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AFFINE PLANE CURVES WITH ONE PLACE
AT INFINITY

by Masakazu SUZUKI

Introduction.

Let C be an irreducible algebraic curve in the complex affine plane
C2. We shall say that C has one place at infinity, if the normalization of
C is analytically isomorphic to a compact Riemann surface punctured by
one point.

There are several works concerning the classification problem of the
affine plane curves with one place at infinity to find the canonical models
of these curves under the polynomial transoformations of the coordinates
ofC2.

In the case when C is non-singular and simply connected, Abhyankar-
Moh [1] and Suzuki [11] proved independently that C can be transformed
into a line by a polynomial coordinate transformation of C2. Namely, in
this case, we can take a line as a canonical model.

In case C is singular and simply connected, Zaidenberg-Lin [12]
proved that C has the canonical model of type yq = xp^ where p and q
are coprime integers ^ 2.

Assuming that C is non-singular, the cases when the genus g of C
is 2, 3 and 4 were studied by Neumann [8], A'Campo-Oka [3] from the
topological view point and by Miyanishi [4] from the algebrico-geometric

Keywords: Plane curves — One place at infinity — Semi-group criterion — Approximate
roots.
Math. classification: 14E25.
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view point. Miyanishi [5] classified the dual graphs of the curves which
appears by the minimal resolution of the singularity at infinity. Recently,
Nakazawa-Oka [7] gave the classification of all the canonical models for the
cases g ^ 7, and in its appendix, Nakazawa gave the classification for g ^ 16
without proof.

In the present paper, we shall first explain how to get the canonical
compactification (M, E) of C2 corresponding to the minimal resolution of
the singularity of the curve C at infinity (after taking the coordinate system
of C2 which minimize the degree of the defining equation of (7), and then
we shall study the dual graph F(£1) of the boundary curve E.

In this way, we shall first get a new simple proof to the above
mentioned Abhyankar-Moh-Suzuki theorem. Next, we shall make it clear
the relationship between the dual graph r(£') and the ^-sequence of
Abhyankar-Moh theory. We shall get a new algebrico-geometric proof to
the beautifull so-called semi-group theorem of Abhyankar-Moh [2] and
its inverse theorem due to Sathaye-Stenerson [9]. Our new proof gives
us also an algorithm to compute the weights of the dual graph F(E) by
computer^).

To end this introduction, I would like to express here my hearty
thanks to Mr. Takashi Oishi and Mr. Koichi Koide for their help at
the beginning of this research to the experimental calculation of various
algebraic invariants of the dual graphs by computer.

1. Preliminaries.

1.1. Primitive polynomials.

Let f{x,y) be a polynomial function on the complex affine plane C2

with coordinate system x and y . f(x,y) will be called primitive if the
algebraic curve defined by f(x,y) = a in C2 is irreducible for all complex
numbers a except for a finite number of a's. The following proposition is
well known (see for example the Appendix of Furushima [4]).

1 ) We implemented a program to get the list of the 6-sequences and the corresponding
dual graphs r(JS) of the curves with one place at infinity with any given genus. We thus
confirmed the classification table given by Nakazawa in [7].
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PROPOSITION 1. — For any polynomial /(a*, y ) , there exist a primitive
polynomial F ( x ^ y ) and a polynomial ^p(z) of one variable z such that
f{x^y)=^F(x^y)).

From this proposition, we can get the following corollary.

COROLLARY. — Irreducible polynomials are always primitive.

In fact, let us write f { x ^ y ) in the form

f(x,y)=^{F{x,y))

by a primitive polynomial F(x^ y) and a polynomial ^p(z) of one variable
z. Since the curve C : f ( x ^ y ) == 0 is irreducible and f takes the zero of
order 1 on (7, ^p{z) vanishes only on z = 0 and takes the zero of order 1 on
z = 0. Therefore <^(z) is a polynomial of degree 1. This implies that / is
primitive.

1.2. Dual graph.

We shall assume from now that M is a non-singular projective
algebraic surface over the complex number field and E an algebraic curve
on M. We shall assume further that each irreducible component of E is
non-singular and intersect each other at only one point at most. In such
case, we shall say that E is of normal crossing type.

For a curve E of normal crossing type, we represent each irreducible
component of E by a vertex and join the vertices if and only if the
corresponding irreducible components intersect each other. We associate to
each vertices an integer, called weighty equal to the self-intersection number
of the corresponding irreducible component on M. The weighted graph thus
obtained will be called the dual graph of E and noted by r(E). In case the
values of the weights are not in question, the weights may be omitted in
the picture of the dual graphs bellow.

LEMMA 1. — Let £'1, • • • , Er^ Er-{-i be the irreducible components
ofE and assume that the dual graph F(E) is of the following linear type:

—HI —722 —rir

r(E) : o——0-----0——o (m ̂  2).
E\ E^ E^ ^r+l
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Assume further that there exists a holomorphic function f on a
neighborhood U of E\ U E^ U • ' ' U Er such that the zero divizor (f) of
f on U is written in the following form:

r

(/) = ̂  rriiEi + m^+iE^+i H U.
1=1

Then,

(1) m2, • • • , m^+i are all multiple of m\.

(2) Set pi = m^/mi, (1 ^ % ^ r + 1), then (pr+i, Pr) o're coprime each
other and the following continuous fraction expansion holds:

Pr+l
= Ur — 1 [rir-1 — ' • • — 1 p2 — 1 pi

Pr

Proof. — Since (/) • Ei = 0 , we have rn^+i = niTYii — m^-1 for
z = 1, • • • , r, where mo == 0. The two assertions of the lemma are the
immediate consequences of these equations.

1.3. Intersection matrix.

Let £'1, E^, - ' ' , ER be the irreducible components of E and consider
the intersection matrix

IE = ((E, • £y))^i,..fi.

Set ^E = det(—J^;). The following two lemmas can also be obtained easily
by a direct computation.

LEMMA 2. — The determinant A^; is invariant under the blowing up
of the points on E. Namely, ifr : Mi —> M is a blowing up of a point P
on E, we have then A^-I^) = A^;.

LEMMA 3. — Assume that the dual graph F(E) is of the following
type:

—rrir —rrir-i —m\ —1 —n\ —n,s-\ —n,s
F(E) : o———^--—o———o———^-—-—o———o (mi > 2, rij > 2).

We have then

^E = pq — aq — bp
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where p, a, q, b are the natural numbers defined by the continuous fractions

P i—— i—— ——- = mi — 1 7772 — 1 m3 — - • •— 1 \mr
a — — -J

q = HI - lTn2 - 1 | ns - • • •- 1 | nsb — 1 — 1 —i

satisfying

(p, a) = 1, (<7, b) = 1, 0 < a < p, 0 < 5 < 9.

1.4. Compactifications of the affine plane.

Assume now that M—E is biregular to C2. In such a case, we shall call
the pair (M, £) an algebraic compactification of C2 and E the boundary
curve. Let £'1, £'2? • • ' ^ En be the irreducible components of E.

By C.P. Ramanujam [9] and J.A. Morrow [6], (M, E) can be trans-
formed into the pair (P2, L) of the complex projective plane P2 and a
line L on it, by a finitely many times of blowing ups and downs along the
boundary curve. Therefore, by Lemma 2, AE = —(J^2) = ~1; namely

del IE =±1.

This implies that, for any R number of integers A:i, ^2; • • * •» k^, there
exists uniquely determined R integers mi, 777-2? • • • ? m^ such that

R
^mi(Ei'Ej)=k,, ( j= l , 2 , . . . , J ? ) .
z=l

Thus, we have

LEMMA 4. — Let (M, £1) be an algebraic compactification ofC2 such
that the boundary curve E is of normal crossing type and E\, E^, • ' ' , E^
be the irreducible components of E. Then, for any R number of integers

R
ki, A;2, • • •, kp, there exists a divisor D = ̂  miE^ with support on E,

i==l
uniquely determined, such that

( D ' E , ) = k , , ( j = l , 2, . . . , A).

In particular, if k^, k'z, '' •, kf^ have a common divisor d, then all the
coefficients mi, m2, • • *, m^ are multiple of d.
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2. Resolution of the singularity at infinity.

2.1. Canonical coordinates.

Let C be an irreducible affine algebraic curve with one place at infinity
defined by a polynomial equation f(x, y) = 0 in the complex affine plane
C2 with the coordnate system x, y. Assume that the degree of f(x, y) is m
with respect to x and n with respect to y . Then, the usual argument about
the Newton boundary shows that f(x, y) is of the following form:

/(^ y) = (axP + by^ + ^ c^V,
qi-}-PJ<pqd

where a ̂  0, b ̂  0, d =- gcd(m, n), p= m/d, q = n/d.

In case q == 1 (namely, n = d, m = pn), one can reduce the degree
of f(x,y) with respect a; by a coordinate transformation of the following
form:

xi = x, y^=y+ CX1'

called de Jonquiere type. Therefore, by a finitely many times ofde Jonquiere
type coordinate transformations and the exchange of the coordinates x and
y , one can reduce the polynomial f(x, y) to one of the following two cases:

(A) m = 1, n = 0 (In this case, C is a line);

(B) m = pd, n= qd, (p, g) = 1, 1 < q < p.

DEFINITION. — We shall call the coordinate system x, y satisfying
(A) or (B) the canonical coordinate system for C. An affine plane curve
with one place at infinity having the canonical coordinate system of type
(A) will be said linealizable.

ASSUMPTION. — We shall assume, from now on to the end of this
paper, that f(x,y) is of type (B) (non-linealizable type).

Now, let us compactify the plane C2 to get the projective plane P2

with the inhomogeneous coordinates x, y , and blow up the point at infinity
of the curve C.

At the beginning, the closure C of C passes through the intersection
point of the ;r-axis and the co-line A in P2, by the assumption q < p. Let
us denote by EQ the (-l)-curve appeared by the blowing up. The function
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yQ
— has the pole of order q on £'0 and the zero of order p — q on A. Then, if
p — q > q (resp. p — q < g), C is tangent to EQ (resp. A). Here, we denote
the proper image of A by the same character A.

Let a be the positive integer defined by

aq < p < (a + 1)^.

In case a = 1 (p — q < q), we set E\ = A.

In case a > 1, after further a — 1 times of the blowing ups of the
point at infinity of the curve (7, we get the compactification of C2 with the
boundary curve having the following dual graph:

-a -1 -2 -2 -1

Eo £1 A

yq
Here, the function — has the pole of order q on EQ and the zero of

x^
order p — aq on £'1. Therefore, the closure of the curve C passes through
the intersection point of Eo and E]_, and is tangent to £'1. Now, blowing
down from A the (-l)-curve on the right hand side of the dual graph a — 1
times successively, we get the following dual graph:

-a 0
c———3 (a > 1).
EQ E\

Let (Mi,£'o U £'i) be the compactification of C2 thus obtained. The
function / has the poles of order n on EQ and of order m on E^. The
indetermination point of / on Mi is uniquely the intersection point of Eo
and E\.

Remark. — Note that, if one continue to blow up the the point at
infinity of C at least twice, then the self-intersection numbers of the proper
transforms of EQ and £'1 become both ^ —2, since C is tangent to £'1 on
Mi.

2.2. Successive blowing ups.

Now, from Mi, let us blow up the indetermination points of /
successively, until the indetermination points of / disappear. Let Mf be
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the surface obtained by this resolution of the indetermination point of /.
We shall continue to denote by EQ, E^ the proper images of £'0, £'1 in
Mf respectively, and let Ei (2 ^ i ^ R) be the proper image in Mf of the
(-l)-curve appeared by the {i— l)-th blowing up. Each Ei is a non-singular
rational curve and the total curve Ef = EQ U £'1 U • • • U ER is of normal
crossing type. The last curve Ep is of the first kind and / is non-constant
on Ep. Note further that the union

£/ = E Q U E ^ U - ' - U E R

is an exceptional set, since EQ was exceptional in M\.

Let us denote by C the closure of C in Mf. Let Z (resp. P) be the
union of the components of Ef on which / == 0 (resp. / = oo). Since / has
no indetermination point on Mf, the zero CUZ and the pole P of / do not
intersect each other. Let S be the union of the other components of Ef. f
is non-constant on each irreducible component of 5. We have Ep C S.

Suppose that P is not connected. Then, the connected component of
P which does not contain E\ must be exceptional, which is absurd. Hence,
P is connected. P coincide with the connected component of Ef — S which
contains £'0 and E\, since / has no indetermination point on Mf.

In the same way, since Z is contained in the exceptional set E\\ each
connected component of Z must have an intersection point with C. Since,
on the other hand, C is of one place at infinity, C has only one intersection
point with Ef. Therefore, Z is connected. Let Q be the intersection point
of C and Ef.

(a) If Q ^ Z, then Z = 0. In this case, S is irreducible, since each
irreducible component of S must intersect C.

(b) If Q € Z, then the zero points of / on S are necessarily on Z. Each
irreducible component of S intersects Z and P which are both connected.
Since the dual graph F(£y) of Ef is a tree, this implies that 5' is irreducible.

Thus, in either case S is irreducible, namely S = ER.

PROPOSITION 2. — (i) ER is the unique irreducible component of Ef
on which f is non-constant, (ii) P is the connected component of Ef — Ep
which contains EQ and E^.

COROLLARY 1. — At each step of the process to get Mf from Mi, the
indetermination point of the function f to be blown up is unique, and is
situated on the (-l)-curye appeared by the preceding blowing up.
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By this corollary, we see that the the dual graph F(£j-) of Ef has the
the following form:

6 £'i <!> £j2 A Ej^

Here, 1 = '̂i < z'i < j2 < ^2 < • " < Jh <ih < R- Taking into account
the remark at the end of the previous subsection, we have

COROLLARY 2. — £f ^ -2 for i = 0,..., R - 1 and E^ = -1.

Since P is the connected component of Ef — Ep which contains EQ
and £'1, P is the union of the irreducible components of Ef situated in the
left side to the vertex Ep in the above dual graph F(£j). Let

R
Pf=Y,^E,

i=0

be the pole divisor of / on Mf. We have vi > 0 for Ei C P and v^ = 0 for
the other components Ei. Let k be the degree of / on ER. Then, we have

( P /n-J° (^fi)
^•^-{k (i=R).

Assume that k > 1. Then, by Lemma 4, VQ, ' ' - , VR are all multiple of
k. Since P is simply connected, there exists a simply connected neighbor-
hood U = U(P) of P such that UC\C = 0, and there exists a meromorphic
function F on U such that

/ = ^fe.

This implies that, for any complex number a with sufficiently large |a|, the
curve defined by / = a is composed of k irreducible components. This is a
contradiction, since / is primitive by Proposition 1. Thus we get k = 1.

Suppose now that Ef — P — ER ^ 0. Let JE?i,I?2, • • • ,Bg be the
irreducible components of B = Ef — P — E^ in the order from the
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nearest to ER (from left to right in the above dual graph F(Ef)). Let
(B2) = -(3i (1 ^ i ^ s) and set

ni = 1, n2 •= 0i, ri3 = 77,2/^2 - ̂ i, • • • , ^+i = ris0s - ris-i'
s

Since /3i ^ 2 for all z, we have Us+i ^ 2. Consider the divisor N = ̂  n^.
t=i

We have then

f 0 {E^E^B,)
(TV . ̂ ) = < 1 (^ = ̂ )

[ -n,+i (E, = B,).

Since k ==• 1 in (*), we get

m-^-^'^ St^-il^ns+i (Li = Bs).

Therefore, by Lemma 4, all the coefficients of the divisor Pf - N must
be multiple of yis+i(^ 2). This is a contradiction, since the coefficient of
Pf — N for BI is —1. Therefore, the components Bi, • • • , Bg do not exist.
Thus, we have

THEOREM 1. — (i) The degree of f on Ep is equal to 1.

(ii) The vertex corresponding to ER is situated on an edge ofF{Ef).

(iii) Any irreducible component of Ef except for ER is a pole of f.

For each a C C, denote by Ca the curve defined by / = a in C2. We
have then

COROLLARY 1. — For any a C C, the closure Ca ofCa in Mf intersects
ER transversely at only one point (so is smooth at the intersection point),
and intersects no other irreducible component Ei (i ^ R). In particular,
Ca is also irreducible and has one place at infinity.

COROLLARY 2. — If C = Co is non-singular and of genus g , then any
Co except for a finite number of a^s is of genus g .

In particular, if C = CQ is non-singular and simply connected, then
all the curves Ca are isomorphic to P1. The mapping / : Mf —^ P1 defines
a ruled surface structure on Mf, and P = EQ U E\ U • • • £^-1 is its singular
fiber. Therefore, P must contain at least one (-l)-curve in its irreducible
components. This is a contradiction, since £'0, -^i? " • - > ^-i contain no
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(-l)-curve by Corollary 2 of Proposition 2. Therefore, the case (B) which
we assumed at the beginning of this section does not occur for simply
connected non-singular C. Thus, we get

COROLLARY 3 ([I], [11]). — If an affine plane curve C is non-
singular and simply connected, then there exists a polynomial coordinate
transformation ofC2 which maps C to a line in C2.

2.3. Minimal resolution of the singularity at infinity.

By Theorem 1 (ii), the dual graph F(£j) is of the following form:

^o(^o) ^ E^ E,,

ER

A^(£i) A ^ IE,,

Let zi < %2 < • • • < ih be the indices of the irreducible components
of Ef corresponding to the branching vertices of the graph F(£j), and
jo = 0 < ji = 1 < j2 < • • • < jh < .7/1+1 = Rbe the indices corresponding
to the edges of F(£'y) as above.

Reversing the process of the construction of (My,£^), one can blow
down successively Ep, J^R-I, • • •, E^ in this order to get the smooth surface
Mi. Therefore, we have (Ef) = -2, for ^ ^ i ^ R - 1.

DEFINITION. — Let M = Me be the surface obtained by the blowing
down of Ep, Ep-\, • • ' , £^+i from Mj. We shall denote the images of EQ,
£'1, ' " , EI^ in Me newly by the same notations EQ, E\, • • •, E^, and set

E = EC •= EQ U £1 U • • • U E^ in Me..

We shall call the pair (M,E) = (Mc.Ec) the compactification of C2

obtained by the minimal resolution of the singularity of C at infinity.
Accordingly, the graph F(Ec) will be called the dual graph of the minimal
resolution of the singularity of C at infinity.
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Setting

Lk = U E*
ik-i<i^ik

for each 1 ̂  k ^ h, we shall call L^ (resp. F(Lfc)) the /c-th branch of EC
(resp. of r^c)), where %o = -1. We shall denote i^ by T.

^o(^o) Ei. Ei.

Dual graph
of r(£;c)

^?1) E'J2 E.

3. (p, g)-sequence and ^-sequence.

In the followings, we shall denote {Me, Ec) by (M, E) and the closure
of C in M by C.

DEFINITION. — We shall denote by 6j, the order of the pole of f on
E^ for 0 ^ k ^ h and call {60, ^i, • • •, 6^} the ^-sequence ofC (or of f).

The purpose of this section is to describe the relationship between
the (^-sequence and the weights of r(E). Note first that we have

60 = n, î = m,

since we assumed that f(x, y) is of degree m with respect to x and n with
respect to y . For each k (1 ^ k ^ h), set the weights of r(Lfe) as follows:

—rrir —mr-i —m\

E.

-HI -ris-i -ris
——c>--------o————o (A;-th branch L/g),

' Z k Ei

{mi > 2, rij > 2)
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where LQ = the closure of the ^/-axis and Z/^+i = (7. Define the positive
integers p k , dk, ̂ , 6^ such that

(pk, a,k) == 1, (qk, bk) =1, 0 < ak < p k , 0 < bk < qk,

by the continuous fractions as follows:

Pk/o'k = mi — Ij m2 — Ijms — ... — Ijmy.

^/^ == HI - IJ ri2 - 1]^3'- • • • - ijnj"

Remark. — In case there is no vertex between the two branching
vertices corresponding to E^_^ and E^ {k > 1, r = 0), we set pk = 1,
a f e = 0 .

DEFINITION. — We shall call the sequence

(Pl^l)^ (j?2,92), • • • , (Ph,Qh)

the (p, g)-sequence of C (or of f).

By Lemma 3, we have

-{-.lPROPOSITION 3. — pkQk - bkpk - cikqk = 1 (k > 1) '
Therefore, (pk, qk) are coprime each other, and if the pair {pk, qk) is

given, the pair (a^;, bk) (0 < a^ < p k , 0 < bk < qk) is determined uniquely
Pkby this equation, so that, by the continuous fraction expansion of — and
CLk

-k-, the self-intersection numbers of the irreducible components of Lk are
bk
determined except for that of E^.

Note that (£^) = (^) = —1. As for the self-intersection numbers of
E^, • - •, E^_^, one can check easily the following proposition.

PROPOSITION 4. — Suppose that, for 1 < k ^ h, the t weights
ris-t^-i, " ' , rig of the above dual graph F(Lk) are equal to —2 and that
ris-t 1=- -2. Then,

f 2 (pk > qk)
(E^)={ 2+t ( p k = l )

3+t (otherwise).
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Thus, the dual graph F{E) == r(Ec) can be determined completely
by the (p, (^-sequence of C.

Now, by Lemma 1,

PROPOSITION 5. — The order of the pole off on E^ is equal to qk6k-

In particular, since 60 == n, 6\ = m, / has the pole of order p\n = q\m
on £^. Remember that m = pd^ n = qd^ (p, q) = 1 (see (2.1)). We get then
p^q = q^p. Since (pi,(?i) = 1 by Proposition 3, this implies

COROLLARY. — (i) pi = p, 91 = q, (ii) dpi = ̂  (hi) ̂ i = pi^o.

Let
T

^/=i>^
1=0

be the pole divisor of / on M. By Lemma 1, the coefficients ^ of Ei
corresponding to the vertices between EQ (resp. £'i) and £^, including
£^, are all multiple of 60 (resp. ^i). Further, applying

(Pf •£;,)= 0

for each £^ corresponding to the vertices between E^ and £^ successively,
all the coefficients v^ of these Ei, including £'^, are linear combinations of
60 and ^i with integer coefficients. Since all the coefficients of Ei between
£^ and E^ are multiple of 6-2, the coefficients of Ei between E^ and E^
are linear combinations of 6o-> ^i, <^2 with integer coefficients. Continuing
in this way, we see that

PROPOSITION 6. — qk6k € Z(5o + Z^i + • • • Z^-i.

Now, setting a = ik-i (2 ^ k ^ /i), let us denote by Mo- the
surface obtained by the (cr — l)-th blowing up in the process to get M
from Mi. We may say that M^ is the surface obtained by the blowing
down of ET, TT-I, ..., Ea-^-i successively from M. Let To- : M —^ M^ be
the mapping obtained by the composition of these blowing downs. We
shall denote the images of (7, Ey in My by C a , E^ , respectively.
C^ intersects E^ at the point Qo- = r^Er U •••^+1). Let dj, be
the intersection number of C a and ^ ^ ^ in M^-. Since Mcr is non-
singular, there exists a holomorphic function ^pa on a neighborhood Uy
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01 ̂  (Ocr) = Ea+i U • • • U ET in M which has the zero divisor of the form:
r

(^)=^n[/,+ ̂  ̂ .^cr • • ^a -r / ^ A^^-
1=0-4-1

We have then ̂  = /,^ and, by Lemma 1, ̂  = q^^ for a =
k, k + 1, • • • , h, where we set ̂  = 1. This implies ̂  = ^^ = qkOk-^-i • • • ̂ .
Hence, we have

d,=(C(a).EW)=^=( 1 ( ^ = ^ + 1 )
1. 9fc9fc+i • • • Qh (k ^ h).

Let P y ' be the pole divisor of / on My. We have then

C^^pW^^E^,
i^a

dk=(C(a).Ey)=^^E^.EW).
i^cr

Since each i/i is a linear combination of 60, 6^, • • • , 6k-i with integer
coefficients, we have

dk eZ(5o+Z^i+- . -Z(^- i .

Hence, dk is a multiple of gcd{<5o,^i, • • • ,^-i}. On the other hand, the
coefficients z/o, • • . , ^ of P^ are the solutions of the simultaneous linear
equations

E^-^W0 u<a)
^a J [dk U=a).

Therefore, by Lemma 4, VQ, • . • , ^ are all multiple of dk. In particular,
^o, ^i, • • • , 6k-i are also multiple of d^. Thus, d^ is the greatest common
divisor of 60, <5i, • • • , 6k-i. Consequently, we have

PROPOSITION 7. — Let dk (1 ^ k ^ h + 1) be the greatest common
divisor of 60, ^i, • • • , <^-i. We have then dh+i = 1 and, for k ^ h,

dk = QkOk-^-i ' " q h ,
or equivalently

Qk = dk/dk+i.

Remark. — These relations hold for k=l also, since di = 60 = n,
c?2 = d and q^ = q = n / d .
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Let us consider the holomorphic function (p^ on a neighborhood Ua- of
^+1 U • • • U ET denned in the above proof of Proposition 7 (a = ik-i, 2 ^
k ^ h). Then, ^ == (p6^ f takes a pole of order qk-i6k-i -^ on £^_,, since
/ takes a pole of order qk-i6k-i on it.

On the other hand, (pa- takes a zero of order q^ on E^, while / takes
a pole of order qk6k. Hence, <I> = (p^f is either a non-constant function or
a non-zero constant (7^ oo) on E^. If one blow down ET, ET-I, • • • , -E^+i,
the zero curve C of ^ intersects E^ with the multiplicity d^+i =
9fc+i9fc+2 • • -Oh- Therefore <I> is non-constant and of degree d^+i on E^.
Hence, the order of the pole of ^ on E^_^ is dk-^-ipk- Consequently, we
obtain

PROPOSITION 8. — dk+ipk = qk-i^k-i - 6k (2 ^ k < /i).

Thus, the (p, g)-sequence and the dual graph F(E) are determined
completely by the ^-sequence of /. Let us summarize here the results
obtained so far about the ^-sequence and (p, g)-sequence.

PROPOSITION 9. — Let C : f = 0 be a non-linearizable affine plane
curve with one place at infinity. Let 60, 6^, ' " , 6h be the 6-sequence of
C, {(pk.Qk)} be the (p,q)-sequence ofC and set dk = gcd{<^ • • • A-i}
(1 ^ k ^ h +1). We have then, for 1 ̂  k ^ h,

(1) qk = dk/dk+i, dh-^-1 = 1,

(2} d = i 61 {k = 1)
v / k^pk \qk-i6k-i-6k ( 2 ^ k ^ h ) ^
(3) qk6k € Z^o + ̂ i 4- • • • + Z<^-i.

Further, the dual graph F{Ec) of the minimal resolution of the
singularity of C at infinity is determined by the 6-sequence.

4. Canonical divisor.

The holomorphic 2-form a; = dx A dy in C2 extends to a meromorphic
2-form on M. The canonical divisor K = (a;) has the support on E. Let g
be the genus of the curve Ca : / = a for generic a e C. If C is non-singular,
g is equal to the genus of C by Theorem 1. Let

r
Pf=^E,

z=0
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be the pole divisor of / on M. Taking into account

(P F\ (7^ F\ <f° (O^^7 1-1)(Pf.E,)=(C.Ei)=^ ^^

we get, by the adjunction formula,

2g - 2 = (K • C) + (C2)
=(K-Pf)+(C-Pf}
= {K • Pf) + VT
= {(K + E) • Pf) - (ET • Pf) + VT

T

L-
i=0

=^^((^+£;).^)-l+^r.

According as Ei corresponds either the branch point, edge, or other
point in the dual graph r(jE?), we can calculate the value of (K + E) ' Ei
as follows:

( 1 (branch)
( K + E ) ' E i = -1 (edge)

0 (others).
Hence

h-l

2g - 2 = y^ - VQ - ̂  + ̂ (^ - ̂ jj - ̂  + ̂ r - 1
fc=2
h

= ̂ i - VQ - ^1 + ̂ (^fc - ̂ -J - 1
fe=2

h

= pqd - pd - qd - 1 + ̂  ̂ (9fe - 1).
fc=2

Thus, we have

THEOREM 2. — 2g - 1 = d{(p - l)(g - 1) - 1} + E ^(9fc - 1).
fc==2

Since the right hand side of this last equation is positive, we have
g > 0. We get in this way another proof to Corollary 3 of Theorem 1.
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5. Approximate roots.

Multiplying f{x,y) by a non-zero constant, if necessary, we may
assume that f(x^y) is monic (of degree n) with respect to y . For the
divisors di(== n), c^, • • •, d/,, c?/i+i(= 1) of n defined in Proposition 7, set
nk = -j- (k = 1, • • • , h + 1). Then, there exists, for each k (1 ^ k ^ h 4- 1),

OA;
a pair of polynomials gk(x,y), monic and of degree n^ with respect to y ,
and ^(a;, y) of degree <n-nk with respect to ?/, uniquely determined by
the folowing condition:

f=gdkk+^

One can check the existence and the uniqueness of this pair (gk^k) by the
termwise comparison of the both side of the last equation. We shall call
gk{x,y) the k-th approximate root of /. We have g\ = y and g^i = / by
definition. From the uniqueness of the approximate roots, it follows that
gk is also the k-th approximate root of gj for any j with k < j < h + 1.
The sequence

go = x, g i = y , g2, " • , gn, gn+i = f

will be called the g-sequence of /. In the followings, we shall denote by Ck
the curve defined by gk{x, y) = 0 in C2. We have Co = ̂ -axis, C\ = x-^xis
and C = Ch^i by definition.

THEOREM 3. — Each Ck {k ^ h) is also with one place at infinity.
Further, its closure Ck in M intersects transversely Ej^, and does not
intersect other irreducible components of E.

Before giving the proof to this theorem, let us prepare two lemmas.

LEMMA 5. — Let ci, C2, • • • , Ca be a non-zero complex numbers, d
an integer, and set

^(^n^-^1=1
Then, (p(t) — (p(0) takes a zeros of order ^ a at t = 0.

LEMMA 6. — Let a, &, e be complex analytic curves on a non-
singular complex surface W such that a and b have no common irreducible
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component with e, a D b = 0 and e is compact. Assume that a U e (resp.
b U e) be the zero set of a holomorphic function u (resp. v ) on W. Let

a=\Ja^ b=[jb^ e=\Je,
^=1 J=l k=l

be the decompositions into the irreducible components, and let

r t_ t
W =^^idi +E

^=1 k=l
s t

M-E^A- ^^Wk
J=l k=l

W =^^idi +^mfcCfc,

be the zero divisor of u, v respectively. Finaly, let a, (resp. f3j) be the
degree of the zero divisor ofv (resp. u) restricted to a, (resp. bj). We have
then,

((^H^-E^-E^-1=1 j=i
s
k 1

In fact, since a, • bj = 0, (u) ' e^ = 0, (v) • e^ = 0,

r t
((u). (v)) = ( E ̂  + E mkek)' (^)

^=1 k=l
r

= (E^^)'(^))

=E^(a^(v))1=1
r

= E^^-

In the same way, we have ((u) • {v)) = ^ z/^-.
j'-i

Proof of Theorem 3. — It is sufficient to prove it for 2 ^ k ^ /i. Set
a = ̂  - 1. In the ca^e (E^) ̂  -3, we have o- = i^. In the other case
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(£^_^) = —2, Ea- is the component with the self-intersection number ^ —3
on Lk nearest to E^_^ on the dual graph F(E). (See the figure below.)

-2 -2 -2 -mcr

^ E,,
{Lk)

(m^ > 3)

Let My be the surface obtained by the (a — l)-th blowing up in the
process to get M from Mi. We may say that Ma is the surface obtained by
the blowing down of ET, ET-I, ..., i?a+i successively from M. We shall
denote the images ofG, Ck, E, in M^ by C^, C^\ E^\ respectively.
Let Q be the intersection point of C a and E ^ ' . Note that we have

(C^.I^)-^

and G^ is tangent to ̂ ^ since (£^2) ^ -3.

Now, suppose that C^ passes through the point Q. Let P^ =
a , .
^ [ i z E ^ ' be the pole divisor of x on M^. We have /^ > 0 for 1 ̂  i ^ a.
1=1
We have

njk = the ^/-degree of the function g^
= the intersection number of Ck and the line x = const.
= the degree of x on Ck

- (Y^ P^ - Y^ / / ^(<7) ^<T^— (^k ' ^x ) — Z^P'i^k ' ^z }'
i=l

On the other hand, as one can check it easily using Lemma 1, the coefficient
/^, the order of the pole of x on Ea, is equal to q\' 92 • • - Qk-i = rik' Hence,
we have

(-T^ ^(^ f O ( l ^ i ^ a - 1 )
(ck 'E l ^ll (^^

while (C^ ' E ^ )) = 0, since gk is monic. Thus, Ck has one place at infinity.
Since C^ intersects E ^ ' transversely at Q, Ck intersects ^a+i = Ej^
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transeversely at the regular point of E in M. Thus, if one shows that C^
passes through the point Q, the proof of Theorem 3 will be accomplished.

Suppose that C^ does not pass through the point Q. Consider the
rational function

$ = ^ = i - ^
j j

on M^. ^ has no zero in U - E^ D U for a small neighborhood U of Q.
Assume that Q is an indetermination point of ^. Then, there must be a
zero curve of $ which passes through Q. So, $ = 0 on E^. Set A^ =
E^ U E^ U • . . U E^. Since A^) is exceptional and A^ n C^ = 0,
^ has no pole on A^\ Therefore, ^ must be constant (= 0) on A^\ But,5

since deg,, ̂  < n - 7^, we have ^ k / f =0 on ̂ a), so that ^ = 1 on E^!
This is a contradiction. Hence, Q is not an indetermination point of ^.

Now, blow up the indetermination points of ^ until the indetermina-
tion points of <E> disappear. Let M be the surface thus obtained. We shall
denote by C, C^, Ej, etc. the proper images in M ofC^, ~C^\ E^\ etc.
respectively. In M, we can write the divisor of ^ as follows:

W=dkCk-C+j^^E^
j=o

namely,

C^dkCk+^^E^
j==o

where EQ, E^ ...^ ^ are the proper images of E^\ E^, • • . , E^
respectively, and E^+i, ..., Er are the curves appeared by the blowing
ups. Since Q is not an indetermination point, we have

( C - E , ) = ( ° ^a)
[ d k (z = cr).

Hence, ^ ̂ (^ . E,) (0 ^ z ^ r) are all multiple of dk, so that, by Lemma
j=o

4, all the coefficients Vj are multiple of d^.

Now, if the pole set P of ^ on £' is not connected, then one of its
connected component must be included in A. But this is a contradiction,
since C D A = 0 and A is exceptional. Therefore, P is connected.
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Let {£\}^A be the irreducible components of E on which $ is non-
constant. Take one E\ (A e A). Since the dual graph of E is a tree and P
is connected, <1> has the pole on E\ at only one point, say a. Let BQ be the
connected component of the closure of E — E\ in M which contains EQ.
Then, <I> = 1 on BQ^ since <1> is holomorphic in a neighborhood of BQ and
<!> = 1 on -EQ . ^e^ ^ ^e ^ne intersection point of Bo and £\, and take a
coordinate function t of E\ ̂  P1 : t| ^ oo such that t(a) = oo and t(b) = 0.
Since all the vj are multiple of d/c, we can write ip = <I>|^, as follows:

^^n^-^"-
z=l

By Lemma 5, the number of the zeros of (p(t) — 1 (= — ^ p k / f ) other than
t=0is ^ a x ( d k - l ) .

^ ^ ^ / \ ~ ^
Let Px = ̂  l^z^i De ^ne P0^ divisor of x on M and Z^ the

1=0
zero divisor of <I>. The support of Z^ does not intersect Bo. We have, by
Lemma 6,

(P, . dkCk) = (P. • Z^)

= Y^^xdkOx,
ACA

so that

nk = degy(gk) = (Pc • Ck) = ̂  ^A^A.
AGA

In the same way, let S^; be the curve defined by ̂  = 0 in C2 and S^ its
closure in M. We have then, by Lemma 6,

deg^fc) = (Pr •tk)^^ ^\ax{dk - 1).
A€A

Hence,

degy(^k) ̂  rik(dk - 1) = n - n/c-

This is contrary to the assumption deg y(^k} < TI — n^. Hence, C^
passes through the point Q, and Theorem 3 is proved.

COROLLARY. — Each gk (0 ^ k ^ h) has the pole of order 6k on
ET = E^.
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In fact, let Pf (resp. Pg^} be the pole divisor of / (resp. gk) on M.
Then, we have, by Theorem 3,

6 k = { P f ' C k )
= ( C ' C k )
={C'P^
== the order of the pole of g^ on ET'

6. Semi-group criterion.

We shall continue to use the same notations as in the previous
sections.

LEMMA 7. — -For any integer k (1 ^ k ^ h) and any integer A, the
sequence of integers {ao, Q'!, • • •, a A;} satisfying

X = ao6o + a^6\ 4- • • • + <^k6k

and 0 ^ Oi < qi for 1 ̂  i ̂  k is unique, if it does exists.

In fact, assume that there exist two sequences {o^}, {f3i} with
0 ^ Q^, f3i < qi (1 ^ i ̂  k) satisfying

(1) ^aA=E^-
i=0 i=Q

Then, setting ^ == ^/d^+i, we have
k-l

^(ai-f3i)6i=((3k-^k)6k^
1=0

Here, ^o, • • •, Sk-i and 6k are mutually coprime, since d^+i = gcd{^o,
• • •, 6k}' Therefore, f3k — Ok must be a multiple of gcd{<5o, • • •, 6k-i} =
dk/dk-}-! = qk' Since 0 ^ Ok^k < Qk, this implies Ok = /^. Repeating the
same argument, we get a/c-i = /?A;-I, • • •, a\ = /3i, and finally, ao = /3o by
the equation (1).

PROPOSITION 10. — For each k (1 < k ^ h), qk6k is a linear
combination of 60, 6\, - ' , 6k-i with non-negative integer coefficients,
namely

(2) qk6k € Wo + N^i + • • • + Wk-i.
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Proof. — We have 91^1 = p6o by the corollary to Proposition 5.
Therefore, it is sufficient to prove (2) for k > 2. Set a = ik, and let us
consider the surface My obtained by the (a — l)-th blowing up in the
process to get M from Mi. We may say that My is the surface obtained
by the blowing down of L/i+i, L/i, .... I^+i successively from M. Let
TTcr : M —> Mo- be the contraction mapping. As in the previous sections,
let us denote the proper images of (7, C/c, Ei in Mo- by C a , (7^ , E \ '
respectively. By Theorem 3, C^^ intersects transversely E ^ ' at the same
point Q = ^(Lfc+i U • • • U I//i+i) as C a . Hence, the functions / and g^i
on My have the same indetermination point Q G £'<' . Let

^E^' ^-E^
z=0 i=0

be the pole divisor of / and <^+i on Mo- respectively. Let <5o, ^i, • • -, (^c be
the order of the pole of ^+1 on EjQ(= £'o), E^(= Ei), • • •, £1^^. We have
^o = ^jo ? ^i = ^ji ? " "-> ^k = ̂ jk • The coefficients ^, ^ (% = 0,1, • • • , a) are
the solutions of the following equations:

Y^/^) ^W\,, _ J 0 (^cr)
^ •^ ^--[^ (^^

V^/C^) ^)\,, _ I 0 (l 7^ ^)
^(^ .^. )^-^ (^^^
^•—n ^ v /
J=0

Hence, by Lemma 4, we have ^ = dfc+i^z for all z = 0 , l , - - - , c r . In
particular,

6i = 6i •dfc+i , (i = 0,1,"- ,A;) .

Therefore, in order to prove (2), it is sufficient to prove

(3) qk6k € Wo + N^i + • • • + Wk-i.

By Theorem 3, C^ intersects E ' transversely and does not inter-
sects other components E \ ' (z ^ jk)- We have

^-(^•^
=(c(^•c[a))
=(^)l•^))•
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This implies that ̂  has the pole of order ̂  on E^. On the other hand,
by Lemma 1, g^+i has the pole of order g^ on E^. Hence, E^ is
neither the zero nor the pole of $ = 9k^-. Further, $ is holomorphic in a

9k
neighborhood of Q and $(Q) = 0. Therefore, $ is not constant on E^.

Now, set ip = gk+i - g^. Then,

ih
-Ik =^-1€

is also ajion-constant function on E^. Therefore, tp has also the pole of
order ̂ ^ on E y ' . On the other hand, since

degy(^) < nk+i = nkqk, Ufc = degy(^),

by the division of ip by ^fc-l, we get

^CK^+^I

with degy(ci) < n^, deg^(^i) < nfc(^ - l). Dividing ^_i by g^-1

successively for i = 2, • • • , ̂  - 1, we get

^i-l =C.ffI*'-i+^„

where degy(ci) < n^ degy(^) < n^qk-i}. Thus, setting Cg, = ̂ _i. we
get

1k

^E^r1.
1=1

Here, we have

deg^c,) < n^ = rik-iqk-i, nk-i = degy(^_i).

In the same way, dividing Ci and its rests by g^~1, ̂ fc.-l-2, • • • , gk-i
successively, we get

9fc-i
r — \^ n n^-1'3ct ~ 2^ ^^k-i

J=l

with degy(dj) < nk-i. Thus, we have

qk 9fe-i

^=EEC^fc-^fc--ll-J.
1=1 j=i
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Repeating this procedure, we obtain

ib — V^ r n^1 n^2 • . . ̂ Q!fc
^ ~ 7 ^ calQ2•••Qfc (7l 9'2 9k '

Q'l<9l,Q'2<92,---,Q'fc<9fc

where degy(cc^c^---afc) = 0, since g\ = y. Substituting finally go = x, we
can write '0 as follows:

?/; — \ ^ c n^0nal . • • ^Q:fc

^ — / ^ CQoQ'r..Qfc(/o y\ 9k •>
Q:o<C»0,Q!l<gi,---,Q:fc<9fc

where c^o^r-'afc ^re constants.

The order of the pole of each term g ^ ° g ^ 1 ' ' • g^ on E^ is

(4) ao^o + o'l^i + • • • + a/c^.

Now, by Lemma 7, these values are different each other. Hence, the order
of the pole of -0 on E ^ ' coincide with one of the values of (4). Thus, we
have

qk6k = o^o + o^i + • • • + ak6k

for some sequence of non-negative integers OQ, ai, • • • , Ok satisfying
0 ^ ai < qi for i = 1, • « • , k. Assume here that a^ •^ 0. Then, we have

ao6o + ai^i + • • • + ak-i6k-i + {qk - ̂ k)Sk = 0

with 0 < qk — Oik < Qk' This contradicts Lemma 7. Hence, we have Ok = 0.
Thus, we obtain

qk6k = ao6o + ai^i + • • • + ak-iSk-i-

Q.E.D.

By Proposition 9 and Proposition 10, we obtain the following theorem
which can be regarded as an algebrico-geometric version of the so-called
semi-group theorem due to Abhyankar and Moh [2] for the curves with one
place at infinity in C2.

THEOREM 4. — Let C be an affine plane curve with one place
at infinity in C2, 60, ^i, • • •, 6^ the 6-sequence of C and (pi^qi), ' " ,
(ph^Qh) the (p^q)-sequence ofC defined at the beginning of Section 3. Set
dk = gcd{6o, • • • , 6k-i} for 1 ̂  k ^ h + 1. Then, we have, for 1 ̂  k ^ h,

(1) qk = dfc/dfc+i, d/i+i = 1,
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^ ^ . \ 60 {k = x)
(2) rffc+lPA; = ^ r c / O ^ L . ^ ^ \[ qk-i6k-i -6k (2 ^ /c ^ /i),
(3) 9/A € Mo + Wi + • • . N^-i.

Further, the dual graph r(Ec) of the minimal resolution of the
singularity of C at infinity is determined by the 6-sequence.

The next theorem gives the inverse of Theorem 4 in some sense.

THEOREM 5 (Sathaye-Stenerson [10]). — For a sequence of h 4- 1
natural numbers 60, <$i, 6-z, ' • •, 6^ {h ^ 1), define di, ^2, • • • , d^i by

dk = gcd{6o,'" ,6k-i}

and set qk = dk/dk^-i (1 ^ k ^ h). Suppose that the following three
conditions are satisfied:

(1) dh^i = 1,

(2) 6k < qk-i6k-i (2 ^ k ^ /^),

(3) qk6k € N^o + N<5i + • • . + Mfe-i (1 ^ k ^ /i).

Then, {60, (^i, <^2, • • • , ^} is the 6-sequence of an affine plane curve
with one place at infinity in C2.

Proof. — We shall prove Theorem 5 by the induction on h. In the
case h = 1, setting 60 = q, <^i = p, we have (p, 9) = c?2 = 1. Hence, as one
sees it easily, the curve xp + y ' 1 = 0 has one place at infinity and {60, <5i}
is its ^-sequence.

Now, let us consider the case h ̂  2. Set 6^ = 6 k / d h for 0 ^ k ^ h — 1,
and JA; = <W^ for 1 ̂  A; ^ /i. We have

dk = gcd{^o? ^ii " • ? ^fc-i} and qk = dk/dk-^-i

for 1 ̂  k ^ /i— 1. Further, the sequence {60, ̂ i, • • • , 6^-1} satisfies the same
properties (1), (2), (3) for h = h—1. Therefore, by the induction hypothesis,
there exists an affine plane curve Ch with one place at infinity which
has {6i} as its ^-sequence. Let / be the defining polynomial of Ch and,
taking the canonical coordinate system x ^ y for Ch (see (2.1)), let go = re,
9i = V-, ' " ^ 9h-i, 9h = f be its ^-sequence. Let (M,E) = {MC^.EC^)
be the compactification of C2 obtained by the minimal resolution of the
singularity of Ch at infinity (see (2.3)). The closure Ck of the curve
Ck '. Qk = 0 (0 ^ k ^ h— 1) in M passes through the irreducible component
Ej^ of E corresponding to the A;-th edge of the dual graph r(£'), and Ch
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passes through a point Q of E^_^, the curve appeared by the last blowing
up. Now, set

Ph = (qh-i6h-i - 6h)'

Since qn = d^ = gcd{6o, • • • , <^i-i} and (<^, 6/J = c^+i = 1, then we have
(ph^Qh) == 1- Therefore, we can take a/i, b^ (0 < a/i < p^, 0 < bh < qn)
such that

PhQh - bhph - dhqh = 1.

Define the integers m^,nj ^ 2 by the following continuous fraction expan-
sions:

Ph/dh = mi - ijms - lj^3 - • • •- ij^?

qh/bh = ni - lj7^- ]_pi3' - . ..- ljn7.

Then, we can blow up the point Q and the infinitely near points
successively, in such a way that we get the h-th branch L^ of the form:

Let M be the surface thus obtained and E the total image of E in
M. Let Ei, Ck the proper images of £^, Ck in M. Note that we can do
these blowing up in such a way that the closure CH passes through the
component E^. (It is sufficient to take the center of the blowing up on E^
to get Ej^\ outside the intersection of the closure of Ch with Ej^.)

According to the corollary to Theorem 3, each gk (0 ^ k ^ h — 1)
takes the pole of order 6k on £^_i, so that it takes the pole of order 6k on
E^, while gh takes the pole of order

qh(qh-i6h-i) -Ph = qh-i6h-i - Ph = 6h

on E^.

Now, by the condition (3), there exists a sequence of non-negative
integers Oz satisfying

qh6h = 0^060 + ai(5i + • • • + o^-i^-i,
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where we may assume O ^ a ^ g ^ (1 ̂  i ̂  h— 1), applying the condition
(3) for f c = = / i — 1, /i — 2, • • • , 1 successively, if it is neccessary. Consider the
polynomial

h-l
f ( r » .,\ —— ^h __ TT ^tf^y)=glh-]^gr

1=0
/l-l

and the curve C : f(x^y) = 0 in C2. Since g^ and fj 9^ nave ^ne same
%=o

order (say g/^/i) of the poles on 2?^, the function

h-i ,
9/1 TT o^ = 1 - -/-1 1 ^ 1 ^

1=0
^^'•n^1-^

is either a non-constant function or a non-zero constant on £J^.

Let A (resp. f?) be the closure of the connected component of E — E^
which contains £'0 (resp. Ej^}. Since A is exceptional and AnC^ = 0, <1> is
holomorphic on A and the pole of <I> is contained in Ch U B. On the other
hand,

{h-\ \ h-l h-l

qiTZi =deg?/ U 9?i } < ̂  qini = ̂  qiqi-1" 'ql < ̂ qh-i •' • qi = degy(g^).

Hence, £'0 is a zero of ^, so that <I> = 0 on A. Therefore, ^ is non-constant
on E^, and takes the pole on the irreducible component B\ of B which
intersects E^. The pole divisor of <I> must be of the form

s

P$ = ̂ G/, + ̂  /^, (^ > 0),
z=i

where £?i, ^2, • • • , Bs are the irreducible components of B. By Lemma 1,
we have qhf^i == (Ihi so that /^i = 1. Thus, <1> is a rational function of degree
1 on E^. Since the curve <I> = 1 coincide with (7, we obtain

(C.E,)^1 (•="•)
^{;.0 (2^^).

Thus, the curve C has one place at infinity.

Now, since <I> = 0 on A, / takes the same order of the pole as
g^ on each irreducible component of A. In particular, / has the pole of
order qh,6k == Sk on each Ej^ (0 < k < h — 1). On the other hand, since
<I> = 1 — f/g^ is non-constant on E^, / has the pole of the same order
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qh^h as g^ on £^. Hence, / has the pole of order 6^ on Ej^ by Lemma 1.
Thus, {60, <$i, • • > , 6h} is the ^-sequence of the curve C : f = 0 with one
place at infinity.

Q.E.D.
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