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AFFINE PLANE CURVES WITH ONE PLACE
AT INFINITY

by Masakazu SUZUKI

Introduction.

Let C be an irreducible algebraic curve in the complex affine plane
C2. We shall say that C has one place at infinity, if the normalization of
C is analytically isomorphic to a compact Riemann surface punctured by
one point.

There are several works concerning the classification problem of the
affine plane curves with one place at infinity to find the canonical models

of these curves under the polynomial transoformations of the coordinates
of C2.

In the case when C' is non-singular and simply connected, Abhyankar-
Moh [1] and Suzuki [11] proved independently that C can be transformed
into a line by a polynomial coordinate transformation of C2. Namely, in
this case, we can take a line as a canonical model.

In case C is singular and simply connected, Zaidenberg-Lin [12]
proved that C has the canonical model of type y? = zP, where p and ¢
are coprime integers > 2.

Assuming that C is non-singular, the cases when the genus g of C
is 2, 3 and 4 were studied by Neumann (8], A’Campo-Oka [3] from the
topological view point and by Miyanishi [4] from the algebrico-geometric
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roots.
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view point. Miyanishi [5] classified the dual graphs of the curves which
appears by the minimal resolution of the singularity at infinity. Recently,
Nakazawa-Oka [7] gave the classification of all the canonical models for the
cases g < 7, and in its appendix, Nakazawa gave the classification for g < 16
without proof.

In the present paper, we shall first explain how to get the canonical
compactification (M, E) of C? corresponding to the minimal resolution of
the singularity of the curve C at infinity (after taking the coordinate system
of C? which minimize the degree of the defining equation of C), and then
we shall study the dual graph I'(E) of the boundary curve E.

In this way, we shall first get a new simple proof to the above
mentioned Abhyankar-Moh-Suzuki theorem. Next, we shall make it clear
the relationship between the dual graph I'(E) and the 6-sequence of
Abhyankar-Moh theory. We shall get a new algebrico-geometric proof to
the beautifull so-called semi-group theorem of Abhyankar-Moh [2] and
its inverse theorem due to Sathaye-Stenerson [9]. Our new proof gives
us also an algorithm to compute the weights of the dual graph I'(E) by
computer(?).

To end this introduction, I would like to express here my hearty
thanks to Mr. Takashi Oishi and Mr. Koichi Koide for their help at
the beginning of this research to the experimental calculation of various
algebraic invariants of the dual graphs by computer.

1. Preliminaries.

1.1. Primitive polynomials.

Let f(z,y) be a polynomial function on the complex affine plane C?
with coordinate system z and y. f(z,y) will be called primitive if the
algebraic curve defined by f(z,y) = a in C? is irreducible for all complex
numbers a except for a finite number of a’s. The following proposition is
well known (see for example the Appendix of Furushima [4]).

M we implemented a program to get the list of the §-sequences and the corresponding
dual graphs I'(E) of the curves with one place at infinity with any given genus. We thus
confirmed the classification table given by Nakazawa in [7].
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ProposITION 1. — For any polynomial f(z,y), there exist a primitive
polynomial F(z,y) and a polynomial ¢(z) of one variable z such that
f(z,y) = o(F(z,y))-

From this proposition, we can get the following corollary.

CoroLLARY. — Irreducible polynomials are always primitive.

In fact, let us write f(z,y) in the form

f(z,y) = p(F(z,y))

by a primitive polynomial F(z,y) and a polynomial ¢(z) of one variable
z. Since the curve C : f(z,y) = 0 is irreducible and f takes the zero of
order 1 on C, ¢(2) vanishes only on z = 0 and takes the zero of order 1 on
z = 0. Therefore p(z) is a polynomial of degree 1. This implies that f is
primitive.

1.2. Dual graph.

We shall assume from now that M is a non-singular projective
algebraic surface over the complex number field and E an algebraic curve
on M. We shall assume further that each irreducible component of E is
non-singular and intersect each other at only one point at most. In such
case, we shall say that E is of normal crossing type.

For a curve E of normal crossing type, we represent each irreducible
component of E by a vertex and join the vertices if and only if the
corresponding irreducible components intersect each other. We associate to
each vertices an integer, called weight, equal to the self-intersection number
of the corresponding irreducible component on M. The weighted graph thus
obtained will be called the dual graph of E and noted by I'(E). In case the
values of the weights are not in question, the weights may be omitted in
the picture of the dual graphs bellow.

LEmMA 1. — Let E;, -+, E,., E.41 be the irreducible components
of E and assume that the dual graph I'(E) is of the following linear type:

I'(E) : OO - e o———o (ni > 2).
E1 E2 Er Er+1
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Assume further that there exists a holomorphic function f on a
neighborhood U of E4 U E; U --- U E, such that the zero divizor (f) of
f on U is written in the following form:

(f)=>_ miEi+mrp1 B O U

=1
Then,
(1) mg, +--, my,41 are all multiple of m;.

(2) Set p; =m;/mi, (1 <i<r+1), then (pr41, pr) are coprime each
other and the following continuous fraction expansion holds:

p;-:l =n, —1|ny0—_1 — --- "%—}Jﬁ;

Proof. — Since (f) - E; = 0, we have m;y; = n;m; — my_; for
i =1, ---, r, where mg = 0. The two assertions of the lemma are the
immediate consequences of these equations.

1.3. Intersection matrix.

Let Ey, Es, ---, ER be the irreducible components of E and consider
the intersection matrix

Ig = ((E'L : Ej))i,jzly.A.R.

Set Ag = det(—Ig). The following two lemmas can also be obtained easily
by a direct computation.

LeEmMMA 2. — The determinant Ag is invariant under the blowing up
of the points on E. Namely, if 7 : M; — M is a blowing up of a point P
on E, we have then A,-1(py = Ag.

LEmMA 3. — Assume that the dual graph T'(E) is of the following
type:

We have then

Ag =pq—aq—bp
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where p, a, g, b are the natural numbers defined by the continuous fractions

= my = 1[m; — 1[5 — = 1[m
= - 1fm-1]ng - = 1[n,

e I

satisfying

(p,a) =1, (¢;b)=1,0<a<p, 0<b<gq.

1.4. Compactifications of the affine plane.

Assume now that M — E is biregular to C2. In such a case, we shall call
the pair (M, E) an algebraic compactification of C? and E the boundary
curve. Let Fq, Es, - --, ER be the irreducible components of E.

By C.P. Ramanujam [9] and J.A. Morrow [6], (M, E) can be trans-
formed into the pair (P2, L) of the complex projective plane P? and a
line L on it, by a finitely many times of blowing ups and downs along the

boundary curve. Therefore, by Lemma 2, Ap = —(L?) = —1, namely
det Ip = £1.
This implies that, for any R number of integers k1, k2, - -+, kg, there
exists uniquely determined R integers mj, mg, ---, mpg such that

R
> mi(Ei-Ej)=k;, (j=1,2,---,R).
=1

Thus, we have

LEMMA 4. — Let (M, E) be an algebraic compactification of C? such
that the boundary curve E is of normal crossing type and Ey, Es, ---, Eg
be the irreducible components of E. Then, for any R number of integers

R
ki, ko, -+, kg, there exists a divisor D = Y m;E; with support on E,

=1
uniquely determined, such that

(D-Ej)=kj, (j=1,2,---, R).

In particular, if ki, ko, ---, kg have a common divisor d, then all the
coefficients my, ma, - -+, mg are multiple of d.



380 MASAKAZU SUZUKI
2. Resolution of the singularity at infinity.

2.1. Canonical coordinates.

Let C be an irreducible affine algebraic curve with one place at infinity
defined by a polynomial equation f(z,y) = 0 in the complex affine plane
C? with the coordnate system x, y. Assume that the degree of f(x,y) is m
with respect to £ and n with respect to y. Then, the usual argument about
the Newton boundary shows that f(z,y) is of the following form:

f@y) = (az® +by?) + Y cyz'y,
qi+pj<pgd

where a # 0, b # 0, d = ged(m,n), p=m/d, g =n/d.

In case ¢ = 1 (namely, n = d, m = pn), one can reduce the degree
of f(x,y) with respect = by a coordinate transformation of the following
form:

=z, Y1 =1y+cx?

called de Jonquiére type. Therefore, by a finitely many times of de Jonquiere
type coordinate transformations and the exchange of the coordinates x and
y, one can reduce the polynomial f(z,y) to one of the following two cases:

(A)ym = 1, n =0 (In this case, C is a line);
(Bym=pd, n=gqd, (p,q) =1, 1 <q<p.

DEeriNITION. — We shall call the coordinate system x, y satisfying
(A) or (B) the canonical coordinate system for C. An affine plane curve
with one place at infinity having the canonical coordinate system of type
(A) will be said linealizable.

AssumPTION. — We shall assume, from now on to the end of this
paper, that f(z,y) is of type (B) (non-linealizable type).

Now, let us compactify the plane C? to get the projective plane P2
with the inhomogeneous coordinates z, y, and blow up the point at infinity
of the curve C.

At the beginning, the closure C of C passes through the intersection
point of the z-axis and the oco-line A in P?, by the assumption q < p. Let
us denote by Ey the (—1)-curve appeared by the blowing up. The function
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q
% has the pole of order g on Ej and the zero of order p — ¢ on A. Then, if

p—gq > q (resp. p— q < q), C is tangent to Ey (resp. A). Here, we denote
the proper image of A by the same character A.

Let a be the positive integer defined by
ag<p<(a+1)g.

Incasea=1 (p—q < q), we set E; = A.

In case a > 1, after further a — 1 times of the blowing ups of the
point at infinity of the curve C, we get the compactification of C? with the
boundary curve having the following dual graph:

—-a -1 -2 -2 -1
o —O--m e o o)

Ey, E; A

q
Here, the function y_p has the pole of order ¢ on Fy and the zero of

order p — aq on Ej. Thel?fafore, the closure of the curve C passes through
the intersection point of Fy and Fi, and is tangent to E;. Now, blowing
down from A the (—1)-curve on the right hand side of the dual graph a — 1
times successively, we get the following dual graph:

—a O
o—o0 (a >21).
Ey s

Let (M, Eq U E;) be the compactification of C? thus obtained. The
function f has the poles of order n on Ey and of order m on E;. The

indetermination point of f on M; is uniquely the intersection point of Ey
and F;.

Remark. — Note that, if one continue to blow up the the point at
infinity of C at least twice, then the self-intersection numbers of the proper
transforms of Eq and E; become both < —2, since C is tangent to F; on
M;.

2.2. Successive blowing ups.

Now, from M;j, let us blow up the indetermination points of f
successively, until the indetermination points of f disappear. Let My be
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the surface obtained by this resolution of the indetermination point of f.
We shall continue to denote by Ey, F; the proper images of Ey, E; in
My respectively, and let E; (2 < ¢ < R) be the proper image in My of the
(=1)-curve appeared by the (i —1)-th blowing up. Each E; is a non-singular
rational curve and the total curve Ef = Eg U E; U .- U Ep is of normal
crossing type. The last curve Eg is of the first kind and f is non-constant
on Er. Note further that the union

E)/ =FEyUE,U---UEpg

is an exceptional set, since Fy was exceptional in M.

Let us denote by C the closure of C in M. Let Z (resp. P) be the
union of the components of Ey on which f =0 (resp. f = 00). Since f has
no indetermination point on My, the zero CUZ and the pole P of f do not
intersect each other. Let S be the union of the other components of Ey. f
is non-constant on each irreducible component of S. We have Er C S.

Suppose that P is not connected. Then, the connected component of
P which does not contain F; must be exceptional, which is absurd. Hence,
P is connected. P coincide with the connected component of E; — S which
contains Ey and Fj, since f has no indetermination point on Mj.

In the same way, since Z is contained in the exceptional set E,’, each
connected component of Z must have an intersection point with C. Since,
on the other hand, C is of one place at infinity, C has only one intersection
point with Ey. Therefore, Z is connected. Let ) be the intersection point
of C and Ey.

(a) f Q ¢ Z, then Z = 2. In this case, S is irreducible, since each
irreducible component of S must intersect C.

(b) If Q € Z, then the zero points of f on S are necessarily on Z. Each
irreducible component of S intersects Z and P which are both connected.
Since the dual graph I'(E) of E is a tree, this implies that S is irreducible.

Thus, in either case S is irreducible, namely S = Eg.

ProposITION 2. — (i) ER is the unique irreducible component of Ey
on which f is non-constant. (ii) P is the connected component of Ey — Eg
which contains Ey and Fy.

COROLLARY 1. — At each step of the process to get My from M, the
indetermination point of the function f to be blown up is unique, and is
situated on the (—1)-curve appeared by the preceding blowing up.
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By this corollary, we see that the the dual graph I'(Ey) of E has the
the following form:

Ey E;, E; E;,

o O -nnne o O ceeeen o Or--non o O =-neee o

Here, 1 = j; <41 < j2 < i3 < --- < jp < 1y < R. Taking into account
the remark at the end of the previous subsection, we have

COROLLARY 2. — E2 < -2 fori=0,..,R—1 and E% = —1.

1

Since P is the connected component of E¢ — Er which contains Ey
and Ei, P is the union of the irreducible components of Ey situated in the
left side to the vertex Er in the above dual graph I'(Ey). Let

R
Pf = Z ViEi
=0

be the pole divisor of f on My. We have v; > 0 for E; C P and v; = 0 for
the other components F;. Let k be the degree of f on Eg. Then, we have

_ [0 (i#R)
Assume that k£ > 1. Then, by Lemma 4, vy, -- -, vg are all multiple of

k. Since P is simply connected, there exists a simply connected neighbor-
hood U = U(P) of P such that UNC = @, and there exists a meromorphic
function F' on U such that

f = F*

This implies that, for any complex number a with sufficiently large |a|, the
curve defined by f = a is composed of k irreducible components. This is a
contradiction, since f is primitive by Proposition 1. Thus we get k = 1.

Suppose now that Ey — P — Er # @. Let By, By, -, B, be the
irreducible components of B = FE;— P — Egr in the order from the
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nearest to Er (from left to right in the above dual graph I'(Ey)). Let
(B?) =—0; (1<i<s)and set

ny =1, ng =B, ng=mnaf2 — N1, -+, Ngy1 =Nsfs — Ns_1.

Since §; > 2 for all 4, we have ns41 > 2. Consider the divisor N = i n; B;.
We have then =
0 (Ei # ER, B;)
(N-E)=1(1 (E; = ER)
—ns+1  (E; = Bs).

Since k = 1 in (x), we get

0 (E;#B,)

(rr-m-m)={0 (ETE

Therefore, by Lemma 4, all the coefficients of the divisor Py — N must
be multiple of ngy1(> 2). This is a contradiction, since the coefficient of
Py — N for B; is —1. Therefore, the components By, - - -, B; do not exist.
Thus, we have

THEOREM 1. — (i) The degree of f on Eg is equal to 1.
(ii) The vertex corresponding to Eg is situated on an edge of I'(Ey).

(iii) Any irreducible component of E; except for E is a pole of f.

For each a € C, denote by C, the curve defined by f = o in C2. We
have then

COROLLARY 1. — For any o € C, the closure Cy, of Cy in M + intersects
Eg transversely at only one point (so is smooth at the intersection point),
and intersects no other irreducible component E; (i # R). In particular,
C, is also irreducible and has one place at infinity.

COROLLARY 2. — If C = Cj is non-singular and of genus g, then any
C,, except for a finite number of a’s is of genus g.

In particular, if C = Cy is non-singular and simply connected, then
all the curves C,, are isomorphic to P'. The mapping f : M P P! defines
a ruled surface structure on My, and P = EgUE; U--- Er_, is its singular
fiber. Therefore, P must contain at least one (—1)-curve in its irreducible
components. This is a contradiction, since Ey, E;, -+, Fgr—1 contain no
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(—1)-curve by Corollary 2 of Proposition 2. Therefore, the case (B) which
we assumed at the beginning of this section does not occur for simply
connected non-singular C. Thus, we get

CoroLrARry 3 ([1], [11]). — If an affine plane curve C is non-
singular and simply connected, then there exists a polynomial coordinate
transformation of C? which maps C to a line in C2.

2.3. Minimal resolution of the singularity at infinity.

By Theorem 1 (ii), the dual graph I'(E) is of the following form:

Ej,(Eo) E; E; E;,
O——0------ o— —Or-ne - o —0  +retrs OO0 -noe o——0
! l =
Let i3 < ia < --- < i be the indices of the irreducible components

of Ey corresponding to the branching vertices of the graph I'(Ef), and
jo=0<j1 =1<js <-+- < jp < jht1 = R be the indices corresponding
to the edges of I'(Ey) as above.

Reversing the process of the construction of (M, E¢), one can blow
down successively Er, Egr_1, - - -, E2 in this order to get the smooth surface
M, . Therefore, we have (E?) = —2, for i, <i < R— 1.

DEeFINITION. — Let M = M be the surface obtained by the blowing
down of Eg, Ep_1, - -+, Ej, +1 from M. We shall denote the images of E,
E,, ---, E;, in M¢ newly by the same notations Ey, E1, ---, E;,, and set

E=Ec=FEUE;U---UE,;, in Mc.

We shall call the pair (M,E) = (Mc,Ec) the compactification of C?
obtained by the minimal resolution of the singularity of C at infinity.
Accordingly, the graph I'(E¢) will be called the dual graph of the minimal
resolution of the singularity of C' at infinity.
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Setting
L= \J E
-1 <i<ik

for each 1 < k < h, we shall call Ly (resp. I'(Lg)) the k-th branch of Ec
(resp. of I'(E¢)), where ig = —1. We shall denote i, by T.

E;,(Eo) E;, E,, E; (Er)
o O -nmmnn o- l O - nmen o l 0 e o-——I --------- C
Dual graph E i
(are™) ] I 1
Ej (E1) E; Ej,

3. (p, q)-sequence and §-sequence.

In the followings, we shall denote (M¢, E¢) by (M, E) and the closure
of C in M by C.

DEFINITION. — We shall denote by 6y the order of the pole of f on
E;, for 0 < k < h and call {6¢, é1, ---, 6n} the é-sequence of C (or of f).

The purpose of-this section is to describe the relationship between
the 6-sequence and the weights of I'(E). Note first that we have

bo=m, 6 =m,

since we assumed that f(z,y) is of degree m with respect to z and n with
respect to y. For each k (1 < k < h), set the weights of I'( L) as follows:

Ly

Ly O esnnes o— O emnne o——o (k-th branch Ly),
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where Ly = the closure of the y-axis and Ly,; = C. Define the positive
integers pg, ak, gk, b such that

(pksak) = 17 (Qk,bk) = 1’ 0< ai < Dk, 0 < bk < 9k,

by the continuous fractions as follows:
pr/ax = m1—llm2—- 1|m3—~~~— 1[m,
Qk/bk=n1—1n2—1n3_..._1_[n_s'

Remark. — In case there is no vertex between the two branching
vertices corresponding to E;,_, and E;, (k > 1, r = 0), we set px = 1,
ar = 0.

DEeriniTION. — We shall call the sequence

(P1, 1), (P2,q2), -+, (PhraR)

the (p, q)-sequence of C (or of f).

By Lemma 3, we have

-1 (k=1)
1 (k>1)°
Therefore, (pk, gx) are coprime each other, and if the pair (pg, gx) is
given, the pair (ax, bx) (0 < ax < pg, 0 < by < gx) is determined uniquely
by this equation, so that, by the continuous fraction expansion of % and
k
dk

b the self-intersection numbers of the irreducible components of Ly are
k

determined except for that of E;, .

PROPOSITION 3. — prqr — beDr — QkGr = {

Note that (E}) = (E? ) = —1. As for the self-intersection numbers of
E;, ---, E;,_,, one can check easily the following proposition.

ProrosiTiON 4. — Suppose that, for 1 < k < h, the t weights
Ns—t4+1, ** -, Ns Of the above dual graph I'(Ly) are equal to —2 and that
ns—_s # —2. Then,

2 (x> ax)
(BX_)=1{2+t (mc=1)
3+t (otherwise).
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Thus, the dual graph I'(E) = I'(E¢) can be determined completely
by the (p, ¢)-sequence of C.

Now, by Lemma 1,

ProposiTION 5. — The order of the pole of f on E;, is equal to qx0k.

In particular, since 6o = n,§; = m, f has the pole of order p1n = ¢ym
on E;,. Remember that m = pd, n = ¢d, (p,q) = 1 (see (2.1)). We get then
P19 = q1p- Since (p1,¢q1) = 1 by Proposition 3, this implies

CorOLLARY. — (i) p1 = p, ¢1 =¢q, (ii) dpy =61, (iii) ¢161 = p160-
Let

T
Pf = Z l/iEi
=0

be the pole divisor of f on M. By Lemma 1, the coefficients v; of E;
corresponding to the vertices between Ey (resp. E7) and E;,, including
E;,, are all multiple of &y (resp. 61). Further, applying

(Pr-E;) =0

for each E,; corresponding to the vertices between E;, and E;, successively,
all the coeflicients v; of these F;, including E;,, are linear combinations of
6o and 6; with integer coefficients. Since all the coefficients of F; between
E;, and E;, are multiple of §,, the coefficients of E; between E;, and E;,
are linear combinations of 6g, 61, d2 with integer coefficients. Continuing
in this way, we see that

PROPOSITION 6. — qibx € Zbg + Zb1 + - - - Zbg—1.

Now, setting ¢ = ix—1 (2 < k < h), let us denote by M, the
surface obtained by the (o — 1)-th blowing up in the process to get M
from M;. We may say that M, is the surface obtained by the blowing
down of Ep, Tr_q, ..., E,41 successively from M. Let 7, : M — M, be
the mapping obtained by the composition of these blowing downs. We
shall denote the images of C, E, in M, by 6(0), Ef,"), respectively.
5(0) intersects E,(,”) at the point Q, = 7,(Er U ---Ey41). Let dg be
the intersection number of 5(0) and E,(,G) in M,. Since M, is non-
singular, there exists a holomorphic function ¢, on a neighborhood U,
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of 771(Q,) = Ey41U---UE7 in M which has the zero divisor of the form:

T
(po) = E; NUy; + Z pik;.
i=o+1
We have then p;, = p;,_, and, by Lemma 1, py;, = gopy, for a =
k,k+1,---, h, where we set y, = 1. This implies pr = s, = qxqk+1 " qh-
Hence, we have
1 (k=h+1)

_ A o)y _ _{
dp =(C"" - FE = =
k= o) = k1 QkGk+1---qn (k< h).

Let P}”) be the pole divisor of f on M,. We have then

(o) (o) _ (o)
C” ~ P =3 yE,

i<o

dy = (@7 -EP) = S w(B - ED).
i<o
Since each v; is a linear combination of 8y, 61, - -, dx—1 with integer
coefficients, we have

dy € Zbg + Z61 + -+ - Zbg_1.

Hence, di is a multiple of gcd{bg,é1,---,6k—1}. On the other hand, the
coefficients vg, - -, vy of P}a) are the solutions of the simultaneous linear
equations

(B gy [0 (<o)
Z z(Ei E] ) {dk (j=0’).

Therefore, by Lemma 4, vy, ---, v, are all multiple of di. In particular,
bo, 61, -, Ox_1 are also multiple of di. Thus, di is the greatest common
divisor of 8y, 61, -+, 6x—1. Consequently, we have

i<o

ProposiTiON 7. — Let di, (1 < k < h+ 1) be the greatest common
divisor of g, 61, -+, 6x—1. We have then dp+1 =1 and, for k < h,

dk = QkQk+1- " qh,
or equivalently
qk = di/dx41-

Remark. — These relations hold for k=1 also, since d; = ég = n,
dy=dand ¢ = ¢=mn/d.
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Let us consider the holomorphic function ¢, on a neighborhood U, of
E;4+1U---U Ep defined in the above proof of Proposition 7 (o = ix_1,2 <
k < h). Then, & = <pg’°f takes a pole of order qx_16;—1 — 6 on E;, _,, since
f takes a pole of order gx_16x—1 on it.

On the other hand, ¢, takes a zero of order g, on E;,, while f takes
a pole of order q6y. Hence, ® = % f is either a non-constant function or
a non-zero constant (# oo) on E;, . If one blow down Er, Er_q,- -, E;, 41,

the zero curve 6“” of ® intersects EEZ’“) with the multiplicity dx4+1 =
Qk+1Gk+2 * - - gn- Therefore ® is non-constant and of degree digy; on E;, .
Hence, the order of the pole of ® on E;, | is di4+1px. Consequently, we

obtain

PROPOSITION 8. — dy1+1Pk = qk—10k—1 — 8% (2 < k < h).

Thus, the (p, q)-sequence and the dual graph I'(E) are determined
completely by the §-sequence of f. Let us summarize here the results
obtained so far about the é-sequence and (p, q)-sequence.

ProrosiTiON 9. — Let C : f = 0 be a non-linearizable affine plane
curve with one place at infinity. Let g, 61, ---, 65, be the §-sequence of
C, {(pk,qr)} be the (p,q)-sequence of C and set dy = ged{bo," -, 0k-1}
(1 <k <h+1). We have then, for 1 <k < h,

(1) gk = di/di+1, drt1 =1,

61 (k=1)
2) d =
@) dirip {Qk-15k—1 -0 (2<k<h),

(3) qrbx € Lbo + 261 + - - - + Zbk—1.

Further, the dual graph T'(Ec) of the minimal resolution of the
singularity of C at infinity is determined by the §-sequence.

4. Canonical divisor.

The holomorphic 2-form w = dz Ady in C? extends to a meromorphic
2-form on M. The canonical divisor K = (w) has the support on E. Let g
be the genus of the curve C,, : f = a for generic a € C. If C is non-singular,
g is equal to the genus of C' by Theorem 1. Let

T
Pf = Z I/Z'Ei
=0
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be the pole divisor of f on M. Taking into account

A oy JO (0<i<T~-1)
(Pf Ez)“(c Ez)_{l (i=T),
we get, by the adjunction formula,

29—2=(K-C)+(C)

= (K- P;)+(C- Py)
= (K-Ps)+vr
=((K+E) Ps)— (BEr-Pf)+vr

T
=Y u((K+E)-E)-1+uvr.
=0

391

According as F; corresponds either the branch point, edge, or other
point in the dual graph I'(E), we can calculate the value of (K + F) - E;

as follows:
1  (branch)
(K+E)-E;, = { -1 (edge)
0 (others).
Hence
h—1
29—-221/7;1 —VO_V1+Z(Vik -—I/jk)—lljh-i—l/T—l
k=2
h
=vi, —vo—vi+ ) (Wi — Vi) — 1
k=2

It

h
pgd—pd—qd— 1+ b(qe — 1).
k=2

Thus, we have

THEOREM 2. — 29— 1=d{(p—1)(¢—1) -1} + Xh: Ok (g — 1).
k=2

Since the right hand side of this last equation is positive, we have

g > 0. We get in this way another proof to Corollary 3 of Theorem 1.
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5. Approximate roots.

Multiplying f(z,y) by a non-zero constant, if necessary, we may
assume that f(x,y) is monic (of degree n) with respect to y. For the

divisors di(= n), da, « -+, dn, dn+1(= 1) of n defined in Proposition 7, set
ng = dﬁ (k=1,---,h+1). Then, there exists, for each k£ (1 <k < h+1),
k

a pair of polynomials gx(z,y), monic and of degree nj with respect to y,
and ¥ (z,y) of degree < n — ny with respect to y, uniquely determined by
the folowing condition:

f=g,‘i"° + Yr.

One can check the existence and the uniqueness of this pair (g, %) by the
termwise comparison of the both side of the last equation. We shall call
gx(x,y) the k-th approximate root of f. We have g, = y and gr+1 = f by
definition. From the uniqueness of the approximate roots, it follows that
gk is also the k-th approximate root of g; for any j with k < j < h+ 1.
The sequence

G0=%,91=Y, 92, ", Ghy Ghy1 = [

will be called the g-sequence of f. In the followings, we shall denote by Ck
the curve defined by gx(z,y) = 0 in C2. We have Cy = y-axis, C; = z-axis
and C = Ch41 by definition.

THEOREM 3. — Each Cy (k < h) is also with one place at infinity.
Further, its closure Cy in M intersects transversely E;,, and does not
intersect other irreducible components of E.

Before giving the proof to this theorem, let us prepare two lemmas.

LEmMA 5. — Let ¢y, ¢, -+, ¢co be a non-zero complex numbers, d
an integer, and set

[}

o(t) = [t —c)*.

i=1

Then, ¢(t) — ¢(0) takes a zeros of order < a at t = 0.

LEMMA 6. — Let a, b, e be complex analytic curves on a non-
singular complex surface W such that a and b have no common irreducible
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component with e, a Nb = @ and e is compact. Assume that a U e (resp.
bUe) be the zero set of a holomorphic function u (resp. v) on W. Let

[ s t
a=Uai, b= UbJ" e= LJe,c
i=1 j=1 k=1
be the decompositions into the irreducible components, and let
T t
(u) = Zuiai + kaek,
i=1 k=1
s t
W) =D by + > nxex
j=1 k=1

be the zero divisor of u, v respectively. Finaly, let a; (resp. ;) be the
degree of the zero divisor of v (resp. u) restricted to a; (resp. b;). We have
then,

(- @) = Z::ua - ;ﬂ
In fact, since a; - b; = 0, (u) - ex = 0, (v) - ex = 0,
(- () = @p " zmkew @)
= (L ma)-)
_ \;M @)
_ ; o
In the same way, we have () - (v)) = él viB;.

Proof of Theorem 3. — It is sufficient to prove it for 2 < k < h. Set

o = jrx — 1. In the case (E},_|) < —3, we have o = ix_1. In the other case
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(EZ_.) = —2, E, is the component with the self-intersection number < —3

on Lj nearest to E;,_, on the dual graph I'(E). (See the figure below.)

Let M, be the surface obtained by the (¢ — 1)-th blowing up in the
process to get M from M;. We may say that M, is the surface obtained by
the blowing down of Er, Er_1, ..., E,4; successively from M. We shall

denote the images of C, Ci, E; in M by C(U) C(U) Ez(”), respectively.
Let @ be the intersection point of C’ and E,(,”). Note that we have

@7 EY) = d,
and T is tangent to ES°), since (E,?) < —3.

Now, suppose that 6(0) passes through the point Q. Let P(”) =
5_: u,E( ) be the pole divisor of x on M,. We have p; >0 for 1 <i < 0.
We have

ny, = the y-degree of the function g
= the intersection number of C}, and the line z = const.
= the degree of x on Cj
o
=@ P =3 w@ BD).
i=1
On the other hand, as one can check it easily using Lemma 1, the coefficient

1o, the order of the pole of z on E,, is equal to ¢1-q2 - - - gx—1 = ny. Hence,
we have

(C(U) Ez(a))={(1) 8—;),0_1)

while (C(a) EOU)) = 0, since g is monic. Thus, Cx has one place at infinity.

Since C’k o) intersects Eﬁ,") transversely at Q, Cj intersects Ey41 = E;,
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transeversely at the regular point of £ in M. Thus, if one shows that 6596)
passes through the point @, the proof of Theorem 3 will be accomplished.

Suppose that 5;:7) does not pass through the point Q. Consider the
rational function

di
@:&L—l_ﬂ’i

f f

on M,. ® has no zero in U — ES) N U for a small neighborhood U of Q.
Assume that @ is an indetermination point of ®. Then, there must be a
zero curve of ® which passes through Q. So, ® = 0 on Ec(,”). Set Al =
EY UEY U..-UE!,. Since A©) is exceptional and A(®) N ¢ =g,
® has no pole on A(%). Therefore, ® must be constant (= 0) on A(®). But,
since deg, ¥ < 1 — ny, we have ¢ /f =0 on E(go), so that ® =1 on E((f).
This is a contradiction. Hence, ) is not an indetermination point of ®.

Now, blow up the indetermination points of ® until the indetermina-
tion points of ® disappear. Let M be the surface thus obtained. We shall
denote by C‘, Cy, Ej, etc. the proper images in M of 6(0), 62"), E](-a), etc.
respectively. In M, we can write the divisor of ® as follows:

,
(@) = dkék -C + Z l/jE'j,

=0
namely,
C~ dkék + Zl/jEj,
=0
where Ey, Ey, ---, E, are the proper images of Eéa), E§°), o, B
respectively, and F,41, -+, E. are the curves appeared by the blowing

ups. Since @ is not an indetermination point, we have

5 py_ 0 (i#0)
(C‘Ei)_{dk (i=o0).

T ~
Hence, Y v;(E;- E;) (0 < i < 1) are all multiple of di, so that, by Lemma
Jj=0
4, all the coefficients v; are multiple of d.
Now, if the pole set P of ® on E is not connected, then one of its
connected component must be included in A. But this is a contradiction,
since CN A = @ and A is exceptional. Therefore, P is connected.
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Let {Ex}aea be the irreducible components of E on which ® is non-
constant. Take one Ey (A € A). Since the dual graph of E is a tree and P
is connected, ® has the pole on Ej at only one point, say a. Let By be the
connected component of the closure of E — E) in M which contains Ej.
Then, ® = 1 on By, since ® is holomorphic in a nelghborhood of By and
®=1on E(”) Let b be the 1ntersect10n point of By and E), and take a
coordinate function t of Ex 2 P! : |t| < oo such that t(a) = oo and ¢(b) = 0.
Since all the v; are multiple of di, we can write p = ®|  as follows:

Q)

olt) = [[ (¢ o).

i=1
By Lemma 5, the number of the zeros of p(t) — 1 (= —¢/f) other than
t=0is > ax(dx — 1).

~ T ~ ~ ~
Let P, = Y. ,uiEga) be the pole divisor of x on M and Zg the
i=0

zero divisor of ®. The support of Zg does not intersect By. We have, by
Lemma 6,

(P - dkCr) = (Py - Zg)

= madian,

AeA
so that

ni = deg, (gx) = (P - Ck) = ) _ pacua.
AEA

In the same way, let ¥ be the curve defined by 1 = 0 in C? and ¥ its
closure in M. We have then, by Lemma 6,

deg, (%) = (P; - k) > Z paox(dy —1).
XeA

Hence,

deg, (¥x) > ni(dx — 1) =n — ni.

This is contrary to the assumption deg,(¢x) < n — ni. Hence, 55;7)
passes through the point @, and Theorem 3 is proved.

CoroLLARY. — Each gy (0 < k < h) has the pole of order 6 on
ET = Eih'
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In fact, let Py (resp. Py,) be the pole divisor of f (resp. gx) on M.
Then, we have, by Theorem 3,

6k = (Ps - Ck)
=(C-Cy)
= (6 ! ng)
= the order of the pole of gx on Er.

6. Semi-group criterion.

We shall continue to use the same notations as in the previous
sections.

LemMA 7. — For any integer k (1 < k < h) and any integer A, the
sequence of integers {ap, a1, - -, oy} satisfying

A= agby + a1 + - - - + apdi
and 0 < o; < q; for 1 < ¢ < k is unique, if it does exists.

In fact, assume that there exist two sequences {a;}, {8;} with
0 < ai, B < gi (1 <1< k) satisfying

(1) Zaiéi = Zﬂi‘si-

Then, setting 6; = 6;/dg+1, we have

k-1
Z(ai — B:)6: = (Br — k).
i=0
Here, b, -+, 6x—1 and & are mutually coprime, since dyr; = gcd{do,

-++, 6 }. Therefore, B — ai must be a multiple of ged{bg, - -, Op—1} =
di/dk+1 = gk Since 0 < ok, Br < gk, this implies o = k. Repeating the
same argument, we get ax—1 = Og—1, - -, @1 = f1, and finally, ap = Fp by
the equation (1).

ProrosiTioNn 10. — For each k (1 < k < h), qibx is a linear
combination of 6y, 61, -+, 8x_1 with non-negative integer coefficients,
namely

(2) qxOx € N6g + Néy + -+ - + Nog_1.
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Proof. — We have ¢16; = pby by the corollary to Proposition 5.
Therefore, it is sufficient to prove (2) for k > 2. Set ¢ = ix, and let us
consider the surface M, obtained by the (o — 1)-th blowing up in the
process to get M from M;. We may say that M, is the surface obtained
by the blowing down of Lpy1, Lp, ..., Lr41 successively from M. Let

: M — M, be the contraction mapping. As in the previous sections,

let us denote the proper 1mages of C, Cy, E; in M, by C(U) C(a) Ef”)
respectively. By Theorem 3, Ck 11 intersects transversely ES) at the same

point Q = 7y (Lg41 U+ ULpyq) as o). Hence, the functions f and gg41
on M, have the same indetermination point Q € ES°). Let

[ (o
0 =S, B = 3wl
=0 =0

be the pole divisor of f and gx4+1 on M, respectively. Let &g, 61, - - -, 6 be
the order of the pole of gx4+1 on Ej (= Ey), Ej,(= E1), -, Ej,. We have
8o = Ujo, 61 = Djy, - b = j,. The coefficients v;, 7; (¢ =0,1,---,0) are
the solutions of the following equations:

S B, = {5 47
=0

dk+1 (l = 0)7
(@) o)y, _ [0 (i#0)
2 (BB, ‘{1 (i=o0).
j=0
Hence, by Lemma 4, we have v; = dyg417; for all ¢ = 0,1,---,0. In
particular,
6 =05; dxt1, (i=0,1,--- k).

Therefore, in order to prove (2), it is sufficient to prove

(3) quk € NSO + Ngl +---+ Ngk_l.

By Theorem 3, 55;7) intersects E](:) transversely and does not inter-

sects other components E-(”) (% # jx). We have

(
6k - (Pé:-f)-l k

o) (o)
= (Cxy1-Cr ")
()
= (Cif1- PiY)-
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This implies that g has the pole of order 6 on E,(,U) . On the other hand,
by Lemma 1, gi4+1 has the pole of order qid; on ES). Hence, ES is
neither the zero nor the pole of & = gk“

e . Further, ® is holomorphic in a
4
neighborhood of @ and ®(Q) = 0. Therefore, ® is not constant on EY).

Now, set ¢ = gg4+1 — g5*. Then,

Y
o =2-1

9k

is also a non-constant function on E((,"). Therefore, 1 has also the pole of
order g6 on Ec(,a). On the other hand, since

degy(w) < N1 = NGk, Nk = degy(gk)a

by the division of ¥ by gi*~ ! we get

P =cigl "+

with deg,(c1) < mk, deg,(v1) < ni(gx — 1). Dividing v;_1 by g~
successively for i = 2,---,qx — 1, we get

"pz l—czqu l+'¢’z»

where deg, (c1) < ng, deg,(:) < nk(gx —1%). Thus, setting cq, = g, 1, We
get

Y= Z czqu :

Here, we have

deg,(ci) < nk = ng-1qk-1, 7Nk-1 = deg,(gk—1)-
In the same way, dividing ¢; and its rests by gg*7'~ ' g 2 Gkt
successively, we get

Gk-1

qk— 1 —J
E CijQp_

with degy(Cij) < nk_1. Thus, we have

qr 9k-1

Y= Z Z Cz]g% ’Lng 1‘ 7,

=1 j=1
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Repeating this procedure, we obtain

— oy 02 (e
d} - E : Coyaz-ard1 927 " "9k >
a1<q1,02<q2,",0k <qk

where deg, (Caya,--ax) = 0, since g1 = y. Substituting finally go = z, we
can write v as follows:

— (o3 « (67
1/) - E Caoozlmakgoogll "'gk )

ag<00,01<q1, ",k <qk
where Cqqq;--0p are constants.

The order of the pole of each term gy°gf™* - -- gp* on ES) s
(4) Ot()go + 04131 + -+ Olkgk.

Now, by Lemma 7, these values are different each other. Hence, the order
of the pole of 1 on E((,”) coincide with one of the values of (4). Thus, we
have

qkzk = 01030 + 01151 +--+ akgk

for some sequence of non-negative integers «g, i, ---, o satisfying
0<a;<gq; fori=1,--- k. Assume here that ay # 0. Then, we have

0105() + 01131 + -+ ak_13k_1 + (qk - ak)gk =0

with 0 < gx — ax < qx. This contradicts Lemma 7. Hence, we have ax = 0.
Thus, we obtain

qrbr = o + @181 + - -+ + ag_16k—_1.

Q.E.D.

By Proposition 9 and Proposition 10, we obtain the following theorem
which can be regarded as an algebrico-geometric version of the so-called
semi-group theorem due to Abhyankar and Moh [2] for the curves with one
place at infinity in C2.

THEOREM 4. — Let C be an affine plane curve with one place
at infinity in C2, &9, 61, -+, 6n the 6-sequence of C and (p1,q1), -,
(pn, qr) the (p,q)-sequence of C defined at the beginning of Section 3. Set
dr = ged{bo,---,0k—1} for 1 <k < h+ 1. Then, we have, for 1 < k < h,

(1) gk = dx/di41, dry1 =1,
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8o (k=1)
2) d =
2) disape {qk_lak_l —& (2<k<h),

(3) qr6x € Nég + N6y + - - - Néog_1.

Further, the dual graph T'(Eg) of the minimal resolution of the
singularity of C' at infinity is determined by the §-sequence.

The next theorem gives the inverse of Theorem 4 in some sense.

THEOREM 5 (Sathaye-Stenerson [10]). — For a sequence of h + 1
natural numbers 6y, 61, 82, -+, 6n (h > 1), define dy, da, -+, dpy1 by

dr = ged{bo, -+, 0k-1}

and set qx = di/dk+1 (1 < k < h). Suppose that the following three
conditions are satisfied:

(1) dh+1 = 1,
(2) 6k < gr-16k—1 (2 <k < h),
(3) qr6x € Nog + Nép + - - - + N3 (1 <k <h).

Then, {6y, 61, 62, -+, 6n} Is the 6-sequence of an affine plane curve
with one place at infinity in C?.

Proof. — We shall prove Theorem 5 by the induction on h. In the
case h = 1, setting 8o = ¢, 61 = p, we have (p, q) = d2 = 1. Hence, as one
sees it easily, the curve zP + y? = 0 has one place at infinity and {6y, 61}
is its d-sequence.

Now, let us consider the case h > 2. Set 5k =6b/dp for0 < k< h—1,
and dy = dy/dp, for 1 < k < h. We have

(zk = ng{so,gh T ,5k—1} and g = Jk/jk+1

for 1 < k < h—1. Further, the sequence {8, 61, - -,6,_1} satisfies the same
properties (1), (2), (3) for h = h—1. Therefore, by the induction hypothesis,
there exists an affine plane curve Cj; with one place at infinity which
has {6;} as its 6-sequence. Let f be the defining polynomial of Cj and,
taking the canonical coordinate system z,y for Cj (see (2.1)), let go = «,
g1 =19, -, g1, g» = [ be its g-sequence. Let (M,E) = (Mg, ,Ec,)
be the compactification of C? obtained by the minimal resolution of the
singularity of Cj, at infinity (see (2.3)). The closure Cj of the curve
Cr:gr=00<k<h-1)in M passes through the irreducible component
Ejk of E corresponding to the k-th edge of the dual graph I'(E), and Cj,
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passes through a point @ of E‘ih_l, the curve appeared by the last blowing
up. Now, set

Pr = (qh-16n-1 — 6n).

Since qn, = dp = ged{bo,- -+, 6n-1} and (qn,6n) = dp+1 = 1, then we have
(pn,gqn) = 1. Therefore, we can take ap, by (0 < ap < pp, 0 < bp < gp)
such that

Phqh — brph — angn = 1.

Define the integers m;,n; > 2 by the following continuous fraction expan-
sions:

pr/an = mi = 1[my — 1[mz — ---— 1]m,,
gn/bh = m = 1ny — 1fng — -+ — 1n,.

Then, we can blow up the point @ and the infinitely near points
successively, in such a way that we get the h-th branch Lj of the form:

—my —Mr—1 —My —np  —MNs—-1 —Ng
Ly, —O--none- o O--nmmenee

Let M be the surface thus obtained and E the total image of E in
M. Let E;, C) the proper images of E;, Cx in M. Note that we can do
these blowing up in such a way that the closure C} passes through the
component Ej, . (It is sufficient to take the center of the blowing up on Ej,
to get Ej, 41 outside the intersection of the closure of Cj;, with Ej, .)

According to the corollary to Theorem 3, each gi 0<k<g<h-1)
takes the pole of order 6 on E;, ., so that it takes the pole of order §; on
E;, , while g, takes the pole of order

an(gh—-10n—-1) — Ph = Gh—18h—1 — Pr = b
on E'ih'

Now, by the condition (3), there exists a sequence of non-negative
integers «; satisfying

grdn = agbo + 161 + -+ + ap—16p—-1,
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where we may assume 0 < o; < ¢; (1 < ¢ < h — 1), applying the condition
(3) for k=h—1,h—2,---,1 successively, if it is neccessary. Consider the
polynomial

h—-1
fle, y) =g - [] o

=0

h—1

and the curve C : f(z,y) = 0 in C%. Since g/* and [] g have the same
=0

order (say gpdn) of the poles on E;, , the function

QhHgaz_l__

=0 9n
is either a non-constant function or a non-zero constant on E;, .

Let A (resp. B) be the closure of the connected component of E — E;,
which contains Ey (resp. Ej, ). Since A is exceptional and ANCj, = @, ® is
holomorphic on A and the pole of ® is contained in C, U B. On the other
hand,

h—1 h—1
deg, (H gf“') <Y g = Z(h‘h 11 < gagh—1- - q1 = deg,(gi").
=0 =1

Hence, Fjy is a zero of @, so that & = 0 on A. Therefore, ® is non-constant
on E;,, and takes the pole on the irreducible component B; of B which
intersects E;, . The pole divisor of ® must be of the form

S
Py = quCh+ Y piBi, (i > 0),
i=1
where By, Bs, ---, Bs are the irreducible components of B. By Lemma 1,
we have qnu; = gp, so that p; = 1. Thus, @ is a rational function of degree
1 on E;, . Since the curve ® = 1 coincide with C, we obtain

— 1 (i=ip)
(C-E) = {o (i # in).
Thus, the curve C has one place at infinity.
Now, since ® = 0 on A, f takes the same order of the pole as
g on each irreducible component of A. In particular, f has the pole of

order gndx = 6 on each E; (0 < k < h—1). On the other hand, since
® =1— f/gl" is non-constant on E;,, f has the pole of the same order
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qrnén as gi* on E;, . Hence, f has the pole of order é), on E;, by Lemma 1.
Thus, {bo, 61, -+, 6n} is the é-sequence of the curve C : f = 0 with one
place at infinity.

Q.E.D.
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