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HYPERELLIPTIC ACTION INTEGRAL

by Bernhard ELSNER

Introduction.

Suppose a Riemann surface X with a holomorphic 1-form uj is given,
and you are interested in the sheet structure of the primitive s = fuj. In
fact there are two sheet structures to look at: the one above X and the
one above the complex plane of values of s. The first is determined by the
period-group of uj. The second is the subject of this article, but only in the
special setting where X is a (hyper) elliptic curve given by

2/2=rcm+^-2^m-2+•••+ao

and uj is the Liouville-form y d x . The interest in this topic stems from
exact WKB theory (see [I], [2], [8]).

The article is divided into two parts. In the first we give a method
how to construct a certain type of Riemann surface F°° with a projection
p°°: F°° —> C. Since these constructions can be done (at least mentally)
with paper, scissors and glue, they give a complete description of the
sheet structure of (I7100,?00) above C. In the second part we prove that
for any (.F00,?00) constructed by this method there exists a (hyper) elliptic
curve given by y2 = ^m + dm^x171'2 + • • • + 0 0 such that F°° is the
Riemann surface of the multivalued function s = f y dx and such that the
sheet structure of s above its value-plane is described by p°°.

The method for constructing the "action-domain" (F00,?00) consists
of several steps. First, in Section 1.3, we build an "action-element"

Keywords: Complex WKB method - Hyperelliptic curves - Stokes lines - Non compact
Riemann surfaces.
Math. classification: 51M15 - 14H45 - 30E15 - 30F30.
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(F,p), whose shape is inspired by what the complex plane is mapped
to by 5 = f y d x , after cutting it along Stokes lines (Section 2.3). Then,
in Section 1.4, we glue infinitely many copies of ( F ^ p ) together. This
can be done in three natural ways, each one corresponding to one of the
three groups introduced in 1.2; one of them yields (I7100,/?00). In 2.2 we
shall finally see that there is a group of "translations" acting on F°° and
leaving dp°° invariant, and that the quotient of F°° by this group is an
(hyper) elliptic curve and the quotient of dp°° is the Liouville-form. At one
point a technical problem arises: we have to show that the qotient of dp°°
does not present an essential singularity at infinity. Section 1.5 is dedicated
to this task and leads quite naturally to an elementary conjecture stated at
the end of the article.

1. Constructions with paper, scissors and glue.

1.1. Integration.

For a Riemann surface X let M. (resp. M) be the sheaves of mero-
morphic functions resp. meromorphic 1-forms of second kind on X. From
^(X, M) = 0 and the exact sequence

0 -^ C —> M -^ M -^ 0,

it follows that the "meromorphic de Rham group"

Rh^:=M(X)/dM{X)

is naturally isomorphic to ^(X.C).

For a pair (X, cj), where uj € .M(X), denote by [X, uj\ the isomorphism
class of (X, a;), i.e., the class of all (X', a;') such that there is an isomorphism
f ' . X - ^ X with f^' = u;.

The integration operator I associates to each class [X,o;] a class
J[X, u}} defined as follows. The total space \M\ of the sheaf of meromorphic
functions on X is an etale space over X: the etale map A: \M \ —> X sends a
germ on its center. Choose a connected component Y that contains a germ
of primitive of uj. Let V: Y —> P1 be the "evaluation" map sending a germ
to the value on its center. Define

j[x,o;]:=[y,dv].
It is easy to check that this definition does not depend on the various
choices made.
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The connected component Y is the Riemann surface of the primitive
s = fuj. The map A|y gives the sheet structure of s above X, the space
of the variable, while V gives the sheet structure above P1, the space of
values. Construe the class [V, dV] as a projected space (V, V) given up to
translation.

Clearly one has A[y*o; = dV. This leads to an equivalent definition
of the integration I: via the isomorphism Rh3^ ^ ^(X.C) the form cc;
corresponds to the group homomorphism

M:7ri(X)-.C, A — — /
J\

\ —— / uj.
J\

Let p:Y -» X be the Galois covering of X with characteristic sub-
group ker[o;]. Then

I[X^]=[Y^p^].

The period-group [cc;](7Ti(X)) C C operates on p:Y -^ X as the group of
deck-transformations.

If a;, a;' € M{X) are cohomologous, and if (Y,a) is an element of
I[X^] and ( Y ' , ( 7 1 ) an element of I[X^'}, then Y and Y ' are isomorphic,
but in general I[X,uj\ -^ I[X,uj'\. Also note that I2 = I .

1.2. Three groups.

For an integer m > 0 let F^ be the free group with generators
/i 5 • • • 5 fm- The group Zs := Z/2Z operates on Fyyi by changing sign; more
precisely there is a homomorphism

^: Z2 —^ Aut(F^), k i—^ ( p k ,

where ̂  is defined as follows on the level of generators:

^k{fj) •= f^\ k e ̂  j = 1, . . . , m.

Every element w € F^ can be written as a word

w = f^ ' • ' f?s^ ^ e N, m , . . . , n, e z*, j^... ,j, e { l , . . . , m}.
This word can be uttered uniquely without stuttering, i.e., jk ^ jk-\-\\ thus
we can define its length as being the integer |ni| + • • • + \ris\. Denote by R^
(resp. R^) the normal subgroup of F^ generated by the elements /2,
j = 1,. . . , m (resp. by all the elements w2, where w C Fm has odd length).
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Of course

R^<n^.
Denote by gj the coset /j-R^. Let us write Grn for the quotient group
F^/R^; clearly it is isomorphic to the m-fold free product Za * • • • * Z2.

PROPOSITION 1. — The map
Q : Fyn-i Xy, Zs ————^ Gyn,

(^T • • • f?:' fc) —— telffm)"1 • • • te^m)"'̂ ,

is azi isomorphism of groups. It carries K(Fy^-i) x 0 to Ry^/R^. (As
usual K denotes the commutator subgroup.)

Proof. — Clearly the map © is well-defined. We shall prove that it is
a homomorphism, and we do it on the level of generators of Fyyi-i x^, Zs.
First note that for all k, n € Z, j, £ = 1,..., m, one has

(i) ^ter = te/-1^^.
Now let (fj, k) and (/^, k ' ) be two generators ofFyn-i x^Za. Then using (1)
we get

e((/,, fc)(/,, k')) = ec/^-^, fe + fc') = ̂ (t^-1^'1'
=ffjffm9^(ff^m)^ = (sjg^^g^1)
=e(gj,k)Q(ge,k'),

and

e^^r^^e^-1^1,-^) ^to^)^1^1^
^ (gjgmY'^g^gm = gk^l(9jgm)9m
-9^93 = te^1)-1 = (e(/,^))~1.

Clearly 6 is a surjective map since every gj, j = l , . . . ,m, is attained.
To see injectivity write w = f^ ' ' ' f^ G Fm-i without stuttering; then
(w, k) C ker(6) means that the word

^=Wm}nl'"{f^fm)nsfkn

can be reduced to the empty word using only the relations R^. But the
use of these relations does not change the parity of the number of letters in
a word. This implies that the number of letters in w' is even; this number
is 2([ni| + • • • + \ris\) + k^ so k = 0. Now if s > 1, then we can not reduce
the word (/ji/rn)711 • • • (fjsfm)713 anymore, because all neighbouring letters
are distinct. Hence 6 is an isomorphism.
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It remains to show the equality

I = Rm/B^ where I := 9(K(F^_i) x 0).

We begin with "C". The commutator K(Frn-i) is the smallest normal
subgroup of F^_i containing the elements /j/^/^1/^"1, ^, ̂  = 1,..., m - 1.
It follows that K(F^_i) x 0 is the smallest normal subgroup of 'Fm-i ̂ y ̂ 2
containing (/j/Jj"1/^1,0), j,£ = 1,. . . , m - 1,

(2) ea^-V^.O) = 9j9m9e9m(9j9m)~\9Wm)~1

== 9j9m9£9m9m9j9m9e

= (9j9m9^2 e Rm/R^, j^ == 1,... ,m - 1.

Since Ryn/R^ < F^/R^, the inclusion I C Ryn/R^ is proven.

The group I is a normal subgroup of Ryyi/R^. In order to show that
I = Ryyi/R^ we look at the quotient of Ryyi/R^ by the relations I and
show that it is trivial. Proceeding in two steps we first show that

(3) (9j9k9£)2 = e mod I for all j,k,£ € {1 , . . . ,m}.

For j == k or k = t this is trivial, and for k = m it was computed
in (2). Therefore we show that (9j9rn9£)2 = e mod I for all j,£ = 1,..., m
implies (3); this is equivalent to showing that the relations

9j9m9£ = 9e9m9j ^ J,^ = 1,..., m,

induce the relations

(4) 9j9k9£ = 9f9k9^ 3. M = 1,... , rn.
This is seen as follows:

9j9k9f. == 9j9m9m9k9m9m9£ = 9j9m9e9£9m9k9m9j9j9m9£

= 9£9m9j9k9m9^9m9j9£9m9j = 9£9m9j9k9m9j9-m9£9£9m9j

= 9£9m9j9k9m9j9j = 9£9m9j9j9-m9k9j = 9e9k9j-

The second step is to observe that Ryyi/R^ is the smallest normal
subgroup of Frn containing all the elements { g ^ ' • -^jj2, where s is odd
and ji , . . . ,js € {! , . . . , m}. This means that the triviality of (R^/R^)/I
is equivalent to the fact that the relations (4) induce the relations

(5) 9ji • ' • 9js = 9js • " 9ji ^ s odd, ji,... ,^ G {1,. . . , m}.

Clearly from (4) it follows that 9j9k9i9n = 9£9n9j9k and with the help of
this it is an easy induction on s to show (4) =^ (5). D
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Let us write G^ for the quotient group F^/R^, and S^ for the
quotient group F^/R^. We denote by a, the coset f,R^ and call S^ the
group ofm free symmetries. (For a reason of this name see Lemma 1 below.)

Let Tm-i be the free abelian group with generators ^i , . . . ,^_i .
As above in the non-abelian case there is a group homomorphism
^>:Z2 -^ Aut(T^_i), k >-> (f)k, where ^ is defined as follows on the
level of generators:

^•) .'= (-1)%, k C Z2, J = 1,..., m - 1.

There are natural projections

^ :F^_ i——T^_i , / , — — ^
VEr ^ G^ ——> Sm, Qj l——> (T j .

The upshot of Proposition 1 is the following commuting diagram of parallel
exact sequences:

0 —— R^/R^ ———> G^ = F^/R^-^S^ = F^/R^ -. 0

^ 49 ^ T "
0 -. K(F^_i) x 0 ——— F^_i x^ Z2 ^^ T^.i x^ Z^ __ 0.

The homomorphism ^2 is given by

^(ni^i + . • • + r^-i^-i, A;) = (pî )^ ... (^-i^)^-^.

We shall repeatedly make use of this diagram and abuse notation
by identifying via 6 (resp. ^) the sub-group F^_i = F^_i x 0 (resp.
Tm-i = Tm-i x 0) with the sub-group of Gm (resp. Sm) formed by the
elements of even length.

For 5, v € C denote:

• as:C -^ C, z ̂  2s- z.the symmetry of the complex plane with
center 5, and by

• Tv : C —> C, z ̂  z + v, the translation by vector v.

We consider symmetries and translations as elements of the group
Aut(C). The composition of an odd number of symmetries is again a
symmetry, while the composition of an even number of symmetries is a
translation. More precisely, the following holds.
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Remark 1. — For 5 i , . . . , Sn € C one has

_ f T2(si-s2)+...+2(sn_i-^) if ri is even,
°'Sl ' ' ' ^"S ,̂ — ^

t cr^_s2+s3_...+^ if n is odd.

For any s e C the following are equivalent:

1)^ e (a^,. . . , a^);
2) 5 = Y^njSj, where n, e Z, ̂ n, = 1.

In particular, if at least four elements among 5i , . . . ,s^ are affinely free
over Q, then the centers of the symmetries in (cr^, . . . , cr^} are dense in C.

LEMMA 1. — Let « i , . . . , Sm ^ C. Then

^ :Sm ——> (a^,...,(7^), (Tj I——XTs,,

is an epimorphism which is an isomorphism exactly if5i,. . . ,s^ are affinely
free over Q.

Proof. — Remark 1 shows that '0 is well defined, i.e., the relations Urn
hold for symmetries. Obviously -0 is surjective. The map ^ o f2 is given by

Tyn-i x^, Z2 3 (nî i + • • • + nm-itm-i.k) i—> ^(cr^)^,

m-l
where v = 2 ^ n^ - 5yn). But one has equivalence between v = 0 and

j=i
HI = • • • = nyn-i = 0 if and only if the vectors «i - S m , . . . , Sm-i - Sm are
free over Q. Q

The three groups G^, S^ and (o-s,,... ,cr^) will play an essential
role in Section 1.4.

1>3. Action-elements.

An action-element of order m is a pair (F, p) of a Riemann surface
with boundary F together with a projection p : F —» C, that is constructed
as follows by induction on m:

• An action-element (F,p) of order 1. — Choose a point 5i on the
complex plane C and cut the plane along the horizontal half-line 5i + x,
x <_ 0, from «i towards —oo, thus creating an upper and a lower border along
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this cut. Then take a copy of the upper half plane H := {s e C: Im(s) > 0}
and glue it to the the cut plane by identifying each point «i + x^ x < 0, of
the lower border with the point x in H. The surface F obtained this way
comes with a natural projection p : F —>• C.

•An action-element (i7 p) of order m > 2. — Take an action-element
(-F', //) of order m — 1 and a point Sm ^ F1f, such that Sm is neither one of
the points 5 i , . . . , Sm-i of F/ nor "sees" one of those points in horizontal
direction. Now, as above, cut F1 along the horizontal half-line from s-m
towards —oo. Then glue a copy of H to the cut surface F ' by identifying
the lower border of the cut in F ' with ] — oo, 0] C H in the same fashion as
above. The surface F thus obtained comes with a natural projection p (the
one which continues //).

The boundary 9F of an action-element (-F, p ) of order m is the subset
where p is not a local homeomorphism. 9F has m components, each one
containing one of the points 5i , . . . , Smj at which p has a "ramification of
angle STT"; denote by s~- resp. s^ the left resp. right border leaving sj: the
ray s^ corresponds to the angle 0 around Sj, while the ray sj corresponds
to the angle STT around sj. With these notations

m
9F = U ̂ 7 u s^) and ^ n 4 = {s^-j=i

We shall always use the notation « i , . . . , Sm for the "ramification-points"
and sj, s4" for the corresponding borders; the numbering is of no
importance, so we shall often use the one most convenient at the given
moment. Note that for j -^ k one may have lm{p{sj)) = Im(p(sfc)) and even
p(sj) = p(5fc), but not when 5j, Sk are on the same sheet ("see each other").

Let Fm be the set of all action-elements of order m. Note that F-m is
in a natural way a complex manifold of dimension m; on each component
of Frn the projection of the ramification-points « i , . . . , Sm gives a chart.
Instead of expliciting the dependence on F by writing 5^ and p^ we shall
simply write Sj and p.

Equivalence with a tree. — Let {F, p) G^m. We shall associate to it a
tree TcF. Precisely one of the 5 i , . . . , Sm G F has minimal Im(p(sj)); say
it is 5i. Among the 52 , . . . , Sm there is at least one seen from s\ along a ray
of angle 6 G ] 0, TT [ U ] 27r, STT [; we say that it is seen on the left if 0 E } 0, TT [,
and seen on the right if 0 € ] 27r, STT [.
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Among the s^...,Sm seen on the left (resp. right) there is exactly
one, say s^ (resp. Sr), such that lm(p(s^)) (resp. Im(p(sy.))) is minimal
(as observed above, at least one of the two exists). Draw a blue (resp. red)
edge oriented from si to s^ (resp. Sr). Now repeat this procedure by doing
the same starting from s^ and/or Sr instead of «i, etc. Thus we get a
coloured tree T C F with m vertices 5 i , . . . , Sm and m — 1 oriented edges
(blue for seeing left, red for seeing right.) The tree T is a deformation
retract of F.

On the other hand, the tree T contains all the information necessary
to reconstruct F. More precisely, call a connected tree T with m vertices
and m — 1 blue or red oriented edges an action-tree of order m if:

• it comes equipped with a projection T —> C, such that the oriented
edges are mapped to segments on which the imaginary part strictly
increases;

• from each vertex leaves at most one edge of each colour;

• there is exactly one vertex, the root^ at which no edge arrives. On
each other vertex arrives exactly one edge.

' ^

85
0

054

05i

Figure 1: examples of action-trees. Edges are oriented upwards, blue =
broken lines, red = solid lines. Numbering of vertices according to (6),
beginning with the root. The third action-tree corresponds to the type
of Stokes-pattern on Fig. 2.

There is a bijective correspondence between action-elements and
action-trees of given order.

Note that any sub-tree of an action tree is again an action-tree.
Moreover, an action-tree of order k can be glued together with one of
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order n to obtain an action-tree of order k + n 4-1: simply take any point
below both roots as a new root and join it with different coulours to both
roots. Clearly every action-tree of order m can be obtained by glueing
together in this way an action-tree of order k with one of order m — k — 1.
With this in mind, one easily proves by induction on m the

Remark 2. — Each component of Fm is contractible. The number Cm
of components of Fra satisfies

CO = 1 and Cm+l = ^ CkCm-k'
0<,k<,m

Moreover Cm coincides with the number of possible parenthizations of a
product of m + 1 factors. In combinatorics the Cm are called Catalan
numbers.

Big arcs and the residue of an action-element. — The residue of
(F, p) € Ffn will be a complex number defined up to sign. For R ^> 0 let

^^/^({M^}).

One sees by induction on m that:

• (7^ has m connected components (7^,..., C^. One of them looks
like an arc J^e^, where ^ runs through an interval tending to [0,37r] as
R —>• 4-00; the other m — 1 look like arcs Re^, where ^ runs through an
interval tending to [0,7r] as R—> +00.

• Orientate each arc C^ in the direction of growing argument. We
can (re)-number the Cf and the Sj such that (read indices modulo m)

(6)
5^_i contains the initial-point of C^
s~- contains the end-point of C^.

This numbering is unique up to circular permutations of the form
(l , . . . ,m) i-> ( A ; , . . . , m , l , . . . , A ; - 1).

Using the numbering (6), set

{ 0 if m is odd,
5 '~ db2((5i - ̂ 2) + • • • + (sm-i - Sm)) if m is even.
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DEFINITION 1. — For an action-element (F^p) e Fm denote by F the
Riemann surface obtained when gluing each s~- to s^ j = 1, . . . ,m, by
identifying points opposite with respect to s j .

The image of C^ in the quotient F is not necessarily a closed loop,
because the end-point of C^ (which is on s ~ - ) is not in general glued to
the initial point of C^^ (which is on s^). To realize the deficiency is to
remedy it: on each s~- there is a "linking" segment L^ such that the image
in F of (7^ together with Lf , . . . , L^ is a closed loop A^ in F.

PROPOSITION 2. — The Riemann surface F is biholomorphic to C.

Proof. — The idea of the proof is due to M. Zaidenberg. Since F
is a simply-connected Riemann surface, it is isomorphic to either P1, C
or the unit-disk P1. Obviously F is non-compact and thus can not be
isomorphic to P1; to finish the proof we will show that F is not isomorphic
to D. The difference between C and D lies in their corresponding Poincare-
pseudo-metrics (c/. [4]). On C it is zero, whereas on D it is the metric
given by

2 dzd'z
d8D = (1 - |Z|2)2 '

Therefore to show F 96 D it is sufficient to show that there exists a sequence
(\n) of closed loops in F tending to infinity, such that the sequence of the
length of \n does not tend to infinity. (A sequence of closed loops \n C F is
"tending to infinity" if there is an exhausting sequence of compacts Kn C F
such that \n is in F — Kn and its homotopy class generates 7Ti(F — Kn)-)
Using the A^ constructed in the lines following definition 1, clearly

\n := ^n for n > 0

is a sequence of closed loops in F tending to infinity. The lengths don't
tend to infinity; this is seen as follows: on the upper half-plane

H := [z = x + iy C C: y > 0}

the Poincare-metric is

/^ , 2 dzdz

(7) dsH=^y^'
By the construction of F one can exhibit a finite number of half-planes
Jfi , . . . , Hp in F such that their union contains \n for all n ^> 0. Moreover,
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letting the half-planes overlap, we can cut \n in p pieces A ^ , . . . , A ^ , such
that A^ is contained in Hk. Using the explicit expression (7) For the
Poincare-metric in a half-plane and the fact that each A^ is an arc (plus
eventually a linking segment), one easily shows that the length in Hk of A^
is bounded os n -> +00. Now with help of the general fact, that ever?
holomorphic map between Riemann surfaces is distance-decreasing with
respect to the corresponding Poincare-pseudo-metrics, one concludes that
the length of A^ in F is bounded as n -^ +00; so the same holds for the
length of An. ^

1.4. Action-domains.

Fix (F, p ) e J^m and denote, as before, its branch-points by « i , . . . , Sm'
For each of the three groups G^, S^ and (a^),... ,^(^)), we shall
construct an infinitely-sheeted ramified covering over C, such that outside
the branch-points the group acts freely and such that F is "nearly" a
fundamental domain under this action.

We begin with the group G^. The idea is this: take a copy of F and
turn it by angle TT around one of the points ^. Then glue the border s~
(resp. s^~) of the copy to the border ^+ (resp. s^) of the original. Taking
new copies do the same procedure at each of the other points s^, k ^ j.
Repeat this ad infinitum.

To formalize this idea consider the disjoint union

U 9F.
geGm

Introduce a glueing relation ~ on this sum: every two summands of the
form gF and g g ^ F , g e G^, j = 1,... , m, are glued together by identifying
borders

9sJ == ggj s^~ and gs^ = gg^ s^~.

Now define the quotient surface

^:= IJ g F / ^ .
geGm

There is exactly one natural projection pe:Fe-^ C, which extends p. To
define it we introduce the following homomorphism:

^F : Sm —— Aut(C), a, —— a^.).
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Then define

pe(gx) := {^F^(g)) (p(x)), geGm, x e F .
To check that pe is well-defined, we have to show that

pe(gx) = pe(ggjy)

whenever j == 1,..., m and gx ~ ggjy'-, but gx ~ ggjy implies that re, y e F
are "opposite points with respect to Sj'\ i.e., cr^.)(p(^)) = p(x). Therefore

pe{ggjy) = (^F^(ggj))(p{y))
=(^(p))(^^-))W)
=(^(^))a^.)(pQ/))

=(^{g))p(x)=pe(gx).

The next assertions are immediate consequences of the constructions
carried out.

1) Fe is a Riemann surface, and pe '.Fe —^ C is an infinitely-sheeted
branched covering.

2) There is a natural group-action

(8) Gm x Fe —> Fe, (^ g1 x) ̂  ̂ 'a;.

A fundamental domain under this action is (F — 9F) U s^1 U • - • U s^,
6, = ±.

3) The branch-points of pe are precisely the points, where the action
is not properly discontinous, namely the points gSj = g g j S j , j = 1,... , m,
g € Gm' These are the m orbits GmSj under the action (8).

4) All the branch-points of pe have order 3. A point s € C is the
image of a branch-point precisely if s = ̂  rijp(sj), where nj € Z, ̂  n^; = 1
(c/. Remark 1). In particular, when m > 4 then, in general, the projection
of the branch-points is dense in C.

5) The action (8) and the isomorphism 6 induce an action

(9) (F^-i X ^ Z 2 ) x F e — — F e .

The biggest subgroup of fm-ix^ ^2 acting properly discontinuously on Fe
is 'F-m-i = F-m-i x 0. Via 6 this group is the group of words of even length
in Gm' They leave the 1-form dpe invariant, while all the other elements
change dpe to —dpe.
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Note that the construction only depends a priori on the numbering
of s i , . . . , Sm-> since any permutation of the generators ^i , . . . ,^m of Gm
induces an automorphism of G-rn'

Consider the action-tree T C F and its image Te C Fe under the
action (8); thus Te is the connected graph which arises when identifying in
the formal sum |j gT the points gsj and g g j S j . Every g e Gm can be

g^Gm
uniquely written without stuttering: g = g^ ' ' • g^, j^ ^ jk^-i- From this it
follows that Te is a tree. Since T is a deformation retract of F and since
the retraction can be chosen with identical "speed" on s~ and s^, one can
construct a deformation retract from Te onto Fg, whence

-Remaric 3. — The Riemann surface Fe is simply connected.

(There is a relation with the Cayley graph of Gm, cf- [5]. Let Yrn be
the Cayley graph of Gm- All edges come in pairs. If we identify each pair,
then we get a tree I". It is dual to the tree Tg in the following sense: fix a
point x in T which is not a vertex. There is precisely one path 7^ from x
to each vertex sj. Now consider the tree T^ that as a set is the same as Te,
but the vertices of T^ are the points gx, g € Gm, and the edges are the
paths g^/j U gg^j. Then T^ and F' are equivalent trees.)

It follows from the definition of the projection pe that it is invariant
under the action of ker(^F^) C Gm- Clearly ker(^^) is contained in
the subgroup of words of even length. Therefore, by point 5) above, every
subgroup N C ker(-^^^) acts properly discontinously on Fe leaving pe
invariant. Setting

(FN,PN) := (Fe,Pe)/N := (Fe/N.pe/N),

the quotient map

(Fe.Pe)

[
(Fys,p^)

is a covering. In view of Remark 3 the fundamental group of FN is N. For
the special case N = ker(^^) (resp. Ry^/R^) we write superscript oo
(resp. s) instead of subscript N and we call {F00,?00) an action-domain.

Let us look back at the glueing idea at the begin of this section: while
we obtain (Fg,pe) by glueing copies of (F,p) without identifying any two
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of them, we do the same glueing procedure for getting (F00,?00), but we
identify any two copies that happen to lie exactly one above the other.
(F^p8) is constructed the same way, but in general there are less copies
identified than in (F00,?00). More precisely, one has

(FOO^OO)=(FS^S)

exactly if p(si) , . . . . p{sm) are affinely free over Q, see Lemma 1.

The action (8) of Gm on Fe quotients to an action of Gy^/N on FN.
In particular (a^,),... ,a^m)) (resp. Sm) acts on F°° (resp. F8). The
analogues of the five assertions above hold.

1.5. Spirals and points at infinity.

The Riemann surface Fe is equipped with the projection pe on the
plane C. We shall investigate what happens around infinity and show
that the quotient of (Fe, dpe) by translations does not have an essential
singularity at infinity. The same will hold for (F00,?00) and (F^p8).

For v e C set

^ :={(^ )eM 2 : ^ > l n v\}

(read So = M2) and

p, : S, —— C, ($, r j ) —— e^ + ivrf.

LEMMA 2. — ( L y ^ p y ) is an etale surface. In particular py induces a
complex structure on S^.

Proof. — Writing v = a + ib one has

Pv(^^)= e^cosrj — brj + %(e^sin^ + arj).

From this one computes the (real) jacobian determinant of py as

e' (e^ + a cos r] + b sin 77).

Since |acos77 + 6sin7;| ^ \/a2 + b2 = \v\ < e^, the jacobian determinant
does not vanish. Q

We shall always equip S^ with the complex structure induced by
the etale projection p y . The vertical lines $ = C^ in S^ are projected on
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concentric spirals of radius e^ whose common center moves with velocity v.
Therefore imagine (S,,p,) as the surface spread outside the spiral of
radius \v\ whose center moves with speed v. In particular (So,po) is
the universal covering of C*. For any r > \n\v\ (read InO = —oo) we
write (E^,p,) for the subspace ^ > r.

Note that

[S^, dp,] = [S7,, dp-,]

(an isomorphism is given by (^, rj) ^—> ($, rj + TI-)), therefore it is sufficient to
give the speed v up to sign.

DEFINITION 2. — Let (X^uj) be a Riemann surface with meromorphic
1-form. We say that U C X is a spiral neighborhood at infinity of radius
R > 0 and speed v € C if [£/,a;|[/] = [E^, dp,], where e7' = R.

The spirals (S^,p,) are easy to imagine, but they turn out to be
unpractical for computations, because the complex structure on S^ does
not coincide with x + iy unless v = 0. Consider the group action of Z on 1̂
given by translation: n • ($, TJ) := (^, 77 + 2n7r). Then

Pv(n ' (^,7?)) = Pv(^r]) + 2m7Tz',

so the form dp, and the complex structure on S^ are invariant under this
action. In order to say something about the quotient (S^, dp,)/nZ we must
give a more practical version of the spirals.

For r e R let

H7' := {z=x-\-iy eC: x > r}

and for v € C with r > In \v\

pv : fT —> C, z i—> ^ + vz.

(T^,?,) also is an etale space, and again Z operates (TJ7*,?,) by translation:

n • /z = z 4- 2n%7T and p,(n • ^) = j),(^) + 2m7ry,

leaving the complex structure and dp, invariant.
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PROPOSITION 3. — For v € C and r > In \v\ there is a diffeomorphism
h : H1" —> E^, such that the following two squares commute for any n e Z:

AT ——h——^ S:.

H7' ——h—^ E:i , iPv I I Pv

r-rvi—rv

C ————C,

where r-rv is the translation z \—> z — r v . In particular h is a biholomorphic
map and

[H^dp^]=[^dp^

Proof. — Observe that a vertical line x = c in H7' projects to the spiral
Re^ +v(c+iy), R = e°, y e M, and that a vertical line $ = c in E^ projects
to the same spiral shifted by —cv. Therefore, talking "handwaving", both
etale spaces look the same up to translation by —rv.

We shall formalize this idea and pull back the shift from the value-
plane to the space H 7 ' . Denote

j:^^E;

the map z = x + iy ^—> (x, y). For v = 0 one takes h := j. Now let v ^ 0.
Consider the family of maps for t e R:

Ft: IT —>C, z=x-\-iy\—> e2 + v(iy + (1 - t)(x - r)).

One has Fo = T-rvPv and F^ = pyj. Write the differential equation
d F t ( z ( t ) ) / d t ^ Q :

(10) z^ +v(z-tx- ( x - r ) ) =0.

If7(t) is an integral curve of this time-dependent differential equation then

r-^(7(0)) = Fo(7(0)) = Fi(7(l)) = ̂ (7(1)).

Hence, noting (f)(t,z) the flow of (10), we take h(z) := <^(1,2;) to make
the lower square commute; since (10) is invariant under the translation
z \—^ z -\- 2z7r, the upper square commutes as well.
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We show now that the flow of (10) is defined for any time t € M.
Writing v = e04^6 and making the variable change x -\-iy \—^ (x—r)+i(y—b)
brings (10) into the form

(11) i=tx±^^ c^e^^l.v 7 ce^+1
This is a non-singular time-dependent differential equation on Ho', since it
is invariant under the translation z I—)- z 4- 2%7r we can consider (11) on the
cylinder iJo/2?7rZ. Let

7: [0, T[ —— Ho/2i7r^ T e ]0, +00],

be a maximal solution for positive time (the following argument also
holds for negative time). Then either T = +00 or 7 leaves any compact
of Ho/2i^ in a finite time.

Suppose now T < +00. We consider the two directions for leaving
compacts: x —> 0 and x —> +00. We can get rid of the first by
compactification of Ho/2i7rZ "on the left": in fact (11) extends smoothly to
the border x = 0 because c > 1 and any point on this border is a stationary
solution. If 7 leaves any compact subset as x —^ +00, then

sup |7(t)| = +00.
0<t<T

This is in contradiction with

(12) 3xo >0, \ / z = x - { - i y e C , x > XQ, Vt <£ [0,T[ : \V(z,t)\ < 1,

where V is the time-dependent vector field associated to (11). To prove
assertion (12) let

w(z) = u(z) + iv(z) := (ce^ + 1)~1.

Then (11) is equivalent to

x == u{z)(tx + x), y = v{z)(tx + x),

from which follows

(l — tu(z))x = xu{z\ (l — tu(z))y = xv(z).

Hence

(13) \l-tu(z)\ ' \z\ = x ' \w{z)\.
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Since x(c^ 4- I)"1 —^ 0 as x —^ +00, we can choose XQ > 0 such that for
all z = x + ̂  C C,a; > o-o one has x • \w(z)\ < j and T\u(z)\ < j. The
last estimation implies |1 - tu{z)\ > j for any z = x-{-iy e C, x > XQ,
t C [0,T[. Thus we get from (13) that \z\ < 1 whenever z = x + iy e C,
x > x o , t e [o,r[. n

In view of Proposition 3, we shall rather use the spirals (Hr,pv)
instead of (E^p-y).

COROLLARY 1. — Let v € C, n ̂  1, and r > 0 with r > In H. Let Dp
be the closed disk \z\ < R, R=er. Then

1) I[C - D^n(zn-l-^v/z)dz} = [H^ dp,] = [E^dp,], ifz; ̂ 0;

2) [C - Dp, n(^-1 + v/z) dz] = [(H^ dp,)/nZ] = [(E^ dp,)/nZ].

Proof. — The second equalities in both assertions follow from the
proposition.

Let v ^ 0. Then n^"1 + v / z ) d z does not have a single-valued
primitive on C — D^ the primitive lives on the universal covering. The map

p . I j r / n — — C - D R , C — — e^
is a universal covering. A primitive s ofp^n^71"1 + v / z ) dz) is given by
s((,) = e^ + m<. Therefore

I[C-D^n(zn-l+v/z)dz] = [H^^ds].
On the other hand

[Hr/n^ds}=[H^dp^
because of the isomorphism H7'^ —> JT', ^ ^ nC,, which transports s
to pv. This proves the first equality of assertion 1). The first equality of
assertion 2) now follows because

[(JT\ dp,)/nZ] = [(^r/71, d^)/Z] = [C - DH, n(^-1 + v/z)dz]. D

Let (F,p) e ^rn. Recall the arcs C7f,.. . ,C^ and the segments
Lf, . . . ,L^ defined in 1.3 for R > 0; we numerate them as in (6).
Let V (resp. W) be the infinite cyclic subgroup of Gm generated by
g i ' " 9 m (resp. ( g r ' - g m ) 2 ) ' Let x C F be the initial-point of Gf and
y € F the end-point of L^. Then there is a path C^ in Fe from a* to
^i • • • 9m-iy = 9 i ' • • ̂ m^ given by

^:= U ^...^.(G^UL^).
j=0,...,m—l
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Define an infinite path in Fe

^U^---^)"^ LK1-
nez vev

The fact that the infinite path S^ exists for all R > 0 can be
translated as follows: "when running through S^ in the positive sense, one
never sees a singularity on the right-hand side", or, equivalently, (Fe.dpe)
contains a spiral neighborhood (U,dpe\u) at infinity. To determine its
speed v we have to distinguish the cases m even or odd.

Let m be odd. V acts on U but only the elements in W C V leave
dpe\u invariant (the others change sign). The path C^ U {g\ " ' g-m)CR

in Fe goes from xto (gr " gm)2^', the projections via pe of these two points
coincide, since ^ ( g i - ' g m ) is of order 2 in Sm' Therefore the speed of
(U, dpe\u) is v = 0. The sum of the angles of the arcs (7f,..., C^ tends
to (m + 2)7r when R -^ +00; thus when going from a point x € U to
(gi • • • gm)2^ C U, one describes (m + 2)-times a big circle.

Let m be even. V acts on U, leaving dpe\u invariant. The difference
between the projections of a point x e U and g^ • - • gmX is precisely
±res(F, p). When going from x to g^ ' ' ' g^x one describes - (m + 2)-times
a big circle. Therefore the speed is v = ±2res(F,p)/(?n + 2).

Remark 4. — {Fe, dpe) contains a spiral neighborhood (£7, dpe\u)
isomorphic to (H 7 ' , dpv), where r > 0 and v = ±2res(F,p)/(m + 2).
Moreover all spiral neigborhoods of (Fe, dpe) are of the form gU
withg C Gm'

THEOREM 1. — For (F,p) e 7m the quotient of (Fe, dpe)/Fm-i
(cf. (9)) has one (resp. two) point(s) at infinity when m is odd (resp. even).
Ifm is odd, dpe/'F-m-i has a pole at infinity of order m 4- 3 with residue 0;
ifm is even, dpe/Fm-i has poles of order ^m + 2 at infinity with residues
±res(F,^).

Proof. — We have to investigate the behavior of all spiral
neighborhoods under the action of 'Fm-1' As usual we identify Frn-i =
'Fm-i x 0 via 6 with the subgroup of Gyn formed by the elements of
even length.

If U is a spiral neighborhood of (Fe, dpe), then [U, dpe\u] = [ H 7 ' , dpy],
where r > 0 and v = ±2res(F,p)/(m + 2). The collection of all spiral
neighborhoods in (Fg, dpe) is |j gU.

g€Gm
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Consider the case m even. Then V C 'F-m-i and

[( |j ^dpe)/F^-i] =[(£/U^dpe)/V].
<?€G^

The action of V on (U, dpe\u) corresponds to the action of - (m + 2)Z on
(Jf^dpv). Hence by Corollary 1

[([/,dpe|£/)/v] = [C-D^m+^^^+^d^].

The form

^(^-l+^)d.=(7^^/^res^)d.

has a pole of order j m + 2 at infinity with the desired residue. The same
holds for the other component {g\U, dpe|<^)/V with opposite sign of v.

Let us now consider the case when m is odd. Here res(F, p) = 0, so
the spiral does not "move":

[( J gU, dpe)/¥m-i] = [W dpe)/W]
9eGm =[(iT\dpo)/(m+2)Z]

== [C-DR,{m-^2)zrn^ldz].

The form z771"^1 dz has a pole of order m + 3 at infinity without residue. D

2. Integrating (Ca.ydx).
2.1. Hyperelliptic curves with Liouville-form.

Let A c C971"1 be the discriminant-subset formed by the points
a == (ao , . . . , 0^-2) such that the polynomial

Pa(x) =xrn+ a^-^"2 + • • • + 0 0

has multiple roots. Let

C^-^C^-A and C := {(^,a) € C2 x C^-1:2/2 = Pa(x)}.

Then the natural projection
C

/F.m-1
^A

is a locally trivial fibration. Denote the fibers by Ca, a e C^"1. Each
projection TTa : Ca —)' C, (a;, y) ^—> x, is a two-sheeted ramified covering with
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branch-points precisely above the roots of Pa. Therefore, i f m = = l (resp. 2),
each fiber is P1 with one (resp. two) point (s) deleted. When m >_ 3 then
each fiber is a (hyper) elliptic curve of genus [^ (m — 1)] with one (resp. two)
point (s) at infinity deleted i fm is odd (resp. even).

Conversely, each elliptic curve with one (resp. two) deleted points
is isomorphic to a curve of the family (^a)aec3 (^sp. (^a)a€C4 )• Each
hyperelliptic curve of genus g with one WeierstraB point (resp. two points
in hyperelliptic involution) deleted is isomorphic to a curve of the family
CCa^eC771-1' ^ere m = 2g + 1 (resp. 2g -h 2).

LEMMA 3. — Let a e C^~1. Then 71-1 (£a) ^ ̂ m-i- Choose any tree
r in the x-plane with vertices the m roots of Pa and with m— 1 edges dj,
j = l , . . . , m — l . Let \j be the homotopy class of the closed loop Tr^1^)
{oriented arbitrarily). Then A i , . . . , \m-i form a basis of 71-1 (£a).

Proof. — Any retraction by deformation from C onto r lifts to
one from Co, onto TT^^F), and 71-0'̂ F) is a bouquet of the m — 1 circles
TT,-1 .̂). D

On each curve £a consider the Lioumlle-form y dx. Its divisor is

( 2J?i + • • - + 2Rm - (m + 3)I?oo U rn is odd,
dly{ydx) = 2R, + • . . + 2Rm - (|m + 2){R^ + R^)

if m is even,

where J?i , . . . , Rm are the branch-points of 71-0 and fioo? Koo the points at
infinity. The sum of the residues of a meromorphic 1-form on a compact
surface being zero, y dx has no residue at J?oo when m is odd, and residues
of opposite sign at Roo^ R^ when m is even. (In the case m = 4 on can
show easily that the residues vanish precisely if the four roots of Pa{x)
form a parallelogram. For even m ^ 4 the subset of C^~1 formed by the a
such that ydx has no residue at the infinte pionts of Ca is an analytic
hypersurface. In particular the development that M. Fedoryuk gives on
page 85 of [3] nearly never exists.) Non-vanishing residues are certainly one
obstruction for ydx to be exact; but even in the case of odd m, ydx is not
exact:

LEMMA 4. — For all a e C^~1 the Liouviiie-form ydx on Ca is not
exact.
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Proof. — The cases m = 1,2 are easy. Let us treat the cases m > 2.
Suppose that there is f:£a -^ P1 such that d/ = ydx. Then one sees
on the expression for div(ydx) above that at infinity / has a pole of
order m + 2 when m is odd and two poles, each of order jm + 1, when m
is even. Therefore in any case the degree of / is m + 2.

Now choose a tree in the a;-plane such that each edge d.,
j = 1,. . . , m - 1, has TTa(Rj) and 7Ta{Rm) as vertices; then let A i , . . . , A^_i
be the corresponding closed loops in Ca according to Lemma 3. Since y dx is
exact one has f^ ydx = 0. The form y dx changes sign under the involution
(x, y) ̂  (x, -y) on Ca. Therefore

f ydx=±2{f(R^)-f(R,)).
J \i

Hence / takes the value f{Rm) at m different points with multiplicity 2,
so the degre of / is at least 2m; and 2m > m + 2 when m > 2. n

Using the quasi-homogeneous properties of (Ca.ydx) ^-i with
respect to a it is not difficult to find the moduli-space of tne family
[Ca,y-dx]^^m-i. In fact every A e C* gives rise to an isomorphism

(14) A : Ca —— Cx^ (^ y) —— (\x^ ±\rn/2y^

where

A • (ao,..., a^J '•= (A^o,. • • , A2^^^).

The pull-back via A of the Liouville-form on C\.a differs from the Liouville-
form on £,a by a factor ^A^2"^; hence A leaves the Liouville-form invariant
precisely when A is a {m + 2)-th root of unity. Therefore the moduli-space
of [Ca^ydx\^^m-i is the quotient

(15) C^/Z^

under the group-action of Zrn+2 on C^~1 given by

k' (ao,...,am-2) = (^•ao, . . . ,^-0^-2) , k ' dj := e^^^aj.

(Closer investigation of this action shows without difficulty that the moduli-
space (15) is singular whenever m :> 4 is even; for odd m > 1 it is non-
singular precisely when m = 1 mod 6. In contrast to this, the moduli-space



^26 BERNHARD ELSNER

ofhyperelliptic curves of genus g has singularities for any g', in fact, it is the
quotient of an open subset ofC2^-1 by a group-action, which has non-trivial
stabilizers at certain points, cf. [6], p. 3.124. The reason for this difference
is that our classification is "rigidized" by requiring the invariance of the
form ydx: we can't simply fix three of the WeierstraB-points at 0,1, oo as
is done in [6].)

2.2. [F^.dp00] is the integration I[Ca.ydx].

DEFINITION 3. — For (F,p) e Tm let F- be the Riemann surface
obtained by takingji copy F ' ofF and glueing the border s~^ (resp. s~) of
F ' to the border s^ (resp. ^+) o f F , j = l , . . . , m . Let uj- be the {unique)
holomorphic 1-form on F~ continuing ^P\F-QF-

THEOREM 2. — Let (F,p) e J^rn'

1) [F-^-] = [Ca^ydx] forsomea C C^-1.

2) One has I[F~ ,0;-] = [F00, dp00].

Proof. — First note that (F-,o;~) is isomorphic to the quotient
(Fe,dpe)/'Fm-i of Theorem 1.

1) Associating to a point in the original F C F~ the corresponding
point in the copy F ' C F~ and vice versa, defines a group action of ̂
on F-.^The quotient F- /^ is F ^ C (cf. Prop. 2), and the quotient
map F~ —> F is a ramified two-sheeted covering with m branch-points
5i , . . . , Sm. Consider the polynomial whose roots are the images of s i , . . . , Sm
under the isomorphism F ^ C; we can suppose that the sum of the roots
is zero, so the polynomial is in the family (Pa)^—1 S^rig rise to an
isomorphism A

h:£a——F-,

sending the branch-points of TTa to the branch-points 5 i , . . . , Sm of F~ -^ F.
The form uj~ vanishes precisely at the branch-points 5i , . . . , Sm and does
it with multiplicity 2. At infinity uj~ does not have essential singularities:
in Theorem 1 we proved that, in the case m odd, it has a pole of order m + 3
at infinity, whereas in the case m even it has two poles of order 1 m + 2 at
infinity. Comparing the divisors div((j-) and div(ydx) and ^sing the
fact that two meromorphic 1-forms with the same divisor on a compact
Riemann surface coincide up to a constant factor, one concludes that the
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pull-back /i*(o/~) coincides up to a constant factor with the Liouville-form
on Ca' Now composing h with the isomorphism A from (14) for a suitable
A € C* one gets the desired result.

2) For constructing a representative (Y,o;) of I[F~,UJ~} we need the
kernel of the period-homomorphism

(16) ^(F-)__C, \^ (
J\

C, A i—> I uj~.
x

Then Y will be the covering of F~ with this kernel as characteristic sub-
group and uj will be the pullback of uj~. Let r C F be a tree with vertices
« i , . . . , Sm and edges di , . . . , dm-i, such that the endpoints of the edge dj
are Sj,Sm- (In general F is not the action-tree T.) Under the isomorphism
F ^ C the tree T is mapped to a tree on which we can apply Lemma 3
to get a basis Ai , . . . ,A^- i of ^(F") = 7Ti(£a). Choosing a convenient
orientation of the Aj the period-homomorphism (16) is the map

Xj •—> 2{p(sj) - p(sm)), j = 1 . . . ,m - 1.

Therefore under the isomorphism 'Fm-i -> ̂ i(F-), \j ^-> fj, the kernel of
the period-homomorphism is formed by the elements / € fm-i such that
(/,0)€ker(^e).

Now consider the action (9); the quotient Fe/Trn-i is F~.
By Remark 3 the quotient map Fe —> F~ is the universal covering
of F~. By definition F°° is the quotient Fe/ker(^^9), i.e., the cove-
ring F°° —> F~ has ker('0j^6) as characteristic sub-group. Clearly dp°°
is the pullback of uj~. Q

Note that F00 also is the Riemann surface of f x d y , since ydx and
xdy are cohomologous. But [F00, dp00] -^ I[Ca,xdy\, see the end of the
Section 1.1.

2.3. Stokes lines.
Consider the stationary Schrodinger equation

(17) ( - ̂ (-^)2 + V(q))^(q) = E^(q)

in one dimension. The potential V determines the lagrangian curve

p^=E-V(q)

in (^^-phase-space, on which is defined the action-integral fpdq as
multivalued function.
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Complexity the variables (q,p) to (x,y) e C2, consider the case V{x}
a (complex) polynomial and write^

Pa(x):=V(x)-E.

Then (17) reads

^(^)2^)=Pa(^^).

To the lagrangian curve above corresponds the (hyper) elliptic curve Ca''
y2 = Pa(x). (Note that with these conventions the multivalued action
integral S = f y dx on C,a differs with the "classical" action denned above
by the factor i.)

The (real) curves on Ca along which S has constant imaginary
part and which start at a branch-point of Ti-a: Ca —> C, {x^ y ) \—> x^ are
called Stokes lines. Since ydx simply changes sign under the involution
( x ^ y ) •—>• ( X y — y ) y Stokes lines go to Stokes lines under this involution.
Therefore they are completely determined by their projection via 71-0 on
the .r-plane, where they are also called Stokes lines. In [9] or [3] are many
pictures of Stokes lines (the Stokes lines represented there are sometimes
called anti-Stokes lines and they differ from our definition by rotation
of 90°.) The importance of Stokes lines for asymptotic developments of the
wave-function ^ is explained in [9], [3], and in terms of the "exact WKB
method" it is exposed in [2], [8].

Consider the Stokes lines in C for Pa, a € C^"1. They have m + 2
asymptotic directions 2mr/(m + 2 ) , n = = 0 , . . . , m + l , when tending to oo
and they divide the plane into m + 2 domains of half-plane type and k
domains of strip type, where 0 <_ k < m — 1. Let A"4" C C'rn~l be the real
hypersurface of parameters such that the number k of domains of strip
type is maximal, z.e., k = m — 1. This means that there is no finite Stokes
line. Here is an algorithm to make m cuts along Stokes lines such that on
the cut re-plane the action-integral S = f y dx is singlevalued and sends the
cut plane biholomorphically to the interior F — 9F of an action-element
(F,p) eJ^n:

1) Cut along the Stokes line which is the first in counterclockwise
sense asymptotic to the direction^ 27r/(m + 2). Call the corresponding

^ It is possible to rescale V so that a € C771""1, where m = deg(V). Moreover we
suppose that x ^ A.
^ Asymptotic when going to oo.
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turning point x\ and delete the two other Stokes lines that leave x\. There
remain 3(m — 1) Stokes lines.

2) n — 1 => n: go in counterclockwise sense to the next asymptotic
direction containing one of the remaining 3(m - n + 1) Stokes lines and cut
along the first. Call the corresponding turning point Xn and delete the two
other Stokes lines that leave Xn' There remain 3(m - n) Stokes lines.

The numbering x\^...^Xm obtained this way corresponds precisely
to (6) up to permutations of the form (1,.. . , m) i—^ ( A ; , . . . , m, 1,.. . , k — 1).
We can translate Remark 2 into the space of the parameter a as follows:
C771"1 — A"*" has Cm components, they are in one-to-one correspondance
with the topological types of Stokes-patterns without finite Stokes lines;
each component is non-compact and contractible.

Figure 2: Stokes-pattern corresponding to the type of the
third action-tree on Fig. 1. Heavy lines are cuts.

In all the preceding constructions the horizontal direction has been
endowed with a privileged role: in the construction of action-elements in
Section 1.3 we supposed that no point Sj "sees" another point Sk in the
horizontal direction, or, equivalently, that action-trees are always growing
strictly upwards. Of course, this choice is arbitrary, we can define a set T^
of action-elements in any direction "ff € R/27T {Tm = ̂ i); as soon as we
glue together to action domains Fe^ F3 or F°° we can "move" the points Sj
without hurting borders.

The converse to Theorem 2 holds as well: for each a € C^"1 there is
a direction ^ € R/27T and a (F, p} € ̂  such that I[Ca, y dx] = [F°°, dp00}.
In fact, the period-group

{ [ y d x : ^ e H \ C a ) }



330 BERNHARD ELSNER

being a countable sub-set of C, it is clear that there is a direction which no
period takes.

The period-group never reduces to zero because of Lemma 4. For any
non-trivial sub-group of (C, -h) generated by m— 1 points ^i , . . . , Zm-i there
is a G C^~"1 such that {Ca-^y^x) has this group as period-group: it suffices
to take any action element (F,p) € f^ such that 2{p{sj) — p{sm)) = z^
^ ' = l , . . . , m — 1 . This also follows from [7]. (A question is whether the
parameters a for which the period-group of (jCa,^/d.r) has a given rank
k € {1 , . . . , m — 1} form an algebraic variety.)

Final remark. — The dicussion of spirals and points at infinity in
Section 1.5 has mainly two aims: one is to show that a spiral quot tented
by translations is biholomorphic to the punctured unit disk, the other is
to prove that the quotient of the differential of the spiral's projection is
meromorphic (i.e., does not have an essential singularity at the center of
the unit disk). The first can be proved like Proposition 2; the second results
easily if the following beautiful conjecture is assumed to be true. (Then
much of the cumbersome technics of Section 1.5 could be omitted.)

A conjecture. — Let J9* = U\ U ... U Un be an open covering of
the punctured unit-disk. Let fj'-Uj —>• C,j = l , . . . ,n , be schlicht (i.e.,
holomorphic and injective) such that dfj = dfk on each intersection
Uj n Uk. Then these differentials glue together to a meromorphic 1-form on
the unit-disk D.

This conjecture is like a differential version of Picard's Theorem.
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