Annales de l'institut Fourier

MOHAMMED CHADLI

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Annales de l'institut Fourier, tome 48, nº 1 (1998), p. 97-132 http://www.numdam.org/item?id=AIF 1998 48 1 97 0>

© Annales de l'institut Fourier, 1998, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NOYAU DE CAUCHY-SZEGÖ D'UN ESPACE SYMÉTRIQUE DE TYPE CAYLEY

par Mohammed CHADLI

Table des matières

- 0. Introduction
- 1. Espace symétrique de type Cayley
 - 1.1. Description géométrique à l'aide des algèbres de Jordan
 - 1.2. Sous-espace de Cartan et homomorphisme de $\mathrm{SL}(2,\mathbb{C})^r$ dans $G^{\mathbb{C}}$
- 2. Espace de Hardy
 - 2.1. Fonctions coniques
 - 2.2. Spectre de l'espace de Hardy
- 3. Noyau de Cauchy-Szegö
 - 3.1. Première formule pour le noyau de Cauchy-Szegö
 - 3.2. Isomorphisme avec un espace de Hardy classique
 - 3.3. Une deuxième formule pour le noyau de Cauchy-Szegö

Bibliographie

0. INTRODUCTION

En 1977 Gelfand et Gindikin ont proposé une nouvelle approche de l'analyse harmonique d'un groupe de Lie G (cf. [GG77]). Dans cette approche on considère une fonction de $L^2(G)$ ou une distribution sur G, comme une somme de valeurs au bord de fonctions holomorphes définies

 $Mots\text{-}cl\acute{e}s$: Algèbres de Jordan - Cônes symétriques - Espaces de Hardy - Espaces symétriques - Fonctions sphériques - Représentations unitaires holomorphes - Semi-groupes.

Classification math.: 17Cxx - 22E46 - 32M15 - 43A65 - 43A90 - 53C35.

dans des domaines d'une complexification $G^{\mathbb{C}}$ de G. L'espace de Hardy, introduit par Olshanskii en 1982 (cf. [Ols82]) lorsque G est un groupe de Lie simple hermitien, ainsi que les travaux de Stanton concernant la série discrète holomorphe (cf. [Sta86]), constituent une première étape de ce programme. La décomposition en sous-espaces irréductibles de l'espace de Hardy fait intervenir les représentations de la série discrète holomorphe de G.

Les résultats d'Olshanskii se généralisent naturellement aux espaces symétriques de type hermitien, (voir [HOØ91], J. Hilgert, G. Ólafsson et B. Ørsted, 1991). L'espace de Hardy $H^2(\Xi)$ d'un espace symétrique de type hermitien G/H est un espace de fonctions holomorphes sur un domaine G-invariant Ξ , dans l'espace complexifié $G^{\mathbb{C}}/H^{\mathbb{C}}$, vérifiant une condition de type Hardy. L'espace de Hardy $H^2(\Xi)$ possède un noyau reproduisant, appelé noyau de Cauchy-Szegö. Parmi les espaces symétriques de type hermitien se trouvent les espaces symétriques de type Cayley. Le dual riemannien D = G/K d'un tel espace est un espace symétrique hermitien de type tube.

Le but de cet article est le calcul explicite du noyau de Cauchy-Szegö de $H^2(\Xi)$ d'un espace symétrique de type Cayley $\mathcal{M}=G/H$ en utilisant les algèbres de Jordan euclidiennes.

Dans la section 2, on donne une description explicite du spectre de l'espace de Hardy $H^2(\Xi)$. Pour cela on introduit les fonctions coniques et on calcule explicitement leurs normes dans $L^2(G/H)$. Le résultat s'exprime à l'aide de la fonction c de Harish-Chandra de l'espace symétrique riemannien $T_{\Omega} \simeq G/K$, qu'on note $c_{T_{\Omega}}$.

Dans la section 3, on établit une expression du noyau de Cauchy-Szegö de $H^2(\Xi)$ sous forme d'une série faisant intervenir la fonction $c_{T_{\Omega}}$, la fonction c de l'espace symétrique c-dual \mathcal{N} de \mathcal{M} et les fonctions sphériques de l'espace symétrique ordonné \mathcal{N} .

On établit, dans le cas où la dimension de l'algèbre de Jordan V associé à $\mathcal M$ est un multiple de son rang, un isomorphisme entre l'espace de Hardy $H^2(\Xi)$ (non-commutatif) et l'espace de Hardy classique $H^2(D\times D)$ (commutatif) du bi-disque. On obtient ainsi une deuxième formule pour le noyau de Cauchy-Szegö.

Je tiens à remercier Jacques Faraut pour ses nombreuses et intéressantes discussions au cours de l'élaboration de ce manuscrit, et aussi Wolfgang Bertram pour ses remarques intéressantes concernant le théorème 2.1.

1. ESPACE SYMÉTRIQUE DE TYPE CAYLEY

1.1. Description géométrique à l'aide des algèbres de Jordan.

Soit V une algèbre de Jordan simple euclidienne de dimension n, de rang r et d'élément unité e. On note Ω le cône symétrique associé à V. Soit T_{Ω} le domaine tube de base Ω dans l'espace complexifié $V^{\mathbb{C}} = V + iV$,

$$T_{\Omega} = V + i\Omega = \{z = x + iy : x \in V, y \in \Omega\}.$$

Soit D le disque unité de $V^{\mathbb{C}}$ pour la norme spectrale, $D=\{z\in V^{\mathbb{C}}: |z|<1\}$, avec $|z|=\|z\square\bar{z}\|^{\frac{1}{2}}$ et l'opérateur $z\square w$ étant défini par $z\square w=L(zw)+[L(z),L(w)]$. L(z) désigne l'endomorphisme de $V^{\mathbb{C}}$ défini par L(z)w=zw.

On note c la transformation de Cayley définie sur $V^{\mathbb{C}}$ par

$$c(z) = i(e+z)(e-z)^{-1}$$
.

On montre dans [FK94], Theorem X.4.3, que le tube T_{Ω} est l'image du domaine borné D par la transformation de Cayley. La frontière de Shilov Σ du domaine borné D se réalise comme l'ensemble des éléments z de $V^{\mathbb{C}}$ inversibles qui vérifient $z^{-1} = \bar{z}$ (cf. [FK94], Theorem X.4.6). On note $G(T_{\Omega})$ (resp. G(D)) le groupe des automorphismes holomorphes de T_{Ω} (resp. D). Les groupes $G(T_{\Omega})$ et G(D) sont des groupes de Lie vérifiant $G(T_{\Omega}) = cG(D)c^{-1}$. Notons G (resp. G^c) la composante connexe neutre de G(D) (resp. $G(T_{\Omega})$). Alors $G^c = cGc^{-1}$. On note $G(\Omega)$ (resp. $G(\Sigma)$) le groupe des automorphismes linéaires qui préservent G (resp. $G(\Sigma)$). Les groupes G_o et $G(T_{\Omega})$ 0 sont deux formes réelles du groupe de structure $G(T_{\Omega})$ 1 de l'algèbre de Jordan $G(T_{\Omega})$ 2. Si on note $G(T_{\Omega})$ 3 de l'algèbre de Lie de $G(T_{\Omega})$ 4 de groupe de Lie $G(T_{\Omega})$ 5 de l'algèbre de Lie $G(T_{\Omega})$ 6 de l'algèbre de Lie $G(T_{\Omega})$ 7 de l'algèbre de Lie $G(T_{\Omega})$ 8 de l'algèbre de Lie $G(T_{\Omega})$ 9 de

$$\mathfrak{g}_o = \mathfrak{k}_o + \mathfrak{p}_o$$

où \mathfrak{k}_o est l'algèbre des dérivations $\mathrm{Der}(V)$ de V et $\mathfrak{p}_o = \{L(u): u \in V\}$, est une décomposition de Cartan de \mathfrak{g}_o . L'algèbre de Lie \mathfrak{u} de U s'écrit

$$\mathfrak{u} = \mathfrak{k}_o + i\mathfrak{p}_o$$

(cf. [FK94], p. 55 et Proposition X.3.1, p. 193).

On considère le groupe $G^{\mathbb{C}}$ engendré par les translations complexes, le groupe de structure $\mathrm{Str}(V^{\mathbb{C}})$ et l'automorphisme involutif s défini par

 $s(z)=-z^{-1}$. C'est un groupe de Lie complexe et les groupes $G(T_{\Omega})$ et G(D) sont des sous-groupes fermés du groupe $G^{\mathbb{C}}$.

Soit Q le sous-groupe de $G^{\mathbb{C}}$ engendré par les translations complexes et le groupe de structure $\mathrm{Str}(V^{\mathbb{C}})$. Donc $Q=\mathrm{Str}(V^{\mathbb{C}})$ Q_o est le produit semi-direct du groupe $\mathrm{Str}(V^{\mathbb{C}})$ et du groupe Q_o des translations complexes. L'espace homogène $\mathcal{X}=G^{\mathbb{C}}/Q$ est une variété complexe compacte, l'application de $V^{\mathbb{C}}$ sur l'espace \mathcal{X} définie par $z\to gQ$, avec

$$g(w) = s(w) + z$$

définit un plongement de $V^{\mathbb{C}}$ dans \mathcal{X} d'image dense. Ainsi l'espace \mathcal{X} est une compactification de $V^{\mathbb{C}}$. On peut donc voir D et T_{Ω} comme des parties de \mathcal{X} (cf. [Far95]). L'algèbre de Lie $\mathfrak{g}^{\mathbb{C}}$ de $G^{\mathbb{C}}$ est l'algèbre des champs de vecteurs X sur $V^{\mathbb{C}}$ de la forme

$$X(z) = u + Tz - P(z)v,$$

avec $u, v \in V^{\mathbb{C}}$, $T \in \mathfrak{str}(V^{\mathbb{C}})$. On identifiera X au triplet (u, T, v) et ainsi

$$\mathfrak{g}^{\mathbb{C}} \simeq V^{\mathbb{C}} imes \mathfrak{str}(V^{\mathbb{C}}) imes V^{\mathbb{C}}.$$

Le groupe $G(T_{\Omega})$ est engendré par $G(\Omega)$, le sous-groupe N^+ de $G(T_{\Omega})$ constitué des translations et l'automorphisme involutif s (cf. [FK94], p. 207). On note \mathfrak{g}^c (resp. \mathfrak{g}) l'algèbre de Lie de $G(T_{\Omega})$ (resp. G(D)). Les algèbres de Lie \mathfrak{g}^c et \mathfrak{g} ont la même algèbre complexifiée $\mathfrak{g}^{\mathbb{C}}$. L'algèbre de Lie \mathfrak{g}^c est la sous-algèbre de $\mathfrak{g}^{\mathbb{C}}$ constituée des champs de vecteurs réels,

$$\mathfrak{g}^c = \{(u, T, v) \mid u, v \in V, T \in \mathfrak{g}_o\} \simeq V \times \mathfrak{g}_o \times V.$$

C'est une forme réelle de $\mathfrak{g}^{\mathbb{C}}$. L'algèbre de Lie \mathfrak{g} est une autre forme réelle de $\mathfrak{g}^{\mathbb{C}}$,

$$\mathfrak{g} = \{(w, B, \bar{w}) \mid w \in V^{\mathbb{C}}, B \in \mathfrak{u}\}.$$

L'application

$$\theta^c: (u, T, v) \to -(v, T', u)$$

est une involution de Cartan de \mathfrak{g}^c et on a

$$\mathfrak{k}^c := \{ X \in \mathfrak{g}^c : \theta^c(X) = X \} = \{ (u, T, -u) : u \in V, T \in \mathfrak{k}_o \},$$

$$\mathfrak{p}^c := \{ X \in \mathfrak{g}^c : \theta^c(X) = -X \} = \{ (u, L(v), u) : u, v \in V \}.$$

L'algèbre de Lie \mathfrak{g}^c est semi-simple et hermitienne. (cf. [Sat80], Proposition 7.1, p. 28).

L'application

$$\theta:(w,T,\bar{w})\longrightarrow -(w,T^*,\bar{w})=(-w,T,-\bar{w})$$

est une involution de Cartan de g et

 \mathfrak{g}

$$\begin{aligned} \mathfrak{k} &:= \mathfrak{g}^{\theta} = \{(0, T, 0) \, : \, T \in \mathfrak{u}\} \simeq \mathfrak{u}, \\ \mathfrak{p} &:= \mathfrak{g}^{-\theta} = \{(w, 0, \bar{w}) \, : \, w \in V^{\mathbb{C}}\}. \end{aligned}$$

Le sous-groupe compact maximal K de G relativement à θ est égal à U. L'algèbre de Lie g est semi-simple et hermitienne.

On note H_1 (resp. H_2) le stabilisateur de $m_o = (e, -e)$ dans le groupe G (resp. G^c). On vérifie que

$$H_1 = H_2 = G \cap G^c.$$

Dans la suite on notera H ce sous-groupe. On montre que l'espace homogène $\mathcal{M} = G/H$ est un espace symétrique de type hermitien. De plus c'est un espace symétrique de type Cayley ([Ola91], Definition 5.7), (cf. [Kou93]).

On présente ci-dessous le tableau des paires (g, t) correspondant aux espaces symétriques hermitiens de type tube irréductibles et les paires $(\mathfrak{g}, \mathfrak{h})$ correspondantes pour lesquelles G/H est un espace symétrique de type Cayley. ŧ h

$$\begin{array}{lll} \mathfrak{sp}(n,\mathbb{R}) & \mathfrak{su}(n) \oplus i\mathbb{R} & \mathfrak{sl}(n,\mathbb{R}) \oplus \mathbb{R} \\ \mathfrak{su}(n,n) & \mathfrak{su}(n) \oplus \mathfrak{su}(n) \oplus i\mathbb{R} & \mathfrak{sl}(n,\mathbb{C}) \oplus \mathbb{R} \\ \mathfrak{so}^*(4n) & \mathfrak{su}(2n) \oplus i\mathbb{R} & \mathfrak{su}^*(2n) \oplus \mathbb{R} \\ \mathfrak{so}(2,n) & \mathfrak{so}(n) \oplus i\mathbb{R} & \mathfrak{so}(1,n-1) \oplus \mathbb{R} \\ \mathfrak{e}_{7(-25)} & \mathfrak{e}_6 \oplus i\mathbb{R} & \mathfrak{e}_{6(-26)} \oplus \mathbb{R} \,. \end{array}$$

Dans [Kou94], Lemme 4, on montre que le groupe G opère transitivement sur la variété $\Sigma \times \Sigma \setminus N_{\Sigma}$, où

$$N_{\Sigma} = \{(z, w) \in \Sigma \times \Sigma : \Delta(z - w) = 0\},\$$

et $\Delta(z)$ désigne le déterminant de z dans l'algèbre $V^{\mathbb{C}}$, et que l'espace symétrique de type Cayley $\mathcal{M} = G/H$ est isomorphe à $\Sigma \times \Sigma \setminus N_{\Sigma}$ (Théorème 6).

Comme l'algèbre de Lie \mathfrak{g}^c (resp. \mathfrak{g}) est semi-simple et hermitienne donc, d'après le théorème de B. Kostant (cf. [Seg76], p. 30), il existe dans \mathfrak{g}^c (resp. $\mathfrak{g}) un cône régulier (i.e convexe, fermé, pointu et d'intérieur non$ vide) invariant par la représentation adjointe (voir aussi [Vin80] et [Pan81]). À un tel cône C de \mathfrak{g}^c (resp. \mathfrak{g}), Olshanskii associe un semi-groupe $\Gamma(C)$ contenu dans le groupe complexifié $G^{\mathbb{C}}$ de la forme

$$\Gamma(C) = G \exp(iC)$$

(cf. [Ols81], Theorem 3.5). Soit C_{\max} (resp. C_{\max}^c) un cône régulier invariant qui est maximal dans \mathfrak{g} (resp. \mathfrak{g}^c) contenant (0,iI,0) (resp. $\frac{1}{2}(e,0,-e)$).

Proposition 1.1 (Théorème d'Olshanskii).

$$(1) \Gamma(C_{\max}) = \{ g \in G^{\mathbb{C}} : gD \subset D \}$$

(2)
$$\Gamma(C_{\max}^o) = \{g \in G^{\mathbb{C}} : g\overline{D} \subset D\}$$

(cf. [Ols81], Theorem 6.2).

Théorème 1.1.

$$C_{\max}^c = \{ X \in \mathfrak{g}^c : X(v) \in \bar{\Omega}, \forall v \in V \}$$

(cf. [Ch95], Théorème 2.1).

1.2. Sous-espace de Cartan et homomorphisme de $\mathrm{SL}(2,\mathbb{C})^r$ dans $G^{\mathbb{C}}$.

Fixons un repère de Jordan $\{c_1,\ldots,c_r\}$ de V c'est-à-dire un système complet d'idempotents primitifs deux à deux orthogonaux. Soit $\mathfrak a$ le sous-espace de Cartan de $\mathfrak p^c$ de la forme

$$\mathfrak{a} = \left\{ \left(0, \sum_{i=1}^{r} t_j L(c_j), 0\right) : t_j \in \mathbb{R} \right\}.$$

On montre dans [FK94], p. 112, que $A := \exp \mathfrak{a}$ est de la forme

$$A = \left\{ P\left(\sum_{j=1}^{r} t_j c_j\right) : t_j > 0 \right\} \subset G_o.$$

On note Δ le système de racines $\Delta(\mathfrak{g}^{\mathbb{C}}, \mathfrak{a}^{\mathbb{C}})$ et Δ^+ le système de racines positif associé à la chambre de Weyl positive \mathfrak{a}^+ définie par

$$\mathfrak{a}^+ = \left\{ \left(0, \sum_{j=1}^r t_j L(c_j), 0 \right) \in \mathfrak{a} : 0 < t_1 < t_2 < \ldots < t_r \right\}.$$

Soit l'élément $X_o = (0, I, 0)$ de $\mathfrak{g}^{\mathbb{C}}$. Les valeurs propres de ad (X_o) sont 1, 0 et -1. Soit γ_i l'élément de \mathfrak{a}^* défini par

$$\gamma_i\left(0,\sum_{j=1}^r t_j L(c_j),0\right) = t_i, \quad 1 \le i \le r.$$

Ainsi

$$\Delta_o^+ = \left\{ \alpha \in \Delta^+ : \alpha(X_o) = 0 \right\} = \left\{ \frac{1}{2} (\gamma_j - \gamma_i) : i < j \right\},$$

$$\Delta_1 = \left\{ \alpha \in \Delta^+ : \alpha(X_o) = 1 \right\} = \left\{ \gamma_i : 1 \le i \le r \right\} \cup \left\{ \frac{1}{2} (\gamma_i + \gamma_j) : i < j \right\},$$

et $\Delta^+ = \Delta_o^+ \cup \Delta_1$. La multiplicité de la racine γ_i est égale à 1. On note d la multiplicité commune des racines $\frac{1}{2}(\gamma_j - \gamma_i)$ et $\frac{1}{2}(\gamma_j + \gamma_i)$. La demi-somme des racines positives ρ s'écrit

$$\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} m_{\alpha} \alpha = \frac{1}{2} \sum_{i=1}^r \left(\frac{n}{r} + \frac{d}{2} (2i - r - 1) \right) \gamma_i = \frac{1}{2} \sum_{i=1}^r (1 + d(i - 1)) \gamma_i,$$

où m_{α} désigne la multiplicité de la racine α . On note

$$\begin{split} \tilde{\mathfrak{n}}_o &= \sum_{lpha \in \mathbf{\Delta}_o^+} \mathfrak{g}_lpha^\mathbb{C}, \quad \tilde{\mathfrak{n}}_1 = \sum_{lpha \in \mathbf{\Delta}_1} \mathfrak{g}_lpha^\mathbb{C}, \\ \tilde{\mathfrak{n}} &= \sum_{lpha \in \mathbf{\Delta}^+} \mathfrak{g}_lpha^\mathbb{C} = \tilde{\mathfrak{n}}_o + \tilde{\mathfrak{n}}_1, \end{split}$$

et

$$\tilde{N}_o = \exp \tilde{\mathfrak{n}}_o, \ \tilde{N}_1 = \exp \tilde{\mathfrak{n}}_1, \ \tilde{N} = \exp \tilde{\mathfrak{n}},$$

où $\mathfrak{g}_{\alpha}^{\mathbb{C}}$ est le sous-espace radiciel associé à la racine α . Notons que $\tilde{N}=\tilde{N}_o\tilde{N}_1$ est le produit semi-direct de \tilde{N}_o et de \tilde{N}_1 . On montre dans [FK94], p. 212, que \tilde{N}_o est le sous-groupe triangulaire strict dans le groupe de structure $\operatorname{Str}(V^{\mathbb{C}})$ et que \tilde{N}_1 est le groupe des translations complexes dans $G^{\mathbb{C}}$.

Considérons l'homomorphisme d'algèbre de Lie $\tilde{\Theta}:\mathfrak{sl}(2,\mathbb{C})^r\longrightarrow\mathfrak{g}^{\mathbb{C}}$ défini par

$$\tilde{\Theta}(X_1,\ldots,X_r) = \tilde{\Theta}_1(X_1) + \cdots + \tilde{\Theta}_r(X_r),$$

où $\tilde{\Theta}_k : \mathfrak{sl}(2,\mathbb{C}) \longrightarrow \mathfrak{g}^{\mathbb{C}}$ est l'homomorphisme défini par $\tilde{\Theta}_k \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = (c_k,0,0), \, \tilde{\Theta}_k \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = (0,0,c_k), \, \text{et } \tilde{\Theta}_k \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = (0,2L(c_k),0).$

Comme le groupe $\mathrm{SL}(2,\mathbb{C})$ est simplement connexe, on peut remonter les homomorphismes $\tilde{\Theta}$ et $\tilde{\Theta}_k$ à des homomorphismes de groupes de Lie, qu'on note respectivement Θ et Θ_k ,

$$\Theta_k: SL(2,\mathbb{C}) \longrightarrow G^{\mathbb{C}}$$

$$\Theta_k \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} = \tau_{\alpha c_k}, \text{ où } \tau_{\alpha c_k} \text{ est la translation définie sur } T_{\Omega} \text{ par } \tau_{\alpha c_k}(z) = z + \alpha c_k, \Theta_k \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} = \tilde{\tau}_{\beta c_k} = j \circ \tau_{\beta c_k} \circ j \text{ avec } j(z) := \bar{z}^{-1}, \Theta_k \begin{pmatrix} \gamma & 0 \\ 0 & \gamma^{-1} \end{pmatrix} = P(e + (\gamma - 1)c_k), \text{ (cf. [Loo77], lemme 9.7).}$$

L'homomorphisme Θ de $SL(2,\mathbb{C})^r \longrightarrow G^{\mathbb{C}}$ est donc défini par

$$\Theta(g) = \Theta_1(g_1) \cdot \Theta_2(g_2) \cdots \Theta_r(g_r),$$

si $g = (g_1, \ldots, g_r)$. Notons que, si $g = (g_1, \ldots, g_r)$ avec $g_k = \begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix}$, alors

$$\Theta(g)\left(\sum_{k=1}^{r}\mu_k c_k\right) = \sum_{k=1}^{r} \frac{a_k \mu_k + b_k}{c_k \mu_k + d_k} c_k,$$

et que Θ applique $SU(1,1)^r$ dans G(D).

On note $H^{\mathbb{C}}$ le stabilisateur de $m_o = (e, -e)$ dans $G^{\mathbb{C}}$, e et -e étant considérés comme points de $\mathcal{X} = G^{\mathbb{C}}/Q$. Dans l'espace symétrique complexifié $\mathcal{M}^{\mathbb{C}} = G^{\mathbb{C}}/H^{\mathbb{C}}$ de \mathcal{M} on considère le domaine complexe

$$\Xi = \Gamma(C_{\text{max}}^o)m_o$$

où C_{\max}^o est l'intérieur de C_{\max} (ce domaine a été introduit par J. Hilgert, G. Ólafsson et B. Ørsted dans [HOØ91]).

Théorème 1.2.

$$\Xi = \{(z,w) \in D \times D \,|\, \Delta(z-w) \neq 0\}$$

(cf. [Ch95], Théorème 3.1). Dans [OØ96], Theorem 4.2, Ólafsson et Ørsted démontrent ce résultat avec des méthodes qui n'utilisent pas les algèbres de Jordan.

2. ESPACE DE HARDY

L'espace de Hardy $H^2(\Xi)$ est l'espace des fonctions holomorphes f sur Ξ vérifiant

$$||f||^2 = \sup_{\gamma \in \Gamma(C_{\max}^o)} \int_{G/H} |f(\gamma.x)|^2 dx < \infty.$$

On montre dans [HOØ91], Theorem 2.2, que l'espace $H^2(\Xi)$ est un espace de Hilbert et l'opérateur valeur au bord b défini par

$$bf(x) = \lim_{\gamma \to e, \, \gamma \in \Gamma(C^o_{\max})} f(\gamma.x)$$

est une isométrie de $H^2(\Xi)$ dans $L^2(G/H)$ qui est G-invariante, la limite étant prise au sens L^2 .

Le semi-groupe $\Gamma(-C_{\text{max}})$ opère dans $H^2(\Xi)$ par

$$(\mathcal{T}(\gamma)f)(\xi) = f(\gamma^{-1}\xi).$$

Posons $e_j = c_1 + \cdots + c_j$, $1 \le j \le r$. Le sous-espace

$$V^{(j)} = \{ u \in V : L(e_j)u = u \}$$

est une sous-algèbre de rang j. Soit $\Delta_j(u) = \det_j(p_j(u))$ le déterminant relativement à la sous-algèbre $V^{(j)}$ de la projection orthogonale $p_j(u)$ de u sur $V^{(j)}$. Alors Δ_j est un polynôme homogène de degré j appelé mineur principal d'ordre j relativement au repère de Jordan $\{c_1, \ldots, c_r\}$.

Si
$$\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}^r$$
, on pose, pour z dans $V^{\mathbb{C}}$,

$$\Delta_{\mathbf{m}}(z) = \Delta_1(z)^{m_1 - m_2} \Delta_2(z)^{m_2 - m_3} \dots \Delta_r(z)^{m_r}.$$

Soit $\mathcal P$ l'espace des polynômes sur $V^{\mathbb C}$ et τ la représentation de $K^{\mathbb C}$ dans $\mathcal P$ définie par

$$(\tau(g)p)(z) = p(g^{-1}z).$$

On note

$$\mathbb{Z}_{+}^{r} := \{ \mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}^r \mid m_1 \ge m_2 \ge \dots \ge m_r \},$$

 $\mathbb{Z}_{++}^{r} := \{ \mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_{+}^{r} \mid m_r \ge 0 \}.$

Si $\mathbf{m} \in \mathbb{Z}_{++}^r$, on note $\mathcal{P}_{\mathbf{m}}$ le sous-espace de \mathcal{P} engendré par les polynômes $\tau(g)\Delta_{\mathbf{m}}, g \in K$. Si $\mathbf{m} \in \mathbb{Z}_{+}^r$ est tel que $m_r < 0$ alors l'élément

$$\mathbf{m}' = \mathbf{m} - m_r = (m_1 - m_r, \dots, m_{r-1} - m_r, 0)$$

est dans $\mathbb{Z}^r_{++},$ et dans ce cas on définit l'espace $\mathcal{P}_{\mathbf{m}}$ de la façon suivante :

$$\mathcal{P}_{\mathbf{m}} = \{ \Delta^{m_r} p \mid p \in \mathcal{P}_{\mathbf{m}'} \}.$$

Les éléments de $\mathcal{P}_{\mathbf{m}}$ sont des fractions rationnelles qui sont holomorphes sur l'ensemble $\mathcal{J}^{\mathbb{C}}$ des éléments inversibles dans $V^{\mathbb{C}}$. Tout élément de $\mathcal{P}_{\mathbf{m}}$ est uniquement déterminé par sa restriction à Σ .

Soit $\mathbf{m} \in \mathbb{Z}_+^r$, on note $\tau_{\mathbf{m}}$ la restriction de τ à $\mathcal{P}_{\mathbf{m}}$. Si l'espace $\mathcal{P}_{\mathbf{m}}$ est muni de la norme de $L^2(\Sigma)$, la restriction à K de la représentation $\tau_{\mathbf{m}}$ est unitaire. Notons que le stabilisateur de e dans K, noté K_o , est égal à $K \cap H$. On montre dans [FK94], p. 247, que les représentations $(\tau_{\mathbf{m}}, \mathcal{P}_{\mathbf{m}})$ sont deux à deux inéquivalentes. Et que toute représentation unitaire irréductible sphérique de K, c'est-à-dire admettant un vecteur K_o -invariant, est équivalente à l'une des représentations $(\tau_{\mathbf{m}}, \mathcal{P}_{\mathbf{m}})$. Et que la fonction sphérique $\Phi_{\mathbf{m}}$ définie par

$$\Phi_{\mathbf{m}}(x) = \int_{K_0} \Delta_{\mathbf{m}}(kx) dk$$

est un vecteur K_o -invariant de la représentation $(\tau_{\mathbf{m}}, \mathcal{P}_{\mathbf{m}})$ et c'est l'unique vecteur K_o -invariant vérifiant $\Phi_{\mathbf{m}}(e) = 1$.

Pour $\mathbf{m} \in \mathbb{Z}_+^r$, on note $(\pi_{\mathbf{m}}, \mathcal{H}_{\mathbf{m}})$ la représentation obtenue par induction holomorphe à partir de $(\tau_{\mathbf{m}}, \mathcal{P}_{\mathbf{m}})$. Donc $\mathcal{H}_{\mathbf{m}}$ est un sous-espace hilbertien de l'espace $\mathcal{O}(D, \mathcal{P}_{\mathbf{m}})$ des fonctions holomorphes sur D à valeurs dans $\mathcal{P}_{\mathbf{m}}$.

Dans la suite on suppose que $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_+^r$.

2.1. Fonctions coniques.

Une fonction F holomorphe sur Ξ est dite conique s'il existe un caractère continu χ de A tel que

$$\mathcal{T}(a)F = \chi(a)F, \quad \forall a \in A$$

 $d\mathcal{T}(X)F = 0, \quad \forall X \in \tilde{\mathfrak{n}}.$

PROPOSITION 2.1. — La fonction $F_{\mathbf{m}}$, $F_{\mathbf{m}}(z,w) = \Delta_{\mathbf{m}}\left(\frac{z-w}{2}\right)$ est conique, et toute fonction conique est proportionnelle à l'une des fonctions $F_{\mathbf{m}}$.

La démonstration est analogue à celle de la proposition XI.2.1 dans [FK94].

On considère l'espace symétrique de type Olshanskii $G^{\mathbb{C}}/G$ et l'involution $\tilde{\sigma}$ de $\mathfrak{g}^{\mathbb{C}}$ associé à la paire $(G^{\mathbb{C}}, G)$,

$$\tilde{\sigma}(X+iY)=X-iY,\quad (X,Y\in\mathfrak{g}),$$

(cf. [FHO94], section 3). Donc

$$\begin{split} \tilde{\mathfrak{h}} &:= \{Z \in \mathfrak{g}^{\mathbb{C}} \, : \, \tilde{\sigma}(Z) = Z\} = \mathfrak{g} \\ \tilde{\mathfrak{q}} &:= \{Z \in \mathfrak{g}^{\mathbb{C}} \, : \, \tilde{\sigma}(Z) = -Z\} = i\mathfrak{g}. \end{split}$$

La décomposition

$$\mathfrak{g}^{\mathbb{C}} = \tilde{\mathfrak{k}} + \tilde{\mathfrak{p}},$$

avec $\mathfrak{k} = \mathfrak{k} + i\mathfrak{p}$ et $\tilde{\mathfrak{p}} = i\mathfrak{k} + \mathfrak{p}$, est une décomposition de Cartan de $\mathfrak{g}^{\mathbb{C}}$. On note M le centralisateur de A dans K_o et \mathfrak{m} son algèbre de Lie,

$$\mathfrak{m} = \left\{ X \in \mathfrak{k}_o \, | \, X. \left(\sum_{j=1}^r t_j c_j \right) = 0, \, \forall t_j \in \mathbb{R} \right\}.$$

Soit \mathfrak{t} une sous-algèbre de Cartan de \mathfrak{k} , donc de \mathfrak{g} , contenant $i\mathfrak{a}$. On montre que $\mathfrak{t} = \mathfrak{l} + i\mathfrak{a}$, où \mathfrak{l} est un sous-espace abélien maximal de \mathfrak{m} . Le sous-espace $(i\mathfrak{t})$ est un sous-espace abélien maximal de $\tilde{\mathfrak{p}} \cap \tilde{\mathfrak{q}} = i\mathfrak{k}$. On choisit dans $\Delta_{\mathfrak{t}} := \Delta(\mathfrak{g}^{\mathbb{C}}, i\mathfrak{t})$ un système de racines positives, qu'on note $\Delta_{\mathfrak{t}}^+$ ([FHO94], section 3) et on pose

$$\mathfrak{n}_{\mathfrak{t}} = \sum_{lpha \in \Delta_{\mathfrak{t}}^+} \mathfrak{g}_{lpha}^{\mathbb{C}}.$$

Notons $N_{\mathfrak{t}}:=\exp \mathfrak{n}_{\mathfrak{t}}$ et $M^{\mathbb{C}}:=M\exp(i\mathfrak{m})$, d'algèbre de Lie $\mathfrak{m}^{\mathbb{C}}$, complexifiée de \mathfrak{m} .

Lemme 2.2.

- (i) Le semi-groupe $\Gamma(C_{\text{max}})$ vérifie $\Gamma(C_{\text{max}}) \subset N_t M^{\mathbb{C}} AG$.
- (ii) Si un élément γ de $\Gamma(C_{\max})$ s'écrit $\gamma=nm\exp(X)g$, avec $g\in G$, $X\in\mathfrak{a},\ m\in M^{\mathbb{C}}$ et $n\in N_{\mathfrak{t}}$ alors

$$X \in (iC_{\max}) \cap \mathfrak{a}$$
.

Démonstration.

(i) D'après [FHO94], Corollary 3.2 (avec des notations différentes),

$$\Gamma(C_{\max}) \subset N_{\mathfrak{t}} \exp(i\mathfrak{t})G.$$

Puisque $\mathfrak{t} = \mathfrak{l} + i\mathfrak{a}$ et $\mathfrak{l} \subset \mathfrak{m}$ alors $\exp(i\mathfrak{t}) \subset M^{\mathbb{C}}A$. Et donc $\Gamma(C_{\max}) \subset N_{\mathfrak{t}}M^{\mathbb{C}}AG$.

(ii) Un élément $\gamma \in \Gamma(C_{\max})$ se décompose en $\gamma = n \exp(Z)g$, avec $n \in N_{\mathfrak{t}}, \ Z \in i\mathfrak{t}$ et $g \in G$. D'après le théorème de convexité de Neeb, (cf. [Nee94], Theorem I.7), $Z \in i(C_{\max} \cap \mathfrak{t})$. Or Z = X + Y avec $X \in \mathfrak{a}$ et $Y \in \mathfrak{m}^{\mathbb{C}}$, et, d'après [HO96], Lemma 4.5.2, p. 116,

$$X \in (iC_{\max}) \cap \mathfrak{a}.$$

Proposition 2.3. — Soit $\mathbf{m} \in \mathbb{Z}_{++}^r$. Si $F_{\mathbf{m}} \in L^2(G/H)$ alors $F_{\mathbf{m}} \in H^2(\Xi)$.

Démonstration. — La norme de $F_{\mathbf{m}}$ dans $H^2(\Xi)$ s'écrit

$$||F_{\mathbf{m}}||^2 = \sup_{\gamma \in \Gamma(C_{\max}^o)} \int_{G/H} |F_{\mathbf{m}}(\gamma x)|^2 dx.$$

Or $\gamma \in \Gamma(C_{\max}^o) \subset N_{\mathfrak{t}} M^{\mathbb{C}} A G$, c'est-à-dire qu'il existe $n \in N_{\mathfrak{t}}, m \in M^{\mathbb{C}}, X \in \mathfrak{a}$ et $g \in G$ tels que

$$\gamma = nm \exp(X)g.$$

Donc

$$\int_{G/H} |F_{\mathbf{m}}(\gamma x)|^2 dx = \int_{G/H} |F_{\mathbf{m}}(nm \exp(X)g.x)|^2 dx.$$

Et comme la fonction $F_{\mathbf{m}}$ est invariante par M (c'est-à-dire pour tout $k \in M$, $\mathcal{T}(k)F_{\mathbf{m}} = F_{\mathbf{m}}$) et est constante sur l'intersection d'une orbite de $N_{\mathbf{t}}$ avec Ξ , et que la mesure dx est G-invariante alors

$$\int_{G/H} |F_{\mathbf{m}}(\gamma x)|^2 dx = \int_{G/H} |F_{\mathbf{m}}(\exp(X).x)|^2 dx$$

$$= \int_{G/H} |\chi_{\mathbf{m}}(\exp X)|^2 |F_{\mathbf{m}}(x)|^2 dx$$

$$= |\chi_{\mathbf{m}}(\exp X)|^2 ||F_{\mathbf{m}}||_{L^2(G/H)}^2,$$

où $\chi_{\mathbf{m}}$ est un caractère continu de A défini par

$$\chi_{\mathbf{m}}\left(P\left(\sum_{j=1}^{r}\lambda_{j}c_{j}\right)\right) = \prod_{j=1}^{r}\lambda_{j}^{-2m_{j}}.$$

Puisque $X \in \mathfrak{a}$ alors il existe $t_i \in \mathbb{R}$, $(1 \le i \le r)$ tels que $X = \sum_{i=1}^r t_i L(c_i)$. Donc

$$\chi_{\mathbf{m}}(\exp X) = e^{-(t_1 m_1 + \dots + t_r m_r)}.$$

D'après le lemme 2.2, $X \in (iC_{\max}) \cap \mathfrak{a} = \{\sum_{i=1}^r \mu_i L(c_i) : \mu_i \geq 0\}$, de plus $m_1 \geq m_2 \geq \cdots \geq m_r \geq 0$. Donc

$$|\chi_{\mathbf{m}}(\exp X)| \le e^{-(t_1 + \dots + t_r)m_r} \le 1.$$

D'où

$$||F_{\mathbf{m}}|| \le ||F_{\mathbf{m}}||_{L^2(G/H)} < \infty.$$

Calculons maintenant la norme de $F_{\mathbf{m}}$ dans $L^2(G/H)$. Pour cela on utillise une formule d'intégration établie par M. Flensted-Jensen (cf. [FJ80], Theorem 2.6, p. 263, ou [HS94], Theorem 2.5, p. 110) : pour toute fonction f intégrable sur \mathcal{M} ,

$$\int_{\mathcal{M}} f(x) dx = \int_{K} \int_{\mathfrak{h}^{+}} f(k.(\exp X_{\mathbf{t}}).m_{o}) D(\mathbf{t}) dk dt,$$

où

$$D(\mathbf{t}) := \prod_{1 \leq i \leq r} (\operatorname{ch} t_i) \prod_{i < j} \left(\operatorname{ch} \left(\frac{t_i + t_j}{2} \right) \right)^d \prod_{i < j} \left(\operatorname{sh} \left(\frac{t_j - t_i}{2} \right) \right)^d,$$

dx est une mesure invariante sur G/H et dk la mesure de Haar normalisée de K. On note $\mathfrak b$ le sous-espace abélien maximal de $\mathfrak p$ défini par

$$\mathfrak{b} = \left\{ X_{\mathbf{t}} = \left(i \sum_{j=1}^{r} \frac{t_j}{2} c_j, 0, -i \sum_{j=1}^{r} \frac{t_j}{2} c_j \right) | t_j \in \mathbb{R} \right\}$$

et b⁺ la chambre de Weyl positive définie par

$$\mathfrak{b}^+ = \{ X_{\mathbf{t}} \in \mathfrak{b} \mid 0 < t_1 < \dots < t_r \}.$$

Posons $B:=\exp \mathfrak{b}$. On montre qu'un élément $b_{\mathbf{t}}$ de B est donné par $b_{\mathbf{t}}=\Theta(g)$ avec $g=(g_1,\ldots,g_r)$, et

$$g_k = \begin{pmatrix} \operatorname{ch} \frac{t_k}{2} & i \operatorname{sh} \frac{t_k}{2} \\ -i \operatorname{sh} \frac{t_k}{2} & \operatorname{ch} \frac{t_k}{2} \end{pmatrix}, \quad t_k \in \mathbb{R}.$$

Et que

$$b_{\mathbf{t}} \cdot \left(\sum_{k=1}^{r} \mu_k c_k\right) = \sum_{k=1}^{r} \frac{\operatorname{ch} \frac{t_k}{2} \mu_k + i \operatorname{sh} \frac{t_k}{2}}{-i \operatorname{sh} \frac{t_k}{2} \mu_k + \operatorname{ch} \frac{t_k}{2}} c_k$$

L'espace symétrique G/H est isomorphe à $\Sigma \times \Sigma \setminus N_{\Sigma}$, et tout élément x de G/H s'écrit

$$x = (u, v) = g \cdot m_o, \qquad (g \in G).$$

Lemme 2.4. — Si $x=(u,v)=g\cdot m_o$ est un élément de l'espace symétrique G/H et si $g=kb_{\mathbf{t}}h,\ k\in K,\ b_{\mathbf{t}}\in B$ et $h\in H$ alors

$$\left(\frac{u-v}{2}\right) = k \cdot \left(\sum_{k=1}^{r} \frac{1}{\operatorname{ch} t_k} c_k\right).$$

Démonstration. — Soit $x=(u,v)=g\cdot m_o$ un élément de G/H. Comme $g\in G$ alors $g=kb_{\mathbf{t}}h,\,k\in K,\,b_{\mathbf{t}}\in B$ et $h\in H$. Ainsi

$$x = kb_{\mathbf{t}}h \cdot m_o.$$

Comme H laisse invariant le couple (e, -e) alors $x = kb_t \cdot m_o$ et

$$(u-v) = k \cdot (b_{\mathbf{t}} \cdot e - b_{\mathbf{t}} \cdot (-e))$$

$$= k \cdot \sum_{k=1}^{r} \left(\frac{\operatorname{ch} \frac{t_{k}}{2} + i \operatorname{sh} \frac{t_{k}}{2}}{-i \operatorname{sh} \frac{t_{k}}{2} + \operatorname{ch} \frac{t_{k}}{2}} - \frac{-\operatorname{ch} \frac{t_{k}}{2} + i \operatorname{sh} \frac{t_{k}}{2}}{i \operatorname{sh} \frac{t_{k}}{2} + \operatorname{ch} \frac{t_{k}}{2}} \right) c_{k}.$$

Donc

$$\left(\frac{u-v}{2}\right) = k \cdot \left(\sum_{k=1}^{r} \frac{1}{\operatorname{ch} t_k} c_k\right).$$

LEMME 2.5.

$$\int_{G/H} |F_{\mathbf{m}}(x)|^2 dx = \|\Delta_{\mathbf{m}}\|_{\Sigma}^2 I_{\mathbf{m}}$$

οù

$$I_{\mathbf{m}} = \int_{\mathfrak{b}^+} \Phi_{\mathbf{m}} \left(\sum_{k=1}^r (\operatorname{ch} t_k)^{-2} c_k \right) D(\mathbf{t}) dt,$$

et $\| \|_{\Sigma}$ est la norme de l'espace $L^2(\Sigma)$.

Démonstration. — En appliquant la formule d'intégration ci-dessus et le lemme précédent à la fonction $F_{\mathbf{m}}$, on obtient

$$\int_{G/H} |F_{\mathbf{m}}(x)|^2 dx = \int_K \int_{\mathfrak{b}^+} |F_{\mathbf{m}}(kb_{\mathbf{t}}.m_o)|^2 D(\mathbf{t}) dk dt$$

$$= \int_{\mathfrak{b}^+} D(\mathbf{t}) dt \int_K \left| \Delta_{\mathbf{m}} \left(k \left(\sum_{k=1}^r \frac{1}{\operatorname{ch} t_k} c_k \right) \right) \right|^2 dk.$$

D'après [FK94], Corollary XI.4.2, p. 232,

$$\int_{K} \left| \Delta_{\mathbf{m}} \left(k \left(\sum_{k=1}^{r} \frac{1}{\operatorname{ch} t_{k}} c_{k} \right) \right) \right|^{2} dk = \| \Delta_{\mathbf{m}} \|_{\Sigma}^{2} \Phi_{\mathbf{m}} \left(\sum_{k=1}^{r} (\operatorname{ch} t_{k})^{-2} c_{k} \right).$$

Donc

$$\int_{\mathcal{M}} |F_{\mathbf{m}}(x)|^2 dx = \|\Delta_{\mathbf{m}}\|_{\Sigma}^2 \int_{\mathfrak{b}^+} \Phi_{\mathbf{m}} \left(\sum_{k=1}^r (\operatorname{ch} t_k)^{-2} c_k \right) D(\mathbf{t}) dt. \qquad \Box$$

Lemme 2.6. — Si F est une fonction intégrable sur V et K_o -invariante alors

$$\int_{V} F(x) dx = C \int_{Q_{+}} F\left(\sum_{i=1}^{r} \operatorname{sh} t_{i} c_{i}\right) D(\mathbf{t}) dt_{1} \dots dt_{r}$$

où C est une constante positive et $Q_+ = \left\{ \sum_{i=1}^r t_i c_i \mid t_1 < \dots < t_r \right\}$.

Démonstration. — D'après [FK94], Theorem VII.2.3, p. 104,

$$\int_{V} F(x) dx = C_o \int_{Q_+} F\left(\sum_{i=1}^{r} a_i c_i\right) \prod_{i < i} (a_j - a_i)^d da_1 \dots da_r,$$

où C_o est une constante positive. On pose $a_i = \operatorname{sh} t_i$ donc $da_i = (\operatorname{ch} t_i) \, dt_i$. Ainsi

$$\int_{V} F(x) dx = C_o \int_{Q_+} F\left(\sum_{i=1}^{r} \operatorname{sh} t_i c_i\right) \prod_{i < j} (\operatorname{sh} t_j - \operatorname{sh} t_i)^d \prod_{i=1}^{r} \operatorname{ch} t_i dt_1 \dots dt_r,$$

et comme
$$\operatorname{sh} t_j - \operatorname{sh} t_i = 2\operatorname{sh}\left(\frac{t_j - t_i}{2}\right)\operatorname{ch}\left(\frac{t_i + t_j}{2}\right)$$
 alors l'intégrale s'écrit
$$C\int_{Q_+} F\left(\sum_{i=1}^r \operatorname{sh} t_i c_i\right) \prod_{i < j} \left(\operatorname{ch}\left(\frac{t_i + t_j}{2}\right)\right)^d \prod_{i < j} \left(\operatorname{sh}\left(\frac{t_j - t_i}{2}\right)\right)^d \prod_{i < j} \operatorname{ch} t_i \, dt_1 \dots dt_r. \quad \Box$$

LEMME 2.7.

$$I_{\mathbf{m}} = C_1 \int_V \Delta_{-\mathbf{m}^*} \left(e + x^2 \right) dx,$$

avec $\mathbf{m}^* = (m_r, \dots, m_1)$ si $\mathbf{m} = (m_1, \dots, m_r)$, et C_1 est une constante.

 $D \acute{e}monstration.$ — On applique le lemme précédent à la fonction F définie par

$$F(x) = \Phi_{\mathbf{m}}[\left(e + x^2\right)^{-1}]$$

alors

$$\int_{V} \Phi_{\mathbf{m}}[(e+x^{2})^{-1}] dx = C \int_{Q_{+}} \Phi_{\mathbf{m}} \left[\left(e + \sum_{i=1}^{r} (\operatorname{sh} t_{i})^{2} c_{i} \right)^{-1} \right] D(\mathbf{t}) dt_{1} \dots dt_{r}.$$
Or $\left(e + \sum_{i=1}^{r} (\operatorname{sh} t_{i})^{2} c_{i} \right)^{-1} = \sum_{i=1}^{r} (\operatorname{ch} t_{i})^{-2} c_{i}, \text{ par suite}$

$$\int_{V} \Phi_{\mathbf{m}}[\left(e + x^{2} \right)^{-1}] dx = C \int_{Q_{+}} \Phi_{\mathbf{m}} \left(\sum_{i=1}^{r} (\operatorname{ch} t_{i})^{-2} c_{i} \right) D(\mathbf{t}) dt_{1} \dots dt_{r}$$

c'est-à-dire que

$$\int_{V} \Phi_{\mathbf{m}}[\left(e + x^{2}\right)^{-1}] dx = CI_{\mathbf{m}},$$

donc

$$I_{\mathbf{m}} = \frac{1}{C} \int_{V} \Phi_{-\mathbf{m}^*} \left(e + x^2 \right) dx = C_1 \int_{V} \Delta_{-\mathbf{m}^*} \left(e + x^2 \right) dx. \qquad \Box$$

Dans la suite on note c_1 la fonction définie par

$$c_{1}\left(\lambda\right):=\prod_{i=1}^{r}B\left(\lambda_{i},rac{1}{2}
ight)\prod_{i\in I}B\left(\lambda_{i}+\lambda_{j},rac{d}{2}
ight),$$

où $\lambda=(\lambda_1,\ldots,\lambda_r)$ et $B\left(x,y\right)$ désigne la fonction beta définie par

$$B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}.$$

 $\Gamma(x)$ est la fonction gamma usuelle.

LEMME 2.8. — L'intégrale $I_{\mathbf{m}}$ est finie si et seulement si $m_r \geq \frac{n}{r}$ et alors

$$I_{\mathbf{m}} = C_1 c_1 (\mathbf{m} - \rho)$$

où
$$\rho = (\rho_1, \dots, \rho_r)$$
 avec $\rho_j = \frac{1}{2} \left(\frac{n}{r} + \frac{d}{2} \left(2j - r - 1 \right) \right)$.

Démonstration. — D'après [Far92], la fonction c_1 vérifie

$$\int_{V} \Delta_{-\lambda} \left(e + x^{2} \right) dx = c_{1} \left(\lambda + \rho - \frac{n}{r} \right).$$

Donc

$$I_{\mathbf{m}} = C_1 \int_V \Delta_{-\mathbf{m}^*} (e + x^2) dx = C_1 c_1 (\mathbf{m}^* + \rho - \frac{n}{r}).$$

Or $c_1(\lambda) = c_1(\lambda^*)$ donc

$$I_{\mathbf{m}} = C_1 c_1 \left(\mathbf{m} + \rho^* - \frac{n}{r} \right).$$

Or
$$\rho_i^* - \frac{n}{r} = \rho_{r-i+1} - \frac{n}{r} = -\rho_i$$
, c'est-à-dire $\rho^* - \frac{n}{r} = -\rho$. D'où
$$I_{\mathbf{m}} = C_1 c_1(\mathbf{m} - \rho).$$

L'intégrale $I_{\mathbf{m}}$ est finie si et seulement si $\mathbf{m}-\rho>0$, c'est-à-dire

$$m_i > \rho_i$$
, $(1 \le i \le r)$.

Et comme $m_1 \geq m_2 \geq \cdots \geq m_r$ et $\rho_1 \leq \rho_2 \leq \cdots \leq \rho_r = \frac{n}{r} - \frac{1}{2}$, alors $I_{\mathbf{m}}$ est finie si et seulement si $m_r > \frac{n}{r} - \frac{1}{2}$. Le fait que $m_r \in \mathbb{Z}$ et $\frac{n}{r} \in \frac{1}{2}\mathbb{N}$ achève la démonstration.

On note c_o (resp. c_{T_Ω}) la fonction c de Harish-Chandra de l'espace symétrique riemannien $\Omega\simeq G_o/K_o$ (resp. $T_\Omega\simeq G/K$). D'après [Far92], p. 319

$$c_{T_{\Omega}}(\lambda) = c_o(\lambda) c_1(\lambda).$$

On montre dans [FK94], p. 314, que

$$\|\Delta_{\mathbf{m}}\|_{\Sigma}^2 = \frac{c_o(\mathbf{m} - \rho)}{c_o(-\rho)},$$

le second membre étant pris comme

$$\frac{c_o(\mathbf{m} - \rho)}{c_o(-\rho)} = \lim_{\varepsilon \to 0} \frac{c_o(\mathbf{m} + \varepsilon - \rho)}{c_o(\varepsilon - \rho)}.$$

Théorème 2.1. — $F_{\mathbf{m}} \in L^2(G/H)$ si et seulement si $m_r \geq \frac{n}{r}$, et alors

$$||F_{\mathbf{m}}||_{L^2(G/H)}^2 = \beta c'_{T_{\Omega}}(\mathbf{m} - \rho)$$

où β est une constante, et par définition,

$$c'_{T_{\Omega}}(\mathbf{m}-\rho) = \lim_{\varepsilon \to 0} \frac{c_{T_{\Omega}}(\mathbf{m}+\varepsilon-\rho)}{c_o(\varepsilon-\rho)}.$$

Démonstration. — On sait que

$$\int_{G/H} |F_{\mathbf{m}}\left(x\right)|^2 \, dx = \|\Delta_{\mathbf{m}}\|_{\Sigma}^2 \, I_{\mathbf{m}}.$$

De plus d'après le lemme précédent

$$I_{\mathbf{m}} = \beta c_1 (\mathbf{m} - \rho).$$

D'où le résultat.

2.2. Spectre de l'espace de Hardy.

La restriction de la représentation \mathcal{T} de $\Gamma(-C_{\text{max}})$ à G, notée π , est une représentation unitaire C_{max} -dissipative, c'est-à-dire

$$(i \ d\pi(X) f|f) \ge 0, \quad \forall X \in C_{\max}, \forall f \in H^2(\Xi)^{\infty},$$

où $H^2(\Xi)^{\infty}$ est l'espace des vecteurs C^{∞} de $H^2(\Xi)$. Par suite π se décompose en somme de représentations unitaires irréductibles et C_{\max} -dissipatives. Si $(\tilde{\pi}, \mathcal{H})$ est une représentation unitaire irréductible qui intervient dans la décomposition de $H^2(\Xi)$ alors

- (1) $(\tilde{\pi}, \mathcal{H})$ est C_{max} -dissipative,
- (2) il existe un vecteur distribution H-invariant non nul ψ ,
- (3) pour tout $f \in \mathcal{H}^{\infty}$ le coefficient $(f \mid \pi(g) \psi)$ est de carré intégrable sur G/H.

On note $\Gamma(\widehat{C}_{\max})_2^H$ l'ensemble des classes de représentations unitaires irréductibles vérifiant (1), (2) et (3). Pour $\lambda \in \Gamma(\widehat{C}_{\max})_2^H$, soit $(\pi_\lambda, H_\lambda^2(\Xi))$ un représentant de λ . Alors d'après [HOØ91], Theorem 3.4, l'espace $H^2(\Xi)$ se décompose sans multiplicité,

$$H^2(\Xi) = \bigoplus_{\lambda \in \Gamma(\widehat{C_{\max}})_2^H} H^2_{\lambda}(\Xi),$$

et le sous-espace $b(H^2(\Xi))$ est le plus grand sous-espace invariant de $L^2(G/H)$ qui est C_{\max} -dissipatif.

Théorème 2.2. — Si $m_r \geq \frac{n}{r}$ alors la fonction $F_{\mathbf{m}}$ engendre un sous-espace invariant irréductible $H^2_{\mathbf{m}}(\Xi)$ et

$$H^2(\Xi) = \bigoplus_{m_r \ge \frac{n}{r}} H^2_{\mathbf{m}}(\Xi).$$

 $D\acute{e}monstration.$ — C'est une conséquence du théorème 3.4 de $[HO\varnothing 91]$. Soit $\lambda \in \Gamma(\widehat{C}_{\max})_2^2$, alors $H^2_{\lambda}(\Xi)$ contient un vecteur de plus haut poids qui est une fonction conique $F_{\mathbf{m}}$. Puisque $F_{\mathbf{m}}$ appartient à $H^2(\Xi)$, $m_r \geq \frac{n}{r}$. Ainsi il existe \mathbf{m} unique, avec $m_r \geq \frac{n}{r}$, tel que $H^2_{\lambda}(\Xi) = H^2_{\mathbf{m}}(\Xi)$. \square

3. NOYAU DE CAUCHY-SZEGÖ

Le noyau reproduisant de $H^2(\Xi)$, appelé noyau de Cauchy-Szegö, s'écrit $S(\gamma_1, \gamma_2) = S_o\left(\gamma_2^{\sharp} \gamma_1\right)$ avec $\gamma^{\sharp} = \bar{\gamma}^{-1}$. On vérifie que

$$S_o(\gamma) = \sum_{\lambda \in \widehat{\Gamma(C_{\max})}_2^H} c_{\lambda} (\pi_{\lambda}(\gamma^{-1})\psi_{\lambda}|\psi_{\lambda}),$$

où ψ_{λ} est un vecteur distribution H-invariant non nul de π_{λ} et c_{λ} est une constante qui dépend du choix de ψ_{λ} .

3.1. Première formule pour le noyau de Cauchy-Szegö.

On note σ^c l'involution de \mathfrak{g}^c définie par

$$\sigma^c(u, T, v) = (v, -T^*, u),$$

pour tout élément $(u, T, v) \in V \times \mathfrak{g}_o \times V$ de \mathfrak{g}^c . Donc

$$\begin{split} &\mathfrak{h}^{c}:=\left\{X\in\mathfrak{g}^{c}:\sigma^{c}\left(X\right)=X\right\}=\left\{\left(u,T,u\right):u\in V,\,T\in\mathfrak{k}_{o}\right\}=\mathfrak{h},\\ &\mathfrak{q}^{c}:=\left\{X\in\mathfrak{g}^{c}:\,\sigma^{c}\left(X\right)=-X\right\}=\left\{\left(u,L\left(v\right),-u\right):\,u,v\in V\right\}=i\mathfrak{q}, \end{split}$$

et

$$\mathfrak{g}^c = \mathfrak{h}^c + \mathfrak{q}^c = \mathfrak{h} + i\mathfrak{q},$$

c'est-à-dire que \mathfrak{g}^c est l'algèbre de Lie c-duale de \mathfrak{g} . Soit $\mathcal{N}=G^c/H$ l'espace symétrique c-dual de $\mathcal{M}=G/H$. Le cône $c_{\max}\subset\mathfrak{q}^c$ défini par

$$c_{\max} := \{(u, 2L(v), -u) : u + v \in -\bar{\Omega}, u - v \in \bar{\Omega}\}\$$

est invariant par Ad (H). Il définit sur \mathcal{N} une structure causale invariante pour laquelle \mathcal{N} est un espace symétrique ordonné et globalement hyperbolique ([Far95], p. 48).

On note Δ^c le système de racines $\Delta\left(\mathfrak{g}^c,\mathfrak{a}\right)$ et Δ^{c+} le système de racines positives associé à la chambre de Weyl positive \mathfrak{a}^+ . Soit l'élément $X_o=(0,I,0)$ de \mathfrak{g}^c . Les valeurs propres de ad (X_o) sont 1, 0 et -1. Donc

$$\Delta_o^{c+} = \left\{ \alpha \in \Delta^{c+} : \alpha \left(X_o \right) = 0 \right\} = \left\{ \frac{1}{2} \left(\gamma_j - \gamma_i \right) : i < j \right\},\,$$

$$\Delta_{1}^{c} = \left\{\alpha \in \Delta^{c+} : \alpha\left(X_{o}\right) = 1\right\} = \left\{\gamma_{i} : 1 \leq i \leq r\right\} \cup \left\{\frac{1}{2}\left(\gamma_{i} + \gamma_{j}\right) : i < j\right\},\,$$

où γ_i est l'élément de \mathfrak{a}^* défini dans la section 1.2. Notons que $\Delta^{c+} = \Delta_o^{c+} \cup \Delta_1^c$. On remarque que

$$\rho^c := \frac{1}{2} \sum_{\alpha \in \Delta^{c+}} m_\alpha \, \alpha = \rho.$$

On note

$$\mathfrak{n}:=\sum_{\alpha\in\Delta^{c+}}\mathfrak{g}^{c}_{\alpha},\quad N:=\exp\mathfrak{n}$$

et $\overline{N}:=\sigma^{c}\left(N\right)$. On vérifie que

$$c_{\max} \cap \mathfrak{a} = \{ X \in \mathfrak{a} \, | \, \forall \alpha \in \Delta_1^c \, : \, \alpha(X) \leq 0 \} = \left\{ \sum_{j=1}^r t_j L(c_j) \, | \, t_j \leq 0 \right\}.$$

Donc c_{max} est un cône maximal dans \mathfrak{q}^c (ce qui est noté C_{max} dans [FHO94], section 2, p. 935). On pose

$$S = \{g \in G^c : g.m_o \ge m_o\}.$$

Alors S est un semi-groupe fermé et $S = \exp(c_{\text{max}})H$ (cf. [FHO94], Theorem 4.1).

Lemme 3.1. — Le semi-groupe
$$\Gamma(C_{\max})$$
 vérifie
$$\Gamma(C_{\max}) \cap G^c = S^{-1} = \exp\left(-c_{\max}\right) H.$$

 $D\'{e}monstration.$ — Soit τ^c la conjugaison de $G^{\mathbb C}$ par rapport à $G^c,$ c'est-à-dire l'involution antiholomorphe de $G^{\mathbb C}$ telle que

$$G^{c} = \{ g \in G^{\mathbb{C}} \mid \tau^{c}(g) = g \}.$$

Si $\gamma = \exp(X)$ $g \in \Gamma(C_{\max}) \cap G^c$ avec $X \in (iC_{\max})$ et $g \in G$, alors, d'après l'unicité de la décomposition polaire dans $\Gamma(C_{\max})$,

$$\tau^{c}(X) = X, \quad \tau^{c}(g) = g,$$

c'est-à-dire

$$X \in (iC_{\max}) \cap \mathfrak{g}^c = (-c_{\max})$$
 et $g \in G \cap G^c = H$.

LEMME 3.2.

$$\Gamma(C_{\max}) \cap G^c \subset \overline{N}AH.$$

Démonstration. — On a $\sigma^c(S) = S^{-1}$ car si $s = (\exp X) h \in S$ alors $\sigma^c(s) = (\exp \sigma^c(X)) \sigma^c(h) = (\exp -X) h$ car $X \in c_{\max} \subset \mathfrak{q}^c$ et $h \in H$. De plus

$$\sigma^c(NAH) \subset \overline{N}AH$$
,

car $\sigma^c(N) = \overline{N}$, $\sigma^c(A) \subset A$ et $\sigma^c(H) = H$. Comme $S \subset NAH$, ([FHO94], Corollary 3.2). Le résultat découle du lemme précédent et des deux relations précédentes.

L'ensemble NAH est un ouvert de G^c . Pour $g \in NAH$, on pose

$$g = n \exp A(g) h$$
, $(n \in N, A(g) \in \mathfrak{a}, h \in H)$.

Dans la suite on note $a_H(g) := \exp A(g)$.

La fonction sphérique φ_{λ} $(\lambda \in \mathfrak{a}^{\mathbb{C}*})$ de l'espace symétrique ordonné G^c/H est définie sur l'intérieur S^o de S par

$$arphi_{\lambda}\left(g
ight)=\int_{H}e^{\left\langle
ho-\lambda,A\left(hg
ight)
ight
angle}dh=\int_{H}a_{H}\left(hg
ight)^{
ho-\lambda}dh,$$

(on note $a^{\lambda} := e^{\langle \lambda, X \rangle}$ pour $a = \exp X \in A$ et $\lambda \in \mathfrak{a}^{\mathbb{C}*}$).

Si g est un élément de l'ouvert HAN de G^c alors

$$g = h \exp \bar{A}(g)n, \quad (h \in H, \bar{A}(g) \in \mathfrak{a}, n \in N).$$

On note $\bar{a}_{H}(g) := \exp \bar{A}(g)$.

La fonction c de l'espace symétrique ordonné $\mathcal{N}=G^c/H,$ qu'on notera $c_{\mathcal{N}},$ est définie par l'intégrale

$$c_{\mathcal{N}}(\lambda) = \int_{\overline{N} \cap HAN} \bar{a}_H(\bar{n})^{-(\lambda+\rho)} d\bar{n}, \quad (\lambda \in \mathfrak{a}^{\mathbb{C}*}).$$

(Les conditions de convergence sont précisées dans $[{\rm FHO94}]]$ et $[{\rm Far95}].)$

Vecteurs distributions *H*-invariants.

Proposition 3.3. — Soit $u \in \mathcal{P}_{\mathbf{m}}$. La forme linéaire définie sur $\mathcal{H}_{\mathbf{m}}^{\infty}$ par

$$L_{u}\left(f\right) = \int_{H} \left(\pi_{\mathbf{m}}\left(h\right)f \mid u\right) dh$$

est continue. Elle définit un vecteur distribution ψ_u qui est H-invariant

$$(f \mid \psi_u) = L_u(f).$$

Démonstration. — Remarquons d'abord que l'espace $\mathcal{P}_{\mathbf{m}}$ peut être considéré comme un sous-espace de $\mathcal{H}_{\mathbf{m}}$ et l'évaluation $f \to f(0)$ est la projection orthogonale de $\mathcal{H}_{\mathbf{m}}$ sur $\mathcal{P}_{\mathbf{m}}$. Par suite, pour $f \in \mathcal{H}_{\mathbf{m}}^{\infty}$, $u \in \mathcal{P}_{\mathbf{m}}$, on a $(\pi_{\mathbf{m}}(h) f|u) = (\pi_{\mathbf{m}}(h) f(0) |u)_{\mathcal{P}_{\mathbf{m}}}$. Or

$$\pi_{\mathbf{m}}(h) f(0) = \tau_{\mathbf{m}}(\kappa(h)) f(h^{-1}.0).$$

Donc

$$\begin{aligned} |L_{u}\left(f\right)| &\leq \int_{H} |\left(\tau_{\mathbf{m}}\left(\kappa\left(h\right)\right) f\left(h^{-1}.0\right)|u\right)_{\mathcal{P}_{\mathbf{m}}}|dh \\ &\leq \left\|u\right\| \sup_{z \in D} \left\|f\left(z\right)\right\| \int_{H} \left\|\tau_{\mathbf{m}}\left(\kappa\left(h\right)\right)\right\| dh. \end{aligned}$$

Le lemme suivant nous fournit alors le résultat, car si $f \in \mathcal{H}_{\mathbf{m}}^{\infty}$,

$$\sup_{z\in D}\|f\left(z\right)\|<\infty.$$

Lemme 3.4. — Si
$$m_r \geq \frac{n}{r}$$
 alors
$$\int_H \|(\tau_{\mathbf{m}}(\kappa(h)))\| dh < \infty.$$

Démonstration. — La décomposition de Cartan de h s'écrit

$$\mathfrak{h} = (\mathfrak{k} \cap \mathfrak{h}) \oplus (\mathfrak{p} \cap \mathfrak{h}) = \tilde{\mathfrak{k}}_o \oplus \mathfrak{p}_o,$$

avec

$$\begin{split} \mathfrak{k} \cap \mathfrak{h} &= \tilde{\mathfrak{k}}_o = \{(0, T, 0) \mid T \in \mathfrak{k}_o\} \simeq \mathfrak{k}_o, \\ \mathfrak{p} \cap \mathfrak{h} &= \mathfrak{p}_o = \{(u, 0, u) \mid u \in V\}. \end{split}$$

Le sous-espace \mathfrak{a}_o de \mathfrak{p}_o défini par

$$\mathfrak{a}_o = \left\{ \left(\sum_{j=1}^r t_j c_j, 0, \sum_{j=1}^r t_j c_j \right) | t_j \in \mathbb{R} \right\}$$

est un sous-espace de Cartan de \mathfrak{h} . Le sous-groupe H s'écrit alors

$$H = K_o A_o K_o$$

où $A_o := \exp \mathfrak{a}_o$ est le sous-groupe de H des éléments

$$a_t = \Theta\left(\begin{pmatrix} \operatorname{ch} t_1 & \operatorname{sh} t_1 \\ \operatorname{sh} t_1 & \operatorname{ch} t_1 \end{pmatrix}, \cdots, \begin{pmatrix} \operatorname{ch} t_r & \operatorname{sh} t_r \\ \operatorname{sh} t_r & \operatorname{ch} t_r \end{pmatrix} \right),$$

et $\Theta: \mathrm{SL}\,(2,\mathbb{R}) \longrightarrow G^{\mathbb{C}}$ l'homomorphisme défini dans la section 1.2. Comme

$$\kappa(k_1 a_t k_2) = k_1 \kappa(a_t) k_2, \quad (\forall a_t \in A_o), (\forall k_1, k_2 \in K_o),$$

alors, pour un choix convenable de la mesure de Haar de H,

$$\int_{H} \left\| \left(\tau_{\mathbf{m}} \left(\kappa \left(h \right) \right) \right) \left\| dh \right\| = \int_{A_{o}^{+}} \left\| \left(\tau_{\mathbf{m}} \left(\kappa \left(a_{t} \right) \right) \right) \right\| D_{o} \left(t \right) \ da_{t},$$

où

$$D_o\left(t\right) = \prod_{i \le k} \left(\operatorname{sh} \frac{t_k - t_j}{2}\right)^d \quad \text{et} \quad A_o^+ := \exp \mathfrak{a}_o^+,$$

$$\mathfrak{a}_o^+ = \left\{ \left(\sum_{j=1}^r t_j c_j, 0, \sum_{j=1}^r t_j c_j \right) \in \mathfrak{a}_o \, | \, t_1 < t_2 < \dots < t_r \right\}.$$

De plus

$$\kappa \left(\begin{pmatrix} \operatorname{ch} t & \operatorname{sh} t \\ \operatorname{sh} t & \operatorname{ch} t \end{pmatrix} \right) = \begin{pmatrix} \frac{1}{\operatorname{ch} t} & 0 \\ 0 & \operatorname{ch} t \end{pmatrix},$$

donc

$$\kappa\left(a_{t}\right) = \Theta\left(\left(\begin{array}{cc} \frac{1}{\operatorname{ch} t_{1}} & 0\\ 0 & \operatorname{ch} t_{1} \end{array}\right), \cdots, \left(\begin{array}{cc} \frac{1}{\operatorname{ch} t_{r}} & 0\\ 0 & \operatorname{ch} t_{r} \end{array}\right)\right).$$

Ainsi

$$\|\left(\tau_{\mathbf{m}}\left(\kappa\left(a_{t}\right)\right)\right)\| = \left(\frac{1}{\operatorname{ch} t_{1}}\right)^{m_{1}} \cdots \left(\frac{1}{\operatorname{ch} t_{r}}\right)^{m_{r}},$$

et

$$\int_{H} \| \left(\tau_{\mathbf{m}} \left(\kappa \left(h \right) \right) \right) \| dh = \int_{\left\{ t_{1} < t_{2} < \dots < t_{r} \right\}} \left(\frac{1}{\operatorname{ch} t_{1}} \right)^{m_{1}} \dots \left(\frac{1}{\operatorname{ch} t_{r}} \right)^{m_{r}} D_{o}(t) \ dt.$$

Comme ch $t_j > 1$ et $m_1 \ge m_2 \ge \cdots \ge m_r \ge \frac{n}{r}$ alors

$$\int_{\mathbf{H}}\|\left(\tau_{\mathbf{m}}\left(\kappa\left(h\right)\right)\right)\|dh\leq \mathrm{J}_{1},$$

οù

$$J_{1} := \int_{\left\{t_{1} < t_{2} \cdots < t_{r}\right\}} \left(\operatorname{ch} t_{1} \cdots \operatorname{ch} t_{r}\right)^{-\frac{n}{r}} D_{o}\left(t\right) dt.$$

Donc pour montrer le résultat il suffit de montrer que l'intégrale J_1 est finie. Posons

$$J_2 = \int_{\Omega} \Delta \left(e + x^2 \right)^{-\frac{n}{r}} dx.$$

Un élément x de Ω peut s'écrire

$$x = k \sum_{j=1}^{r} e^{t_j} c_j, \quad k \in K_o, \quad (t_1 < t_2 < \dots < t_r),$$

$$(e+x^2) = k \sum_{j=1}^r (1+e^{2t_j}) c_j = 2k \sum_{j=1}^r e^{t_j} \operatorname{ch} t_j c_j.$$

Donc

$$\Delta (e + x^2)^{-\frac{n}{r}} = 2^{-n} \left(\prod_{j=1}^r e^{t_j} \operatorname{ch} t_j \right)^{-\frac{n}{r}}.$$

Si on pose

$$f\left(x\right) := \Delta \left(e + x^{2}\right)^{-\frac{n}{r}} \Delta \left(x\right)^{\frac{n}{r}} = 2^{-n} \left(\prod_{j=1}^{r} \operatorname{ch} t_{j}\right)^{-\frac{n}{r}}$$

alors

$$J_{2} = \int_{\Omega} f(x) \Delta(x)^{-\frac{n}{r}} dx.$$

Donc, d'après [FK94] Corollary VI.2.4, p. 105,

$$J_{2} = 2^{n-r}c_{o}\int_{\{t_{1} < t_{2} < \dots < t_{r}\}} f\left(\sum_{j=1}^{r} e^{t_{j}}c_{j}\right) D_{o}(t) dt.$$

Par suite

$$\mathbf{J}_2 = 2^{-r} c_o \mathbf{J}_1$$

On déduit le résultat du fait que l'intégrale J_2 est finie (voir la démonstration du corollaire X.2.5, p. 193 dans [FK94]).

D'après la description du spectre de $H^2(\Xi)$, le noyau de Cauchy-Szegö S_o de $H^2(\Xi)$ s'écrit, pour $\gamma \in \Gamma(C^o_{\max})$,

$$S_o(\gamma) = \sum_{m_r \ge (n/r)} \frac{1}{c(\mathbf{m}, u)} (\pi_{\mathbf{m}}(\gamma^{-1}) \psi_u \mid \psi_u),$$

où $c(\mathbf{m}, u)$ est une constante qui dépend du choix de u obtenue par la relation suivante : pour tout $f \in \mathcal{H}_{\mathbf{m}}^{\infty}$,

$$\int_{G/H} |(f | \pi_{\mathbf{m}}(g) \psi_u)|^2 dg = c(\mathbf{m}, u) ||f||^2.$$

Soit $u = u_{\mathbf{m}}$ un vecteur de plus haut poids de la représentation $\tau_{\mathbf{m}}$. On note $\psi_{\mathbf{m}}$ le vecteur distribution $\psi_{u_{\mathbf{m}}}$ associé à $u_{\mathbf{m}}$.

$$S_o(\gamma) = \sum_{m_r \ge (n/r)} \frac{1}{c(\mathbf{m}, u_{\mathbf{m}})} (\pi_{\mathbf{m}}(\gamma^{-1}) \psi_{\mathbf{m}} \mid \psi_{\mathbf{m}}).$$

LEMME 3.5.

$$c(\mathbf{m}, u_{\mathbf{m}}) = \frac{|(u_{\mathbf{m}}|\psi_{\mathbf{m}})|^2}{\|u_{\mathbf{m}}\|^2} c'_{T_{\Omega}}(\mathbf{m} - \rho).$$

Démonstration. — Pour tout $f \in \mathcal{H}_{\mathbf{m}}^{\infty}$,

$$\int_{G/H} |\left(f \left| \pi_{\mathbf{m}}\left(g\right) \psi_{\mathbf{m}}\right)|^2 dg = c\left(\mathbf{m}, u_{\mathbf{m}}\right) \|f\|^2.$$

Si $f = u_{\mathbf{m}}$ alors

(1)
$$\int_{G/H} |\left(u_{\mathbf{m}} | \pi_{\mathbf{m}}\left(g\right) \psi_{\mathbf{m}}\right)|^{2} dg = c\left(\mathbf{m}, u_{\mathbf{m}}\right) \|u_{\mathbf{m}}\|^{2}.$$

On pose $F_o(g) = (u_{\mathbf{m}} | \pi_{\mathbf{m}}(g) \psi_{\mathbf{m}})$. La fonction F_o est conique donc

$$F_{o}(g) = F_{o}(e) F_{\mathbf{m}}(g)$$
$$= (u_{\mathbf{m}} | \psi_{\mathbf{m}}) F_{\mathbf{m}}(g).$$

Donc

(2)
$$||F_o||_{L^2(G/H)}^2 = |(u_{\mathbf{m}} | \psi_{\mathbf{m}})|^2 ||F_{\mathbf{m}}||_{L^2(G/H)}^2.$$

Les relations (1) et (2) et le fait que $||F_{\mathbf{m}}||^2_{L^2(G/H)} = c'_{T_{\Omega}}(\mathbf{m} - \rho)$ achèvent la démonstration.

LEMME 3.6. — Si $f \in L^1(H)$ et est M-invariante à droite alors

$$\int_{H} f\left(h\right) dh = \int_{\overline{N} \cap HAN} f\left(h\left(\bar{n}\right)\right) \bar{a}_{H}\left(\bar{n}\right)^{-2\rho} d\bar{n}$$

(cf. [Ola87], Lemma 1.3).

LEMME 3.7.

$$\frac{(u_{\mathbf{m}}|\psi_{\mathbf{m}})}{\|u_{\mathbf{m}}\|^2} = c_{\mathcal{N}}(\mathbf{m} + \rho).$$

Démonstration.

$$(u_{\mathbf{m}}|\psi_{\mathbf{m}}) = \int_{H} (\pi_{\mathbf{m}}(h) u_{\mathbf{m}}|u_{\mathbf{m}}) dh.$$

On pose

$$f(h) = (\pi_{\mathbf{m}}(h)u_{\mathbf{m}}|u_{\mathbf{m}}).$$

Si $\bar{n} \in \overline{N} \cap HAN$ alors $\bar{n} = h(\bar{n}) \bar{a}_H(\bar{n}) n(\bar{n})$. Donc

$$\pi_{\mathbf{m}}(\bar{n}) u_{\mathbf{m}} = \pi_{\mathbf{m}}(h(\bar{n})) \pi_{\mathbf{m}}(\bar{a}_{H}(\bar{n})) \pi_{\mathbf{m}}(n(\bar{n})) u_{\mathbf{m}}$$
$$= \pi_{\mathbf{m}}(h(\bar{n})) \pi_{\mathbf{m}}(\bar{a}_{H}(\bar{n})) u_{\mathbf{m}}$$
$$= \bar{a}_{H}(\bar{n})^{\mathbf{m}} \pi_{\mathbf{m}}(h(\bar{n})) u_{\mathbf{m}}.$$

Ainsi $\pi_{\mathbf{m}}\left(h\left(\bar{n}\right)\right)u_{\mathbf{m}}=\bar{a}_{H}\left(\bar{n}\right)^{-\mathbf{m}}\pi_{\mathbf{m}}\left(\bar{n}\right)u_{\mathbf{m}}$ et

$$f(h(\bar{n})) = (\pi_{\mathbf{m}} (h(\bar{n})) u_{\mathbf{m}} | u_{\mathbf{m}})$$

$$= \bar{a}_{H} (\bar{n})^{-\mathbf{m}} (\pi_{\mathbf{m}} (\bar{n}) u_{\mathbf{m}} | u_{\mathbf{m}})$$

$$= \bar{a}_{H} (\bar{n})^{-\mathbf{m}} (u_{\mathbf{m}} | \pi_{\mathbf{m}} (\bar{n})^{*} u_{\mathbf{m}}).$$

Or $\bar{n}^{\sharp} \in N$ donc

$$f\left(h\left(\bar{n}\right)\right) = \bar{a}_{H}\left(\bar{n}\right)^{-\mathbf{m}} \|u_{\mathbf{m}}\|^{2}.$$

En appliquant le lemme précédent à la fonction f on aura

$$(u_{\mathbf{m}} | \psi_{\mathbf{m}}) = ||u_{\mathbf{m}}||^2 \int_{\overline{N} \cap HAN} \bar{a}_H (\bar{n})^{-(\mathbf{m}+2\rho)} d\bar{n} = ||u_{\mathbf{m}}||^2 c_{\mathcal{N}}(\mathbf{m} + \rho). \quad \Box$$

Proposition 3.8.

$$c(\mathbf{m}, u_{\mathbf{m}}) = (\psi_{\mathbf{m}}|u_{\mathbf{m}}) c_{\mathcal{N}}(\mathbf{m} + \rho) c'_{T_{\Omega}}(\mathbf{m} - \rho).$$

 $D\acute{e}monstration.$ — C'est une conséquence directe du lemme 3.5 et du lemme précédent.

D'après ce qui précède, pour $\gamma \in \Gamma(C_{\max}^o)$,

$$S_{o}\left(\gamma\right) = \sum_{m_{r} \geq \frac{n}{r}} \frac{1}{c_{\mathcal{N}}\left(\mathbf{m} + \rho\right) c_{T_{\Omega}}'\left(\mathbf{m} - \rho\right)} \frac{\left(\pi_{\mathbf{m}}\left(\gamma^{-1}\right) \psi_{\mathbf{m}} | \psi_{\mathbf{m}}\right)}{\left(\psi_{\mathbf{m}} | u_{\mathbf{m}}\right)}.$$

Calculons $(\pi_{\mathbf{m}} (\gamma^{-1}) \psi_{\mathbf{m}} | \psi_{\mathbf{m}}).$

$$\left(\pi_{\mathbf{m}}\left(\gamma^{-1}\right)\psi_{\mathbf{m}}\,|\,\psi_{\mathbf{m}}\right) = \int_{H} \left(\pi_{\mathbf{m}}\left(h\gamma^{-1}\right)\psi_{\mathbf{m}}\,|\,u_{\mathbf{m}}\right)dh.$$

On pose, pour $\gamma \in \Gamma(C_{\max}^o)$,

$$f(\gamma) = (\pi_{\mathbf{m}}(\gamma^{-1})\psi_{\mathbf{m}}|u_{\mathbf{m}}).$$

Alors f est une fonction invariante à gauche par H.

Lemme 3.9. —
$$Si \gamma \in \Gamma(C_{\max}) \cap G^c$$
 alors $f(\gamma) = a_H(\gamma^{-1})^{\mathbf{m}}(\psi_{\mathbf{m}}|u_{\mathbf{m}}),$ avec $\gamma^{-1} = \bar{n}a_H(\gamma^{-1})h \in \overline{N}AH.$

$$\begin{array}{ll} \textit{D\'{e}monstration.} & - \text{Si } \gamma^{-1} = \bar{n}a_{H} \left(\gamma^{-1} \right) h \in \overline{N}AH \text{ alors} \\ f \left(\gamma \right) = \left(\pi_{\mathbf{m}} \left(\bar{n} \right) \pi_{\mathbf{m}} \left(a_{H} \left(\gamma^{-1} \right) \right) \psi_{\mathbf{m}} | u_{\mathbf{m}} \right) \\ & = \left(\psi_{\mathbf{m}} | \pi_{\mathbf{m}} \left(a_{H} \left(\gamma^{-1} \right) \right)^{*} \pi_{\mathbf{m}} \left(\bar{n} \right)^{*} u_{\mathbf{m}} \right) \end{array}$$

car $a^{\sharp} = a$ et $\bar{n}^{\sharp} \in N$. Donc $f(\gamma) = (\psi_{\mathbf{m}} | \pi_{\mathbf{m}} (a_H (\gamma^{-1})) u_{\mathbf{m}})$ $= a_H (\gamma^{-1})^{\mathbf{m}} (\psi_{\mathbf{m}} | u_{\mathbf{m}}).$

PROPOSITION 3.10. — Pour tout $\gamma \in \Gamma(C_{\max}) \cap G^c$, $(\pi_{\mathbf{m}} (\gamma^{-1}) \psi_{\mathbf{m}} | \psi_{\mathbf{m}}) = (\psi_{\mathbf{m}} | u_{\mathbf{m}}) \varphi_{\rho-\mathbf{m}} (\gamma^{-1})$.

Démonstration. — Si $\gamma \in \Gamma(C_{\max}) \cap G^c$ alors $\gamma h^{-1} \in \Gamma(C_{\max}) \cap G^c = H \exp(-(c_{\max} \cap \mathfrak{a})) H$, ([FHO94], Theorem 4.2). Donc d'après le lemme précédent

$$\left(\pi_{\mathbf{m}}\left(\gamma^{-1}\right)\psi_{\mathbf{m}}|\psi_{\mathbf{m}}\right) = \int_{H} f\left(\gamma h^{-1}\right) dh = \int_{H} a_{H} \left(h\gamma^{-1}\right)^{\mathbf{m}} \left(\psi_{\mathbf{m}}|u_{\mathbf{m}}\right) dh.$$
 D'où le résultat.

COROLLAIRE 3.11. — La fonction sphérique $\varphi_{\mathbf{m}}$ se prolonge holomorphiquement à $\Gamma(-C_{\max}^o)$.

 $\label{eq:continuous} D\acute{e}monstration. \quad \ \ \, \text{D'après la proposition précédente, pour tout } \gamma \in \Gamma(C_{\max}) \cap G^c,$

$$(\pi_{\mathbf{m}}(\gamma^{-1})\psi_{\mathbf{m}}|\psi_{\mathbf{m}}) = (\psi_{\mathbf{m}}|u_{\mathbf{m}})\varphi_{\rho-\mathbf{m}}(\gamma^{-1}).$$

Le résultat découle alors du fait que la fonction

$$\gamma \longrightarrow (\pi_{\mathbf{m}}(\gamma) \psi_{\mathbf{m}} | \psi_{\mathbf{m}})$$

est holomorphe sur $\Gamma(-C_{\max}^o)$.

Finalement on a la formule suivante pour le noyau de Cauchy-Szegö de $H^2(\Xi)$:

$$\begin{split} \text{Théorème 3.1.} & - \quad Pour \ \gamma \in \Gamma(C_{\text{max}}^o), \\ S_o\left(\gamma\right) & = \sum_{m_r \geq \frac{n}{r}} \frac{1}{c_{\mathcal{N}}\left(\mathbf{m} + \rho\right) \ c_{T_{\Omega}}'\left(\mathbf{m} - \rho\right)} \ \varphi_{\rho - \mathbf{m}}(\gamma^{-1}). \end{split}$$

3.2. Isomorphisme avec un espace de Hardy classique.

Dans toute cette section on suppose que $\frac{n}{r}\in\mathbb{N}$. (On note que $\frac{n}{r}=1+\frac{d}{2}\,(r-1)\in\frac{1}{2}\mathbb{N}$.)

L'espace de Hardy $H^{2}\left(D\right)$ est l'espace des fonctions f holomorphes sur D vérifiant

$$\|f\|_{H^{2}(D)}^{2}=\sup_{0< r<1}\int_{\Sigma}|f\left(ru\right)|^{2}\,d\sigma\left(u\right)<\infty.$$

L'espace de Hardy $H^2\left(D\times D\right)$ est l'espace des fonctions f holomorphes sur $D\times D$ vérifiant

$$||f||_{H^{2}(D\times D)}^{2} = \sup_{0 < r_{1}, \, r_{2} < 1} \int_{\Sigma \times \Sigma} |f\left(r_{1}u_{1}, r_{2}u_{2}\right)|^{2} d\sigma\left(u_{1}\right) d\sigma\left(u_{2}\right) < \infty.$$

En général on ne peut pas faire agir le groupe G dans l'espace de Hardy $H^2(D)$, mais seulement un revètement d'ordre deux de G.

Soit \widetilde{G} l'ensemble des couples (g,φ) où $g\in G$ et φ est une fonction holomorphe sur D telle que

$$\varphi(z)^{2} = \chi((Dg)_{z})^{-\frac{n}{r}},$$

où χ est le caractère de $K^{\mathbb{C}}=Str\left(V^{\mathbb{C}}\right)$ correspondant à Δ i.e, pour $k\in K^{\mathbb{C}},$

$$\Delta(k.z) = \chi(k) \Delta(z).$$

(Remarquer que Det $k = \chi(k)^{\frac{n}{r}}$.)

On définit un produit sur \widetilde{G} de la façon suivante :

$$(g_1, \varphi_1) \cdot (g_2, \varphi_2) = (g_1g_2, \varphi_3),$$

οù

$$\varphi_3(z) = \varphi_1(g_2.z) \varphi_2(z).$$

L'ensemble \widetilde{G} est alors un groupe de Lie et son algèbre de Lie est égale à l'algèbre de Lie $\mathfrak g$ de G (cf. [KV78], p. 14).

L'application $\tilde{\psi}:\tilde{G}\longrightarrow G$ définie par

$$\tilde{\psi}\left(\tilde{g}\right) =g,$$

si $\tilde{g}=(g,\varphi)\in \tilde{G}$, est un homomorphisme surjectif de noyau Ker $\tilde{\psi}=\{(e,1),(e,-1)\}$. On pose, pour $\tilde{g}=(g,\varphi)\in \tilde{G}$,

$$\mu\left(\tilde{g},z\right)=\varphi(z).$$

Le groupe \widetilde{G} opère dans $H^{2}\left(D\right)$ par

$$(\tilde{\pi}(\tilde{g})f)(z) = \mu(\tilde{g}^{-1},z)^{-1}f(g^{-1}.z).$$

On pose, pour $g \in G^{\mathbb{C}}$,

$$\alpha\left(g,z\right)=\chi((Dg)_z),$$

et

$$eta\left(g,z,w
ight)=rac{\Delta\left(g.z-g.w
ight)}{\Delta\left(z-w
ight)}.$$

Pour g fixé, β est une fonction rationnelle en z et w. (Cette fonction a été introduite par J. Faraut et S. Gindikin dans [FG96], p. 144.)

Proposition 3.12. — Si
$$g \in G^{\mathbb{C}}$$
 alors, pour tout $z, w \in D$,
$$\beta\left(g,z,w\right)^2 = \alpha\left(g,z\right)\alpha(g,w).$$

Démonstration.

(a) Montrons d'abord que si deux éléments g_1 et g_2 de $G^{\mathbb{C}}$ vérifient l'égalité de la proposition alors g_1g_2 la vérifie aussi. Notons que

$$\beta(g_1.g_2, z, w) = \frac{\Delta(g_1g_2.z - g_1g_2.w)}{\Delta(z - w)}$$

$$= \frac{\Delta(g_1g_2.z - g_1g_2.w)}{\Delta(g_2.z - g_2.w)} \frac{\Delta(g_2.z - g_2.w)}{\Delta(z - w)}$$

$$= \beta(g_1, g_2.z, g_2.w) \beta(g_2, z, w).$$

Donc

$$\beta(g_1.g_2, z, w)^2 = \alpha(g_1, g_2.z) \alpha(g_1, g_2.w) \alpha(g_2, z) \alpha(g_2, w).$$

Or $\alpha(g, z)$ vérifie la propriété de cocycle suivante :

$$\alpha\left(g_{1}g_{2},z\right)=\alpha\left(g_{1},g_{2}.z\right)\alpha\left(g_{2},z\right).$$

Donc

$$\beta(g_1.g_2, z, w)^2 = \alpha(g_1g_2, z) \alpha(g_1g_2, w).$$

(b) Si
$$g \in \text{Str}(V^{\mathbb{C}})$$
 alors

$$\alpha(g, z) = \chi((Dg)_z) = \chi(g).$$

De plus

$$\beta\left(g,z,w
ight) = rac{\Delta\left(g.z-g.w
ight)}{\Delta\left(z-w
ight)} = \chi(g).$$

Donc

$$\beta(g, z, w)^{2} = \alpha(g, z) \alpha(g, w) = \chi(g)^{2}.$$

Si g est une translation complexe, c'est-à-dire qu'il existe $u\in V^{\mathbb{C}}$ tel que g(z)=z+u, alors, d'une part

$$\alpha\left(g,z\right) = \chi\left(\left(Dg\right)_z\right) = 1$$

et d'autre part

$$eta\left(g,z,w
ight)^2 = \left[rac{\Delta\left(g.z-g.w
ight)}{\Delta\left(z-w
ight)}
ight]^2 = 1 = lpha\left(g,z
ight)lpha(g,w).$$

Si g = s alors

$$\alpha\left(g,z\right)=\chi\left(\left(Dg\right)_{z}\right)=\chi\left(-P\left(z^{-1}\right)\right)=\frac{\left(-1\right)^{r}}{\Delta\left(z\right)^{2}}\cdot$$

Or $\Delta \left(w^{-1}-z^{-1}\right)=\Delta \left(z\right)^{-1}\Delta \left(w\right)^{-1}\Delta \left(z-w\right)$ (cf. [FK94], Lemma X.4.4, p. 200). Donc

$$\beta\left(g,z,w\right) = \frac{\Delta\left(w^{-1}-z^{-1}\right)}{\Delta\left(z-w\right)} = \frac{1}{\Delta\left(z\right)\Delta\left(w\right)}.$$

La propriété (a) et le fait que $G^{\mathbb{C}}$ est engendré par $\operatorname{Str}(V^{\mathbb{C}})$, s et les translations achèvent la démonstration.

Lemme 3.13. — Si
$$\tilde{g}=(g,\varphi)\in \tilde{G}$$
 alors, pour tout $z,w\in D$,
$$\mu\left(\tilde{g},z\right)\mu\left(\tilde{g},w\right)=\beta(g,z,w)^{-\frac{n}{r}}.$$

 $D \acute{e}monstration.$ — Pour $z,w \in D$ fixés, on note ${\cal B}$ la fonction définie sur \widetilde{G} par

$$\mathcal{B}(\tilde{g}) = \mu(\tilde{g}, z) \mu(\tilde{g}, w).$$

La fonction \mathcal{B} est invariante à droite par (e, -1), donc est une fonction définie sur $G = \widetilde{G}/\{(e, 1), (e, -1)\}$. De plus, pour $g \in G$,

$$\begin{split} \mathcal{B}\left(g,z,w\right)^{2} &= \mu\left(g,z\right)^{2} \mu\left(g,w\right)^{2} \\ &= \left[\alpha\left(g,z\right)\alpha\left(g,w\right)\right]^{-\frac{n}{r}} \\ &= \left[\beta\left(g,z,w\right)^{2}\right]^{-\frac{n}{r}}. \end{split}$$

Donc

$$\mathcal{B}(g,z,w) = \pm \beta(g,z,w)^{-\frac{n}{r}}.$$

Or pour g = e

$$\mathcal{B}(e, z, w) = \beta(e, z, w)^{-\frac{n}{r}} = 1.$$

D'où le résultat puisque G est connexe.

Le groupe \widetilde{G} opère dans $H^2(D \times D) \simeq H^2(D) \otimes H^2(D)$ par la représentation $\widetilde{\pi} \otimes \widetilde{\pi}$ qu'on note π_o : pour $f \in H^2(D \times D)$,

$$(\pi_o(\tilde{g}) f)(z, w) = \mu(\tilde{g}^{-1}, z)^{-1} \mu(\tilde{g}^{-1}, w)^{-1} f(g^{-1}.z, g^{-1}.w).$$

La représentation π_o est triviale sur le noyau de $\tilde{\psi}$, donc en fait le groupe G opère dans $H^2(D \times D)$: pour $g \in G$,

$$(\pi_o(g) f)(z, w) = \beta(g^{-1}, z, w)^{\frac{n}{r}} f(g^{-1}.z, g^{-1}.w).$$

On considère la sous-algèbre de Cartan \mathfrak{t} de \mathfrak{k} contenant $i\mathfrak{a}$, déja définie dans la section 2.1. On montre qu'un élément f de $H^2(D \times D)$, vecteur C^{∞} de la représentation π_o , est un vecteur de plus haut poids de la représentation π_o si et seulement si

$$d\pi_o(X) f = 0, \quad (X \in \tilde{\mathfrak{n}})$$

 $\pi_o(a) f = \eta(a) f, \quad (a \in \exp(i\mathfrak{a})),$

où η est un caractère de $\exp{(i\mathfrak{a})}$. Un élément $a\in A^{\mathbb{C}}$ s'écrit

$$a = P\left(\sum_{j=1}^{r} \lambda_j c_j\right), \quad (\lambda_j \in \mathbb{C}^*)$$

et un caractère η de $A^{\mathbb{C}}$ s'écrit $\eta(a) = \chi_{\mathbf{m}}(a) = \prod_{j=1}^{r} \lambda_{j}^{-2m_{j}}, (m_{j} \in \mathbb{Z}).$

PROPOSITION 3.14. — Si f est une fonction de $H^2(D \times D)$ qui est un vecteur de plus haut poids de la représentation π_o , alors il existe $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_{++}^r$ tel que f soit proportionnelle à la fonction conique $F_{\mathbf{m}}$ et le caractère η correspondant est égal à $\chi_{\mathbf{m}+\frac{n}{2}}$.

Démonstration.

(a) Soit $f \in \mathcal{O}(D \times D)$, l'espace des fonctions holomorphes sur $D \times D$, vérifiant $d\pi_o(X) f = 0$, pour tout $X = (u, 0, 0) \in \tilde{\mathfrak{n}}_1$, alors

$$(Df)_{(z,w)}(u,u) = 0$$

et il existe $F \in \mathcal{O}(D)$, l'espace des fonctions holomorphes sur D, telle que

$$f(z,w) = F\left(\frac{z-w}{2}\right).$$

(b) Si de plus f est un vecteur de plus haut poids de la représentation π_o ,

$$d\pi_o(X) f = 0, \quad (X \in \tilde{\mathfrak{n}}_o)$$

$$\pi_o(a) f = \eta(a) f, \quad (a \in \exp(i\mathfrak{a})),$$

et par suite

$$\frac{d}{dt}F\left(\exp tX.z\right)|_{t=0} = 0, \quad (X \in \tilde{\mathfrak{n}}_o)$$

$$\chi(a)^{-\frac{n}{r}}f\left(a^{-1} \cdot z\right) = \eta(a)f(z), \quad (a \in \exp(i\mathfrak{a}))$$

ou

$$f(a \cdot z) = \chi(a)^{-\frac{n}{r}} \eta(a^{-1}) f(z).$$

Une fonction holomorphe sur D vérifiant ces conditions est proportionnelle à un polynôme conique,

$$F\left(z\right) = c\Delta_{\mathbf{m}}\left(z\right)$$

où $\mathbf{m} \in \mathbb{Z}_{++}^r$, et

$$\eta\left(a\right) = \chi_{\mathbf{m} + \frac{n}{n}},$$

(cf. [FK94], Proposition XI.2.1).

On considère l'opérateur

$$\mathcal{A}: H^2(D \times D) \longrightarrow \mathcal{O}(\Xi),$$

défini par

$$(\mathcal{A}f)(z,w) = \Delta (z-w)^{\frac{n}{r}} f(z,w),$$

où $\mathcal{O}(\Xi)$ est l'espace des fonctions holomorphes sur Ξ . On va démontrer que \mathcal{A} est un isomorphisme unitaire de $H^2(D \times D)$ sur $H^2(\Xi)$. Pour cela on aura besoin des deux lemmes suivants.

LEMME 3.15. — Soit (π, \mathcal{H}) une représentation unitaire et C_{\max} -dissipative de G. Si E est un sous-espace invariant de \mathcal{H} qui contient les vecteurs de plus haut poids alors E est dense dans \mathcal{H} .

Démonstration. — La représentation (π, \mathcal{H}) est unitaire et C_{max} -dissipative donc

$$\mathcal{H} = \bigoplus_{\lambda \in \Gamma(\widehat{C_{ ext{max}}})_2^H} m_{\lambda} \mathcal{H}_{\lambda}.$$

Soit F un sous-espace fermé invariant de \mathcal{H} contenant les vecteurs de plus haut poids. On note F^{\perp} son orthogonal dans \mathcal{H} . Comme chaque sous-espace \mathcal{H}_{λ} est engendré par un vecteur de plus haut poids alors F^{\perp} est orthogonal à tous les \mathcal{H}_{λ} . Donc $F^{\perp} = \{0\}$.

On note $H(D\times D)$ le sous-espace de $H^2(D\times D)$ engendré par les $\pi_o(g)F_{\mathbf{m}}$, avec $g\in G$ et $\mathbf{m}\in\mathbb{Z}^r_{++}$. De même on note $H(\Xi)$ le sous-espace de $H^2(\Xi)$ engendré par les $\pi(g)F_{\mathbf{m}}$, avec $g\in G$ et $m_1\geq m_2\geq \cdots \geq m_r\geq \frac{n}{r}$.

D'après le lemme précédent $H(D \times D)$ (resp. $H(\Xi)$) est un sousespace de l'espace de Hardy $H^2(D \times D)$ (resp. $H^2(\Xi)$).

LEMME 3.16. — Soient \mathcal{H}_1 , \mathcal{H}_2 deux espaces de Hilbert et E un sous-espace dense dans \mathcal{H}_1 . Soit T une isométrie de E dans \mathcal{H}_2 tel que T (E) soit dense dans \mathcal{H}_2 alors T se prolonge en un isomorphisme isométrique de \mathcal{H}_1 sur \mathcal{H}_2 .

Théorème 3.2. — L'opérateur \mathcal{A} est un isomorphisme unitaire de $H^2(D \times D)$ sur $H^2(\Xi)$ qui entrelace les représentations π_o et π .

Démonstration.

(a) Si f est une fonction de $H^{2}\left(D\times D\right)$ telle que $\mathcal{A}f$ appartienne à $H^{2}\left(\Xi\right)$ alors

$$\left(\mathcal{A}\circ\pi_{o}\left(g\right)\right)\left(f\right)=\left(\pi\left(g\right)\circ\mathcal{A}\right)\left(f\right).$$

En effet

$$(\mathcal{A}(\pi_{o}(g) f))(z, w) = \Delta(z - w)^{\frac{n}{r}} (\pi_{o}(g) f)(z, w)$$

$$= \Delta(z - w)^{\frac{n}{r}} \beta(g^{-1}, z, w)^{\frac{n}{r}} f(g^{-1}.z, g^{-1}.w)$$

$$= \Delta(g^{-1}.z - g^{-1}.w)^{\frac{n}{r}} f(g^{-1}.z, g^{-1}.w)$$

$$= (\pi(g) \mathcal{A}f)(z, w).$$

(b) Si f est une fonction de $H^2\left(D\times D\right)$ telle que $\mathcal{A}f$ appartienne à $H^2\left(\Xi\right)$ alors

$$||Af|| = ||f||_{H^2(D \times D)}.$$

Vérifions d'abord que

$$||bf||_{L^{2}(\Sigma\times\Sigma)} = ||b(\mathcal{A}f)||_{L^{2}(G/H)},$$

où b désigne l'opérateur valeur au bord.

$$||bf||_{L^{2}(\Sigma \times \Sigma)}^{2} = \int_{\Sigma \times \Sigma} |f(z, w)|^{2} d\sigma(z) d\sigma(w)$$

et

$$\begin{split} \|b\left(\mathcal{A}f\right)\|_{L^{2}\left(G/H\right)}^{2} &= \int_{\Sigma \times \Sigma} |\left(\mathcal{A}f\right)\left(z,w\right)|^{2} |\Delta\left(z-w\right)|^{-\frac{2n}{r}} \, d\sigma\left(z\right) d\sigma\left(w\right) \\ &= \|bf\|_{L^{2}\left(\Sigma \times \Sigma\right)}^{2}. \end{split}$$

Le résultat découle alors du fait que b est une isométrie.

(c) En appliquant le lemme précédent à $\mathcal{H}_1 = H^2(D \times D)$, $\mathcal{H}_2 = H^2(\Xi)$, $E = H(D \times D)$ et T la restriction de \mathcal{A} à $H(D \times D)$ en remarquant que $\mathcal{A}(H(D \times D)) = H(\Xi)$, on en déduit que \mathcal{A} est un isomorphisme unitaire de $H^2(D \times D)$ sur $H^2(\Xi)$.

3.3. Une deuxième formule pour le noyau de Cauchy-Szegö.

Soit S_D le noyau de Cauchy-Szegö de l'espace de Hardy $H^2\left(D\right)$, c'est-à-dire que pour tout $f\in H^2\left(D\right)$,

$$f\left(z
ight) = \int_{\Sigma} S_{D}\left(z,x
ight) f\left(x
ight) d\sigma\left(x
ight).$$

Donc pour tout $f \in H^2(D \times D)$,

$$f\left(z_{1},z_{2}\right)=\int_{\Sigma\times\Sigma}S_{D}\left(z_{1},x_{1}\right)S_{D}\left(z_{2},x_{2}\right)f\left(x_{1},x_{2}\right)d\sigma\left(x_{1}\right)d\sigma(x_{2}).$$

LEMME 3.17. — Le noyau de Cauchy-Szegö S de $H^2(\Xi)$ s'écrit

$$S\left(z_{1},z_{2},x_{1},x_{2}
ight)=\left[rac{\Delta\left(z_{1}-z_{2}
ight)\Delta\left(x_{2}-x_{1}
ight)}{\Delta\left(x_{1}
ight)\Delta\left(x_{2}
ight)}
ight]^{rac{n}{r}}S_{D}\left(z_{1},x_{1}
ight)S_{D}(z_{2},x_{2}),$$

pour tout $z_1, z_2 \in D$ et $x_1, x_2 \in \Sigma$.

Démonstration. — Soit $f \in H^2(D \times D)$,

$$f(z_1, z_2) = \int_{\Sigma \times \Sigma} S_D(z_1, x_1) S_D(z_2, x_2) f(x_1, x_2) d\sigma(x_1) d\sigma(x_2).$$

On note F l'image de f par l'isomorphisme $\mathcal A$ c'est-à-dire que

$$f(z_1, z_2) = \Delta (z_1 - z_2)^{-\frac{n}{r}} F(z_1, z_2).$$

Donc

$$\begin{split} &\Delta \left({{z_1} - {z_2}} \right)^{ - \frac{n}{r}} F\left({{z_1},{z_2}} \right) \\ &= \int_{\Sigma \times \Sigma} {{S_D}\left({{z_1},{x_1}} \right){S_D}\left({{z_2},{x_2}} \right)\Delta \left({{x_1} - {x_2}} \right)^{ - \frac{n}{r}} F\left({{x_1},{x_2}} \right)d\sigma \left({{x_1}} \right)d\sigma ({x_2})}. \end{split}$$

Ainsi

$$F(z_1, z_2) = \int_{\Sigma \times \Sigma} S_D(z_1, x_1) S_D(z_2, x_2) \Delta(z_1 - z_2)^{\frac{n}{r}} \Delta(x_1 - x_2)^{-\frac{n}{r}} \times F(x_1, x_2) |\Delta(x_1 - x_2)|^{\frac{2n}{r}} |\Delta(x_1 - x_2)|^{-\frac{2n}{r}} d\sigma(x_1) d\sigma(x_2).$$

Donc

$$S(z_1, z_2, x_1, x_2) = \Delta(z_1 - z_2)^{\frac{n}{r}} \Delta(\bar{x}_1 - \bar{x}_2)^{\frac{n}{r}} S_D(z_1, x_1) S_D(z_2, x_2).$$

Or $\bar{x}_1 = x_1^{-1}$ et $\bar{x}_2 = x_2^{-1}$ et puisque

$$\Delta \left(x_1^{-1} - x_2^{-1} \right) = \Delta \left(x_1 \right)^{-1} \Delta \left(x_2 \right)^{-1} \Delta \left(x_2 - x_1 \right)$$

le résultat annoncé s'en déduit.

LEMME 3.18. — Pour tous $z, w \in D$,

$$S_D(z, w) = (-1)^{\frac{n}{r}} \Delta (\bar{w}^{-1})^{\frac{n}{r}} \Delta (z - \bar{w}^{-1})^{-\frac{n}{r}}.$$

Démonstration. — Comme S_D est une fonction holomorphe en z et antiholomorphe en w il suffit de montrer l'égalité pour $z=w\in D$, c'est-àdire de montrer que

$$S_D(z,z) = (-1)^{\frac{n}{r}} \Delta \left(\bar{z}^{-1}\right)^{\frac{n}{r}} \Delta \left(z - \bar{z}^{-1}\right)^{-\frac{n}{r}}.$$

De plus les deux membres de l'égalité sont invariants par K. Comme tout élément z de D admet une décomposition polaire, il suffit de montrer l'égalité pour $z=x\in V$. Pour tout $x\in V$,

$$S_D(x,x) = \Delta (e - x^2)^{-\frac{n}{r}},$$
 (cf. [FK94], p. 270),

et

$$\Delta (x^{-1})^{\frac{n}{r}} \Delta (x - x^{-1})^{-\frac{n}{r}} = (-1)^{\frac{n}{r}} \Delta (e - x^2).$$

Théorème 3.3. — Pour tous éléments $\xi_1=(z_1,z_2)$ et $\xi_2=(w_1,w_2)$ de $\Xi\simeq D\times D\setminus N_D,$

$$S\left(\xi_{1},\xi_{2}\right)=\left[\frac{\Delta\left(z_{1}-z_{2}\right)\Delta\left(\bar{w}_{2}^{-1}-\bar{w}_{1}^{-1}\right)}{\Delta\left(z_{1}-\bar{w}_{1}^{-1}\right)\Delta\left(z_{2}-\bar{w}_{2}^{-1}\right)}\right]^{\frac{n}{r}}.$$

Démonstration. — C'est une conséquence des deux derniers lemmes.

BIBLIOGRAPHIE

- [Ch95] M. CHADLI, Domaine complexe associé à un espace symétrique de type Cayley, C. R. Acad. Sci. Paris, 321, série I (1995), 1157–1162.
- [Ch96a] M. Chadli, Espace de Hardy associé à un espace symétrique de type Cayley, C. R. Acad. Sci. Paris, 323, série I (1996), 121–126.
- [Ch96b] M. CHADLI, Espace de Hardy d'un espace symétrique de type Cayley, Thèse de l'Université Paris VI, 1996.
- [Far92] J. FARAUT, Fonctions de Legendre sur une algèbre de Jordan, CWI Quartely, 5 (1992), 309–320.
- [Far95] J. FARAUT, Fonctions sphériques sur un espace symétrique ordonné de type Cayley, Contemp. Mathematics, 191 (1995), 41–55.
- [FG96] J. FARAUT et S. GINDIKIN, Pseudo-Hermitian Symmetric Spaces of Tube Type, Progress in Nonlinear Diff. Equat., 20 (1996), 123–154.
- [FHO94] J. FARAUT J. HILGERT et G. ÓLAFSSON, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier, 44-3 (1994), 927–966.
 - [FK94] J. FARAUT et A. KORÁNYI, Analysis on Symmetric Cones, Oxford University Press, 1994.
 - [FJ80] M. FLENSTED-JENSEN, Discrete series for semisimple symmetric spaces, Ann. of Math., 111 (1980), 253–311.
 - [GG77] I.M. GELFAND et S.G. GINDIKIN, Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations, Funct. Anal. Appl., 7 (1977), 19–27.
 - [HS94] G. HECKMAN et H. SCHLICHTKRULL, Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, 16, 1994.
 - [HO96] J. HILGERT et G. ÓLAFSSON, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Perspectives in Math., 18, Academic Press, 1996.
- [HOØ91] J. HILGERT G. ÓLAFSSON et B. ØRSTED, Hardy spaces on affine symmetric spaces, J. Reine angew. Math., 415 (1991), 189–218.
 - [KV78] M. KASHIWARA et M. VERGNE, On the Segal-Shale-Weil Representations and Harmonic Polynomials, Inv. Math., 44 (1978), 1–47.
- [Kou93] K. KOUFANY, Semi-groupe de Lie associé à une algèbre de Jordan euclidienne, Thèse de l'Université Nancy I, 1993.
- [Kou94] K. KOUFANY, Réalisation des espaces symétriques de type Cayley, C.R.Acad.Paris, 318 (1994), 425–428.
- [Loo77] O. Loos, Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California, Irvine, 1977.
- [Nee94] K. H. NEEB, A convexity theorem for semisimple symmetric spaces, Pac. J. Math., 162, No. 2 (1994), 305–349.
- [Ola87] G. ÓLAFSSON, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 90 (1987), 605–629.

- [Ola91] G. ÓLAFSSON, Symmetric spaces of Hermitian type, Diff. Geometry and its App., 1 (1991), 195–233.
- [OØ96] G. ÓLAFSSON et B. ØRSTED, Causal compactification and Hardy spaces, prépublication No 19 de l'Institut Mittag-Leffler, 1996.
- [Ols81] G. I. OLSHANSKII, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. Appl., 15 (1981), 275–285.
- [Ols82] G. I. OLSHANSKII, Complex semi-groups, Hardy spaces, and the Gelfand-Gindikin program. In: Topics in group theory and homological algebra, Yaroslavl University Press (1982), 85–98 (Russian). English translation: Differential Geometry and its Appl., 1 (1991), 297–308.
- [Pan81] S. M. Paneitz, Invariant convex cones and causality in semi-simple Lie algebras and groups, J. Func. Anal., 43 (1981), 313–359.
- [Sat80] I. SATAKE, Algebraic strucures of symmetric domains, Iwanami-Shoten and Princeton Univ. Press, 1980.
- [Seg76] I. E. SEGAL, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, 1976.
- [Sta86] R. J. STANTON, Analytic extension of the holomorphic discrete series, Amer. J. Math., 108 (1986), 1411–1424.
- [Vin80] E. B. VINBERG, Invariant convex cones and orderings in Lie groups, Funct. Anal. and Appl., 14 (1980), 1–13.

Manuscrit reçu le 23 janvier 1997, révisé le 12 septembre 1997, accepté le 21 octobre 1997.

Mohammed CHADLI, Université Paris VI Institut de Mathématiques Analyse algébrique, Case 82 4, place Jussieu F-75252 Paris cedex 05 (France). chadli@math.jussieu.fr