) = Py, and we prove that g ^ Z(BmT).

Pi

P.

Oi

Figure 4.3

.-i
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Let a, € PBmT represented by (Pi,... ,P,-i,a,,P,+i,... ,P^),
where Pk denotes the constant path on P^ for k = l , . . . ,m and 0,1 is
as above. We consider the following exact sequence:

1 -^ PBm-iT\{Pi} —— PBmT ̂  7Ti(r, P,) -> 1

Then pz(ai) -^ 1 and pi(gaig~1) == 1 (see Figure 4.3), thus gaig~1 / Q!^,
therefore g ^ Z(BmT). D

5. Commensurator, normalizer, and
centralizer of BnD in BmM.

Let M be an oriented surface different from the sphere, and let
D C M be a disk embedded in M. Let n > 2, let Pi, . . . , Pn € D, and
let Pyi+i,. . . ,P^ e M\D. The goal of this section is to describe the
commensurator, the normalizer, and the centralizer of B^D in BmM. Note
that, if n = 1, then B^D = {1}, thus

CB^M(B,D) = NB^M(B,D) = ZB^M(B,D) = BmM.

This section is divided into two subsections. We state our results in
Subsection 5.1, and we prove them in Subsection 5.2.

5.1. Statements.

A tunnel on M based at (D;P^+i,.. . , Pm} is a map

H:DU {P^+i , . . . , Pm} x [0,1] —— M

such that

1) H(x, 0) = H(x, 1) = x for all x € D,

2) ^(P,,0) = P, and H(P^ 1) e {Pn+i , . . . ,Pm} for all P, €
{-Pn+l? • • • •> Pm}'>

3) H(x,t) + H{y,t) for .r,^/ e D U {P^+i , . . . ,P^}, ^ 7^ 2/, and for
^e [o , l ] .

There is a natural notion of homotopy of tunnels. The tunnel group on
M based at (£);P^+i,..., Pm) is the group

Tm-nM = Tm-nM{D;Pn^ . . . , P^)
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of homotopy classes of tunnels on M based at ( D ' P _.i P 1
A /T 1J - * 1 • • \ 5 Tl-t-l 5 • • • 5 -t 771 / •

Multiplication is concatenation, as with braids.
We define a morphism

T'.Tm-nM X BnD ——> B^M

as follows. Let h e Tm-nM and let / e BnD. Let H be a tunnel on M
ba^ed at (D;Pn+i,. . . , P^) which represents h, and let b = ( & i , . . . , bn)
be^a braid on D based at (Pi,...,?,) which represents 7. 'L^t
b = (61, . . . , bn, 6n+i , . . . , ^m) be the braid on M defined by

• bi(t) = H(bi(t),t) for i e {1 , . . . ,n} and for t € [0,1],

• bi(t) = ^(P,, ̂  for % e {n + 1,.. . , m} and for t e [0,1].

Then r(/i, /) is the element of B^M represented by 6.

Remark. — This is related to the tensor product operation for the
classical braid groups (see [Co]).

We denote by C^mM the image of T. Let h e Tm-nM and let
/, /' € B^D. Then

^ /) • // • T(^, /)-1 = r(l, fff-1) = ff'f-\
In particular,

Cn,mM C NB^M(BnD).

THEOREM 5.1. — Let n ̂  2, and M be an orientable surface M ̂  S2

Then ' '

CB^M(BnD)=Cn^M.

Let Zn^mM denote the image by r of Tm-nM x Z(BnD).

COROLLARY 5.2. — Let n > 2. Then

CB^M(BnD) = NB^M{BnD) = Cn^M,

Za^M(BnD) = Zn^M.

Remarks.

(i) We do not know whether a similar result holds for non-orientable
surfaces.

(ii) Corollary 5.2 generalizes [FRZ, Thm. 4.2].
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Let

B^_^M = B^_^M(Pi;P^i,...,?„)

denote the subgroup of Bm-n+iM = Bm-n^\M(P^ P^i,..., P^) consis-
ting o f ^ e B^-n+iM such that o-(^)(Pi) = Pi. We define a morphism

K:r^-,M—.^_^M

as follows. Let h € Tm-nM. Let Jf be a tunnel on M based at
(D;P^-(-I,...,P^) which represents h. Let 6 = (61,6^+1,... ,&m) be the
braid defined by

bi{t) = H(Pi,t) for z e { l , n 4 - l , . . . , m } and for te [0,1].

Then /t(ft) is the element of B^_^^M represented by b.

THEOREM 5.3. — Let n > 2. There exists a morphism 6:Cn,mM —>
-0^-^4-1 M such that

6(r(^f)) = K(h)

for all h € Tm-nM and for all f e BnD. Moreover, we have the following
exact sequences:

1 _ BnD —— C^mM -6-. B^_^M -^ 1,

1 -> Z(BnD) —— Z^rnM -^ B^-n^M -^ 1.

THEOREM 5.4. — Let n ;> 2. Let M be either with non-empty
boundary or a torus. There exists a morphism L:B^_^^M —^ Zn,mM
such that 6 o u = id. In particular^

Cn^mM ̂  B^_^M X BnD,

Zn^mM ̂  B^_^M X Z(BnD).

Remark. — Theorem 5.4 generalizes [FRZ, Thm. 4.3] and [Ro,
Thm.3].
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5.2. Proofs.

LEMMA 5.5. — We consider an exact sequence

1 —> G\ —> G-2 —^ G-3 —> 1.

Let H^ C C?2 be a subgroup, let H^ = ^(^2), and let ̂ i = ^2 n C?i. Then

(i>(cG,w)^cG,m.
CG^)nGzCCG^H,).

Proof. — Let g 6 CG^H^). We write

F2=^2n^f2^~1.
Let / i i , . . . , /ifc 6 H^ be such that

^2 = F2 U /liF2 U . . . U /lfc^2.

Then

0(J^2) = ̂ 3 = 0(^2) U ̂ (/ll)^(F2) U . . . U 0(W(F2).

So, <^(jF2) has finite index in Tfs. Moreover,

W) = (^(^2 n ̂ 2^-1) C ^(^2) n W29~1) = ̂ 3 n (/)(g)H^(g)-\

thus H^C\(j){g)H^(f){g)~1 has finite index in ̂ 3. Similarly, 7^3 (~}(/)(g)H3(f)(g)~1

has finite index in (j)(g)H^(j)(g)~1. So, 0(^) € CG^H-^)'

Let ^ € CG^H^) n GI. We write

F2=^2n^2^~1.
Let / ^ i , . . . , /IA; € ^2 be such that

Jf2 =F2U/^F2U...U/lfcF2.

We assume that

hiF^nH^ ^0 for z=l,...,^,

/i,F2 H JFfi == 0 for % = ^ + 1,..., fc.
We can also assume that /i^ e H^ for z = 1,..., £. Then

ffi == (F2 n Tfi) u /ii(F2 n ̂ i) u... u /î F2 n ffi).
Moreover,

F2 n H^ = H<z H g H ' z g ' 1 nH^== H^r\ gH^g~1.
Thus Jfi C\gH^g~1 has finite index in ffi. Similarly, H\ r[gH^g~1 has finite
index in gH^g~1. So, ^ C CG^H^}. D
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LEMMA 5.6. — Let M be either with non-empty boundary or a torus.
There exists a morphism io:B^_^-^M —> Tm-nM such that K o IQ = id.

Proof. — Let TM be the tangent space of M. It is known that
TM = M2 x M. We provide M with the flat Riemannian metric. Namely,
for all x € M, the metric ( , )x on x is the standard scalar product
on R2 (which does not depend on x). Furthermore, we set the following
assumptions:

1) There is no closed geodesic of length < 4.

2) D is the disk of radius 1 centred at Pi.

3) d(Pi,P,) > 2 for all i € [n -h i , . . . ,m}.

4) Let Ci , . . . ,Cg be the boundary components of M. Then
d(P i ,C , )>2 fo ra l l . 7€{ l , . . . , 9} .

Now, let / € B^_^^M. Let b = (&i, & n + i , . . . , &m) be a braid based
at (Pi, Pn-n, • • • 5 Pm) which represents /. For t € [0,1], we write

r(t)=inf{Jd(6i(t),^+i(^)),...,Jd(6i(t),^(t)),

Jd(6i(t),C7i), . . . ,Jd(&i(^),G,),l}.

Then r: [0,1] —> R is a continuous map and r(t) > 0 for all t € [0,1]. Let

Do = {(Xi.Xs) € R2; Xf + Xj ^ 1}.

Let HQ:DQ x [0,1] —^ M be the map defined by

Ho{X,t) = exp^(r(t)X) for X e Do and for ^ e [0,1].

Let F: Do —> D be the diffeomorphism defined by

F{X) = expp^ X for X e Do.

Let

jy: D U {P,+i, . . . , Pm} x [0,1] —— M

be the map defined by

H(x,t) = TifoG^"1^)^) for x € D and for t C [0,1],

H(P^t)=b,{t) for P ,€{Pn+i , . . . ,P^} and for ^e [0 , l ] .
The map H is a tunnel on M based at (D;P^+i,... . Pm)- We define io(f)
to be the element of Tm-nM represented by H.

One can easily verify that LQ is well-defined, that LQ is a morphism,
and that ^ o io = id. D
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LEMMA 5.7. — The morphism ^\Tm-nM —^ B^_^^M is surjective.

Remark. — We do not know whether a similar result holds for
non-orientable surfaces.

Proof. — We choose an open disk KQ embedded in M\D and which
does not contain any Pi for i = n + 1,. • . , m. The inclusion M\KQ C M
induces an epimorphism (J):B^_^^M\KQ —> B^_^^M. The following
diagram commutes:

Tm-nM\Ko ̂  B^_^M\Koi , i<
Tm-nM —————— B^_^M.

By Lemma 5.6, K,:Tm-nM\KQ —> B^_^^M\KQ is surjective. It follows
that K:Tm-nM —> B^_^^M is surjective, too. D

From now on, we fix a (set) section LQ:B^_^^M —» Tm-nM of ^.
Moreover, we assume that LQ is a morphism if M is either with non-empty
boundary or a torus, and that ^o(l) = 1-

Theorem 5.1 is a direct consequence of the following lemma.

LEMMA 5.8. — Let n >, 2. Let g e Cp^M^nD). There exist
u € B^_^^M and f € BnD such that

g=r(i.o{u),f).

The following lemmas 5.9 and 5.10 are preliminary results to the proof
of Lemma 5.8.

Recall that Y^rn denotes the group of permutations of {P i , . . . . PynL
that Syi denotes the group of permutations of {P i , . . . , Pn}, and that T^ra-n
denotes the group of permutations of {Pn+i , . . . , Pm}- We write

B^M=a-\E^n).

LEMMA 5.9. — Let n >, 1. Let g € CBnM(PBnD). There exist
u C B^_^^M and f € PBnD such that

g=r{Lo{u)J).
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Proof. — We prove Lemma 5.9 by induction on n. Let n = 1. Then
PB^D = {1}, thus

CB^M(PB,D) = B^M.
On the other hand, if u C B^M, then

u=r(io(u),P^),
where Pi denotes the constant path on Pi.

Let n > 1. Let g C CB^M^PB^D). We write

M' = M\{Pi , . . . , P,_i, P,+i,..., ?„},

and D/ = D\{PI, ... ,Pn-i}. We consider the following commutative
diagram:

1 -^ TTiiy —^ PB^D -^ PBn-iD -^ 1

1 ^ ^M1 -^ B^M -^ B^\M -. 1.
By Lemma 5.5, p(g) € C^-i ^{PBn-\D). By induction, there exist
u e B^_^^M and /i e PBn-iD such that

P(^) =7"(< /o(^),/l).
We choose /2 e PB^jD such that p[f^ = /i and we write

9' •=g'r{iQ{u),f2)~1.

We have g ' € TT-iM' (since p(^') = 1) and g1 € CB^M(PBnD), thus, by
Lemma 5.5,

9 ' €C^M/(7TlI/).

If either m 7^ n or M is not a disk, then M' is large and D' is not a Mobius
collar in M', thus, by Theorem 3.1,

C^M^^Df)=^Df.
If m = n and M is a disk, then 71-1 M' = TT\D' , thus

^M^lD^TTiD'.

If follows that

9' = /3 e TTiP' C PBn .̂

So,

9= f3'r(io(u),f2) =T^o(zA),/3/2). D
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LEMMA 5.10. — Let n > 2. Let g € CB^M^D). Then a(g) is an
element of En x Sm-n.

Proof. — Let g € CB^M^D). We suppose that a(g)(P^) = Pi.
Let / e 7Ti(D\{P2, . . . , ?„}, Pi), / ^ 1. The group PB^^ ha^ finite index
in BnD, thus CB^M^D) = CB^M^PB^D). Since 7Ti(^\{P2, . . . , Pn}) C
PB^P and since ^ c CB^M(PBnD), there exists an integer A; > 0 such
that

^/V1 C PB,D.

We consider the following exact sequence:

1 -^ 7Ti(M\{Pi, . . . ,Pn,P^2, . . . ,Pm}) ——— PB^M -^ PB^M -^ 1.

The morphism p sends PB^D isomorphically on PB^D. On the other hand,
9fk9~l ^ 1 (since / ^ 1 and B^M is torsion free) and p(gfkg~l) = 1 (see
Figure 5.1). This is a contradiction.

This proves that a(g) e T,n x T,m-n' D

Prr

9 / k g-1

Figure 5.1

Proof of Lemma 5.8. — Let g e CB^M^D). By Lemma 5.10,
a(g) € S^ x ^rn-n' We choose /i e B^D such that a(p/f1) e Em-n
and we write p' = gf^. Then p' e B^M, g/ e CB^M^D), and
CB^M(BnD) = CB^M(PBnD)^ thus

^/ € Ca^M(PBnD).

By Lemma 5.9, there exist n € B^_^M and /2 e PB^D such that

^=r(^(n)j2).
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So,

g=r{Lo(u),f2) ' fl =T(lo(^),/2/l). D

Proof of Theorem 5.3. — The proof is divided into five steps.

Step 1. — Definition of 6.

We consider the natural morphism

6o:B^M-.B^_^M.

Let g € Cn,mM. By Lemma 5.10, a{g) € S^ x ̂ m-n- We choose / e B^D
such that o'{gf~1) € S^_yi and we set

6{g) = W-1).

We prove that the definition of 6(g) does not depend on the choice
of/. Let /i, /2 G B^D be such that cr(gf^) € S^_n and a{gf^~1) e ̂ m-n-
Then

^oW1)"1^/!-1) = ̂ (^-^/f1) = W2/f1) = 1,

thus ^o^/r1) = ̂ (^/2-l)•
Step 2. — The map S:Cn,mM ~~>' B^_^^M is a morphism.

Let gi,g2 ^ Cn,mM. Let /i, /2 ^ ^n^ be such that o-(^i/f1) e Syn-n
and cr(^2/2~1) ^ ^m-n- By Corollary 5.2,

C^M=A^M(B^D),

thus there exists /s € ByiZ) such that g ^ 1 f\g^ = /3. Moreover,

^1<72)(/2/3)-1) = ̂ (^/i-1^^1) ^ ̂ -,.

So,

^(pi)^(p2) = ̂ o^i/r1)^^^1)= ^o^i/r1^^1)
= ^o((^1^2)(/2/3)~1) = S(g^).

Step 3. — Let /i € T^-^M'and let / C B^P. Then
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6(r{^ /)) = 6(r(h, 1) . r(l, /)) = 6(r(h^ 1)) . 6(f) = ^(/i).

Step 4. — We have the following exact sequence:

1 ̂  BnD — C^M -^ ^L-n+iM -^ 1.
Let ZA € B^_^M. Then

<5(r(io(z0, 1)) = ^(io(^)) = ^.
This shows that 6 is surjective.

Let g € Cn,m^' By Lemma 5.8, there exist u € B^_^iM and
/ C Bn-D such that ^ = r(^o(^), /)• If ^ € ker^, then

1 = <^) = ^(^o(^)) = ^,
thus

^ = T^oM, /) = r(l, /) = / € B,D.

Step 5. — We have the following exact sequence:

1 -> Z(BnD) —. Zn^M ̂  B^^M -. 1.
By Step 4, it suffices to show that 6:Zn,m^ —^ B^_^-^M is surjective.
Let n € B^_^M. Then r(io(^), 1) ^ ^n,mM and ^(r(io(^), 1)) = u. D

Proof of Theorem 5.4. — The morphism i:B^_^_(_iM —> Zn^M is
defined by

i{u) == r(^(^), 1) for u € B^_^iM.
Clearly, <? o i = id. D

6. Commensurator, normalizer, and
centralizer of BnN in BmM.

Let M be a large surface, and let N be a subsurface of M such that N
is neither a disk, nor a Mobius collar in M, and such that none of the
connected components of M\N is a disk. Let T V i , . . . , Nr be the connected
components of M\7V. Let Pi,.... Pn € TV, and let Pn+i , . . . , Pm ^ M\7V.
For z = 1, . . . , r we write

^={Pn+l , . . . ,P^}nM, B^N,=Bn,N^\

where n^ denotes the cardinality of Pi. If rii = 0, we make the convention
that BoNi = {1}.

The goal of this section is to prove the following theorem.
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THEOREM 6.1. — One has

CBmM(BnN) == BnN X Bn,N^ X • • • X B^Nr.

COROLLARY 6.2. — One has

CB^M^BnN) = NB^M(BnN) = BnN X B^N^ X . . . X Bn^Nr,

ZB^M(BnN) = Z(BnN) X B^ X . . . X Bn^Nr.

The remains of this section are divided into two subsections. In
Subsection 6.1 we study an action of Tr^N on some groupoid IIi(M\{Po}).
In Subsection 6.2 we apply the results of Subsection 6.1 to prove
Theorem 6.1.

6.1. Action ofn-iN on IIi(M\{Po}).
Throughout this subsection, we fix a point Po € N and a point

Pi € Ni for all i = 1,..., r. Moreover, we do not assume that none of the
connected components of M\ N is a disk.

The fundamental groupoid of M\{Po} based at {Pi , . . . ,Pr} is the
groupoid IIi(M\{Po}) defined by the following data:

1) The set of objects of IIi(M\{Po}) is {Pi , . . . , Pr}.

2) Let P,,P, € {Pi,...,?,.}. The set of morphisms from P, to Pj
is the set IIi(M\{Po}) [P^Py] of homotopy classes of paths in M\{Po}
from Pi to Pj.

Let P^,PpPfc € {Pi,.. . ,Pr}. For convenience, we assume that the
composition map goes from IIi(M\{Po})[Pz,Py] x ni(M\{Po})[Py,Pfe]
to IIi(M\{Po})[Pz, PA;]. Note that

ni(M\{Po})[P.,P.]=7ri(M\{Po},P.).

Moreover, ifrre IIi(M\{Po})[Pz, Pj], then the map

6^: 7ri(M\{Po},P.) —.ni(M\{Po}) [?„?,]r^ z )
9 •—> gx

is a bijection.

Let P,, Pj G {P i , . . . , Pr}. An interbraid on M based at (Po, [Pz, Pj})
is a pair b = (60,61) of paths, bfc: [0,1] —> M, such that
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1) MO) = Ml) = Po, W = P,, and 6i(l) = P,,

2)bo(t)^b^t) for ^e[0 , l ] .

There is a natural notion of homotopy of interbraids. The interbraid
groupoid on M based at (Po, {PI, ..., Pr}) is the groupoid

IB^M = J52M(Po, {Pi, . . . , Pr})

defined by the following data:

1) The set of objects of IB^M is {Pi , . . . , Pr}.

2) Let Pi.Pj € {Pi,...,Pr}. The set of morphisms from Pi to P,
is the set IB^M[Pi^Pj] of homotopy classes of interbraids on M based
at(Po,[Pz,P,]).

Let Pi,PpPfc € {Pi,...,Pr}. For convenience, we assume that the
composition map goes from 1B^M\P^ P,] x IB^M\P^ Pk] to IB^M[Pi, Pfc].
Note that

IB^M[P^Pi\ = P^2M(Po,P,).

Moreover, if X € JB2M[P^, Py], then the map

9x: PB2M(Po,P.) ——JB2M[P,,P,]
^ i—> gX

is a bijection.

Let P%, Pj € {Pi , . . . , Pr}. We consider the natural maps

a:JP2M[P,,P,]-^7ri(M,Po),

/?:ni(M\{Po})[Pz,P,] -^JB2M[P,,P,].

Let a- C IIi(M\{Po})[Pz, Pj], and let X = /3(aQ. Then the following diagram
commutes:

1 ^ 7Ti(M\{Po},P,) ————— PB2M(Po,P.) -^ 7Ti(M,Po) ^ 1

1'- I0" [ld4-

^

Thus, a is surjective, /3 is injective, and

a-l(l)=/3(^l(M\{Po})[P„P,])

ni(M\{Po})[P.,P,] ̂  IB^M[P^P,] -^7ri(M,Po).
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So, we can assume that

IIi (M\{Po}) [?„?,.] =/3(lIi(M\{Po})[P,,P,]) CIB^M[P^P,}.

The inclusion N C M induces a morphism

^:7Ti(TV,Po) ——— PB^M(Po,Pk)

for all k = 1,. . . , r. We define an action of 71-1 (TV, Po) on IB^M[Pi, Pj} as
follows. Let u e Ti-i (TV, Po) and let X e IB^M^, Pj}. Then

u(X)=^(u)'X^,{u)-1.

Let a; € IIi(M\{Po})[P,, P,] and let u € 7Ti(TV, Po). Then a(u(a-)) = 1, thus
u(x) e ni(M\{Po})[P,,P,-]. So, the action of 7Ti(7V,Po) on IB^M[P^Pj\
induces an action of 71-1 (TV, Po) on IIi(M\{Po})[P^ P,].

We denote by S^Pi, Pj] the set of.re ni(M\{Po})[P,, P,] such that,
for all u e 7Ti(A^,Po) there exists an integer k > 0 such that uk(x) = x.
The main result of Subsection 6.1 is the following proposition.

PROPOSITION 6.3. — Let ij € { ! , . . . ,r}. Then

c rp ^,_S^N^^=^W^ in=^^N[^i^j\ — \
[0 i f z ^ j .

Lemmas 6.4 to 6.7 are preliminary results to the proof of Proposi-
tion 6.3.

From now on and till the end of the proof of Lemma 6.7, we set the
following assumptions (see Figure 6.1):

1) N is a sphere with q-{-1 holes (q ^ 1). We denote by Co, d,..., Cq
the boundary components of TV.

2) M\N has two connected components, TVi and N^.

3) N H -/Vi = Ci U ... U Cq, and N D N^ = Co.
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Ci

Figure 6.1

We choose a point PQ € N different from ?o. We choose a point
Qi e Ci for all % = 0,1, . . . , q. According to Figure 6.2,

1) we choose a path 7f:[0,l] -^ N\{Po} from ?o to Q, for all
^ = 0 , 1 , . . . , q,

2) we choose a path 7^ [0,1] -^ TVi from Pi to Q, for all z = 1,. . . , ̂

3) we choose a path 7^: [0,1] -^ A^ from P^ to Qo.

Figure 6.2

We write

7z=7^(7D~1 forz=0,l, . . . ,9,

A = 7FS € TTI (M\{Po}, Pi) for i = 1 , . . . , g,

T=7^17oe^l(M\{Po})[Pl,P2].
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Note that the path T induces a morphism

7Tl(^2,P2)———^l(M\{Po},Pi),

g —— TgT-\

The following lemma is a consequence of Van Kampen's theorem.

LEMMA 6.4. — Let F be the subgroup of7Ti(M\{Po},Pi) generated
by/^...A.

7Tl(M\{Po},Pi) = 7Ti(M,Pl) * (T . 7Ti(7V2,P2) • T-1) * F.

Ai2 these groups are free and [^,... ,/3J is a basis for F. D

According to Figure 6.3,

1) we choose a simple loop a,: [0,1] -^ d based at Q, for all
% = 0 , l , . . . , g ,

2) we choose a path ^: [0,1] -^ N from Po to Q, for all i ==. 0 ,1, . . . , q.

Figure 6.3

We write

hi = 7^z(7D~1 € 7Ti(M,Pi) for i = 1,... ,q,

ho = 7^o(7$)~1 e 71-1 (A^P2),

^ = ^a,^-1 € 7Ti(7V, Po) for % = 0,1,. . . , q.

According to Figure 6.4, we choose a loop u,'. [0,1] -> N\[Po} based at Po
turning around Po.
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Figure 6.4

We write

^c=7^1^7l e7Ti(M\{Po},Pi).

One can easily verify that

^ = JVr-1. h^. /^2~1/^1 • . . . • W1^1.

LEMMA 6.5. — One has

(i) uo{g)=g forallg^^(N^P^),

(ii) no(^) = ^ ̂  a^ ^ <E 7Ti(^V2,P2),

(iii) ^o(A) = A for aJJ A € {(3^ ... ,/3J,

(iv) uo(T) = /i,-^.

Proof. — (i) We choose a loop C:[0,l] -^ N^ based at Pi which
represents g. Then the image of C and the image of UQ are disjoint (see
Figure 6.5), thus uo(g) = g.

{ p, .——————————^^).

UQ g uo1

Figure 6.5
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(ii) We choose a loop C: [0,1] -^ N^ based at P^ which represents g.
The image of C and the image of UQ are disjoint, thus uo{g) = g.

(iii) The image of/^ and the image of-uo are disjoint, thus ^o(A) = A.

(iv) In Figure 6.6, the interbraid drawn in (a) is homotopic to the
interbraid drawn in (b), and the interbraid drawn in (b) is homotopic to
the interbraid drawn in (c). The interbraid drawn in (a) represents uo(T),
and the interbraid drawn in (c) represents

7^1^-17o.
It follows that

^o(T) = ̂ r^'So = 7^1^-17l • ̂ rSo = ̂ T. n

Figure 6.6. a

Figure 6.6.b

Figure 6.6.c
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LEMMA 6.6. — Let k C { 2 , . . . ,g}. Then

(i) Uk(g) = g for all g € 7ri(7Vi,Pi),

(ii) Uk(g) == ^ for all g e 71-1(^2,Pa),

(hi) Uk(T)=T,

(iv) Ufe(A) = A for all i € { 2 , . . . ,k - 1},

(v) Ufc(/?fc)=A^l/3^1^1/3fc^,

(vi) Uk{hc)=0kh,,10klhcf3khkf3kl.

Proof. — The statements (i) to (iv) can be proved with the same
arguments as those given in the proofs of the statements (i) to (iii) of
Lemma 6.5.

(v) In Figure 6.7, the braid drawn in (a) is homotopic to the braid
drawn in (b), and the braid drawn in (b) is homotopic to the braid drawn
in (c). The braid drawn in (a) represents Uk(^k), and the braid drawn in (c)
represents

^l^l(^r^-l^(7D-l•
It follows that

UkW = 7^17i^l(^)-l^-17i^(^)-l

= ̂ -s^r1 • ̂ a^)-1 • ̂ (^)-1^ • ̂ - î
•^Si^r1-^^)"1

= W^^h^ftkhk.

(vi) In Figure 6.8, the braid drawn in (a) is homotopic to the braid
drawn in (b), the braid drawn in (b) is homotopic to the braid drawn in (c),
and the braid drawn in (c) is homotopic to the braid drawn in (d). The
braid drawn in (a) represents Uk{hc), and the braid drawn in (d) represents

Tr1^1^)-1^^)-1^.
It follows that

Uk{hc) = 7^1'y^fcl(^)-l^Q'fc(7D-17l

= rt(7!)-1 • 7î -l(7D-l • ̂ (^-Si • 71-W

• 7i-W)-1 • ̂ (^r1 • ̂ r^i
= W^k^Mk/Sk1- a
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Figure 6.7. a

Figure 6.7.b

Figure 6J.c
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Figure 6.8. a
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Figure 6.8.d

LEMMA 6.7. — 5^v[Pi,Pi] = 7ri(7Vi,Pi) and ̂ [Pi^] == 0.

Proof. — The proof of Lemma 6.7 is divided into five steps.

Step L — 7ri(M,Pi) C 5^[Pi,Pi].

Let ^ G 7Ti(7Vi,Pi) and let u € 71-1 (TV, Po). Let C^1] -^ M be a
loop based at Pi which represents ^, and let $: [0,1] —> N be a loop based
at Po which represents u. The image of C and the image of ^ are disjoint,
thus u(g) = g.

Step 2. — SN[PI,PI} C TTi(A^Pi) * F.

Let

h^^h^1'...'^^1-^.

Then

he = T^^-1 . (^)-1, ^ € 7ri(M, Pi) * F.

Let ^ € 7Ti(M\{Po}, Pi). By Lemma 6.4, g can be (uniquely) written

g = xoTy^x^ ' ' • r^T-1^,

where
^ 67Ti(M,-Pi)*^ for i = = 0 , 1 , . . . , ^ ,
^ ^ 1 for i = 1,...,^- 1,
^e7ri(^2,P2)\{l} f o r z = l , . . . , ^ .
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We suppose that i >_ 1. By Lemma 6.5,

uo(g) = Xoh^Ty^T-^h^ • . . h^TyeT-^cXe

= xoh'^ • T • hoyihy1. T-1. (h'^x^

•••••T-hoyth^.T-1.^)-^^

It follows that, for an integer k > 0,

^(g) = xoW . T . h^h^ . T-1. (h^x^y

• • • • • T • h^h^ . T-1. (^)-^,

thus u^(g) ̂  g.

So, if g e SN[PI,PI\, then there exists an integer k > 0 such that
"o(ff) = 9, thus i = 0, therefore g e TT^NI, Pi) * F.

For j = 2,...,q, we denote by F(0^..., /?,) the subgroup of F
generated by {/?2,...,^.}.

Step 3. - SN[PI, Pi] C 7ri(M, Pi) * F(/32,..., /?,-i).

Let

/I' = ̂ -iVl/̂ "-1! • • • • • A/l2/?2~1 • /»! • ThoT-1.

Then

^=(^)-1/?^-1^-1,

^ £ 7Ti(M,Pl) * (T. TTi^.Pz) • T-1) * F(/?2. . . . ,^_i).

Let 5 € 7Ti(M\{Po}, Pi). By Lemma 6.4, g can be (uniquely) written

g=xo(^yxl•••f3£gtxe,

where

x, € 7ri(M, Pi) * (T. 7ri(Ar2. P2). T-1) * P^,..., /3,_i)

for z = 0,1,...,^.
£,€{±1} f o r z = l , . . . . ^

Xi ^ 1 if £,+i = -e, f o r z = 1 . . . . ,^ - ! .
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We call this expression a relative reduced expression of g with respect to f3q
onength£=£q(g).

We suppose that t ̂  1. Let k > 0 be an integer. By Lemma 6.6,

Uq^q) = ^hq^^h^^qhq = ̂ (3qhq^

Uq{xi) = Xi for i = 0,1,. . . ,^ .

If £^ = £^i = 1, then

U^qX.Oq) = {h^ . (3q • /^(/l^ . f3q . ̂ .

If ^ = 1 and ^+1 = —1, then

^(/3^ ,̂-1) = (^)fc • ̂  • h^h^ . ̂ -1 . (^)-^

and h^Xih^ ^ 1 (since xi ^ 1). If£, == -1 and £,+i = 1, then,

u^x^q) = h^ . ̂ -1 . (^Q-^^/.^^ . ̂  . ̂ ,

and {hf)-kXi(hf)k ^ 1 (since ̂  ^ 1). If a = e^ = -1, then

u^x^) = h^ . f3,1. (/z^-^.^-^ . f3q1. (/.^-^

So, ZA^(^) has a relative reduced expression with respect to f3q of length £, and
this expression begins with either Xo{hf)k (if^i = 1) or Xohqk (if^i = -1).
In particular, u^g) ̂  g .

So, if g € S'7v[-Pi,-Pi], then there exists an integer k > 0 such that
^{9) = 5S thus £q(g) = 0, therefore

g C 7Ti(7Vi, Pi) * (T . 7Ti(7V2, ?2) • T-1) * F(/32, .... f3q,,).

By Step 2, it follows that

(7C7Ti(M,Pl)*^(/32, . . . , /V-l) .

^ep^—5jv[Pi,Pi]C7Ti(7Vi,Pi).

By Step 3,

^v[Pi, Pi] C 7Ti(7Vi, Pi) * F(/?2,.... /V-i).
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Let j e {2,. . .^-!}. We suppose that 5^[Pi,Pi] C TT^N^P^ *
P(^2,. • . , ̂ -) and we prove that SN[PI, Pi] C TT^N^ Pi) * F(/^ .. ̂  ̂ _^.

Let P be the set of g e 7Ti(M\{Po},Pi) which can be (uniquely)
written

g ^ x o ^ x z - ' ^ x ^

where

either x, e 7n(7Vi, Pi) * F(^... ̂ ,_i) or x, C {/^ ̂ -1}

for i= 0,1,...^
^ 7^ I if ^+1 = -^ for z = 1,... ,i - 1,
^o,^ ^ {^c,^1},
^ =-land^+i = lifxi e {/^c^c'1} f o r z = l,...^-l.

We write ^ = ̂ (^).

In order to be able to choose j e { 2 , . . . , q -1}, we first have to assume
that q ̂  3. In particular, neither N^ nor N U A^ is a disk, thus h, ̂  1 for
all z = 1,. . . , g. The uniqueness of the expression of g comes from the fact
that he can be written

fac=^^-l^-l.fa^l.^-l/32-l•••/?A-l^l•^l^^•••••^-V.
This kind of expression would not be necessarily unique if j = q.

We suppose that t > 1. If e, = ̂  = l, then, by Lemma 6.6.

u^Xi(3,) = /?, . h^ . (3^ . ft;1 . /?, . h,Xi. 0, . h^ . /?71 . ft;1 . f3, . ft,..

If £i = 1 and f-t+i = -1, then, by Lemma 6.6,

u^x,^1) = /?, . hf . ̂  . ft;1 . /?, . h^hf . /3J-1. ft, . /?, . ft, . ̂ 1,

and ftj-a-ift,-1 ^ 1 (since ̂  ^ 1). Ife, = -l, ̂  = i, and .r, ^ {ftc,ft;1},
then, by Lemma 6.6,

t^1^,) = ft,-! . ̂ -1 . ft, . ̂ . . ft, . ̂ -l . ̂  . ̂ . . ̂ -1 . ̂ -1 . ̂ -1 . ̂  . ̂ .

Ife, = £,+1 = -1, then, by Lemma 6.6,

u^x^1) = ft,-1. ̂  . ft, . ̂  . ft, . ̂ 1. ̂ -i . ̂ i. ̂  . ̂ .. ̂ .. ̂ i
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If €i = -1, £,+i = 1 and Xi = h^ (where e € {±1}), then, by Lemma 6.6,

^A^W = h^^h^h,^ . W1^1^^^1

•^V/^^A
=^- l./371.^.^.^.

It follows that Uj(g) e ^, that £p(uj{g)) > £, and that £p(uj(g)) > £
if none of the xi is included in {he, h^1} for i = 1,... ,£- 1. This shows that
^{9) ¥- 9 if k > 0 is an integer, if ^ e 7Ti(7Vi, -Pi) * F(f3^.... ̂ ), and if
W > 1.

Let g € ^[Pi,Pi]. By hypothesis, g € 7Ti(M, Pi) * F{{3^... ,/3,).
There exists an integer k > 0 such that u^(g) = g , thus lp(g) = 0, therefore
(/€7ri(M,Pi)*P(/?2,. . .^-i) .

Step5.—5^v[Pi,P2]=0.

Let g € IIi(M\{Po})[Pi,P2]. By Lemma 6.4, g can be (uniquely)
written

g == o-oT^r-^i... T^r-^^r,
where

^ €7ri(JVi,Pi) *P for z =0,1 , . . . ,^ ,
Xi ^ 1 for z = 1,...,^- 1,
^e7Ti(^2,P2)\{l} for 2 = 1 , . . . , ^ .

By Lemma 6.5,

^o(^) = xoh^Ty^hcX^ . . . h^Ty^h^h^T
= xoh^ • T • hoy^1. T-1 . (^)-^i^

• . . . • T . /lo^/^o1 • T-1 • (h'^x^ • r . /io.

It follows that, for an integer k > 0,

^) =^o(^)' • T . ̂ 2/1 ̂ o~' • T-1 • (^)-^l(^)fc

..... T • /z^^o"' • T-1. (^^-^.(/.^^ . T . /^

thusn§(p)^p. D

Now, the special assumptions on N that we made just before
Proposition 6.3 are dropped.
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Proof of Proposition 6.3. — We prove that 6^ [Pi, Pi] = 71-1(̂ 1, Pi)
and that 5^ [Pi, P^] = 0. The same argument works for any Pi and P,.

Let g C TTi (TVi, Pi) and let n e 7Ti(7V, Po). Let <: [0,1] —> M be a loop
based at Pi which represents g , and let $: [0,1] —> N be a loop based at Po
which represents u. The image of C and the image of $ are disjoint, thus
u(g) = g. This shows that 7Ti(M, Pi) S 5^ [Pi, Pi].

-Fig'ure 6.9

Now, let C\,..., Cq be the connected components of N D TVi. We
choose a subsurface N ' C N (see Figure 6.9) such that

1) IV' is a sphere with q + 1 holes,

2) M\N' has two connected components, ATi and

7V2=7V\^7U^2U...U^,

3 ) A ^ n . / V i = G i U . . . U C 9 ,

4) N ' H AT^ has a unique connected component that we denote by Co,

5) Po € N\

Moreover, in the case where r = 1, we pick some point ?2 € A^.

Let SN'lPl.Pi] be the set of g € 7Ti(M\{Po},Pi) such that, for
all u e Ti-i (TV', Po), there exists an integer k > 0 such that v^^g) = g.
We have 5'N[Pi,Pi] C 5^ [PI, Pi] (since N D A^), and, by Lemma 6.7,
SN/[PI,PI] = 7ri(ATi,Pi), thus 5^[Pi,Pi] C 7̂ 1, Pi). If is clear by
disjointness that 71-1 (M, Pi) C ^[Pl.Pi], so 7Ti(JVi,Pi) = ^[Pl.Pi].
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Now, we assume that r > 2. Let SA^PI,^] be the set of
g C IIi(M\{Po})[Pi,P2] such that, for all u G ^(TV^Ro), there exists
an integer k > 0-such that uk{g) = g. We have «Sjv[Pi,P2] c SN^-PL?^]
(since N 3 TV'), and, by Lemma 6.7, -S^Pi,?^ = 0, thus SN[Pi,P2\ = 0-

D

6.2. Proof of Theorem 6.1.

Lemmas 6.8 to 6.12 are preliminary results to the proof of
Theorem 6.1.

LEMMA 6.8. — Let m = 2 and let n = 1. Let i € {1 , . . . ,r} be such
that?2 € M. Then

CpB.M{PB^N) = CpB^M^N) = 7Ti(7V,Pi) X 7Ti(M,P2).

Proof. — We assume that ^ = 1 (z.e. ?2 G M)- The inclusion

7Tl(7V,Pi) X 7Ti(7Vi,P2) C Cp^M^lAO

is obvious.

Let g € Cpa^M^iN). We consider the following exact sequence:

1 -^ 7Ti(M\{Pi}) —> P^M -^-> TTiM ̂  1.
The morphism p sends 7Ti(7V,Pi) isomorphically on 7Ti(A^,Pi). By
Lemma5.5, p(g) € G^M^I^V). By Theorem 3.1, p(g) = f C 7Ti(^,Pi).
We write g ' == /~1^. We have g ' € 7Ti(M\{Pi},P2) (since p ( g / ) = 1) and
g ' eCpB.M^N).

Let n € 71-1 (TV, Pi). Since </ e Cpa^M^iN), there exists an integer
A; > 0 such that

^(^-^^(TV.Pi).
The morphism p sends TTI (TV, Pi) isomorphically on TTI (TV, Pi), thus

g'u^g')-1 = p^u^g')-1) = P^)?^^)-1 = u\
therefore

u^'u^ = g 1 .

We write Q\ = ?2 and we choose a point Qz e M for all i = 2 , . . . , r.
Let IIi(M\{Pi}) be the fundamental groupoid on M\{Pi} based at
{Qi502? • • • ^Qr}' By the above considerations, g ' € SN[Q\,Q\}, thus, by
Proposition 6.3, g ' € 7i-i(TVi,P2). So,

^=/^e7Ti(7V,Pi) X7Ti(7Vi^2). D
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LEMMA 6.9. — One has

CpB^M^PBnN) = PBnN X PB^M X • . . X PB^Nr.

Proof. — The proof of Lemma 6.9 is divided into two steps.

Step 1. — Let n = 1. We prove by induction on m that

CpB^M(PB.N) = CpB^M^lN) = TTiJV X PBn.N, X . . . X PB^Nr.

The case m == 1 is proved in Theorem 3.1, and the case m = 2 is
proved in Lemma 6.8. Let m >; 3. The inclusion

TTiAT X PBn.Nz X • . . X PB^Nr C CpB^M^lN)

is obvious.

Let g € CpBmM^iN). We consider the following exact sequence:

1^7Ti(M\{Pi,P2,...,P^-l}) — — P B m M -^ PBm-lM -^ 1.

The morphism p sends 7Ti(7V,Pi) isomorphically on 7Ti(A^,Pi). By
Lemma 5.5, p(^) is an element of Cpa^-iM^iN). We assume that
Pm € M- By induction,

C'PB^iM^lAO = TTiA^ X PB^-lN^ X PB^A^2 X . • • X PB^Nr.

Thus we can choose / 6 TTi (-A/', Pi), ̂  e PBni-iM, and /i, € PBn.Ni for
all z = 2 , . . . , r such that

?(9) = fh^h^-'hr.

The morphism p sends PB^Ni isomorphically on PB^Ni for all
i = 2 , . . . , r , and sends PB^N^ surjectively on PBn^-\N\. We choose
hi e PBn^N\ such that p(^i) = ^i and we write

</=^-l...^-l^lrl•
We have g ' € 7Ti(M\{Pi,P2,. . . ,Pm-i},Pm) (since p(^) = 1) and
^' G CpBmM^iN). We have the inclusions

TTi (M\{PI, P2, .... P^-l}) C PB2M\{?2, . . . , P^-l},

7Ti7VCPB2M\{P2,...,P^-l},
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where PB^M\{P^^... ,Pyyi_i} denotes the pure braid group on
M\{?2, . . . , Pm-i} based at (Pi, Pm). So,

g ' C Cp^MVPz,...,?^-!^71"!7^

thus, by Lemma 6.6,

</e7ri(^Pi)x7ri(A^\7^m),

where P[ = ^iVPm}. Let / e 71-1 (TV, Pi) and let h^ e 7Ti(M\^,P^) be
such that g ' = /^i. Then

l=p{9f)=p(f)pChl)=f.

thus g' =h^ 7ri(7Vi\^,P^). So,

9= 9 ' ' f^lh'2 ' - h r = /(^^l)^2 • • . ̂ r

€ TTiTV X PBn^N^ X PBn^N'2 X . • • X PB^Nr.

Step 2. — We prove by induction on n that

CpBmM{PBnN) = PBnN X P^ î X . • • X PB^Nr.

The case n = 1 is proved in Step 1. Let n > 1. The inclusion

PBnN X PBn.N, X • . . X PB^Nr C C7pB^M(P^7V)

is obvious.

Let g e CpB^M(PBnN). Let A^' = A ^ \ { P i , . . . . Pn-i} and let M' =
M\{Pi , . . . , Pn-i, Pn+i? - ' ' i P-m}- We consider the following commutative
diagram:

1 -^ TTiTV7 —^ P^A^ -^ PBn^N -^ 1i i i
1 -^ TTiM' ——^ PB^M -̂  PBm-lM -^ I .

By Lemma 5.5, /9(^) € CpBm.-iM^PBn-'iN}. By induction,

CpB^_,M(-PBn-l^V) = PB^-lN X PB^N, X . - - X PB^Nr.
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Thus we can choose // e PB^N and h, e PB^N, for all z = 1,... ,r
such that

P(S) = Ai • • • hr.

The morphism p sends PB^N, isomorphically on PB^N, for all
z = l, . . . .r , and sends PB^N surjectively on PB^N. 'We choose
/ € PBnN such that /?(/) = /' and we write

g'=gh^...h^f-1.

We have g' € ^(M', P^) (since ̂ /) = 1) and g' e CPB^M^PB^N), thus,
by Lemma 5.5, ^ e C^M'^N'). By Theorem 3.1, ^ is an element of
^i(N',P^)CPBnN.So,

9 = (ff7)/ii • • • hr e PBnN x PBn.Ni x - - - x PB^Nr. D

LEMMA 6.10. — Let TO = n. Then

CB^M^N) = BnN.

Proof. — The inclusion

BnN C CB^M(BnN)

is obvious.

Let g € Ca^M^N). We choose / G BnN such that cr(/) = a(g)
and we write ̂  = ̂ /-i. We have ̂  € PB^M and ?' € CB^M(BnN) =
CB^M(PB^N), thus ff' e CpB^M(PBnN). By Lemma 6.9, "g' e PBnA?".
So,

g = g ' f e BnN. Q

Recall that E^ denotes the group of permutations of {Pi , . . . , P^}
that En denotes the group of permutations of {?!,...,?„}, and that
^m-n denotes the group of permutations of {?„+!,..., P^}. The following
lemma can be proved with the same arguments as those given in the proof
of Lemma 5.10. Note that, since ̂  (N, Pi) ^ {1}, we do not need to assume
that n >_ 2 in Lemma 6.11.

LEMMA 6.11. — Let g 6 CB^^N). Then a(g) e £„ x £„,_„. Q

Let En, denote the group of permutations of P, for i = 1 ... r.
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LEMMA 6.12. — Let g € C^M^TV). Then

a(g) €S^ x E^ x . . . x E^.

Proof. — Let g e CB^M^N). By Lemma 6.11, g e a-1^ x
Em-n)- We consider the following exact sequence:

1 -^ B^M\{P^...,?,}—. a-^E, x E^_,) -^ P,M - 1.

The morphism p sends B^TV isomorphically on B^N. By Lemma 5.5,
P{9) ^ CB^M(B^N). By Lemma 6.10, p(^) = / e B^A^. We write
g/ = gf-\ We have g1 € Bm-nM\{P^... ,?„} (since p(^) = 1) and
^/ e CB^M{BnN).

Let /i e B^A^. Since g1 e CB^M^N^ there exists an integer A; > 0
such that

</^((/)-1 € B,7V.

Since p is an isomorphism on BnN,

g'h^g'r1 = P^h^g1)-1) = P(9f)p(hk)p(gf)-l = h\

therefore

^^^-fc = ̂ /.

We suppose that P^+i e TVi, that P^+2 G A^2, and that a(^)(P^+i) =
Pn+2. We also have a(^)(P^+i) == P^2. We write Qi = P^+i and
02 = Pn+2. We choose a point Q, c TV, for all i = 3 , . . . , r. Let IIi(M\{Pi})
be the fundamental groupoid on M\{?i} ba^ed at { Q i , . . . ,Q^}. Let
V = (^+1,.... 6^) be a braid on M\{?i , . . . , P^} based at (P^+i, . . . , P^)
which represents ^/. Let x € ni(M\{Pi})[Oi,Q2] be represented by
^n+r ^ the above considerations, x e 5'jv[Qi,Q2]. This contradicts
Proposition 6.3.

So,

a(g) € Ey, x E^i x • • . x E^. n

Proof of Theorem 6.1. — The inclusion

B^TV x B^M x • . • x B^TV, C CB^M^N)
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is obvious.

Let g € CB^M(BnN). By Lemma 6.12,

a(g) C^n xSn, x . - . x S n , .

Thus we can choose f e BnN and hi e B^Ni for all z == 1,.. . , r such that

a(g)=a(f)a(h,)--a(hr).

We write

^=^-l...^-lrl.
We have g ' € PB^M and g ' e CB^M^N) = Ca^M^PBnN), thus
g ' € CpB^M^PBnN). By Lemma 6.9, there exist /' € PBn^V and
/i^ € PBn^Ni for all z = 1,.... r such that

^=A / l•••^.

So,

^ = /'̂ l • • • ̂  • /^l • • • hr = (/7)(^l) • • • (^^r)

€ jBnTV x B^.TVi x • • • x Bn^Nr. D
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