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A BOUNDEDNESS THEOREM FOR MORPHISMS
BETWEEN THREEFOLDS

by E. AMERIK, M. ROVINSKY and A. VAN DE VEN

0. Introduction.

Let X and Y be smooth projective n-folds (over a field of charac-
teristic zero) and / : X —f Y a surjective morphism. One can ask the
following:

GENERAL QUESTION. — Which varieties Y have the following pro-
perty:

(*) For any X , the degree of f : X —> Y is bounded, in terms of
discrete invariants of X and Y ?

If we take Y of general type, then by the result of [KO], for any X
there is only a finite number of maps / : X —> Y. Some bounds for deg(/)
in terms of the discrete invariants of X and Y are obtained in works of
T. Bandman, G. Dethloff and D. Markushevich ([BD], [BM]).

If Y is not of general type, there are very few results in this direction
and the question seems to be rather difficult. Obviously, there are varieties
which do not have the property (*) (abelian varieties, projective spaces),
but one may hope that they can be classified.

The following conjecture seems to be a good starting point:

Keywords: Smooth projective threefold — Finite morphism — Flat variety.
Math. classification: 14J40 - 14L30 - 14E99.
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CONJECTURE 0.1 ([A], p. 196). — Let X and Y be smooth n-
dimensional complex protective varieties such that b^(X) = b^(Y) = 1. If
y ^ pn ̂  ̂ Y is of genus at least two in the 1-dimensional case), then the
degree of a map f : X —> Y is bounded in terms of the discrete invariants
ofX andY.

As a motivation for this conjecture, we mention that if Y is a smooth
quadric of dimension n >, 3, then for any smooth projective n-fold X such
that the Neron-Severi group of X is of rank one, the degree of a map
/ : X —> Y is bounded by certain invariants of X ([S] for n = 3, [Al] for
arbitrary n).

For dimensions 1 and 2 the conjecture is very easy (a surface with
&2 = 1 is either the projective plane or of general type). The first author
([A]) has obtained a proof in the case where Y is a Fano threefold with a
very ample generator of the Picard group.

The main purpose of this note is to complete the proof of the
conjecture in dimension three, that is, to deal with maps onto other Fano
threefolds and onto varieties with trivial (in H2^^)) canonical class:

THEOREM 0.2. — Conjecture 0.1 is true for n = 3.

The paper is organized as follows: in the first paragraph, a Hurwitz-
type inequality (Corollary 1.2) is proved. Then in the second paragraph
this result is applied to maps onto varieties with trivial canonical class and
the relevant Fano threefolds. In this way the problem reduces to a problem
about torus quotients which is handled in the last section.

1. A Hurwitz-type formula.

LEMMA 1.1. — Let f '. X —> Y be a finite morphism between
smooth projective varieties. Let L be a line bundle on Y such that f^y(L)
is globally generated. Then for a generic section s € H°(Y^Y(L)) the
induced section ts € H°{X^x(f*L)) has only isolated zeroes.

Proof. — Suppose first that dimX = dimY = 2. With respect to
the local coordinates on X and Y the map 0 : s —>• ts is locally given by
the Jacobian matrix. So if for a generic 5, tg vanishes on a curve, this curve
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is a component R° of the ramification divisor (and all the ts vanish on R°).
We will denote f*s by the same letter s.

The restriction s^o of s to R° must therefore lie in the subsheaf of
rank one

Ker(r(Qy(L))|^o^^(/U)|^o),

which is a contradiction because /*(^y(L))|^o is generated by the restric-
tions Spo.

The proof in the general case goes along the same lines. Let X, Y be
m-dimensional. Denote by Ri the locus where rk(f) < i. As / is a finite
morphism,

dimRi :< i.

Now suppose that for a general s C 7:f°(Y,^y(Z/)), the induced section ts
vanishes along a curve 65. Let j be such that Cs C Rj and Cs <t- Rj-i for
a generic 5. We may suppose that Rj is irreducible (otherwise we take an
irreducible component containing Cs for a general s).

Now s induces a section SR . of the sheaf

A,=r{^Y(L))\H,/B,

where
B, = Ker(/*(^y(L))|^, -. ̂ x(/U)|^,).

Obviously the section spy vanishes on Cs'

The sheaf Aj on Rj is of rank j, it is locally free outside Rj-i and
generated by the sections SR^ for all s € H°(Y, f^y(L)). Hence by a Bertini-
type theorem of Kleiman ([K]), outside of Rj-i the generic spy should
vanish at most at points, i.e. Cs C Rj-ii a contradiction.

COROLLARY 1.2 (the "Hurwitz formula"). — In the situation of
Lemma 1.1,

deg(/)ctop(^yW) < Ctop(^x(/*^)).

Proof. — It is always possible to choose an s with isolated zeroes
only, all outside the branch locus of /.

Remark. — In the same way, one can relate the intermediate Chern
classes ofX and Y by showing that for general sections 5 i , . . . , sjc of^y(L),
the linear dependency locus of the induced sections of fl,x(f*L) has correct
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codimension. The analogue of the lemma in this situation is as follows:
^(^x(/*^)) - /*c^(^y(L)) can be represented by an effective cycle in the
Chow group A\X).

2. Applications to the boundedness questions.

There are several applications of this lemma. The first one is to
morphisms onto varieties with trivial first Chern class:

PROPOSITION 2.1. — Let X be a smooth protective variety of
dimension n and such that NS(X) == Z, let Y be a smooth projective
variety of dimension n such that Ci(Y) = 0 in ^(V.R). If f : X -^ Y is a
finite morphism, then the degree of f is bounded in terms of the discrete
invariants of X and Y unless Y is a quotient of a torus by a freely acting
finite group.

Proof. — Obviously we have N S ( Y ) = Z. Denote by Hy and Hx
ample generators of N S ( Y ) , NS(X). Then there is a number m € Z such
that fHy = mHx, and we want to know when this m is bounded. For L
such that f2y(L) is globally generated, let C be such that L = £HY in the
Neron-Severi group. Applying Corollary 1.2, one gets

^nHx^n^ ^ r-1^-1^) + r-2^-2^) 4- - + c,(^))
tly

<(^m)n^+(^)n-l^-lCl(^)+(^m)n-2^-2C2(^)+•••+c,(^

If m is not bounded, then for any such L

r-2^-^^) + • - + Cn^y) < 0.

Replacing L by kL for k > 0 if necessary, we find that either m is
bounded, or c^^H^-2 ^ 0.

According to [Kob], Chapter 4, section 4, if Y is Kahler-Einstein with
trivial first Chern class and if ^ is the Kahler-Einstein form, then always

and

/ C2(Y)
JY

I c^Y).
JY

A $n-2 > 0

c2(y)A^n-2=oly
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implies that Y is flat. But thanks to Yau's theorem ([Y]) we know there is
a Kahler-Einstein metric on Y such that the class of <I> is proportional to
that of Hy. Therefore c-z{^)H^~2 = 0, our variety Y is flat and hence by
the classical Bieberbach's theory is a quotient of a torus.

Another application concerns maps onto Fano threefolds. In the paper
[A], it was shown that if X is a threefold with 62 (X) == 1 and Y is a Fano
threefold with b'z(Y) = 1 such that the ample generator Hy of Pic(y) is
very ample, then the degree of a map / : X —> Y is bounded in terms
of the discrete invariants of X and Y. We will use Corollary 1.2 to prove
boundedness for morphisms onto other Fano threefolds.

There are four types of Fano threefolds Y with not very ample
generator of Pic(y) ([I]):

of index 2:

1) A double cover ofP3 ramified along a quartic; this is a hypersurface
of degree 4 in the weighted projective space P(l, 1,1,1, 2).

2) A double cover of a cone over the Veronese surface ramified along a
cubic section of this cone; this is a hypersurface of degree 6 in the weighted
projective space P(l, 1,1,2,3).

of index 1:

3) A double cover of P3 ramified along a sextic; this is a hypersurface
of degree 6 in the weighted projective space P(l, 1,1,1,3).

4) A double cover of a quadric ramified along a quartic section of this
quadric.

PROPOSITION 2.2. — If X is a threefold with b^Y) = 1 and Y
is one of the four threefolds mentioned above, then the degree of a map
f : X —^ Y is bounded in terms of the discrete invariants ofX and Y.

Proof. — Note that since it is shown that the degree of a map from
a threefold with b^ = 1 to a 3-quadric is bounded ([Al], [S]), we need not
to consider the case 4.

It follows from Corollary 1.2 (as in the proof of Proposition 2.1) that
it is sufficient to show that there is an integer £ with f2y(^Hy) globally
generated and

C3(^y)+^yC2(^y)+^^Ci(f2y) >0,
so in fact one is interested in finding the smallest possible £ such that
^y(-Wy) is globally generated.
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Note that all the weighted projective spaces which appear in 1), 2), 3),
have isolated singularities, and our Fano hypersurfaces cannot pass through
these (otherwise they would be singular).

On the smooth part U of a weighted projective space P(eo, e i , . . . , 64)
we have an exact sequence

0 -^ Ou -> OOu(ei) -^ Tu -^ 0

where Tu is the tangent bundle. Using the fact that Qy is a quotient of

^I^A^ir^det^/iy,
we find that:

— in the first case fl.y{3Hy) is globally generated,

— in the second case fly{7Hy) is globally generated,

— in the third case ^ty{^.Hy) is globally generated.

So for example in the second case, where Ky = —2Hy, H^ = 1
and b^(Y) = 42 (see [D], section 4.3, for the Hodge numbers of weighted
hypersurfaces), we find

cg^y) + CHyc^y) + i2 H^c^y) = 38 + 84 - 98 > 0

(note that Hyc^y) = ^(V^Y) = 12^(0y) = 12), and therefore
deg(/) is bounded. In two other cases the same computation also yields
the boundedness.

This completes the above-mentioned result of [A] on boundedness of
degree of maps onto Fano threefolds with b-z = 1. Notice that the argument
presented here does not "cancel" the (much more lengthy) proof in [A], as
there are also families of Fano threefolds Y such that

C3(^y) +^HyC2(^y) +^^Ci(^y) ^ 0

for all £ such that fl,y(£Hy) is globally generated, or even for all £ for which
^ly(£Hy) has sections. It would be interesting to know whether there is
some "geometric" difference between Fano varieties for which the above
expression is positive or non-positive.

3. On torus quotients.

Proposition 2.1 solves completely the question of boundedness for the
degree of a map f : X —> Y where X, Y have Neron-Severi group of
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rank one and Y has numerically trivial canonical class. Namely, deg(/) is
bounded if Y is not a flat manifold (i.e. torus quotient by a finite group
acting freely) and not bounded otherwise. To deal with Conjecture 0.1, we
must understand what happens if one restricts to varieties with 63 = 1, in
other words:

Does there exist an algebraic torus quotient Y = G\A by a freely
acting finite group G, such that b'z(Y) = 1 7

If dim(A)=2, this is of course impossible because b^(Y) == 1 implies
b-t(Y) = 0, whereas we must have \{OY) = 0. In this paragraph we prove
that this is also impossible in dimension 3, thus finishing the proof of
Theorem 0.2.

PROPOSITION 3.1. — A quotient Y of a 3-dimensional abelian
variety A by a finite, freely acting group G, cannot have b^ = 1.

Proof. — Suppose 62 (Y) = 1. Then

1. The representation p of G in the tangent space V = To A is
irreducible: it is easy to see that for any irreducible representation W of G,
W 0 W has a one-dimensional fixed subspace, so if V is not an irreducible
representation, 63 (Y) ̂  1.

2. Then it follows that A is isogeneous to the cube of an elliptic
curve E. Indeed, if A is isogeneous to a product of non-isogeneous simple
abelian varieties, then our representation is obviously not irreducible; if A is
simple 3-dimensional in characteristic zero, then Horn (A, A) is commutative
(see for example [M], p. 182).

In 3, 4, 5, 6 we prove that G contains A^ as a normal subgroup (in
fact G is A4 or S^):

3. For any element g € G we have det(p(^)) = 1 since h3'0^) = 1
from ^(Oy) == 1. As all elements are of finite order, all eigenvalues of p{g)
are roots of unity. Notice that one of them must be 1: otherwise p(g) — I is
invertible, that is, for any h € A the transformation y —> p(g)y-{-h of A has
a fixed point, and so the action of G is never free. Therefore Tr(p(g)) € R.
As Tr(p(^)) also is an endomorphism of E^ we must have Tr(p(^)) € Z,
which is the same as to say that g as an endomorphism of V has order 1,
2, 3, 4 or 6.

4. We may assume that the representation of G on V is exact, as
otherwise we can factorize A by the translation subgroup of G. So we will
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write simply g instead of p(g) when there is no danger of confusion. Let Ni
be the number of elements of order i in G. As V is irreducible, we have

Y^TT(g)Tr(g)=OTd{G)
g^G

or equivalently

9 + N-2 + N4 + 47V6 = 1 + A^2 + N3 + 7V4 + M,,

which means that A^ = 3A^e +8^0 .

Also, as there are no fixed vectors in V, we have

E^=°-
geG

so
^ Tr(^) = 3 - 7V2 + ̂ 4 + 27V6 = 0
<7eG

and therefore A^ 7^ 0.

5. Consider a Sylow 3-subgroup of G: as N^ 7^ 0, its action cannot
be irreducible (otherwise 9 = ord(G) but N^ ^ 8). On the other hand,
this subgroup does not have irreducible 2-dimensional representations (the
dimension of an irreducible representation must divide the order of the
group). This means that the action of this subgroup can be diagonalised
and one verifies (taking into account that each g has det(g) = 1 and g — I
is never invertible) that it is Z/3Z.

6. Now there are no elements of order 6 in G: otherwise one verifies
NQ > N^ (all the elements of order three are obtained as squares of
elements of order six, because all Sylow 3-subgroups are conjugated) which
is impossible. Hence TVs = 8. As no element of order 2 or 4 can therefore
commute with an element of order 3, we get that the order of a Sylow
2-subgroup is at most 8. Similar elementary considerations show that there
are only two possibilities for G:

a) ord(G) = 12, the Sylow 2-subgroup is normal and isomorphic to
Z/2Z x Z/2Z: G is the (noncommutative) semidirect product of the Sylow
2-subgroup and any Sylow 3-subgroup, i.e. this is the group A^ of even
permutations on 4 elements.

b) ord(G) = 24, so N^ = 9 and N4 = 6; then each Sylow 2-subgroup
is isomorphic to the (noncommutative) semidirect product of Z/4Z and
Z/2Z, there are exactly three Sylow 2-subgroups Pi,?2,P3 and there is a
normal subgroup C isomorphic to Z/2Z x Z/2Z which is the intersection of
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these Sylow subgroups. There is also a subgroup isomorphic to 6'3 which is
generated by an element a of order three and an element x e Pi such that
xax~1 = a2: one checks that x ^ C and the group G which is a semidirect
product of C and 83 is isomorphic to 64.

In both cases, there must be a free action of A^ on A which is
irreducible on the tangent space.

7. Now we have to show that the action of A^ on V cannot be lifted
to a free action of A^ on A. Indeed, this lifting is a function f : A^ -^ A
which satisfies

/(a6)=a/(^)+/(a),

i.e. is a cocycle in C^^A^ A) (where the action of A4 on A is of course not
our free action but the "linear" action induced by the action on V). Note
that the coboundaries are of the form b(a) = ah — h for some h e A; the
transformation x —^ ax + ah - h always has a fixed point. Therefore it is
enough to prove the following:

CLAIM. — For any cocycle T] C ^{A^A), there exists a subgroup
H of A4 such that the restriction ofrj to ^(H, A) is zero.

This is done as follows:

8. Note that for our linear action of C = Z/2Z x Z/2Z C A4 on
A, the invariants H°(C,A) are elements of 4-torsion. More generally, for
any irreducible exact representation V of a finite group G, a G-invariant
lattice A and a normal subgroup H C G, the invariants H°{H,V/A) are
ord(If)-torsion.

Indeed, H does not fix any vector of V (as it is a normal subgroup of
G and V is (^-irreducible). From the short exact sequence of G-modules

0 -^ A -^ V -> V/A -^ 0

we get

H\H,V/K)cH\H,K).

Since ^(H.A) is annihilated by the multiplication by ord(H), so is
H°(H^V/A).

9. The Serre-Hochschild spectral sequence for (7, A4 and the quotient
B == A4/C7:

E^ = ^(B,^(C,A)) => H^(A^A)
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gives

0 -^ H\B,H\C,A)) -> H\A^A) -^ H\B^H\C^A).

As the orders of B and H°(C,A) are coprime, H1 {B, H0(G, A)) = 0 and
we have

^^.^C^B.^G.A)).

But ff^G, A) and therefore H°(B, ff^G, A)) is annihilated by multiplica-
tion by 4 = ord(G). So is then ^(A^A), and therefore its image under
restriction to any subgroup of order 3 is zero, which proves the claim and
Proposition 3.1.

This finishes the proof of Theorem 0.2.

Remark, — Conjecture 0.1 would imply that an analogue of this
result would hold for all dimensions. The case of dimension 4 is very easy:
indeed, for the quotient Y we have /^(V) = 0 from the irreducibility of the
representation of G on the tangent space, and this contradicts \(OY) = 0.
As we see, the problem in question is purely group-theoretic: if a finite G
acts freely on a complex torus A, can the representaion of G in the tangent
space of A be irreducible?

We hope to return to this question in a forthcoming paper.

Notice that there are many examples of smooth orientable quotients
of a real torus by a freely acting finite group such that their second
Betti number is equal to one. For instance, in dimension six one can take
G = (Z/2Z)®3 on the generators a, 6, c which acts on the torus as follows:

a(x^,X2,X3,X4,xs,xe) == (a-i + 1/2, a^, -x^, -x^ -2:5, -xe)

b(x-i, x^,x^,X4,x^ ,xe) = (^i,-^2+ l/2,-a;3,a;4,-a*5,-a:6)

C(a;i, X2, X3, X4, Xr^XQ) == (-.TI, X-2, X^ + 1/2, -X4, -XQ + 1/2, -XQ).

However, also in the real case we do not know any examples for which
the action of the group on the tangent space to the torus is irreducible.

Acknowledgement. — The first author is grateful to be supported by
the Brezin fellowship of the French government, which made possible her
work on this project.
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