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ON THE COMPLEX GEOMETRY
OF INVARIANT DOMAINS

IN COMPLEXIFIED SYMMETRIC SPACES

par Karl-Hermann NEEB

Introduction.

Let (G,r) be a compact symmetric group, i.e., G is a compact Lie
group and r is an involutive automorphism of G. Let GT denote the
group of T-fixed points. Then M := G/Gr is a compact symmetric space,
and it is easy to construct complexifications of such spaces. The most
direct way is to consider the universal complexification GC of G which
is a complex reductive Lie group endowed with a holomorphic involutive
automorphism r obtained by extending r using the universal property of
Gc. Now Me '-= Gc/{GcY is a complex symmetric space and we have a
natural embedding M^MC. On the other hand the complex symmetric
space Me has an interesting fiber bundle structure which can be described
as follows. Let Q = 1) + q denote the r-eigenspace decomposition of the Lie
algebra 0, where () is the 1-eigenspace and q is the —1-eigenspace. Then the
corresponding decomposition of Qc is given by 0c = ()c + qc? and we have
an exponential map Exp : qc —> Me' Now the mapping

G x iq —> Me, (5S X) \—> g Exp X

turns out to be surjective, and it factors to a diffeomorphism

G XG- iq ̂  Me

Keywords: Complex semigroup - Stein manifold - Subharmonic function - Envelope of
holomorphy — Convex function — Lie group — Lie algebra — Invariant cone.
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which exhibits a fiber bundle structure of Me with base space M and
fiber iq. Furthermore, if a C iq is a maximal abelian subspace, then
iq = Ad(Gr).a, and one derives that Me == G.Exp(a), i.e., that each
G-orbit in Me meets the subspace Exp(a). A typical example of this fiber
bundle structure is the polar decomposition of the complexification K<c of a
compact Lie group X, viewed as a symmetric space of the group G = K x K .
In this case it is given by the polar map K x it —> jFCc, (fc, X) i—^ kExpX.

From a complex geometric point of view there are several natural
questions about these spaces. Since Me = G.Exp(zq) = G.Exp(a), a G-
invariant function on Me is determined by its values on Exp(zq), resp.
Exp(a), and likewise a G-invariant domain D C Me is determined by a
corresponding G-invariant domain J9q C iq with D = G.Exp(jDq). In
[AL92] Azad and Loeb give a characterization of the G-invariant plurisub-
harmonic functions on D (under the assumption that jDq H a is convex) as
those corresponding to Weyl group invariant convex functions on D^ H a.
Moreover, they obtain a description of the envelopes of holomorphy of in-
variant domains which previously has been derived by Lasalle (cf. [Las78]).

The purpose of this paper is to extend these results concerning
complexifications of compact symmetric spaces to an appropriate class of
non-compact symmetric spaces naturally arising in representation theory
and in the geometry of causal symmetric spaces (cf. [H096]). Unfortunately
it turns out that for a non-compact symmetric space one can no longer
work with the full complexification because in general it does not permit
a description as a domain of the type G. Exp(zq). Nevertheless for a large
class of spaces such descriptions exist for interesting G-invariant domains
whose boundary contains the symmetric space G / G 7 ' .

Let us briefly describe our setup. Let (^, r) be a real symmetric Lie
algebra and Q = \} + q the corresponding eigenspace decomposition for r.
We call an element X € Q elliptic if the operator ad X is semisimple with
purely imaginary spectrum. The existence of "enough" elliptic elements in q
is important in many contexts. If Q is a compact Lie algebra, then q consists
entirely of elliptic elements. If (5, r) is a compactly causal symmetric Lie
algebra in the sense of [H096], then q contains open convex cones which are
invariant under the group Inng(()) of inner automorphisms of g generated
by e^ and which are elliptic in the sense that they consist of elliptic
elements. In recent years this class of reductive symmetric Lie algebras
and the associated symmetric spaces have become a topic of very active
research spreading in more and more areas. For a survey of the state of
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the art we refer to [H096] and the literature cited there. In [KN96] and
[KN097] we have investigated a generalization of this class of reductive
symmetric Lie algebras which has quite similar structural properties and
whose members are not necessarily reductive. The simplest type (called
the group type) is the one with Q = I) (D (), where r is the flip involution
and ^ is a Lie algebra containing open invariant elliptic convex cones. The
domains associated to symmetric spaces of group type and the G-invariant
complex analysis (invariant Stein domains and plurisubharmonic functions)
resp. the consequences for the structure of representations of G in invariant
Hilbert spaces of holomorphic functions have been investigated in [Ne96b]
resp. [Ne97].

In this paper we address the case of symmetric spaces which are not
necessarily of group type. As the detailed structural analysis in [KN96]
shows, after some inessential reductions one sees that the class of symmetric
spaces to which one might hope to extend the aforementioned complex
geometric results corresponds to the class of symmetric Lie algebras (5, r)
which has the property that iQ contains an open hyperbolic invariant convex
cone TV, which, in addition, is invariant under —r. Then W H zq is an
Inng( ̂ -invariant open hyperbolic cone in zq, and if W is maximal, then
the maximal domains to which our methods apply are those of the form
E(Wr\iq) := G. Exp(TVDzq) (explained below). These are complex domains
whose boundaries contain a real symmetric space of G, but if Q is not
compact, then these domains are not complex symmetric spaces of GC.

Formally the domain 2(TV D zq) can be defined as G XH (W D zq),
where H C Gr is an open subgroup. All these domains turn out to carry
natural complex structures, and G-acts by holomorphic automorphisms
(cf. [KN097]). If W C zq is a maximal hyperbolic cone, then we are
interested in a description of the G-invariant Stein domains in 5(1^), the
envelopes of holomorphy of any G-invariant domain, and a description of
the G-invariant plurisubharmonic functions on invariant domains in 5 (TV).
Further we want to apply these complex geometric results to obtain some
information on the structure of the representations of G in invariant Hilbert
spaces of holomorphic functions on invariant domains.

An invariant domain D C E{W) can be described as S(Dq) :=
G xjfPq, where Pq C W is an H -invariant domain. Since the description of
5(Pq) does not exhibit its complex structure, it is in many cases preferable
to use the following different realization. Let W C ZQ denote an invariant
open hyperbolic cone with WF\iq =W and S := FG(W) := Gc Exp(W) the
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associated complex OPshanskil semigroup (cf. [Ne99, Ch. XI]). Then the
antiinvolution X \-> -r(X) integrates to a holomorphic involution S —> S,
s »—» s^ satisfying

(s^ = s and (st)^ = ̂

for s,t e S. For H = Gr we then have

E(W) ̂  Q(W) := [ss^ : s € S}

which yields a description as a connected component of the set S^ := {s €
S : s^ = s} and hence implies that Q(W) is a Stein manifold because this
is true for S (cf. [Ne98]). Note that the semigroup 5 := FG(W) acts on
Q(W) by s.x := sxs^. In this sense we have Q(W) = G^Exp^), where
we consider Exp(TV) as {s € Exp(TV) : s^ = s}.

In the group case where Q = 1) e () and r is the flip involution we
have G ^ H x H, Sw := ^c(W) is a complex OPshanskil semigroup,
and S ^ Sw x Sw, where Sw denote the complex manifold Sw endowed
with the opposite complex structure. For s = (si,^) € S we have
^(51,52) = 0".52,T..si) and thus ^ = (s^s^). So ^ = s means that
5 = (si, s^). We conclude that Q(W) ̂  S'H., where the embedding Sw -^ S
is given by s \-> (s, 5*). In this realization of Q(W) the action of 5' is given
by (s^t). x = sxt*.

The main results of this paper are the following:

(1) An invariant domain 2(Dq) is a Stein manifold if and only if Dq is
convex.

(2) The envelope of holomorphy of a domain 2(Dq) is given by the
smallest Stein domain containing it, i.e., 5(convDq).

(3) An invariant real C^-function ( / ) on an invariant domain 2(Dq) is
plurisubharmonic if and only if the corresponding function ^ : X ^—>
0(Exp X) on Dq is locally convex.

(4) The representation of G in any irreducible invariant Hilbert subspace
of Hoi (2(Dq)) is a unitary highest weight representation with spheri-
cal lowest K-type. In view of general desintegration results ofB. Krotz
([Kr97]), this provides a suitable direct integral decomposition for
any Hilbert subspace of Hoi (2(Dq)) as a direct integral of irreducible
ones.
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1. Invariant locally convex functions.

In this section we collect all results on the Lie algebra level that we will
need later on - in particular in Section 3. The main results of this section
concern the characterization of the convexity of an invariant function on
an invariant domain Dq C q by properties of its restriction to a maximal
abelian subspace a.

To simplify our notation, the class of Lie algebras considered in this
section is a class which is dual to the one needed later on, but it will be no
problem to translate the results from a symmetric Lie algebra to its dual.

DEFINITION 1.1. — (a) A symmetric Lie algebra (5, r) is a pair con-
sisting of a finite dimensional Lie algebra Q and an involutive automorphism
r ofQ. We put \) := {X e Q : r.X = X} and q := {X C Q : r.X = -X},
and note that Q = I) (D q. The subalgebra Q° := () + ic{ C ^^ is called the dual
symmetric Lie algebra. The corresponding involution is given by restricting
the complex linear extension of r on Qc to Q0.

(b) Let Q denote a finite dimensional real Lie algebra. An element
X e Q is called hyperbolic, resp. elliptic, if ad X is diagonalizable over
R, resp. semisimple with purely imaginary spectrum. A convex subset
C C Q is called hyperbolic, resp. elliptic, if all its relative interior points
are hyperbolic, resp. elliptic. A symmetric Lie algebra (5, r) is said to be
admissible ifq contains an open convex hyperbolic Inng((}) -in variant subset
not containing any afnne subspace.

An abelian subspace a C q is called abelian maximal hyperbolic if a
is abelian and consists of hyperbolic elements and is maximal w.r.t. this
property. A subspace ( C q is called a Lie triple system if [I, [I, I]] C [. This
means that the space \L '-= ^ ® [^ fl is a subalgebra of Q. Recall that all
abelian maximal hyperbolic subspaces as well as all maximal hyperbolic
Lie triple systems in q are conjugate under Inn^(^) (cf. [KN96], Cor. 11.9,
Th. IIL3).

(c) Let a C q be an abelian maximal hyperbolic subspace. For every
subalgebra b C Q we set b° := ^(d)- For a E a* we define

^ := {X e s : (VV e a)[V,X] = a(Y)X}

and write A := {a € a* \ {0} : ̂ a ^ {0}} for the set of roots. Then we get
the root space decomposition g = g° (D (B 5°'.

aeA
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We call a root a € A semisimple, resp. solvable, if 5°' := ̂  Us -^ {0},
resp. ̂  C r. The set of all semisimple, resp. solvable, roots is denoted by
A^, resp. A^. Note that A = A^UA^ fcf. [KN96], Lemma IV.5(i)).

Let p C q be a maximal hyperbolic Lie triple system containing a and
PL = P+ [p, p] the corresponding Lie subalgebra of Q. A root a e A is called
compact ifp^ -^ {0} and non-compact otherwise. We write A^, Ayi, resp.
Ap, for the set of all compact, non-compact, resp. non-compact semisimple
roots. Note that AA; is independent of the choice of p D a (cf. [KN96],
Def. V.I) and that A = A^UA^ hoids by definition.

(d) The Weyl group W of (^r) w.r.t. a is defined by W :=
MnnB^^V^inn^)^)- We call XQ € a re^/ar ifa(Xo) 7^ 0 holds for all
a G A. A positive system is a subset A~^ C A for which there exists a reg-
ular element XQ € a with A~^ = {a € A : a(Xo) > 0}. A positive system is
called p-adapted if the set A^ := Ayi H A"^ of positive non-compact roots
is invariant under the Weyl group.

(e) The symmetric Lie algebra (s,r) is called quasihermitian if
3q(3(p)) = P- ^n ^nls case a Jls maximal abelian in q and there exists a
p-adapted positive system A"^ fcf. [KN96], Prop. V.10).

(f) Let y be a hnite dimensional real vector space and V* its dual.
For a subset E C y the dnaZ cone is defined by E^ := {c<; e V* : (Va; €
E)uj[x) >_ 0}. A cone (7 C V is called generating ifV=C—C and pointed
ifcn-c={o}.

We associate to a positive system of non-compact roots Ay^ the convex
cones

C^ •= cone ({[X^r(Xj] : X, € s"^ G A^}),

and Cn,ax := (A^)* = [X e a : (Va € A^)a(X) > 0}. D

In the following (s^r) will always be a symmetric Lie algebra
containing an invariant open elliptic invariant cone C which, in addition, is
invariant under —r. Then W := qC\iC is an invariant open hyperbolic cone
in q. In this section we will study invariant functions on domains Dq C W
which are invariant under the group Innq(()).

To explain which symmetric Lie algebras (^r) arise in this context,
and how they can be characterized intrinsically, we recall from [KN96],
Cor. IX. 10, that the existence of the invariant hyperbolic cone W C q
implies that (0,r) is quasihermitian, and that there exists a p-adapted
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positive system A4" such that Cmm c W D a C Cmax. Further there exists
a maximal open convex hyperbolic cone T^max S U containing W.

On the other hand it follows from [KN96], Th. VIII. 1, Cor. IX. 10,
that the existence of C can be characterized intrinsically by the condition
that there exists a p-adapted positive system A"^ such that Cmin CWHaC
Cmax? and, in addition, the subalgebra ()° = ^(a) of I) is compactly
embedded in Q. If these conditions are satisfied, then there exists a maximal
open convex hyperbolic cone Wmax ^ H containing W which arises from
a maximal open elliptic cone in Q°. Hence we may w.l.o.g. assume that
W = W°" " max •

We briefly record the implications of this situation for the correspond-
ing root decompositions of^c ^d 0. If t^ C 1)° is a Cartan subalgebra, then
i0 := ia + H is a compactly embedded Cartan subalgebra of the dual Lie
algebra ^c, and if p is a maximal hyperbolic Lie triple system in q contain-
ing a, then ^c := ()° + [p,p] + %p C Q° is the uniquely determined maximal
compactly embedded subalgebra of Q° containing 1° ([KN96], Th. VIII.1).
Moreover n(p) C 5(6°) and 3^(%3(p)) = ^c, so that (fl^r) is a quasiher-
mitian Lie algebra. Furthermore there exists a ^-adapted positive system
A^" C A := A(0c? ^c) ^^hich is compatible with A"1" in the sense that

A^|a=A^, -T(A^)-A^, and A, = {a € A : a|a € A, U {0}}.

In this section G° denotes a connected group with Lie algebra Q° and
^-(G^^exp^i)).

The restriction theorem.

For / € C^fW)11 the restriction of/ to C^x ls a W-invariant smooth
function. The main objective of this subsection is to prove the following
theorem which is a converse to this observation.

THEOREM 1.1 (Restriction Theorem). — For each invariant open
subset f2 C W the restriction map

c00^)^ -^c^^na)^
is a bijection. D

We recall the set A;i" of positive roots of solvable type and the set
A^ 5 of non-compact positive roots of semisimple type of Qc' For a € A we
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set [a] := {a, -a} and (5^ := ̂  n (fig + Q^). We set p^ := C (s6)^
a€A;f

andp^:= ® (s^M.
^eA^

LEMMA 1.2. — Let Gc be any connected group with Lie algebra Q0

such that the involution r on g° integrates to an involution of Gc. Then
the mapping

( ^ n p ^ ) x (1)0?^;) x (Try -> (G^, (X,Y,k)^expXexpYk
is a diffeomorphism.

Proof. — From r(An) = Ayi we conclude that the subspace
S (fl°)^ ls invariant under r. Furthermore the uniqueness of the i°-

a€A^
invariant Levi decomposition of Q° ([Ne99], Prop. VII.2.5) and the invari-
ance oft0 imply that r preserves the Levi decomposition Q° =vc-{-sc^ hence
that p^ and p^ are r-invariant. Next we recall that the map

p^ x p^ x K0 -^ G0, (X, V, k) ̂  exp X exp Yk
is a diffeomorphism ([Ne96a], Lemma III. 2) to see that

(GT = exp(() n p^) exp((] H p^)^)",
that the product mapping is bijective, and that it has a regular differential.
This completes the proof. D

We will use the decomposition of the group stated in the preceding
lemma to obtain a corresponding decomposition of the open cone W. We
set Cmax,p ̂  Innfl(^)-Cmax c P- Since (^°,T) is a compact symmetric Lie
algebra with ^Dzq = ip, it is clear that p is invariant under the Lie algebra
^ := ^ni), hence that Cmax,p is a closed generating Inn^ (^-invariant cone
in p.

LEMMA 1.3. — The mapping
0 : 0) np^) x (() Hp^) x C^ -. TV, (X,V,Z) - e^e^.Z

is a diffeomorphism.

Proof. — The surjectivity of (f) follows from Lemma 1.2 and the fact
that each orbit oflnng(^) in W intersects C^x ?N96], Th. III.3(ii)). The
injectivity of (f) and the fact that it has a regular differential now follows
from Lemma III.3 in [Ne96a] which states that the map

^c • ^c Y ^c v r^0 —». w ( Y v 7\ i—». pa•dx c^y 7(f) . Py. X Ps X ^max,p ~^ IT ? ( A , Y , Z , ) \ - ^ e € .Z
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is a diffeomorphism. D

Proof (of Theorem 1.1). — First we assume that Q, = W. Let (f)
be the mapping of Lemma 1.3. Then Lemma 1.3 shows that the smooth
H -invariant functions on W are in one-to-one correspondence with the
smooth Innp(^)-invariant functions on CSiax,p- Hence it suffices to prove
the assertion in the case where q = p is a hyperbolic Lie triple system, i.e.,
the case of non-compact Riemannian symmetric spaces. In this case the
assertion follows from [Hel84], Th. 5.8, which implies that for every smooth
W-invariant function on C^x wlt^ compact support its unique extension to
Cmax,p is smooth. Note that Helgason assumes that the Riemannian space
under consideration is semisimple but that his argument works equally well
for the reductive case.

If ^ C W is an .^-invariant open subset and / € C°°(^ D a)^, then
we have to show that the unique extension to an ff-invariant function /
on f2 is smooth. Multiplying / with a W-invariant smooth function with
compact support, we may w.l.o.g. assume that / has compact support in
Q. D a, hence that / C C^C^ax)^' Then the smoothness of / follows from
the first part of the proof. D

In the remainder of this subsection we turn to continuous functions.

LEMMA 1.4. — Let a^~ C a be a fundamental domain for the action
of the Weyl group W. -For an invariant subset Q. C W the following are
equivalent:

(1) f^ is open.

(2) ^ H a is open.

(3) f^ n a4' is open in a^.

Proof. — In view of Lemma 1.3, ^ is open if and only if fl, H C^iax,p
is open. Hence we may w.l.o.g. assume that q = p is a hyperbolic Lie triple
system.

Then each orbit Ox = Ad(H).X intersects a^ in a unique element
q{X). Let q : p —» a^ denote the corresponding map. Since the implications
(1) =^ (2) =^ (3) are trivial, we only have to prove the converse. Assume
that fl, D cT1" is open. Then Q, = q~l(^l r\ a^~). Hence it remains to show
that q is continuous. Let Xn —> X and assume that q(Xn) —> Y. It suffices
to show that q(X) = Y. We pick 7^ 6 Innp(^) with q(Xn) = ^n'Xn'
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Since Imip(^) is compact, we may w.l.o.g. assume that the sequence ^n
converges to 7 € Imip(^). Then q(Xn) = 7n.X^ -^ 7.X € a^~ proves that
g(X) = 7.X = V. D

PROPOSITION 1.5. — Let ^ CW be an open invariant subset and
a^~ C a a fundamental domain for the W-action. Then the restriction maps

C(^)11 -^ C(^ n a)^ -^ C(^ n a+)
are bisections.

Proof. — It only remains to show that for a continuous function 0
on f^ n cT1' the H -invariant extension 0 on fl, is continuous. But his is a
direct consequence of Lemma 1.4. D

Invariant locally convex sets and functions.

To each X e C^iax c a we associate the cone

Cx := cone{a(X)[Z,r(Z)] : a e A, Z e ̂ } =C^TC'^k

with Cx,k := cone{a(X)[Z,r(Z)] : a G A^, Z G fl^. We also recall that

a+ = [X e a: (Va € A^)a(X) ^ 0}

is a fundamental domain for the action of the Weyl group YV on a (cf.
[KN96], Prop. V.2) and that for X <E (a+)° we have Cx,k = -cone(A^).
Note that (a4-)* = cone(A^).

We omit the proofs of Lemma 1.6 and Lemma 1.7 which consist in
simply rewriting the proofs of Lemma III. 15 and Lemma III. 16 in [Ne96a]
for the more general setting of symmetric spaces.

LEMMA 1.6. — Let ^+ C cT1" be a relatively open convex subset
and C^ C ̂ + relatively closed and convex. Suppose that for each X € C^~
there exists an open neighborhood UofX in a^ with (X + Cx) H U C C^.
Then (X + Cx) H ̂ + C C+ holds for all X € C+. D

LEMMA 1.7. — Let f^ C a4' be a relatively open convex subset and
F C fl, relatively closed. Suppose that {X -h Cx) H ^ C F holds for all
X e F. Then

(F - cone(A^)) n ̂  C F and F= conv(W.F) U 0
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D

DEFINITION 1.8. — Let V be a real vector space and fl, C V be a
subset.

(a) A function ̂  : ^l —> M is said to be locally convex if each x € ^
has a convex neighborhood on which (f) is a convex function.

(b) Suppose, in addition, that fl. is open. Then (f) € C2^) is called
stably locally convex if all the bilinear forms cP^x) : V x V —^ R, x G f^, are
positive definite. If, in addition, fl. is convex, then a stably locally convex
function (j) on fl, is called stably convex. Note that stable local convexity
implies local convexity because a two times differentia ble function with
positive semidefinite second derivative is convex. D

THEOREM 1.9. — Let ^l C W be an open H-invariant subset such
that Q4" := Q, D a4" is convex. Let further C C Q be a relatively closed
invariant subset such that C^ := C D a^ is connected. Then the following
are equivalent:

(1) C is locally convex.

(2) C^ is convex and for each X 6 C := C D a there exists an open
neighborhood U of X in a with (X + Cx) H U C C.

(3) There exists an invariant convex subset D C W such that
Dnfl=c.

Proof. — (1) ==^ (2): If C is locally convex, then C+ = C'Da4' inherits
this property. Hence C^~ is a closed connected locally convex subset of the
convex set f^na"^. Therefore [Ne96a], Prop. 1.5, implies that C^~ is convex.

Let X e C and V C ^2 be an open convex neighborhood of X in q
such that Vr\C is convex and note that this implies that VnC=Vr\Cr\a
is also convex. Pick a C A+ with a(X) ̂  0 and Z <E 0°' \ {0}. Then [KN96,
Lemma VI. 1] shows that i f p a : q — > a i s the projection along q D [a, 5], then

^ad(Z+r(Z))^ ^ ̂ ^ ̂ ^ _^_ r{Z))).X

' a(X)[Z,r(Z)}_____ for a([Z,r(Z)]) = 0

= X ^ - < ̂ W^^^^^^)] fora([Z,r(Z)])>0

. ̂ W^J^11^^^^)] for a([Z,r(Z)]) < 0.
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If t is so small that e±tad(z+T(z)).X e V, then

cosh(tad(Z+r(Z))).X = ̂ ^(^(^JC+e-^^^X)

e ^(v nC+ynC)cvnG.^j
Thus we find t > 0 with Y + ta(X)[Z,r(Z)] eCnV. Applying [Ne96a],
Lemma 1.8, Prop. 1.9, shows that ((G H V) + Cjc) H V C C. In particular
we obtain (X + Cx) H V C G which proves (2).

(2) =^ (3): The same arguments as in the proof of the corresponding
implication in [Ne96a], Th. III. 17, show that the set

D := conv (^.(C^ + (Cmin H a+)))

satisfies D H ̂ + = C+, hence that D := Ad(H).D satisfies D D ̂  = C. It
remains to see that D is convex. In view of [KN96], Th. X.2(i), it suffices
to show that D + Cmin S D. Using [Ne99, Prop. V.2.9], we see that
D== H rO^+^inna+^a^A^)) = F| 7.(G++G^n-cone(A^)).

7ew 7ew
Since each of the convex sets 7. (C^ + Cmin - cone(A^)) is invariant under
addition of elements of Cmm? the same holds for D, i.e., D + Cmin c -D-
Thus D is convex and C = fl, H D.

(3) ==^ (I): This is trivial. D

THEOREM 1.10. — Let Q C W be an open invariant subset such
that fl, D a4' is convex, '0 : ̂  —^ R an invariant function, and ^a := '0bncr
Then the foJiowmg' are equivalent:

(1) ^ is locally convex.

(2) ^a ^ locally convex and d^a(X)(Cx) C M- for all X C ̂  H a.

(3) There exists a convex invariant function ̂  on conv(Q) such that
^|n = ̂ .

Proof. — (1) ==^ (2): If ^ is locally convex, then '0a is locally convex.

Let a e A with a{X) + 0, Z e 0a\{0}, and put 7(1) = e^^+^.X.
We have

Y(0) = [Z + T.Z, X] = -a(X)(Z - r.Z) ̂  0,

and

27" (0) = ad(Z + r.Z)2(X) = -a(X)[Z + r.Z, Z - r.Z] = 2a(X)[Z, r.Z].
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Hence [Ne96a], Prop. 1.17, shows that d^a(X)(Cx) <= K~ because the
function ^a is constant on the curve 7.

(2) ==^ (3): We consider the symmetric Lie algebra Q^ := g x R with
q^ := q x R, a^ := a x M, and the corresponding invariant cone W^ = W x R.
Then C := epi('0) C Q, x R is an invariant subset of W^ and we put
C := C D eft = epi(^a)- Since ^a ^s locally convex, it is continuous, and
therefore C is a relatively closed locally convex subset of (fl. x R) H c^.

To see that C4' := C H a'1" is convex, let i/^ := '0a|^na+- Since ̂  is
a locally convex function on a convex set, it is convex ([Ne96a], Cor. 1.6),
and therefore its epigraph C^~ = epi(i/^) is convex.

Let X € C and U be a convex W^-invariant neighborhood of X in
C such that Y C U and a(X) ̂  0 imply a(Y) ̂  0, hence that Cx C Cy.
This implies that ^a(^)(C^) C d^a(^)(C'y) ^ 1^~ holds for all Y eU.
Since ^a|c/ ls locally convex and hence convex ([Ne96a], Cor. 1.6), we find
for each {Y,t) € U and Z € Cx a ^ > 0 with (Y,A) + <^,0) € epi(^a|£/).
Thus [Ne96a], Lemma 1.8, entails that

(epi(^) 4- {Cx x {0})) H (U x R) C epi(^a).

This means that epi(^a) c ̂  satisfies the assumptions of Theorem 1.9(ii).
So there exists an invariant convex subset D C W with Z)n(f^xR) = epi(^).
We define a function ^ : conv(^) — ^ R b y

^{X):=mf{teR:(X,t)eD}.
To see that this function is well defined, we first note that by the convexity
of D, for each X G conv(^) there exists t G R with (X, t) e P. Moreover,
if ^(X) = -oo, then {X} x R C D and therefore D + ({0} xR) = D (cf.
[Ne99], Prop. V.1.5(vi)), a contradiction. So we have constructed a convex
^f-invariant function on conv(f2) with ip\o, = ̂ .

(3) =» (I): This is trivial. D

Remark 1.11. — To obtain the equivalence between (1) and (2) in
Theorem 1.10, we do not need that the set fl, Fl a^ is convex. In fact, this
equivalence is a purely local assertion. Hence one can shrink fl, in such a
way that Q, D a4' becomes convex and then apply Theorem 1.10. D

Before we come to the characterization of the stably convex invariant
functions, we first need at least some stably convex invariant function. We
will see below that the assumptions made on Q in the following lemma are
even necessary for the existence of such functions.
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For a convex subset C of a vector space V we write lim(C') :=
{v € V : v + (7 C C} for the recession cone of (7. We put -H'(C') :=
lim(C') n - lim(C) = {v <E V : v + C = C}.

LEMMA 1.12. — Suppose, in addition, that Q has cone potential,
i.e., 0 ^ Z C ^ implies that [Z.r.Z] ^ 0, that C^m is pointed, and let
X e W. Then there exists an open convex H-invariant subset fl, C W
containing X with Jf(^) = {0} and a stably convex invariant function on
^.

Proof. — First we note that we may w.l.o.g. assume that X € C^ax
([KN96], Th. III.3(i)).

Let K be a compact convex W-invariant neighborhood of X in C^x
and put C := K° -h Cmm. Then C is an open convex HMnvariant subset
of a and [KN96], Th. X.2(i), implies that ^2 := Ad(H).C C W is an open
convex invariant subset of q. We have H{C) = H(C) = H{K + Cniin) =
-^(Cmin) = {0}, and therefore pa(HW) C H(C) = {0}. Thus 7^) is an
H -invariant subspace of [a, I)] C q, and therefore trivial because Q has cone
potential ([KN96], Prop. VII.2(iv)).

To construct a stably convex invariant function on ^2, we first use
[KN96], Th. X.7(i), to find an open G^L^-TJ-invariant hyperbolic convex
invariant subset f2 of q = iQ° with A H q = ^. Factoring the largest ideal
of Q contained in I), we may, in addition, assume that the symmetric Lie
algebra (g,r) is effective. Then the proof of [KN96], Th. X.7(ii), shows that
n contains no affine lines, so that we can use [Ne96a], Lemma III. 11, to
find a stably convex (^-invariant function '0 on Q, in such a way that the
restriction -^ := ̂ \^ is a stably convex H -invariant function on ^2. D

For the following theorem we recall that a symmetric Lie algebra (5, r)
is said to be admissible if q contains lif-invariant generating hyperbolic
subsets not containing affine lines.

THEOREM 1.13. — Let ^ C W be an open invariant subset, ^ :
fl, —^ R an invariant smooth function, and ^a ''= '0bna- Then the following
are equivalent:

(1) i^ is stably locally convex.

(2) ^a is stably locally convex, d^aW e - int C^ for all X C ^ D a,
and (g, r) is admissible.

(3) -0a is stably locally convex, d^aW G - int C\ for all X e ̂  D a,
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and (5, r) has cone potential.

Proof. — (1) => (2): We proceed as in the proof of Theorem 1.10. If
^o is stably locally convex, then [Ne96a], Prop. 1.17, yields

d^(X){a(X)[Z^T.Z])<0

for X € ^ H a, a(X) ^ 0, and 0 ^ Z C 9°'. Thus d^aW € -intC^.
We conclude in particular that dipa(X) C —int(7^, hence that Cmin
is pointed. Moreover, the preceding argument implies that [Z,r.Z] -=/=- 0
for a € A,^ and 0 7^ Z, i.e., that (fl,r) has cone potential. Therefore
Lemma 1.12 proves the existence of a closed convex hyperbolic invariant
subset C C q with H(C} = {0}, hence that (s,r) is admissible.

(2) =^ (3) follows from [KN96], Th. VI.6.

(3) =^> (l): Let X C C. Since Cmin S Cx, the assumption d^aW e
—int(C^)* C —intC^^ entails in particular that intC^^ 7^ 0, i.e., that
the cone Cmm is pointed. Hence the assumptions of Lemma 1.12 are
satisfied, so that, after shrinking f^ if necessary, we find a stably convex
invariant function / on f2.

We choose an open convex neighborhood U of X which is invariant
under the group YVX := {7 G W : 7.X = X}, such that Y e U and
a(X) 7^ 0 implies Q^Y) ^ 0, and U C ^ is compact. Then the restriction
of '0a to £/ is a convex H^-invariant function ([Ne96a], Cor. 1.6). Since U
is relatively compact in Q, D a and '0a is stably convex on [7, there exists
e > 0 such that (pa ''= ^a—^f is convex on U and d<^a(Y) G — int C^ holds
for all Y eU.

In view of our condition on U, we have Cx c Cy for all Y e U.
Suppose that a(X) = 0. Then the reflection Sa is contained in W^ and
since U is invariant under this reflection, it contains with each element Y
the whole line segment [y,5^(y)] with

s^(Y) == V - a(Y)a = Y + a(Y)[X^ r.Xj,

where 0 7^ X^ e 5°'. Now the invariance of the convex function </>a|[y,s^(^)]
under this reflection implies that

d(t>a(Y){a(Y)[X^r.X^)<0.

So we even have d(f)a(Y) 6 -C^ for all Y C U. For 7.V C HW the
invariance of (/)a entails

d^.Y) = d(f>a(Y) o 7 e -7*.(W = -^.y.
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Thus d(f)^Y) e -C^ for all Y e W.U.

Now Theorem 1.10 and Remark 1.11 imply that the function (f) :=
'0 — ef on U := Ad(H).U C TV is locally convex. We conclude in particular
that (P^Y) == rf^Y) - ̂ /(V) is positive semidefinite for all Y G U,
whence cP^(Y) is positive definite for all Y € U. Since -X was arbitrary in
f^ D a, it follows that ^ is a stably convex function on f2. D

Remark 1.14. — (a) The proof of Theorem 1.13 shows that, if the
open convex subset U C a containing X satisfies a(Y) 7^ 0 for Y € U
and a(X) 7^ 0, and ^a is a convex W-invariant function on W.£7, then
d^a(Y) € -C^ for all Y € ?7 implies d^a(^) € -C^ for all Y e W.U.

(b) If, in particular, fl, H a is convex, the condition d^a(X) € —C^
follows from d^a(^) ^ ~^mm' Therefore we obtain the simpler criterion
in this case saying that ^ is (stably) locally convex if and only if ^a is
(stably) locally convex and d^aW € -C^ (o^a(X) e -mtC^) for all
x e ̂ i n a. D

Extending invariant convex sets and functions.

In this subsection we deal with the problem of extending convex H-
invariant subsets of q to (^-invariant convex subsets of iQ° = q + i^ and of
extending ff-invariant convex functions to (^-invariant convex functions.
Our main result is Proposition 1.19 which will be important later on to
make the results for the group case (see [Ne96a]) available in our present
setting.

LEMMA 1.15. — For each X e a we have (W.X) H a = W.X.

Proof. — Let p : a —> a denote the projection given by pa(X) =
^(X - r.X). Using [KN96], Prop. X.5(iii), we see that pa(convW.X) =
z
conv(W.X). This shows that if 7 € W satisfies Y := 7.X e a, then
Y € conv(H;.X). If || • || is a W-invariant euclidean norm on a, then
we conclude that ||y|| = ||X||, hence that Y is an exposed point of the
polyhedron conv(W.X), and therefore

Y e Ex(convW.X) = W.X,
where Ex((7) denotes the set of exposed points of the closed convex
set C. D
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LEMMA 1.16. — For each W-invariant open subset Q C a there
exists a W-invariant open subset fl, C a with f2 H a = f2.

Proof. — For each X € Q, we choose an open neighborhood Ux c &
which is invariant under the finite group W^, satisfies ^.Ux Fl a = 0 for
7.X ^ a, and 7.Ux H a C Q, whenever 7.X € a (cf. Lemma 1.15). We define

n := J HWx
xes^

and note that this is an open W-invariant subset of a containing f2. If for
7 G W and X € f^ the set 7.£/x intersects a, then 7.X e a, and therefore
the construction of Ux implies that (^.Ux) H a C f2. We conclude that
Q, C fl, D a C f2, and this proves the lemma. D

In the following a domain always means an open connected set and
an extension of an ^f-invariant domain jDq C q is a G-invariant domain
J5q CQ with D q H q = Pq.

PROPOSITION 1.17. — For each H-invariant domain D^CW there
exists a G°-invariant domain Dq C iQ° with Dq D q = -Dq. If, in addition,
Dq is convex, then jDq can be chosen to be convex.

Proof. — Using Lemma 1.16, we find a W-invariant domain ^ C a
with f^ D a = Pq Ft a. Since C^ax ls invariant under W and Dq D a C C^x c

(7^x? we mav w.l.o.g. assume that ^ C C^x- Then Lemma 1.4 shows that
D^ := G0.^, CW is a, ^-invariant open subset.

Further Pq H q is ^-invariant, and therefore

Dq H q = H.{D^ H a) = H.{^ H a) = H.(D^ n a) = Dq.

This proves the existence of an extension Dq of Dq.

Suppose, in addition, that Dq is convex. We recall from [KN96],
Th. X.7, that each closed convex hyperbolic subset C C Wmax has a
maximal extension

C := [x e w : pa^.x) c c n a}

which, in addition, is -r-invariant and satisfies pq(C) = C D q = C.
Applying this extension to the closure of an invariant convex domain
Dq C W^ it follows from the —r-invariance of the extension that the interior
Dq of the extension of the closure extends the domain Dq. D
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COROLLARY 1.18. — Every H-invariant domain Dq C W is also
invariant under the group (0°)''".

Proof. — Writing Dq = Dq H q as in Proposition 1.17, we observe
that the group (G^ preserves q and Pq, hence also Dq. D

PROPOSITION 1.19. — If Pq C W is an invariant convex domain
and ^ : -Dq —> M is an invariant convex function, then there exists a convex
extension Dq of Dq and a convex Gc-invariant convex function ̂  : D^ —>R
with ̂  = ^\D^

Proof. — The epigraph B := epi(^) C Dq :== Dq x R C q« := q x R is
an AT-invariant domain, hence extends to an invariant convex domain B C
q^ (Proposition 1.17). Now {0} x R <2 ^(B) implies that {0} x R g H(B),
and therefore that whenever (x^to) € B for some to? the number

^(x) :=mf{t: (x,t) C §}

is well defined and defines an invariant convex function on the domain
J)q := pn(B) which in turn extends -Dq. Since B extends -B, it follows that
^\D, = ̂ . n

2. Calculations in low dimensional cases.

In this section we collect the calculations in low dimensional symmet-
ric Lie algebras that will be needed to obtain the characterizations of in-
variant (strictly) plurisubharmonic functions on domains of the type Q(C).
We keep the notation and the assumptions of Section 2. The most relevant
cases are Q = s[2,R) with () = 5o(l, 1) and Q° = 5u(l, 1), Q = 5((2,R) with
() = 5o(2, R) and ̂  = 5u(2), and where Q° is the four dimensional oscillator
algebra.

The solvable type.

In this subsection ^c denotes a solvable Lie algebra with compactly
embedded Cartan subalgebra t = ia. We assume that A"^ = {a}, so
that there exist only two root spaces. Then ^c = u x I, where [ C t
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complements the center 5(0) and u = ^c) + Q^ is the nilradical. Note
that uc == flg +9^ +a(Sc) so that [uc,Uc] C [^^oi] C ̂ ). We extend
the root a to a functional on Qc that vanishes on Uc. If dimcflg = 1,
[fl^ftc^ ^ {°} and dimt = 2, then Q is called the four dimensional
oscillator algebra. It has a basis (P, Q , Z , H ) where the non-zero brackets
are given by

[P,0]=Z, [H^P}=Q, and [H,Q}=-P.

Let Gc denote the simply connected group with Lie algebra Qc
and G C Gc the simply connected subgroup with Lie algebra Q. Then
Gc = Gexp^0), where the map

G° x iQ° -^ Gc , (^ X)^g exp(X)

is a diffeomorphism (cf. [Ne98], Sect. 3). For s = gexp{X), X € %fl, we have

5* =exp(X)g-1 =^- lexp(Ad(^).X),

so that s* = 5 entails ^2 = 1, hence ^ = 1 since G0 is simply connected.
For s = s* = expX we define log s := X.

For s = gexp(X) we further have ^ = exp(X)^r(g)~1 so that s^ = s
means r(^) = g~^ and X = -Ad^)"1.?-^).

PROPOSITION 2.1. — Let 5 = exp(Z^ + ^-a)exp(Z) with Z e fc,
a(z) T^ O? ^±a € 0^°', and suppose that s" = s as well as s^ = s. Then
there exists h C H such that

hsh-1 = exp (z + | coth (^)) [Z,, Z_,]V

Proof. — With the same argument as in [Ne98], Prop. 3.1, we
conclude that exp(Z)* = expZ, hence that Z e a and therefore that
a(Z) e R.

We have 5^ = r(s)~1, so that r.gg = ̂ a and

exp(-r.Z) exp(-r.Z^ - T.Z_J = 5^ = s = exp(Z^ + Z-a) exp(Z)

= exp(Z) exp(e-a^)^, + e^Z^)

imply that T.Zc. = -e^^Z-a. Similarly 5* = 5 entails that ~Z^ =
-e^Z^.

In [Ne98], Prop. 3.1, we have seen that there exists g e G° such that

gsg-1 = exp ̂ Z + J coth (^)) [Z,, Z.,]') .
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Then Z_, = -e-^r.Z, = -e-^X; implies that

[Z,,Z-,] = -e-^Z^r.Z.J = -e-^Z^Z^].

Therefore [Z^Z_J C ^c H oc = a. Writing s = expX with X e q, this
means that

Ad(g).X e a = ii.

Now We = {1} = W implies that Ad(G).XHa = {X} = Ad(7:f).X, so that
we may w.l.o.g. assume that g e H. This completes the proof. D

PROPOSITION 2.2. — Let X e a with a(X) ̂  0 and Xa G 9°'.

(i) Ifs= exp(Xc, - r.XcO exp(X) exp(Xc, - r.X^), then there exists
he H with

hsh-1 = exp ( x - 2 coth (a(?) [X,, r.X^]\ .

(ii) JfXc, € 5°', 7(2;) := exp(^)exp(X)exp(-^r.JC,), ^ e C, then
there exists g € Gc with

)̂,. , exp (X+2(^ - ̂ )(..X,X4

Proof. — (i) From X^ € 5° we deduce that r(X^) = f(X^) = X^.
Therefore [Ne98], Cor. 3.2, implies the existence of a g e G0 with gsg~1 =
expV for

Y = exp ( x - 2 coth (^)) [X,, r.X,]) .

If s = exp V, then this means that Y = Ad(^).y7. Now the same argument
as in Lemma 11.1 shows that we may w.l.o.g. assume that g € H.

(ii) We may w.l.o.g. assume that a(X) > 0 holds for A+ = {a}. Let

7(2;) := exp(zX^) exp(X) exp(-zr.X^)

and note that if z is small enough, then 7(2^) € Q(Cniax)-

We make the following ansatz:

g = exp(p.Xa + JlXa) exp Z == exp(/^ + JIr.Xa) exp Z

with ^ € C and Z e ^(5) C 5(0C). More explicitly we put

. .^ g-a(x) / ^e^ _ Im2; \ ^ Re z _ . Imz
M-e-Q(x) l+e -^WY - ea(x) - 1 ^ e ^ W + l *
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This means that /Z == (/^ + ̂ c^W. On the other hand we have

exp(/^+7Zr.X^)exp(^) = exp(jIz[r.X^X^])exp ((^+/^+/IT.^)
which we use to see that

g^(z)g^ = exp(/^ + TZX^) exp Zexp(zXa) exp(X)
exp(-^r.Xo;) exp Zexp(-^r.Xa - JiXa)

= exp(/^, + JIT.X^) exp Z exp(^XJ exp(X)

(exp(/^ + /Zr.XcO exp Z exp{zXa))tt

= exp(2Z + 2fiz[r.X^ X^) exp {(z + /,)X^ + J[ZT.X^)
exp(X) exp ( - (z + ^r.Xa - ~flX^)

= exp(2Z + 2jIz[r.X^X^) exp ((z + ^)X^ + TZT.X^)
exp ( - (z + AOe^^T.Xc, - JIe^^X^) exp(X)

= exp(2Z + X + 2/^[r.X^ X^]).

Next we choose Z e n(o) in such a way that 2Z + X 4- 2/Z^T.Xc,, Xc,] e a,
which makes this expression equal to X + 2Re(/Z^)[r.Xc,,X^]. Now the
assertion follows from

ReOZ.) = Re(.) Re(^) + Im(.) Im(̂ ) = (^^ - ̂ ^).

D

The non-compact simple case.

Example 2.3. — We consider the Lie algebra Q = 5l(2,R), () =

so(l,l) and ^ = 5u(l,l), so that Qc = sl(2,C). For F = [° 1") we
then have

(2.1) r f" ^^ff0 ^F^^ ^
\c d ) \c d ) \b a )

We conclude that for g = [ a ) e SL(2, C) we have
\ c a /

H . ^-i ( d c\ ( a —c\
9' = r(g) = [ = (\b a ) \-b d )

and therefore

Q = {s e SL(2^C) :s^=s}={ ( a ^ b} : a^d e C^ad+b2 = 1\.
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We consider the action of 577(1,1) on Q given by g.s := gsg^. In view
of (2.1), we have (g.s)F = gsr^F = g(sF)g-\ so that the map

Q-^(2,C), ^ f 0 ; )^^=f ; a )
\-b d ) \d -b)

is equivariant with respect to the adjoint action of 5T/(1,1) on 5((2,C).
The subset QF C 5l(2,C) is a complex quadric, the coadjoint orbit of the
diagonal matrix H.

We observe that the coadjoint action of SU(1,1) on x>l(2, C) preserves
the two subspaces Q° and ig°, where

^ c ={^es [ (2 ,C) :X O =X},

with X° = BX*B and B = ^ _^ j. More explicitly this means that

f \r ( a b \tor A = we have\c -a)

X^Bf71 ^B^f^ -CY
\b - a ) \-b - a )

Therefore the projecton

q : 5((2, C) -. zsu(l, 1), X ̂  j(X + X°)

is given by

( a b \ ( Rea L(b-•c)\ 1
^c -a)=[^c--b) '-ReaJ-^^^——^^+il6-^

The function X ^ detg(X) on QF is invariant under the action of
W(l,l).

We choose a = RH with H = ( 1 0 V and A+ = A^ = {a} with

a(^) = 2, i.e., ^ = a. Then C^ax = M+Jf C a. Let ^ > 0 and consider
the holomorphic curve

,:c^o, ^f z ^i-.2)^,^^-^ . ^
\^ -z ) \ -z e - ^ ) '

Then

detq^(z)F) = -(Re^)2 + ̂ (1 - ̂ 2) - e-^|2
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and if ^(z) is SU(1, ̂ -conjugate to exp (y{z)H), then

(sinh/^))2 = -(Rez)2 + ̂ (l - z2) - e-^\2-e-^|

^
=-(Rez)2+ smh/^-e^—

i i/^ _^
= -(Rez)2 + (sinh^)2 + e2^^ - 2Re (smh^2-}

= -(Rez)2 + (sinh^)2 + e2^ - J(e^ - 1) Re(z2)

= -(Rez)2 + (sinh^)2 + e2/11^ - J(e^ - l)((Rez)2

-(Imz)2)

= (sinh/,)2 +e^(1^ - J((Rez)2 - (Imz)2)) - (Rez)2

+^(Rez)2-(Im^)2)

= (sinh/.)2 + e^(^4 - |(Rez)2 + |(Imz)2) - ||z|2.

PROPOSITION 2.4. — Let (fl,r) be a reductive symmetric Lie aJg-e-
bra with Q' ̂  sl(2, R), X^ 6 0" with [X^ T.X^} = a, X e C^, and

7 : C ̂  Gc, z ̂  exp(ze°WXa) exp(X) exp(zeQ(x)X^).

If z 6 C is sufficiently small, then there exists a 5 6 G0 with

(n(z)ff« = exp(X + v{z)[X^T.X^\)

and
I |4

cosh (a(X) + 2^(z)) = cosha(X) + e"^) (^- - (Rez)2 + (Imz)2) - |z|2.

Proof. — Splitting off the center, we may w.l.o.g. assume that g =
sl(2,K) because we may write X = Xy + -—^{Xa^T.Xa} with XQ e 3(0).
Furthermore [Xcc,T.Xo\ = a shows that we further may assume that

y ( Q ^ A - ( 1 ° \X.=^ J and a=(^ _J.

With /^ = a(X) > 0 we then obtain

^_^1 ^\(e^ 0 \ ( 1 0 \ / e ^ ( l - z 2 ) z \
^-[O 1 ) [ o e-^A-^ i j - - ^ -z e - ^ ) -
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Now the assertion follows from the calculations made above and the relation
• i / \2 cosh(2a;) — 1smh(x)2 = ——y——f——.

D

The compact simple case.

Example 2.5. — We consider the Lie algebra s = 5l(2,R), ^ = so(2)
and Q° = 5u(2), so that Qc = ̂ (2,C). Then r(X) = -XT = FXF with

F = ( -1 o )' and ̂  = gr = ̂ -1JF holds for 9 ^ SL(2, C). Hence

Q = {s e 5L(2,C) :sT=s}=[ ( a b} : a^de C^ad-b2 = l}.

We consider the action of G° = SU(2) on Q given by g.s := gsg^ =
g s g T . From r(g) = FgF we get (g.s)F = gs^g^F = g(sF)g-\ so that
the map

/n r/o /n\ ( a ^\ r-. / ^—^ <^\Q^5l(2,C), 5= \^sF=(
\-o d/ ^-d &/

is equivariant with respect to the adjoint action of SU(2) on $((2,C). The
subset QF C sl(2, C) is a complex quadric, the coadjoint orbit of the
diagonal matrix H.

As in Example 2.3, we see that if

„., (2,C)^ ..„(,), X»(: _y»j(X.X.)=(^ ^^

is the projection, then X ̂  detg(X) = -(Re a)2 - -|6+c|2 is a function
on QF which is invariant under the action of the group SU{2).

We choose
a = RH with H = ( 1 °\

and A+ = A^ = {a} with a(H) = 2. Then C^ax = a. Let /x G R and
define the holomorphic curve

..€.<,, ^(^ .•(l_-2))„(^^ ^y
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Then
detq^(z)F) = -{Rez)2 - ̂ (l + z2) - e-^|2.

li^(z)F is ,W(2)-conjugate to exp (y{z)H), then ^(z) satisfies the relation

(sinh^))2 == (Rez)2 + ̂ (l + z2) - e-^\2

z2^= (Rez)2 + sinh/^ 4- e^—
i Zi

z\^ .- / . . ..?2'= (Re^)2 + (sinh/i)2 +6^^- + 2Re (sinh^-^)

= (Rez)2 + (sinh^)2 + e^1^4 + -(e2^ - 1) Re(J2)

= (Re^)2 + (sinh/,)2 + e2"1^4 + J(e^ - l)((Re2)2

-(Im^)2)

= (sinh^)2 + e2^1^4 + J((Re^)2 - (Im^)2)) + (Rez)2

-J((Re^-(Imz)2)

= (sinh^)2 + e2^1^ - J(Re^)2 + J(Imz)2) + ||z 2.
D

PROPOSITION 2.6. — Jf(g,r) is a reductive symmetric Lie algebra
with g' ^ s((2,R), X^ £ fl° with [Xa,r.Xa] = -a, X e a, and

7(z) = exp(zeQ(x)Xa)exp(X)exp(2ea(x)X^),
tAen there exists a g ^ G0 with g^(z)g't = exp [X + v(z)[Xa, T.Xa\) and

cosh (a(X) - 2v(z)) = cosha(X) + e^W (^- - (Rez)2 + (Imz)2} + \z\2.

Proof. — As in the proof of Proposition 2.4, we may w.l.o.g. assume
that g = s((2,R). Furthermore [Xa,T.Xa\ = -a shows that () ^ so(2), and
so we may assume that

Y f° ^ ^ - f1 ° ^^=^ ^ and a=^ _J.

Now
^)=f1 ^ett}(ell 0 V 1 ^-f^^^2) z ^1 { ) {0 1 }\0 e-^)\ze^ l } ~ \ z e-^ ) •

As in Proposition 2.4, the assertion now follows from the calculations in
Example 2.5. D
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3. Envelopes of holomorphy of invariant domains.

For the following section we slightly change the global notation from
the preceding section in that we interchange the symmetric Lie algebra
(0, r) and its dual (5°, r). In these terms our setup is the following. The Lie
algebra Q is assumed to contain an open invariant elliptic cone W which,
in addition, is —r-invariant. We may w.l.o.g. assume that W is maximal
and put W : = T V n q .

On the global level (G, r) denotes a connected symmetric Lie group
with symmetric Lie algebra (s,r), and H C Gr an open subgroup of the
group of r-fixed points. Invariance of a domain in q or of a function on
such a domain will always refer to the group Inng((}) acting on q. We recall
from Corollary 1.18 that this leads to the same notion of invariance for
each open subgroup H C GT.

Now we explain the construction of the domains we are interested in.
Let D^ C i W be an invariant domain. Then we define

5(Pq) :=GXHD^

which is the orbit space for the action of H on G x D^ given by h.(g^ X) :=
(gh^.AdW.X). We write [g,X] := H.(g,X) for the elements of 2(Dq).
To endow this domain with a natural complex structure, we will use the
complex OPshanskil semigroup S := FG(W). As already mentioned in the
introduction, the antiinvolution X ̂  —r(X) integrates to a holomorphic
involutive antiautomorphism S —> S', s i—>- ^. We consider the domain S^ :=
{s € S : s^ = s} of (j-fixed points in S. The involution jt extends to the closed
OPshanskil semigroup S := Tc(W) which acts on S^ by s.x := sxs^. Thus
we obtain in particular an action of G by g . x = gxg^ = gxr(g)~1. It is clear
that Exp(zTY) C S^ because W is the set of —r-fixed points in the larger
cone W. We have seen in [KN097], Th. IV.3, that the connected component
5^ of S^ containing Exp(iW) coincides with G.Exp(zW). Motived by this
equality we define for an invariant domain Z)q C iW:

Q(D^) :=G'.Exp(2A,)C5<

The following theorem shows that for H = Gr the domains 5(Pq) and
Q{D^) can be identified, and furthermore that Q(D^) is a submanifold of
the complex manifold 5^.

For the following theorem we recall from Proposition 1.17 that
extensions of invariant open domains Z)q C iW always exist.
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THEOREM 3.1. — IfD^CiW is an invariant domain and Dq C ̂
an invariant extension of D^, then the following assertions hold:

(i) The set Q(5q) := {ss^: s e rc(5q)} coincides with the connected
component of the set rc(2Dq) H S^ containing Exp(2Pq) which in turn
coincides with Q(D^).

(ii) The set Q(jDq) is an open submanifold of S^, and the mapping

qo, : 2(^q) ̂  Q(A,), [p,X] ̂  gexp(2X)g^

is a covering whose fiber is given by the group G r / H acting on 5(jDq) as
a group of deck transformations by gH.[z,X] == [zg^.Ad^.X]. It follows
in particular that for H = GT we obtain a diffeomorphism.

Proof. — (i) The chain of inclusions
(3.1)

Q(D,) := {gexp{2X)g^ : g e G,X e D,} C Q(D,)

c {s e r<,(2Dq): ̂  = s}^
is clear. Thus we have to show that the right hand side of (3.1) is contained
in the left hand side. Take an arbitary element from the right hand side
and write s = gexp(X), where g e G, X e 2Dq. Then ^ = s entails that

^ exp(Ad(^)-1.^) = exp(X«)^ = ̂  = s = gexp(X)^

and so g = g^ by the uniqueness of the polar decomposition in S. Since
the projection of the right hand side of (3.1) onto G obtained by the polar
map is connected, we see that g C {gi € G : g{ = ̂ i}o. Therefore [Lo69],
Prop. 4.4, p. 182, implies the existence of an element g^ e G such that
9 = 9i9^ ana thus

(3.2) s = g,g{ exp(X) = g, exp(Ad(g[).X)g[ = ̂  exp(Y)g{

holds with V := Ad(g[).X C 2Dq. So ^ = s together with (3.2) yields

exp(y)=exp(y)»=exp(-r(y)),

whence Y = -r(Y) and thus Y e qH2Dq = 2Dq. Now the assertion follows
from (3.2).

(ii) This follows by restriction from [KN097], Th. IV.3(ii), Prop.
IV.4(iii). D

Remark 3.2. — Let q : S = FG(W) —^ G denote the projection
defined by the polar decomposition, i.e., q(gExpX) = g for g e G and



204 KARL-HERMANN NEEB

X € W. If we consider the action of G on 5' given by g.x := (73^, then the
invariance of W shows that the map q is G-equi variant. Further q{S^) C G^,
and therefore q{S^) C G^ = G. Prom that it is clear that q may be viewed
as the projection map of a G-fiber bundle, and that the same holds for the
restriction to the symmetric space GQ ^ G/Gr. We see in particular that
for each G-invariant domain D C S^ we have

D = G\D H q'^l)) = G\D H Exp(W)).

D

If D = 5(Z)q) is a G-invariant domain, then we will show in this
section that each holomorphic function on D extends to the domain
2(convPq) (Theorem 3.4), and from that in particular derive that D is
Stein if and only if Dq is convex (Theorem 3.5).

The following theorem will turn out to be an important tool to reduce
problems on the domains Q{Dq) to the group case dealt with in [Ne98]. It
generalizes Lemma V.5 in [KN097].

THEOREM 3.3. — Let D^ C W be an extension of the H-invariant
domain D^ C W and 7 : FG(D^) —^ Q(D^) denote the holomorphic map
given by 7(s) = ss^. Then 7* : / i-̂  / o 7 induces a bijection

Hol^Dq^Honrc^q))^

whose inverse is given by the push forward mapping

7* : Hoi (raW^ -> Hoi (Q(^)), / ̂  (7(^ExpX) ̂  f{gExpX))

for g e G, X e D^.

Proof. — First we note that the proof of [KN097], Lemma V.5,
shows that for each / G Hoi (rc(-Dq)) the function ̂ f on Q(D^) is
well defined (because of the ff-right-invariance), and furthermore that 7+/
is a holomorphic function.

Now 7*7*/ and / are two holomorphic functions on FG^D^) that
coincide on G'Exp(-Dq), and the proof of [KN097], Lemma V.5, shows that
both functions coincide. This proves that 7* is surjective, hence bijective
with inverse 7^, and this completes the proof. D

THEOREM 3.4. — Let D = 5(Dq) be an invariant domain. Then
each holomorphic function on D extends to the domain D := S(conv-Dq).
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Proof. — First wy assume that Gr = H, so that 5(Dq) ^ Q(^q)
by Theorem 3.1. Let Dq C W be an extension of the domain Dq and / e
Hoi (5(Dq)). We consider the holomorphic map 7 : rc(5q) —^ Q(D^), s ̂
s^, and write / = ̂ (/ 07). Using [Ne98], Th. 7.9, we find a holomorphic
extension h of / o 7 to the larger G-biinvariant domain F^convJDq). But
this function is right-^f-invariant and therefore 7^/1 defines a holomorphic
function on the domain Q(conv(Dq) H q) 3 Q(convPq) which, in view of
the construction of 7^/1, extends the function /.

Now we turn to the general case, where H might be different from
Gr. Let pa : G —> G denote the universal covering morphism of the group
G and note that r lifts to an involution f on G. Furthermore the subgroup
H := Gr of f-fixed points is connected ([Lo69], Th. 3.4), hence coincides
with the analytic subgroup of G corresponding to the Lie subalgebra () of g.
According to [KN097], Prop. IV.4, the domain E(W) := G x^ W is simply
connected because the symmetric space G / H is simply connected. Now the
map E(W) —> 5(TV), [g,X] i-> \pG(g),X] is a covering whose fiber is the
discrete group B := p ' ^ ^ H ^ / H . It is clear that this covering map restricts
to a covering p^ : 5(Dq) -^ 5(J9q). Now let / e Hoi (5(^q)). Then the first
part of the proof shows that the function p^f = fop^ extends to the larger
domain 5(convDq). Further the B-invariance of p^f and the uniqueness
of extension imply that the extension is B-invariant, hence factors to a
holomorphic extension of / to the domain 5(convDq). This completes the
proof of the general case. n

THEOREM 3.5. — An invariant domain D = 5(Dq) C E(W) is Stein
if and only if D^ is convex.

Proof. — If Dq is not convex, then Theorem 3.4 shows that each
holomorphic function on 5(Dq) extends to some bigger domain, and
therefore D cannot be Stein.

If, conversely, J9q is convex, and Dq C W is a convex extension,
then Q(D^) coincides with the connected component of Fc^Dq) D S^
containing Exp(2Pq) (Theorem 3.1(i)). According to [Ne98], Th. 6.1,
the complex manifold Fc^q) is Stein. As a connected component of
the closed subset Fc^Dq) H 5^, the domain Q(D^) C F^Dq) is a
closed complex submanifold of the Stein manifold Fc(2Pq). Hence Q(D^)
is a Stein manifold ([H673], Th. 5.1.5), and since 5(Pq) is a covering
of Q(D^) (Theorem 3.1(ii)), it is also a Stein manifold (cf. [MaMo60],
Th. 4). Using the fact that this covering is finite (cf. [Lo69], Th. IV.3.4),
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this also follows more directly from the observation that the pullback
of a strictly plurisubharmonic exhaustion function on Q[D^) yields an
exhaustion function on 5(Pq), so that [H573], Th. 5.2.10, applies. D

4. Invariant plurisubharmonic functions.

We keep the setup of Section 3, i.e., (5, r) is a symmetric Lie algebra,
W C Q is a maximal open elliptic —r-invariant cone, and W = W D q.
We consider domains of the type 5(Z)q), where Dq C W is an ^-invariant
domain.

Then the G-invariant functions on 5(Pq) are in natural one-to-one
correspondence with TJ-invariant functions on Pq and therefore with W-
invariant functions on a H Dq (cf. Proposition 1.5). We will show that
a (7-invariant C^-function (/) on a G-invariant domain D = S(-Dq) is
plurisubharmonic if and only if the corresponding ^f-invariant function ^
on Dq is locally convex.

To see that the plurisubharmonicity of (f) implies the local convexity of
'0, we will use the explicit calculations from Section 2 and then the results
of Section 1 to pass from properties of if^a on a H Dq to properties of the
function ^ on Pq. For the converse we can directly use the corresponding
results in [Ne98] for the group case. To do this, we will first shrink D^
such that a^ D D^ is convex, and then extend the function ^ to an
invariant convex function on the domain conv(Dq) (cf. Theorem 1.10). This
provides a reduction to the case where Dq is convex. Now we extend the
H -invariant convex function ip on Dq to a convex (^-invariant function '0
on Dq (Proposition 1.19). Next we use [Ne98] to see that the corresponding
function <f) on r<?(Pq) is plurisubharmonic and by restriction we then derive
that (f) is plurisubharmonic. We now turn to the details of the proof.

LEMMA 4.1. — Let h :] - e,e[-^ R be a C2-function, U C R2 a 0-
neighborhood, and f : U C R2 —^ R a smooth function with /(O) = 0,
<i/(0,0) = 0, and f(U) C] — e,e[. Suppose that the function h o f is
subharmonic. Then /z/(0)(A/)(0,0) > 0 and strict positivity holds if ho f
is strictly plurisubharmonic in (0,0).

Proof. — Since h is a C^-function, we have

Q.(hof)=(h'ofW and 9^(h o f) = {h" o /)(ftJ)2 + {h' o f)(9^f)
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and therefore
A{h o f) = (h" o /)((cV)2 + (Oyf)2) + {h' o /)A/.

Now the assertion follows from A(/i o /)(0,0) = /I'^A^O,0). D

PROPOSITION 4.2. — Let Dq C W be an H-invariant domain, (f) a
G-invariant C2 -function on 5(Pq), and ^ : Pq -^ R,X ̂  ^([l.X]). If(j) is
plurisubharmonic, then '0 is a locally convex function.

Proof. — First we reduce the problem to the case where G is simply
connected. We use the same setup as in the proof of Theorem 3.4. Let
pG : G —> G denote the universal covering, group of G, H := G^, and
5(Dq) := G X^DH. Then we have a covering map 2(2^q) —> S(Dq), [g, X] ̂
[pc{g),X} whose fiber is the discrete group B := p^^H)/!!. If (j) is a G-
invariant plurisubharmonic function on S(Dq), then (pop^ is a G-invariant
plurisubharmonic function on 5(.Dq), and since every G-invariant function
on 2(Dq) is constant on the fibers of the covering map, it is the pullback
of a function on 5(Dq). Since both functions (f) and (f) o p ' s correspond to
the same function ^ on Dq, and <f) is plurisubharmonic if and only if this
holds for (f) ops, we may w.l.o.g. assume that G is simply connected and
therefore that H = GT.

Since the assertion of the proposition is a local one, we may shrink Dq
and therefore w.l.o.g. assume that a~^ D Dq is convex. Let ^a ''= '0|anDq- In
view of Theorem 1.10, we have to show that ̂  is a locally convex function
with d^W{Cx) C R- for all X C a H D^.

Since the mapping Exp : ia + (a H Dq) —> 5(Dq) is holomorphic, the
function ip is an %a-invariant plurisubharmonic function on the tube domain
ia 4- (a D I^q), hence is locally convex (cf. [AL92], p.369).

Let XQ e a H Dq, a 6 A and 0 7^ Xo; e s^. We have to show that
(4.1) a(Xo)d^(Xo)([X^ T.XJ) < 0

(cf. Section 1). If a(Xo) = 0, then this relation holds trivially, and if
a(Xo) < 0, then Dq C W implies that a 6 A^. Let Sa : a —> a denote
the corresponding reflection given by Sa(X) = X — a(X)a. Then the
invariance of ^ under H implies the invariance of ^a under W, hence that
d^a(sa.Xo) o Sa = d^a(Xo). Therefore

a{Xo)dWo)([X^r.X^}) = a{Xo)d^{s^.Xo)^.[X^r.X^)

= -a(Xo)d^^Xo)([X^r.X^)

= a(^.Xo)d^(^.^o)([X,,r.Xj).
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Since a(sa.XQ) > 0, it therefore suffices to prove (4.1) under the assumption
that a(Xo) > 0.

We consider the subalgebra ^ := a + span{X^ =1= T.Xo} and note
that it is one of the three types considered in Propositions 2.2/4/6.
For a(\XotiT.Xa\) > 0 it is of the non-compact reductive type, for
a(\XoiiT.Xo\) < 0 it is compact, and otherwise it is solvable (cf. [KN96],
Th. IV. 1). Putting W\ := Wnqi and writing G\ for the universal covering
group of (exp^i) C (5, we now obtain a holomorphic (7i-equivariant map
S(iy^) —> 5(TV) which is induced by the injection 51 —> Q of symmetric Lie
algebras.

Let Bg := {z € C : \z\ < e} and 7 : B^ —^ S(W) a holomorphic map
with 7(0) = expXo which factors over the mapping E(W-t) -^ 5(TV) to a
map 71 : Be —> 5(1^1) of the type considered in Section II. This means
in particular that there exists for each z G Be an element Qz € Gc with
Qz^(z) C Exp(Pq H a) (cf. [KN96, Th. III.3]). Then the function

B, -^ M, z ̂  (t>W) = 0(^.7(^)) = ^a(log(^.7(^)))

is subharmonic.

To prove the required assertions on the function '0a? we now have to
take a closer look at the different cases. In all cases we may write

log (^.7(^)) = XQ + ̂ z)[X^r.X^

where in the solvable case
2(Rez)2 2(Im^)2

yw ~ ~^(Xo) _ 1 + ga(Xo) + I 5

in the non-Riemannian reductive case
I l4

2v(z) = -a(Xo)+cosh~1 (cosh(a(Xo))+ea(xo)(w-(Rez)2+(lm^)2}

-M2),
where cosh~1 : [l,oo[—» R"^ is the positive branch of the inverse function
of cosh. In the Riemannian reductive case we have

I l4
1v{z} = a(Xo) - cosh-1 ( cosh (o-(Xo)) + e0™ ( ' — - - (Re zf + (Im z)2}

+M2).

From these formulas we see that in all cases we may write with z = x + iy.

-0a(log(^.7(^))) = (hof){x,y) withf(x,y) = ax2-\-by2-\-cx^+dy4+ex2y2.
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Then the assumption that ^ is a C^-function implies that h is a C2-
function, and, since /(0,0) = 0 and d/(0,0) = 0, Lemma 4.1 implies that

(4.2) 0 ̂  ^(0)A/(0,0) = 2^'(0)(a + b).

The function h is given by the following formulas: In the solvable case

h(t) = ^(Xo + t[X^ T.XJ) with h'(0) = d^a(Xo)([X^ T.X,]),

in the non-Riemannian reductive case

h(t) = ̂  (Xo - ("^ - | cosh-1 (cosh (a(Xo)) + *)) [X,, r.X^,

with

/i'(0) = j^a(Xo)([X»,T.X<,])(cosh-l)/(cosh(a(Xo)))

_ l^q(Xo)([^,T.^]) ^ l^a(Xo)([X^,T.Xo,])

2 cosh'(a(Xo)) 2 sinh (a(Xo))
and in the Riemannian reductive case:

h(t) = ̂  (Xo + (^ - J cosh-1 (cosh (a(Xo)) +1)) [X^, T.XJ) ,

with
^ ̂  _ 1 ^a(Xo)([^,T.^])

2 sinh(a(Xo))

The coefficients a and b are given by

a=-^W-l and ^^(Xo2^!
in the solvable case, so that

a-\-b _ e^o) _ i _ ^a(Xo) _^ ̂  _^
2 ~~ ^(-^o) - 1 = e2a(Xo) _ 1 < °-

In the non-Riemannian reductive case:
gQi(Xo) _^ ^ gO'(Xo) _ ^

a = - ——^—— and 6 = ——^——

with a + & = — l < O . I n the Riemannian reductive case:
1 _ gO^o) gQ(Xo) _(_ ^

a = ——^—— and b = ——^——

with a + b = 1 > 0.

Considering all three cases, we see that in each case (4.2) implies that

^(X)([X,,T.XJ)^O,
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and this completes the proof. D

Problem 4. — Is it possible to drop the differentiability assumption
in Proposition 4.2 resp. Lemma 4.1? This means that one has to prove
the following assertion: Let h :] — £^e[—> R be a continuous function whose
one-sided derivatives exist in each point, and / as in Lemma 4.1. Suppose
that the function ho f is subharmonic. Does this imply that

/i '(0+)A/(0,0)^0?

According to Lemma 4.1, the assertion holds if h is a C^-function. D

THEOREM 4.3. — Let D^ C W be an H-invariant domain, (f) a G-
invariant C2-function on 2(Dq), and ^ : Z)q -^ R, X ̂  0([1,X]). Then (f)
is plurisubharmonic if and only if ̂  is locally convex.

Proof. — In view of Proposition 4.2, it remains to show that if '0 is
locally convex, then (f) is plurisubharmonic. By the same argument as in the
proof of Proposition 4.2, we may w.l.o.g. assume that H = GT. Since the
assertion is a local one, we may w.l.o.g. assume that aH.Dq is a convex set.
Then we use Theorem 1.10 to extend ^ to a convex function on a convex
invariant subdomain of TV, and therefore may assume that Pq is convex.
Next we use Proposition 1.19 to find a G-invariant convex extension ^ of
^ to a convex invariant extension Dq of the domain J9q. We define the
function 0 : FG^D^ —^ R by

0^ExpX):=^(Jx)

for g € G, X € Dq. Since the function ^ is convex, [Ne98], Th. 4.10, implies
that the G-biinvariant function (f) is plurisubharmonic.

In view of H == GT, we have a natural holomorphic embedding

5(Dq) -> Q(D,) C r^(2Dq), b,X] ̂  gExp(2X)g^

so that the function

5(Dq) -. M, [g^X] ̂  ^Exp2X^) = ^(Exp2X) = ^(X) = 0(b,X])

is plurisubharmonic. This completes the proof. D
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Strictly plurisubharmonic functions.

THEOREM 4.4. — Let D^ C W be an H-invariant domain, (f) a G-
invariant C'^-function on 5(2^q), and ^ : Dq —> R,X \—>- </>(ExpX). Then (f)
is strictly plurisubharmonic if and only ifip is stably locally convex.

Proof. — Again we use the same argument as in the proof of Propo-
sition 4.2 to see that we may w.l.o.g. assume that H = Gr.

Suppose first that (f) is strictly plurisubharmonic. Then the same
arguments as in the proof of Proposition 4.2 show that '0a is a stably locally
convex function on a D D^ and that for 0 7^ Xa € Q^ and X € a D D^ with
d(X) 7^ 0 we have

(4.3) a{X)d^W{[X^r.X^}) > 0.

This implies in particular that Q has cone potential and that Cmin is pointed
with d^a(^0 ^ hit C^ for each X € aDDq. Therefore Theorem 1.13 implies
that ^ is a stably locally convex function on Dq.

Conversely, suppose that ^ ls stably convex, i.e., ^a is stably locally
convex, d^a(X) € —int(Cx)* for all X € a D zDq, and Q is admissible
(Theorem 1.13).

Let X € a D D^ and U be a relatively compact open convex set
containing X which is invariant under the stabilizer Wx of X and satisfies
U C a D Pq. Further we require that a(Y) -^ 0 for Y € U whenever
a(X) ^ 0. We embedd E(D^rG(W) and then use [Ne98], Lemma
4.12, to find a strictly plurisubharmonic G-biinvariant function on TG(W)
which restricts to a G-invariant strictly plurisubharmonic function (f)1 on
5(J9q). In view of the compactness of £/, there exists an e > 0 such
that V^ := ^a — £^ ls convex and satisfies d^(Y) € —int(Cx)* for all
V € U. In view of Remark 1.14, this also implies that d^(Y) € -C^ for
all Y G W.U. Now Theorem 1.10 shows that the function '02 is locally
convex on Ad(H).U. Using Theorem 4.3, we conclude that the function (f)2

is plurisubharmonic on the G-invariant domain G.Exp(U) C 2(TV). Now
(f) = (f)2 -|- ̂ 1 and the fact that (f)1 is strictly plurisubharmonic imply that 0
is strictly plurisubharmonic on G. Exp U. Since X was arbitrary in a H Dq,
the function (j) is strictly plurisubharmonic on 5(Dq). D
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5. Representation on invariant Hilbert spaces.

Let D = 5(J9q) C 5(IV) be a G-invariant domain. We call a Hilbert
subspace H of the space Hol(P) of holomorphic functions on D an invariant
Hilbert space if the inclusion H^—> Hol(D) is continuous with respect to
the natural Frechet space structure on Hol(JD) (the topology of uniform
convergence on compact subsets), and G acts unitarily on H by

Q7./)(^) = /(^).

It easily follows from the Closed Graph Theorem that the continuity of the
point evaluations

H -^ C, / ̂  f{z)

for all z € D is equivalent to the continuity of the embedding H —^ Hol(D).
This means that H has a reproducing kernel which is given by f(z) =
{f,Kz) for all / € H and K{z^w) = K^(z). The invariance of H means
that

K(g^w)=K^g-lw)

for z,w C D and g € G (cf. [Ne99], Rem. 11.4.5).

We recall that an invariant domain D = 5(Dq) is Stein if and only
if J9q is convex (Theorem 3.5), and furthermore, that the envelope of
holomorphy of an invariant domain D = S(-Dq) is given by D = 5(conv Dq),
i.e., that each holomorphic function on D extends to the smallest Stein
domain containing D (Theorem 3.4).

LEMMA 5.1. — Let D := S(convDq) denote the envelope of holo-
morphy of D. Then each function in H extends holomorphically to D
and we thus obtain a realization of H as a biinvariant Hilbert subspace
ofHol(D).

Proof. — This is the same argument as in [Ne97], Lemma III.5. D

According to the preceding lemma, it suffices to consider Hilbert
spaces which live on domains of holomorphy in 5(IV), i.e., we may assume
that Dq is a convex subset of W.

LEMMA 5.2. — If HK c Hol(Z?) is a non-zero invariant Hilbert
space and K : D x D —^ C its reproducing kernel, then

(f):D^R, z^\ogK(z,z)
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is a G-invariant smooth plurisubharmonic function.

Proof. — In view of [Ne98], Prop. 4.6, it remains to show that
K ( z , z ) ^ 0 for all z e D. Suppose that K(zo,zo) = 0, i.e., K^ = 0.
This means that all functions in HK vanish in ZQ. Therefore the invariance
implies that they also vanish on G.ZQ.

Let U C Qc be a convex neighborhood of X for which there exists
a holomorphic map 7 : U -> D extending the map U H Q -^ D, X ^
exp(X).zo. Then for each / e Hol(D) the function / 07 vanishes on^/Dfl,
hence on £/, i.e., / vanishes on the open subset -y(U) of D, and thus / = 0.
Therefore UK = {0}, contradicting our assumption. D

LEMMA 5.3. —^ Let Dq C W be an H-invariant open subset and
D := Q(D^) C FG(W). Further let ( / ) : D -^ R be a G-invariant function
and define ̂ :D^Rby ^(X) := 0(exp X). Then the following assertions
hold:

(i) P* = D.

(ii) (^(5*) = (f)(s) for all s e D.

Proof. — (i) For s = g . Exp X = g Exp Xg^ e D we have
s* =^- t(ExpX^- l =^- t f .ExpXeD.

(ii) We have just seen that D* = J9, so that (ii) makes sense. For
s = g. ExpX € D with X e -Dq we have

^*) = ^(^.ExpX) = (^(ExpX) = (^(5).

D

Invariant functions and semigroup actions.

Let Dq C W be a convex invariant domain and Dq C Q an invariant
extension which, in addition, is invariant under -T.

LEMMA 5.4. — The semigroup SD, := Tc^mD^ acts on Q(D^)
by s.x := sxs^ and this action lifts to an action on 2(^q).

Proof. — We first use [Ne97], Th. 11.5, to see that
^IG(^)^ C FG(D,).
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For x € rcCDq) and s € SD^ we therefore have 53: € F^Ai) and hence
^(sa-^ = sxxh^ e Q(5q) = Q(D^) (Theorem 3.1). This proves the
assertion about the action of S^ on the domain Q(D^).

Now let QD :2 (Dq)—>Q(-Dq) denote the covering map discussed in
Theorem 3.1 and note that it extends to a covering map qw '' ^(W) —>
Q(W). According to [KN097], Prop. IV.4, the action of TG(W) on Q(W)
lifts to an action on E(W). Now the first part of the proof asserts that
the subsemigroup rG?(limZ)q) preserves the domain Q(Dq), hence that the
lifted action preserves its inverse image 5(Dq). D

If (5', *) is an involutive semigroup, i.e., a semigroup 6' endowed with
an involutive antiautomorphism s i—^ s*, then a function a : S —> R"1' is
called an absolute value if

a(s) = a(s*) and a{st) < a(s)a(t)
holds for all s,t € S.

LEMMA 5.5. — Let (f) : 5(J9q) —>• R be a G-invariaiit function for
which the function ^ : Dq —> R,X \—> (j)([l^X\) is convex. Further let
'0 : iDq — ^ R be a GU {—r}-invariant extension, and put

a(gExpX):=esup{d^iD^-x}

for gExpX € SD^. Then a is an absolute value on SD^, and
(f)(s.x) < 4>(x) + loga(5)

holds for x € Q(Dq) and s € S^.

Proof. — Let ( / ) : r^^) — ^ M b e the G-biinvariant extension of (/)
defined by (j)(gExpX) := ^(^X) for g € G, X € iD^.

Then [Ne97], Cor. 11.8, implies that a is an absolute value on the
semigroup S^ satisfying

- - 1 1
(t)(s^xs^) < </)(x) + ^ loga(5i) 4- ^ log 0(52)

for x € FC^D^) and 5i, s^ € 5p . For x € Q(Dq) and s € SD we therefore
have

(j)(s.x) = (j){sxs^) < (f){x) + - loga(s) + . ̂ (^(^^ = 4>(x) + logo;(s)
z 2t

because the invariance of '0 under —r implies that d^(X) o (—r) =
d^(-r.X), hence that the set d0(-Dq) is —T-invariant, and therefore that
a(s^) = a(s) holds for all s G 5n . D
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If we restrict the action of the semigroup 5^ to the subsemigroup
rG'r(limDq) = {s € 5'Dq : ^ = s}, then one would like to use Lemma
5.5 without referring to any extension -0 of ^, i.e., one would like to
compute s\ip(dtf;(iD^,X} for X e lim(Dq) without having information on
the function '0. That this is possible follows from the following remarkable
proposition on convex function.

PROPOSITION 5.6. — Let V be a real vector space, fl, C V a domain,
and ^ : fl. —^ R a convex function. Then for X € lim ̂  and Y € fl, the
following numbers in R U {00} coincide:

(1) sup(d^),X).

(2) lim d^(Y+tX)(X).
t—>00

(3) sup^(y+(^+l)X) -^(Y-^-tX).
t>0

(4) sup(^(Z+X)-^(Z)).
ze^i

Proof. — Let 01,02,03,04 denote the numbers defined in (1)-(4).

First we note that for each convex function g :]0,oo[—^ R^ the
functions g(t + h) — g{t) are increasing which follows from the inequalities

g(t + h) - g(t} ^ g(s + h) - g(t) ^ g{s + h) - g(s)
h ~ s —t-}-h ~ h

which in turn are direct consequences of the convexity of g . We conclude
that the function

/ :]0, oop R, t ̂  d^(Y + tX){X)

is increasing because f(t) = lim -,fh(t) holds with fh(t) = ̂ (Y -h tX +h—>o-{- n
hX) - -0(Y + tX). This shows that 02 exists.

It is clear that 01 > 02, and that 04 > 03. Further [Ne97], Lemma
H.6, implies that 01 = 04 and, applying this argument to the function
^(t) := -0(V + tX), we also obtain 02 = 03. So it remains to show that
04 < 03.

To this end we may w.l.o.g. assume that 03 < oo, otherwise there is
nothing to show. Inductively we obtain

^(Y + nx) < ̂ (Y) + no3
for all n e N, i.e.,

(y+nX,^(y)+no3)eepi(^),



216 KARL-HERMANN NEEB

so that (Y + tX^(Y) + ta^) C epi(^) for all ^ € R-^ implies that
(X,as) e limepi(^) = limepi(^), where the closure ^ is the uniquely
determined function whose epigraph coincides with the closure of the
epigraph of ^ (cf. [Ne99], Prop. V.3.7). Hence ^(Z + X) < ^(Z) + 03
holds for each Z e ^, so that -0[^ = '0 entails that 04 < 03. D

For X C %lim(Dq) C zTV C zq the preceding lemma implies in
particular for Y e jDq that

sup(d^(%5q),X) = lim d^(y + ̂ Q(X) = lim d^(Y + ^X)(X)
^—^00 <;—).oo

=sup(d^(A,),X).
Hence

loga(/iExpX) = sup(d^(Dq),X)

holds for each element hExpX € rGr(lim£)q) C SD, and hence does not
depend on the extension ^.

As in Section 1, let a C 25 be an abelian maximal hyperbolic subspace
and A+ a p-adapted positive system with W D a = C^x- We write
Pa '-^Q —^ S for the projection onto a with kernel [a, Q\. Let

^min := [X € ZQ : Pa(G.X) C C^}.

Then W^n = n Ad(5r)•Pa"l(<7min) shows that Wmin is an invariant closed
geG

convex conejn ZQ, and IVmin c limG holds for any open invariant convex
subset C C W (cf. [Ne97], Prop. 1.10).

THEOREM 5.7. — If UK C Hol(5(Dq)) is an invariant Hilbert
space and Dq an extension of D^ then 6nun := ^G(W^n) acts on U by
contractions via (s.f)(z) = f(s^.z).

Proof. —^ According to Lemma 5.1, we may w.l.o.g. assume that Dq
is convex. If G denotes the universal covering of G, and q : 5(Dq) :=
G Xj^- -Dq —> 2(Pq) the corresponding holomorphic covering, then we may
pull-back the invariant Hilbert space UK to a G-invariant Hilbert space
on 2(Pq). Since q is equivariant with respect to the action of I~(lim.Dq),
we may therefore assume that G is simply connected and therefore that
H =Gr.

First we observe that Lemma 5.2 shows that (/)(z) := \ogK{z,z)
is a G-invariant smooth plurisubharmonic function on 5(Dq). Hence the
function ^ : J9q -^ R,X ̂  </>([1,X]) is convex (Theorem 4.3), and [Ne97],
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Prop. I.lO(ii), further shows that d^^D^) C —V^mirr Now Lemma 5.5 yields
(f)(s.z) <: (/){z) for z € 5(Dq) and s € 5'nmr

On the other hand the invariance of the kernel K under G and the
uniqueness of holomorphic extension (cf. [Ne99], Lemma XI.2.2) show that
the kernel K on D x D is also 5'min-mvariant in the sense that

K(s.z,w)=K{z,s\w)
for all z^w € 5(.Dq) and s G 'S'min-

Now [Ne99], Prop. 11.4.3, Th. 11.4.4, implies that S^m acts on the
dense subspace H^ := span{^ : z € 5(Pq)} in such a way that

1 1 / \ n9 expd)(s.z)
7TK(S f = SUp X T V / <1 .

^e5(Dq) exp(^(z)
We conclude that 6min leaves "HK invariant and that it acts by contractions
on this space. D

DEFINITION 5.8. — Let W C iQ be an invariant convex cone. A
unitary representation (TT, H) of G is called W-dissipative if its convex
moment set 1^ is contained in W*, i.e., if all the operators d7r{X), X 6 W,
are negative selfadjoint operators on H (cf. [Ne99], Prop. X.I.5). It is
called absolutely Wmm-dissipative if the corresponding representation of
the quotient algebra 51 :== fl/kerdTT is Wmm,i-dissipative with respect to a
compatible p-adapted positive system A^ (cf. [Ne97], Lemma 1.6). D

DEFINITION 5.9. — Let i C Q be a compactly embedded Cartan
subalgebra, A C ii* the corresponding system of roots, and A'1" C A a
positive system.

(a) A non-zero element v of a Qc-module V is called primitive (with
respect to A"^ if b.v C C.v holds for b := ic ® ® flg.

a€A+

(b) For a Qc-module V and ^ E i^ we write V^ := {v € V : (VX €
ic)X.v = /jL(X)v} for the weight space of weight u, and call [i a weight of
V ifV^^{0}.

(c) A Qc-module V is called a highest weight module with highest
weight X (with respect to A"^ if it is generated by a primitive element of
weight \.

(d) Let T = exp^ m C G. A unitary highest weight representation
(TT, H) of G is a unitary representation for which the Qc-module T-^ of
smooth T-finite vectors in 7i is a highest weight module. D
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The following theorem is one of the main results of [Ne97] (cf. [Ne97],
Th. III. 14), where it has been used to study biinvariant Hilbert spaces on
biinvariant domains in FG(W). Here we will use it for invariant Hilbert
spaces on domains of the type 5(1^).

THEOREM 5.10. — An irreducible absolutely W^n-dissipative rep-
resentation (TT, U) is a highest weight representation, n

Our next step is to show that an irreducible representation of G in an
invariant Hilbert subspace UK C Hol(Pq) is absolutely iVmin-dissipative.
In Theorem 5.7 we have already seen that it is IVmin-dissipative, so that it
remains to check that we may reduce the problem to the situation where
the representation has trivial kernel.

LEMMA 5.11. — Let D := 5(J9q). If^K, Up} is a representation of
G in an invariant Hilbert subspace ofHol(D), then its kernel is r-invariant.

Proof. — Let K be the reproducing kernel of UK' Combining
Lemma 5.2 and Lemma 5.3(ii), we see that K ( z , z ) = K ( z * , z * ) holds
for all z € D. Hence the uniqueness of analytic continuation yields
K(z,w) = K{w\z^ for all z,w € D (cf. [Ne96b], Example IL8(a)). We
conclude that the involution on Hol(D) defined by (a.f)(z) := f(z*) pre-
serves the Hilbert space UK and induces an antilinear isometry of this
space (cf. [Ne96b], Prop. 1.6). For g e G we have

(^K(g)^f)(z) = (a.f)^.z) = (a.f)^zg) = f{g-lz-g-^ = /{g-1^)

=.a.(7TK(r.g).f)(z),

i.e.,

^K(g) O(T = a o TTK^r.g).

From this relation it follows in particular that ker7Tj< is r-invariant. D

Before we can prove Theorem 5.13 below, we need the following
reduction lemma.

LEMMA 5.12. — Let UK ^ Hol(P) be an invariant Hilbert space,
B CG a connected r-invariant normal subgroup such that all functions in
UK are constant on the B-orbits in D, and Gi := G / B . Let b denote the
Lie algebra of B, ̂  := Q/b, and p : Qc -^ (Si)c the quotient map. Then
the following assertions hold:
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(i) There exists a unique involution r\ on fli turning p into a mor-
phism ofinvolutive Lie algebras, and D^ := p(D^) C qi is an open invari-
ant domain.

(ii) IfH^ := p(H) and D^ := E(D^) = Gi x^ D^, then p induces
a holomorphic map

PD : D = S(^) -. D, = 5(Dq,i), [g^X] ̂  \p{g)^p(X)}.

(iii) The holomorphic map ^ : D -^ H'^, z ̂  K^ factors overpo, i.e.,
there exists a holomorphic map ^i : Pi —^ U^ with ̂ i op^ = ̂ .

Proof. — (i) follows directly from the r-invariance of B.

(ii) First we note that Hi is an open subgroup of G\1 so that 5(2^i) is
well denned. Since S(Dq) covers Q(D^) C 5'tt, 5(jDq,i) covers Q(^q,i) C 5'}
(Theorem 3.1), and the corresponding map S —^ S^ is holomorphic, it
follows that the mapping pp is holomorphic.

(iii) We first consider the fibers of the map pp. From pD([g,X}) =
\p(g),p(X)} we conclude that po{[g,X}) = [gi,X^] if and only if there
exists h € H with q{g.h) = g^ and Xi = p(Ad(h)-l.X). Let us fix
go C G with pc^o) = 9i and Xo € Dq with p(Xo) = Xi. Then
pD([g,X}) = [gi,X^} holds if and only if g e goB = Bgo and p(X) = X^,
i.e., X € (Xo + b H q) D D^. This means that

p^([pi, Xi]) = 5.[^o, (Xo + b H q) n DJ.

Since by assumption ^ is constant on the B-orbits in D, it remains to show
that ^([go.Xo]) = ̂ {[go.Xo + Y}) holds for Y e b U q and Xo + Y e J^q.
In view of the G-equivariance of ^, we may w.l.o.g. assume that go = 1.

Let Xt := X + tY for t € [0,1] and put 7^) := [1,X(]. We claim
that Y(t) e r^(()(B.7(^)). To do this, we may w.l.o.g. pass to the domain
Q(D^) and consider the curve 6(t) := Exp2X<. Then

6\t) = 2dExp(2Xt).Y e dExp(2X^).(b H q).

For ^ = Exp Z and V C b U q we use [DN93], Lemma 2.6, to see that

^^exp(^).,=^^exp(^),exp^

d
- exp^ExpZexp^ = dExp(Z)p(adZ).y,

CbL t—0

where
z cosh ̂

5(2) = ̂ nhi2-
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For Z e Dq and V € b H q the fact that g is an even function implies that
^(adZ).y G b H q, and since ^(adZ) is invertible because Spec ad Z C R,
we see that ^(adZ).(b D q) = b D q, and therefore that

r^B.(/)DdExp(Z).(bnq).

This proves that ^(t) e T^[B^(t)} C kerd^^)) for all t € [0,1],
and therefore that ^ o 7 is constant, i.e., ^([1, X]) = ^([1, X + V]). Thus
^ is constant on the fibers of po, and the fact that po : D —> D^ is a
submersion implies that ^ factors to a holomorphic map ^i : Di —^ H^
satisfying ^\OPD\D=^' D

We note that Lemma 5.12 applies in particular to the ideal of
degeneracy b = ^(Wmin). In this case Expbc = Be = H{S^n) C 5 is
a complex subgroup acting on D. Since Lemma 5.12(iii) shows that the
function ^ factors over the domain Di ^ 7^/Bc, we see that for the sake of
studying G-invariant Hilbert spaces, we may w.l.o.g. assume that the cone
^min is pointed. We recall from [Ne97], Lemma I.4(v), that this implies
that Q is an admissible Lie algebra.

THEOREM 5.13. — Let D = 5(Dq) be an invariant domain. Then an
irreducible representation {^K^K} ofG on an invariant Hilbert subspace
UK C Hol(D) given by (^K{g)'f}(z) = f(g^.z) is a unitary highest weight
representation.

Proof. — Let b := kerdpr and B := (ker7r)o. According to Lemma
5.11, the group B is r-invariant, so that the quotient Lie algebra fli := Q/b
inherits the structure of a symmetric Lie algebra (si,ri). Let pi : G —>
G\ := G / B denote the canonical quotient map and consider the invariant
cone TVi := dp^(0)(W) C gi which is an open —r-invariant convex cone.

Then Lemma 5.12(iii) shows that ^ factors to a holomorphic map
^i : jDi —> H' satisfying ^i opo\D = ̂ - Hence the mapping

T^Hol(Di), f^(^{f^,{z)))

yields a G-invariant realization of H as an invariant Hilbert space of
holomorphic functions on D\.

Now Theorem 5.7 applied to the action of G, resp. Gi, on U C
Hol(Pi) shows that the representation of Gi on this space is T^min i-
dissipative because the one-parameter semigroups given by (Exp(tX).f) {z}
= /(ExptXbExptX), X e Wmin,i, t € R+, are contractive. Hence (TT,^)
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is absolutely Wmm-dissipative and therefore a highest weight representation
(Theorem 5.10). D

So far we have seen that each irreducible representation of G in an
invariant Hilbert space is a highest weight representation. The next step
is to restrict the class of those highest weight representations which may
occur.

To get more information on these highest weight representations, we
ask the more general question which highest weight representations of G
can be found in the space Hoi (Q(Dq)) ^ Hol(rc?(5q))^ (cf. Theorem
3.3). Since D = 2(Pq) is covered by the domain G x^ Pq, we may w.l.o.g.
assume that G is simply connected and that H = Gr.

Let GC be a simply connected Lie group with Lie algebra Qc^ and
r] : G —f GC the natural map induced by the inclusion Q^Qc^ ana

T]K '' KC —> GC the map obtained from the universality of Kc and the
restriction r]\Ki and likewise rjn : He —^ GC- We also put Gi := ^(G),
KC,I := 77^(^0)5 and Jfi := rj{H)^ as well as HC,I := w(^c)- As we have
seen in [KN097], Prop. 11.6, f2 := P~Kc,iHc,i C GC is an open domain
which can be identified with

{ ( P - ^ K c ) x H c ) / K \

where K1 = {(k,h) € Kc x He : rjnW == ^(A;)}. Moreover TG,(W) C ^
follows from (P4-)^ = P~ (cf. [KN097], Lemma III.7). We conclude that
the universal covering space Q of fl, can be identified with

^ : = ( ( P - ^ K c ) x H c ) / K ^
and that the covering map f2 —> fl, is given by the action of the direct
product group (P~ x Kc) x He by {p,k,h).g := pr]K{k)gr]H(h)~1 as the
orbit map of the identity element 1 G GC.

THEOREM 5.14. — The space Hoi (5(Dq)) contains a Qc-highest
weight module V\ with highest weight \ with respect to A4' if and only
if the tc-^odule F(X) of highest weight X is spherical in the sense that it
has a non-zero fixed vector for the subgroup ̂  = K H H. In this case the
embedding is unique up to a scalar factor.

Proof. — First we show that a necessary condition for the existence
of V\ is that the space F(X) ̂  V^ which is a highest weight representation
of K of highest weight A is spherical. We recall from Theorem 3.3 that we
may identify the spaces Hoi (5(Dq)) and Hoi (TG^D^)) .
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Let U C ̂  be an open subset which can be written as U = UpUKUni
where Up C P~ and £/^f C He are connected identity neighborhoods and
UK ^= ^c is a JC-left- and Jf^-right-invariant domain. Now the space
of J^-right-invariant holomorphic functions on U which are annihilated
by the right-invariant vector fields corresponding to p~ restricts to the
space of right 7^-invariant holomorphic functions on the domain U K ' If
/ € Ho^l/^)^ is contained in a finite dimensional t-invariant subspace,
then the representation of t on this space integrates to a holomorphic rep-
resentation of Xc, and this implies that / extends to a holomorphic func-
tion on KC- Since the representation of K on the -ftr-finite functions in
Hol^c)^ is multiplicity free, each irreducible subspace occurs with mul-
tiplicity at most one, and only the Jfj^-spherical irreducible representations
of K occur in this space (cf. [Hel84]).

Now assume that we have a ^-equivariant embedding

y^Hoi(rG(Pq))^.
Lifting the embedding TG^(W)^->Q, to a regular holomorphic map FG(W)
—> n, we also obtain a regular holomorphic map 1 (̂1 )̂ —> f2. We claim
that this map is injective. In fact, it suffices to show that the subgroup
K C G is mapped injectively into fl, which follows from the fact that
K1 D K<c = {!}• Hence the preceding argument applies to an open domain
U as above, which, in addition, is contained in YG(D^). This shows that
the ^c-module F(\) of highest weight A has to be spherical.

Suppose, conversely, that F(\) is spherical. Then F(\) is K-isomov-
phic to a uniquely determined submodule ofHol^c)^ which in turn can
be viewed as a space of left P~-invariant, right-H -invariant holomorphic
functions on f^. Using the lift FG(W) —> f^, we thus obtain a J^-equivariant
embedding

^(A^Hol^TV))^^.

The functions in the range of this mapping are annihilated by the right-
invariant vector fields coming from p~, hence corresponding to the opera-
tors coming from p"1' via

{dn(X).f) = d f(exptX«.z).
CLL t—0

Therefore the ^c-submodule of Hoi (TG(W)) generated by F{\) is a
highest weight module V\ of highest weight A. This shows that Hoi (S(Dq))
contains a unique highest weight module V\ of weight A if and only if the
^-module F(\) of highest weight A is spherical. D
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Problem 5. — (a) Let S = FG(W) be an OPshanskil semigroup
and D := Tc^D^) C S a left-invariant domain. Suppose that K is a
positive definite left-invariant kernel on D x ~D which extends to a kernel
K1 : DI x DI —> C on the bigger left-invariant domain ^i C 5. Is the
kernel J<^1 positive definite?

(b) Let HK c Hoi (2(£)q)) be an irreducible invariant subspace.
Do all functions in UK extend to the whole domain E(W)7 Note that
the existence of the embedding Vx^Hol (5(W)) implies that in this case
V\ ̂  L(\), and that all functions in L(A) therefore extend to 5(TV). Since
the representation of G on HK is a unitary highest weight representation,
it is at least clear that the semigroup TG(W) acts holomorphically on UK-

(c) Let HK c r^Dg) be an irreducible left-invariant subspace. Do
the functions in HK extend to the whole semigroup r^W)?

(d) Suppose that F(A) is a spherical ^-module. For which values of
A is the highest weight module V\ C Hoi (5(Dq)) irreducible? Is it always
irreducible? Does the irreducibility imply that it is unitary? D

Additional remarks.

We have seen above that each invariant Hilbert subspace H C Hol(Dq)
carries an isometric antilinear involution a with ao7r(g) = 7r(r.g)oa for all
g € G. If the representation is irreducible, then it extends to a holomorphic
representation of the semigroup S = F(1V) which, in view of the uniqueness
of analytic continuation, then satisfies

a o 7r(s*) = Tr(s^) o a

for all s € 6' (cf. [Ne99], Ch. XI).

Since there exists an element X e -Dq D C^x? ^d the operator
d7r(X) commutes with a, its eigenspace for the maximal eigenvalue which
is isomorphic to some F(\) is invariant under a. The existence of such an
involution on F(\) is easily seen to be equivalent to

-T.A e We.A.

It is interesting that for the group case the preceding property is
already sufficient to conclude that the unitary representation of G of highest
weight A is spherical, and this has been used in [Ne97] to describe all
minimal biinvariant Hilbert subspace of domains of the type 1 (̂1 )̂.
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In this case Q ^ ^ © 1) and accordingly tg ^ i^ ® t^, where T acts by
the flip involution. Hence —T.(A, —/^) = (/^, —A). We have We ^ W^ x W^,
and this group acts separately on each factor. If (A, —/^) is a highest weight
of a unitary representation with respect to a positive system A'1" with
—T.A4" = A4", then A and /^ are dominant, and therefore the condition
that (A, —IJL) is We-conjugate to (/^ —A) implies that fi is H^ -conjugate
to A, hence that A = ^. Now (A,—/2) = ( A , — A ) , and this is the highest
weight of the spherical representation of G = H x H on the space B^{H\)^
where (TT^, 7^\) is the unitary highest weight representation of H of highest
weight A and

7T(A-A)(^2).A = 7rf(/li)A7Tf(^1).

The same argument applies in the general setup whenever a contains
regular elements of the Lie algebra ^c-
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