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ON DEFORMATION METHOD IN INVARIANT THEORY

by Dmitri PANYUSHEV (1)

Introduction.

The purpose of this paper is to present in a more general form the
deformation method in Invariant Theory and to give some new applications.

First, recall what the deformation method is. Let G be a connected
reductive algebraic group defined over an algebraically closed field k of
characteristic zero. Suppose we are given an affine variety Z endowed with
a regular G-action. Then the algebra of regular functions k[Z} carries a
natural G-invariant filtration. More precisely, let U denote a maximal
unipotent subgroup of G and T denote a maximal torus such that T C
Nc{U). Denote by X+ the monoid of dominant characters relative to T and
U. Define k[Z]^ (resp. A;[Z](<^)) to be the sum of all isotypic components
of k[Z] associated to weights fi < X (resp. ^ < X). The family of subspaces
{A;[Z](A)}, A € X+ constitutes a X+-filtration in k[Z], i.e., k[Z} = Uk[Z}^
and k[Z}^k[Z]^ C k[Z}^^. The point of the Deformation Method is
that:

(1) the associated graded algebra gr^ k[Z] := Q) k[Z}^/k[Z}^^
A(EX+

can explicitly be described. Namely, it is isomorphic to (^[Z^^A^G]^013)71;

(1) This research was supported in part by Alexander von Humboldt Foundation and
RFFI Grant 95-01-00783a.
Key words: Algebra of invariants - Reductive group action - Complete intersection -
Spherical variety.
Math. classification: 13A20 - 14L30 - 14M10 - 14M17.
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(2) k[Z\ is a deformation of gr^ k[Z] and therefore gr^ A;[Z] and
k[Z] have many good properties in common;

(3) it is often easier to study gr^ k[Z] than k[Z]. The idea to make
use of a G-invariant filtration in k[Z] is due to D. Luna. (A brief outline
of his approach appeared in [4], Lemme 1.5.) Then H. Kraft has applied
this method to the property of having rational singularities. A detailed
development of this method together with numerous applications has been
given by V.L. Popov [26] (see [9] for the results in arbitrary characteristic).
Various aspects are also touched on in [6], [28], [14]. The above filtration
(and deformation) appeals only to the internal structure of the action
in question. There are also several papers where a filtration in k[Z} is
determined in terms of certain external data (an embedding of Z in a G-
module), see [I], [3].

A more general presentation deals with a "relative" situation. Suppose
H is a subgroup of G and we are interested in the subalgebra k[Z}11 of
H -invariant functions. The above filtration in k[Z] is inherited by k[Z}11.
Consider the associated graded algebra gik[Z]11. Our result is that, when
H is spherical in G, this algebra has a nice description. More precisely, one
can naturally attach to ft a monoid (£ e JC-i- and a subgroup H C G such
that H D U and dimH = dimH. The following is proved in Section 2.

0.1. THEOREM.

(i) There is an isomorphism of€-graded algebras gTk[Z}11 ^ k[Z}^;

(ii) if G/H is quasi-affine and ^ is saturated, then these algebras are
isomorphic to k[Z}11.

Here k[Z]^ stands for the subalgebra of fcjZ]^ corresponding to (£.
(For precise definitions, see Section 2.) It is not immediate after this outline,
why the "relative" case may be treated as a generalization of the "absolute"
one, because H = {e} is not spherical unless G is a torus. In order to
establish the desired relationship, we proceed in two steps. The first step
is also an application of this "relative" result. Consider the diagonal G-
action on the product of two G-varieties X and Y. Actions of such form
will be called reducible. In this case, X xY is acted upon by GxG and
the diagonal G-action is nothing but the action of the diagonal subgroup
GA C GxG. Since GXG/GA is spherical, Theorem (0.1) applies. That
is, we have the large group GxG, the spherical subgroup GA, and wish to
describe the associated graded algebra of ^XxY}0^. In this case one proves
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that GA = (UxU^T/^, where U0^ is the opposite maximal unipotent
subgroup and TA is the diagonal in TxT, and that € is saturated. Therefore
by invoking Theorem (0.1), we get

0.2. THEOREM. — There is a natural nitration in k[XxY}0^ such
that gi^XxY}0^ ^ {k[X}17 0 ̂ yf01^.

The second step is that one considers a special reducible action.
Suppose Y = G and the G-action on G is that by right multiplication. Then
k[XxG}°^ ^ k[X} and we recover in this way the G-invariant filtration in
k[X} and the description of gr^ k[X} given in [26], th. 5 (see Section 4).
One may observe that the second part of Theorem (0.1) may be deduced
from the results in [26]. However, I think that the present approach is more
natural and certainly allows to give more short and transparent proofs.
Another reason is that there is a partial generalization of Theorem (0.1)
for the case where G/H has complexity one (the complexity equals zero in
the spherical case).

Our applications of (0.1) and (0.2) concern the property of being
complete intersection (= c.i.) for algebras of invariants. In Section 3, we give
two sufficient conditions for preserving this property under deformations
and show that homological dimension does not increase in this case.

Reducible representations of semisimple groups and quadruple cones
constitute the main field of applications of these results. A quadruple cone

4
is a G-variety of the form n C(\i), where \ G X+ and G(A) is the closure

1=1
of the G-orbit of highest weight vectors in the irreducible G-module V\.
In other words, a quadruple cone is the product of two double cones.
(See [17] and [21] on double cones.) Making use of Theorem (0.2) and
results of Section 3, we find many series of quadruple cones and reducible
representations of simple groups such that their algebras of invariants
are c.i. This method allows also to get an upper bound for homological
dimension of algebras in question (see (4.3)-(4.6), (5.7)).

In Section 5, we consider a particular case of reducible actions. For
any G-variety X, one can define the dual G-variety X* [20]. The diagonal
G-action on XxX* is called the doubled. It turns out that the associated
graded algebra of k[XxX^}° is the algebra of invariants of a doubled action
of r. Therefore one may derive some properties of general doubled actions
by examining that for tori. Theorem (5.2) gives a sufficient condition for
the algebra of invariants of a doubled action to be a hypersurface. The
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second topic is the canonical module of the doubled action. For sufficiently
good graded algebras k[X], we prove that ^XxX*}0 is Gorenstein and
give a formula for degree of the generator of the canonical module (5.6).

Our basic reference for Invariant Theory is [32]. For algebraic groups
and their representations we refer to [30].

Remark. — When the main part of this paper was written, I learned
that a special case of Theorem (0.2) has been already proved by R. Howe
and T. Umeda [II], 6.6. Namely, they considered the case, where X = V
is a G-module and Y = V*. However their main interest is in the structure
of G-invariant differential operators on G-modules.

Acknowledgement. — Much of this research was conducted while
I was visiting the Ruhr-Universitat Bochum and I would like to thank
Professor A.T. Huckleberry for the invitation and hospitality. I am grateful
to D. ShmePkin for pointing out some errors in the table.

1. Preliminaries.

1.1, Main notation. — Throughout the paper, G denotes a con-
nected reductive group with a fixed Borel subgroup B and a fixed maximal
torus T C B. Denote by U the unipotent radical of B and by B0^ the
opposite Borel subgroup (the latter means that B Fl B°^ = T). Thereupon
one also obtains the corresponding objects: the character group X(T) of T,
the set of simple roots H, the monoid of dominant weights X+ C X(T), the
Weyl group W = Nc(T)/T, etc. For the operation in X(T), the additive
notation is used. To avoid a confusion with integer 0, we denote by Q the
zero element of X(T). Without loss of generality, we may assume whenever
it is convenient hereafter that G is a direct product of its connected center
and a simply-connected semisimple group. We identify the set of equiv-
alence classes of irreducible rational representations of G with X+. For
A G X+, we let V\ denote a representative of the class A, i.e. an irreducible
G-module with highest weight A. The standard partial ordering on X(T) is
defined as follows: /^ < A 4^ A — /^ is a non-empty sum of positive roots. I
use numeration of the fundamental weights of simple groups as in [30].

We let k[X] denote the algebra of regular functions and k(X) the
field of rational functions on an algebraic variety X. Given a set M (e.g.
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algebra, field, or vector space) equipped with an action of a group G , then
M° denotes the subset of G-fixed elements in it. Unless otherwise stated,
all varieties are assumed to be irreducible, and a G-variety is a variety
endowed with a regular left action of G.

1.2. Some standard facts on representations. — For any A € X+, the
one-dimensional subspace V^ C V\ has a unique r-invariant complement,
which is denoted by V^. Thus the projection

(1) P^A ' ' V x - V^
along V^ is well-defined. Moreover, if ji is a weight of T in 1 °̂, then ^ < X.
This shows V^ is even JE^-invariant. Given two G-modules V\ and V^, the
following relation holds

(2) v^v^=v^+ ^ c\^.
v<x+p,

The reason is that the subspace of weight A+/^ in V\^V^ is one-dimensional
and v < X + p. for the other weights. It follows that the projection
Px^i '- V\ 0 V^, —> V\+^ is well-defined.

1.3. Some facts on homogeneous spaces. — Let G/H be a homo-
geneous space. Given a G-module V, denote by MOT^^G/H^ V) the vector
space of G-equivariant morphisms of G/H into V. It is immediate (and
well known) that the following three vector spaces are in a natural one-to-
one correspondence: RomG(V^k[G/H}), MOTG^G/H.V), and V11. We set
F ( G / H ) = {X C X+ | V^ ^ {0}}. Since k[G/H] is a domain, it follows
from the previous bijections that Y ( G / H ) is a monoid.

DEFINITION. — A monoid reX+ is said to be saturated, ifX—p. € F
whenever A,^ € F and X—p, € X+. (This is equivalent to saying that
r=zrnx+.,)

However, it may happen that Y { G / H ) is not saturated even for affine
spherical homogeneous spaces. Recall that a subgroup H (or a homogeneous
space G / H ) is called spherical if B has a dense orbit on G / H . In this case,
dimV^ < 1 for any A € X+. If G / H is quasiaffine, then the converse is
also true [29].

Example. — In [16], Tabelle 1, one finds the list of all affine spherical
homogeneous spaces G/H such that G is simple and H is connected. The
description of F ( G / H ) is also given therein. Inspecting the list, I found that
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r = I^S'Olo/ Spiny xSO^z) is not saturated. More precisely, let y ? i , . . . , ̂
be the fundamental weights of 5'0io. Then 2y?i, y?i +2(/?4 e r, but 4^4 ^ F.
I also checked Kramer's computations in this case.

In view of this example and future applications, it is helpful to know
whether F ( G / H ) is saturated for a given spherical G / H . The only positive
result known to me is that T(G/H) is saturated whenever H is the fixed-
point subgroup of an involutory automorphism of G. Apparently, the first
algebraic proof of it is due to Th. Vust [33].

1.4. Horospherical contraction. — A subgroup of G is called Aoro-
spherical^ if it contains a maximal unipotent subgroup. Obviously, any horo-
spherical subgroup is spherical. To any G/H (actually, to any G-variety),
one can attach in a natural way the conjugacy class of a horospherical sub-
group H [14], Section 2. (This is also implicit in [20].) In the spherical case,
an explicit construction of G/H has been given in [6]. If G/H is spherical,
then dim G/H = dim G/H and H will be referred to as a horospherical
contraction of H.

For future applications, we need a H which contains the selected U
and is normalized by the selected T. We give two descriptions of such a
H. The first of them, which may be taken as a definition, applies only to
quasiaffine G / H . For simplicity, the second description is already stated
for spherical G / H .

1) For any A C X+, pick a non-zero vector v\ € V^. Then

(3) H = [g € G | gvx = YX for any A € r(G/H)} = Q G,,.
xer{G/H)

2) Let B°P be the opposite Borel subgroup, i.e. B01^ D B = T. After
eventually replacing H by a conjugate subgroup, one may assume that
B^H is dense in G. Then B01^ D H is normalized by a maximal torus of
G [25]. Having replaced H once more, one can achieve that this maximal
torus is the selected T. Then H = (B°P D H)U is the desired horospherical
contraction. (Of course, some efforts are needed to prove that this is a
group.)

The equivalence of these descriptions follows from [20], Section 1. It
should only be mentioned that our present approach differs slightly from
that of [20]. That paper contains a description of the stabilizer in general
position for 5-action on quasiaffine X in terms of the monoid F(X) C X+.
Here 2 correlated alterations are made: (a) we consider the stabilizer in
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general position for B^-action on X = G/H and (b) our present F ( G / H )
should be r(G/Jf)* in the notation of [20].

1.5. PROPOSITION. — r{G/H) = z F ( G / H ) n 34.

Proof. — Since H D U, we have ^ € F { G / H ) if and only if
Hv^ = z^.

1. "C" Suppose Hv^ = v^. Then (HnT)v^ = z^, i.e. HUT C Ker ^.
Here /^ is considered as a group homomorphism T —>• fc* and Ker /^ is
its kernel. It follows from Equation (3) that H n T = Q Ker A.

\er(G/H)
Therefore ^ belongs to the subgroup of X(T) generated by T(G/H). That
is,/^ezr(G/ff)n34.

2. "D" By Equation (3), we always have F ( G / H ) D T(G/H). Suppose
^ == Ai - A2 € 34, A, € F ( G / H ) . It then follows from (1.2) that, up to a
scalar multiple, ̂  0 ̂ 2 = ^Ai ^ V\i CVp,<S) V\^. Thus ff^ = v^. D

2. A filtration of the algebra of invariants.

2.1. G-in variant nitration. — Let Z be an affine G- variety. Then
one gets the induced G'-action on k[Z}: (p,/) i—^ 9 ' f ^ 9 ^ G, / € A;[Z].
It is defined by {g-f){x) = /(p~1^). Then fc[Z] becomes a locally-finite
G-algebra. This means that the linear span {G'f) is finite-dimensional for
any / e k[Z}. It follows from complete reducibility that k[Z\ is the direct
sum of its isotypic components ^[Z]^, A € X+. Here k[Z\\ stands for the
sum of all irreducible G-submodules of k[Z] which are isomorphic to V\.
This decomposition is not a grading in general, but a minor modification
allows us to obtain a G-invariant filtration (see [26]). We set

M^^QM^ and k[Z}^=k[Z}xek[Z}^^ A G X+.
IJL<\

The family {fc[Z](^} is a G-invariant X+-filtration of k[Z\. More precisely,
we have k[Z}^k[Z}^ C k[Z}^^ and k[Z]^k[Z}^ C fc[Z]«A+^). This
follows from Equation (2), since the product of two irreducible submodules
in the algebra k[Z} is a homomorphic image of their tensor product.

Let -H" be a subgroup of G. Consider the inherited filtration {^[Z^D
A;[Z](^\)} in fc^]^. It is immediate that

(4) k[Z}11 n k[Z}^ ̂  {0} => Vf + {0} ̂  A e F(G/H).
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To simplify notation, we set (£ := T(G/H), C := k[Z]11, Cx := k[Z}11 H
fc[Z]A, etc. It follows from Equation (4) that the inherited nitration can
be reduced to a C-filtration. Namely, since C = (9 C\ (vector space

Aee
decomposition!), we may (and shall) consider C'(<A) := k[Z]11 D k[Z}(^\
and (7(^\) for A e € only. Thus one has a family of subspaces {C(n},
A € € and the decompositions G^) = C\ C C^). Let us observe that
C'(o) = ^[^](o) = ^[Z]6'. The associated ^"graded algebra gr^C is defined
by"
(5) ^C=Q)Cw/C^.

Ae<£
It follows that gr^ (7 is isomorphic to C as a vector space. Therefore one
may consider gr^ C as (7 but endowed with a new multiplication law. More
precisely, suppose / e CA ^ G(A)/C«A) and h ^ C ^ ^ C^)/G«^). Then
//^ € <7(^+^) = C\+^ 0 G(<^\+^) for the obvious multiplication in C. While
in the new multiplication coming from gr^ (7, only the component of fh
lying in CA+^ survives.

Let us apply the preceding construction to H = U. Then the
decomposition k\Z^ == ® /c[Z]^, where k[Z}^ = fe^ U k[Z]x, gives

AGX+
already a X+-grading. This follows from (1.2). This grading originates also
from the obvious T-action on ^[Z]^. (Observe that X+ = F(G/U).) For
any subset F C X+, we set k[Z}^ = ® fc[Z]^. Obviously, this is a (finitely

Aer
generated) algebra whenever r is a (finitely generated) monoid.

2.2. THEOREM. — Suppose H is a spherical subgroup of G and
^ = r(G/H). Then, for any affine G-variety Z,

(i) there is an isomorphism of ̂ -graded algebras gr^ k[Z]11 ^ k[Z}^;

(ii) if G/H is quasi-affine and ^ is saturated, then these algebras are
isomorphic to k[Z}11, where H is a horospherical contraction of H. In this
case, the relation € == T ( G / H ) holds.

Remark. — The point of part (ii) is that it holds for any Z. For
some Z, it certainly may happen that k[Z}^ is the algebra of invariants of
a horospherical subgroup, which is not H and regardless of saturatedness
of(£.

Proof. — (i) We may assume that H is chosen such that B^H is
dense in G. Then the linear span of B^V^ coincides with V\ for any
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A € (S. Therefore V^ does not lie in VJ0 (see (1.2)) and the restriction
on V^ of pr\ is one-to-one. (Recall that dimV^ = 1.) Pick a non-zero
f\ € y^. Then the functions ')c(fx) generates C\ as a vector space, where \
ranges over HomG^M^])- Putting rx{x(fx)) = x{P^\{fx))^ one obtains
a homomorphism of vector spaces

n : GA -^ W '
It is easily seen that r\ is one-to-one. Considering each r\ as a mapping from
G(^\)/G(<^) and then putting them together, we get a one-to-one mapping
r : gr^ C —^ k[Z}^. It then follows from Equation (2) that r is an algebra
homomorphism.

(ii) We may assume that H is defined by Equation (3). Then H D U
and Nc{H) D r. Therefore k[Z}11 == ®/c[Z]^, where /x runs over all

Ai

dominant weights such that Hvp, = Vp,. Thus everything follows from (1.5)
and saturatedness of €. D

2.3. Remark. — In order to have a geometric content, one should
be sure that all algebras being considered above are finitely generated.
There are different ways to deduce it from known results. Here is one of
them. Let G / S be a spherical homogeneous space of G. Then T(G/S) is
finitely generated. A short conceptual proof is given in [15] (close results
were earlier obtained by Guillemonat and Grosshans). This implies the
algebra k[G/S] is finitely generated as well. For a G-variety Z, consider the
diagonal action of G on k[Z] (g) k[G/S}. By [4], 1.1 or [8], 1.2, the algebras
(k[Z\ ̂ ^G/S})0 and k[Z}s are isomorphic. It follows that ^[Z]5 is finitely
generated for any affine G-variety Z. Finally, an algebra of the form fc[Z]^
is finitely generated whenever F is. Thus all algebras arising in (2.2) are
finitely generated.

Consider the particular case of (2.2) when Z = G and G acts on itself
by right multiplications. Then k[G}11 is the algebra of regular functions on
G/H and Theorem (2.2) asserts that

(6) g^k[G/H}^k[G}^.

In this case, G acts also on itself by left multiplications and clearly the
^-filtration in k[G]11 is G-stable. Therefore the above isomorphism is G-
equivariant. Since one has an extra G-action in this case, the construction of
gr^ k[G/H\ can also be performed in the framework of the usual approach
to the deformation method (see [6], [26]). Assume that G / H is quasiaffine.
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Put X == Spec k[G/H] and Y = Spec k[G}^. Then the G-variety X contains
G/H as the open orbit and the G-variety Y contains G/H as the open
orbit. In the terminology of [26], Y is a contraction of X (and, otherwise,
X is a deformation of Y). Now, one can see why (S is of some importance in
deformation questions. The monoid (E is saturated if and only if gr<g k[G/H}
is the algebra of regular functions on G / H . As it was already explained in
(1.4), the homogeneous space G / H can be explicitly determined without
involving any deformation arguments. From geometric point of view, the
saturated and non-saturated cases are distinguished by codimension of
the complement of G / H in Y. Namely, (£ is saturated if and only if this
complement does not contain divisors (see [31], §3).

2.4. Examples. — Let H act on a variety Z. Suppose (we are lucky
and) there exists an overgroup G D H acting on Z such that G/H is
spherical. The overgroup provides, as "deus ex machina", a filtration in
k[Z]11 and a description of gT^k[Z}11. Next step is to establish a "good"
property for the graded algebra and to carry it on k[Z}11. Our applications
of (2.2) are related to the property of being complete intersection and are
based on the results of Section 3. Two general schemes of realization of this
idea are presented in Section 4. Here we consider two sporadic examples.
If representations of both a group H and an overgroup G are considered,
then (p^s are the fundamental weights of G, and (p^s are the ones of H.
The trivial 1-dimensional representation is denoted by I. For a G-module
V, the restriction of the corresponding representation to H is denoted by
V\H.

1. Let H be a group of type Ga and Z be the sum of the fundamental
representations, i.e. Z = V^ + V^. It is known that H is a subgroup of a
group G of type Bs. In this case G/H is spherical and (£ is generated by
<^3 (see [16]). Therefore H is the stabilizer of a highest weight vector in the
spinor representation of Bs. This is a semi-direct product of a simple group
of type A2 and a 6-dimensional unipotent radical. The representation of
€2 in V^ + V^ is the restriction of the adjoint representation of Bs. Thus
we get an isomorphism

or k\V 4- V '{G2 ^ k\V- l^^3)gI^K[V^ -+- V^\ — K[V^\^

I can prove the latter algebra is a hypersurface. This implies k[V^ -^-V^}02

is a hypersurface as well (see (3.5)).

2. H = SLn and Z = V^ + V^_, + V^+^_,. Consider the
obvious embedding SLn C SLn-^-i = G. This is a spherical pair and
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£ is generated by (p\ and (pn [16]. It is easy to see that ^i+<^ \H=
V^i + ̂ -i + ̂ i+^n-i +1. This means that k[Z +1}11 admits a filtration
such that the associated graded algebra is isomorphic to k[Vy^^-^}^ ' n+l\
I can prove that this is a hypersurface. This result and (3.5) show that
k^}3^ is a hypersurface as well.

3. Deformations and complete intersections.

3.1. On deformations. — This subsection is an abridged exposition
of [26], §5. Several fragments of that theory are also found in [6]. Given a
filtered algebra, it is quite natural to compare properties of the algebra itself
and its associated graded algebra. For this purpose, one more condition
should be satisfied. Namely, we have to produce a N-filtration in C = k[Z}11

such that gr^ C and gr^ C would be isomorphic as algebras. This can be
done in a standard way (see [6], [26]). Let ( • , • ) be a l^-invariant inner
product on X(T) (g) Q and ^v be the sum of all positive coroots. Define
I : X(T) -^ Z by ^(7) = (7,^). It is easy to see that ^(X+) C N and
l(a) = 2 for any a € II. Then the family of subspaces

CW .= ̂  Cx {C^ := 0)
Z(A)<n

defines an ascending N-filtration such that
00

g^c^^c^/c^^g^c
n=0

as algebras. An easy proof makes use of Equation (2) and the above-
mentioned properties of I . Let t be an indeterminate and

CO

D'^^^C^ cC[t}.
71=0

Clearly, D is an algebra and k[t\ is a subalgebra of it. One introduces a
N-grading on D by letting degt = 1. It is immediate that D is a flat
A^-module, D / { t ) ^ gr^G, and D / ( t - a) ^ C for any a € k \ {0}. By
considering t as the function (morphism)

(7) t : SpecD-^A1,

we get: t'^O) ^ Spec(gr^C) and ^(a) ^ SpecG, a ^ 0. That is, one
obtains a flat one-parameter family of affine varieties. For this reason, gr^ C
is called a contraction of C and, in its turn, C is called a deformation of
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gr^ C. The same terminology applies to the respective varieties. One more
property of Equation (7) is important: ̂ (A1 \ {0}) ^ (A1 \ {0}) x Spec C.
Making use of it, V.L. Popov has shown that presence of a so-called
property of open type for Spec(gr C) implies that for Spec C. For instance,
the following properties are of open type: normality, Cohen-Macaulayness,
rationality of singularities.

3.2. On complete intersections. — Given an affine variety V, the
minimal m such that there exists a closed embedding Y c A771 is called
the embedding dimension of Y and is denoted by ed Y. We set hdA;[V] =
ed V - dimV. If k[Y] is a Cohen-Macaulay graded domain, this integer
is customary called the homological dimension of Y. Recall that Y (or its
coordinate algebra k[Y}) is said to be a complete intersection, if there exists
an exact sequence

0 -^ IN -^ k[T^..., TN} -^ k[Y} -^ 0

such that the ideal IN is generated by N - dim Y elements. There are the
corresponding concepts in the theory of local rings. But, unlike that theory,
it is not known whether for the given presentation k[Y] = ^[Ti,..., Tn}/In
the ideal In is generated by n - dimY elements, if Y is a complete
intersection. (Some results in this direction are found in [8].) In the sequel,
c.i. will be shorthand of "complete intersection55.

Suppose k[Y] is a c.i. Then the local ring k[Y}^ is a c.i. for any maximal
ideal p C k[Y} and hdA;[V]p < hdA;[V]. But the converse is not true. In
other words, the property of being c.i. is not local. Nevertheless, there is an
important particular case, when the global theory is essentially equivalent
to the local one.

3.3. PROPOSITION [2]. — Let A = ^ A, be a N-graded affine k-
i=0

oo
algebra such that AQ = k. Suppose Am, where m = ^ Ai, is a complete

intersection. Then A is a c.i. as well. More precisely, in the presentation
0 —^ J -^ S^m/m2) —^ A —^ 0, the ideal I is generated by a regular
sequence. Q

Let us apply this assertion to the N-graded algebra grC (we shall
omit the subscript N in the sequel).

3.4. PROPOSITION. — Suppose C^ = k and grC is a c.i. Then C
is a c.i. as well and hd C < hd(gr C).
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uu

Proof. — Since C^ = fc, the ideals m := ^ C^/C^-^ C grC
n==l

and m := ^ f^C^ C JD are maximal. It is obvious that t € m-D^ and
n=l

Ca!Dm/(t) ^ (grC')m. Then, by a standard property of local rings, the c.i.
property for (gr(7)m is equivalent to that for D^ (see [7], 2.3.4). Moreover,
since t G m \ m2, we have hdD^ = hd(grC%. Thus D is a c.i. and
hdD = hd(grC) by (3.3). Consider the embedding Specie C (m/m2)*
given by Nakayama's lemma. Then the equality D / ( t — a) = C reads that
Spec C is the intersection (as a scheme!) of Spec D and an affine hyperplane
in (m/m2)*. It follows that C is a c.i. as well and hd(7 < hdD.

For C = k[Z}11, the subalgebra C^ = © C\ is nothing but the
(A,^)=0

algebra of invariants of the commutator subgroup Q of G. The condition
^[Z]07 = k is obviously satisfied, if G' has an open orbit in Z. However
one would like to have something like (3.4) for actions with non-constant
invariants. For this purpose, consider the case when C is both N-filtered

00

and N-graded. This means that the grading C = ^ Cn and the filtration
n=o

C = [j C^ should be compatible in the sense that C^ = 0 (C^nC^)
z=0 m=0

for any n € N. (One do not confuse the vector space decomposition
C = @ C\ with the N-grading, since we use different indices.) Then giC

Ae<£
is N^graded and one can produce the natural "diagonal" N-grading in it:

(grC), := (9 (C^ n Q/c^-1) n Ci).
m+Z=n

It is immediate that (gr (7)o = k whenever CQ = k. In this case, there is an
analogue of (3.4). We retain the notation just introduced.

3.5. PROPOSITION. — Let C be a ̂ 'filtered and N-graded algebra
such that Co = k. Suppose grC is a c.i. Then C is a c.i. as well and
hdC^hd(grG).

Proof. — Consider grC with the diagonal grading and provide D
with the diagonal grading too, i.e. set

Dn:= © nc^nQ).
m-\-l=n

Then Do = k and t still has degree one. Having these gradings at hand, one
can repeat the proof of (3.4). The only noticeable point is that the relation
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Dm/(t) ̂  (grC% being used above survives under the new interpretation
of m and m. Q

A typical situation for applying (3.5) is that of a linear representation
G C GL{V). Then k[V\ and ^V^ are graded by the total degree of
polynomials and it is obvious that the filtration and the grading on k[V}11

are compatible. More generally, it suffices to assume that k[Z] is N-graded
such that fc[Z]o = k and G respects this grading. Examples will be given
in Section 4.

3.6. Remark. — Along with the diagonal N-grading on gr(7, one
can consider the N-grading which is induced from C. This one is defined
by

(grC)^ = ̂ (^m) n Cn)/{c^-^ n Cn).
m==0

An important property of this grading is that dim{giC)^ = dimCn for
any n. Suppose we are in the situation of (2.2) and k[Z] is already N-
graded. Then k[Z}11 inherits this grading and the induced grading on
gTk[Z}11 ^ k[Z}11 coincides with the grading inherited by the subalgebra
W.

For an affine A;-algebra A, if hdA < 1, then A is already a c.i. (a
hypersurface). If hdA = 2, A is N-graded with Ao = fc, and A is Gorenstein,
then A is a c.i. Therefore it is helpful to have a relation between the
embedding dimensions of C and grC. Next assertion is implicit in [26]
(cf. also [I], Lemma 3).

3.7. PROPOSITION. — One always has ed(grC) > edC. In partic-
ular, if gr C is a polynomial ring then so is C; if gr C is a hypersurface,
then C is either a hypersurface or a polynomial ring.

Proof. — Suppose { / i , . . . , fs} is a homogeneous generating system
ofgrC, where fi € C^/C^-^. Pick an element /, e C^ lying over /,
and denote by C the subalgebra of C generated by {/ i , . . . , fs}. Since C^
is contained in both C and gr (7, it is immediate that the elements fi such
that rii = 0 generate C^. Therefore C^ C C. Then an obvious induction
step: if C^ C C, then C^^ cC. D
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4. On invariants of reducible actions.

4.1. Reducible actions. — Given a G- action on an affine variety Z,
we shall say it is reducible whenever Z is the product of G-varieties X, Y
and the action on XxY is diagonal, i.e. g(x^ y) = (gx, gy)^ (a:, y ) G XxY. It
is always assumed that the G-action on both factors is non-trivial. In this
case, XxY is acted upon by GxG and the diagonal G-action is nothing
but the action of the diagonal subgroup GA of GxG. Since GXG/GA is
spherical (see below), the results of Section 2 can be used. That is, we have
the large group GxG, the subgroup GA, and wish to describe k[XxY}°^.

In order to apply (2.2), we have to select a Borel subgroup and
a maximal torus in GxG. For G, we retain the notation of (1.1). We
set B := BxB0^ to be the selected Borel and TxT to be the selected
maximal torus. Then B°P = B^xB and therefore B°P H GA =: TA is the
diagonal subgroup of TxT. By counting dimension, we get convinced that
S^GA is dense in GxG. Therefore GA is spherical and has the required
position relative to B0^. By (1.4), this implies that GA = (UxU^T^. By
Schur's lemma, (V\ (g) Vp,)0^ is not zero if and only if fi = A*. Therefore
g = {(A, A*) | A € X+} ̂  X+ is saturated. One should be careful at this
point, since we choose a Borel in GxG such that its second factor is B0?.
But, we still denote highest weights with respect to BxB. Anyhow, having
in mind the preceding argument, the following result is a straightforward
consequence of (2.2). (In what follows, we omit the subscript A.)

4.2. THEOREM. — The algebra of invariants of a reducible action
(G : X x Y) has a natural X^-filtration. There is an isomorphism of 3L(_-
graded algebras

gT^k[XxY}G^(k[X}u^k[Y}uop)T^

where T acts diagonally on the tensor product. D

Now, we are in position to show that the description of the associated
graded algebra given in [26] can be considered as a particular case of
(4.2) and hence of (2.2). Take Y = G and consider the G-action on
G by right multiplications. This means the action pr : GxG —^ G is
given by pr(s,g) = gs~1. (The left-hand copy of G acts on the right-
hand one.) For the corresponding diagonal G-action on XxG, we then
get the isomorphism 0 : k[X} —> k[XxG}° given by (f>(p)(x^g) = p(gx),
p C k[X], Along with the diagonal action, one can introduce the following
one: (5, {x,g)) ^ pi(s, (x,g)) := {x,sg), s C G, (x,g) € XxG. It is
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immediate that both actions under consideration commute and pi induces
the original (left) G-action on k[XxG}° ^ k[X}. Moreover the X-4--filtration
in ^XxG}0 corresponds under this isomorphism to the G- invariant X+-
filtration in k[X] considered in [26] and which is described in (2.1). Hence
one recover in this way Theorem 5 in loc. cit.

4.3. Example: reducible representations. — The most obvious ex-
ample of a reducible action is a reducible representation. First, I present
an explicit computation proving that the algebra of invariants of some re-
ducible representation is a complete intersection. This is an application of
(4.2) and results of Section 3.

Consider G = Spe and its 2nd and 3rd basic representations,
i.e. X = Vy?2,y = 1^3. In both cases, the algebras of [/-invariants
are polynomial, and degrees and the weights of free generators are
found in [5]. Namely, ^[V^]^ is generated by functions a i , . . . , f t 5 whose
weights are ^25 ^25 ^i + ^s? Q, Q. The functions & i , . . . , & 5 whose
weights are —y?3, —^3, —2y?i, —^2-> Q generate ^V^}^. Therefore
(^[V^J^^A^y^]^01')71 is generated by 0^64, a\a^b^ ajfci, aj&^s, aj&i&a^s?
aj6|&3, 04, 05, &5 and there are two basic relations connecting these func-
tions. Thus, according to (3.5) and (4.2), C = k[V^ 4- Vy^6 is a c.i. and
hdC7 <, 2. Actually, it was shown by D. ShmePkin that hd(7 = 1 in this
case.

This example suggests a general strategy for finding new ones.
Suppose X and Y are G-varieties such that their algebras of [/-invariants
are polynomial. Then ̂ X^ ^^Y]1701^ is polynomial and therefore (^[X]^^
^yjt/^T ^g ̂  algebra of invariants of a linear representation of T. The
problem of describing these algebras is manageable.

Let us apply this strategy to finding new examples of reducible rep-
resentations whose algebras of invariants are complete intersections. In [5],
Table 1, one finds the list of all representations of simple groups with poly-
nomial algebras of [/-invariants. It turns out that (^[Vi]^ 0 ^[Vs]^01')71 is
a c.i. for all pairs V^V^ such that either Vi or its dual is contained in
that table. The homological dimension is also easily computed. Indeed,
the non-zero weights of generators of algebras of [/-invariants are funda-
mental for almost all representations in Brion's table. Therefore the corre-
sponding representation of T decomposes into the sum of representations of
one-dimensional subtori corresponding to simple roots. Since the algebra
k\V\ + V^}0 is a deformation of the preceding one, one obtains only in-
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equality for its homological dimension. Actually, it often turns out that
M^i +^2]6' is polynomial, while ^[V^ 0 fc^F0'>)T is not. This reflects a
general feature that algebra becomes better after deformation. These cases
are not included in the following table. Since the results for G = 5Z/2, SL^
are easy, these cases are also excluded.

CLAIM. — Let V be a representation of a simple group G ^
SL^^ SL^. Suppose k[V}° is not polynomial and there is a decomposition
V = Vi + Vz such that both k^^ are polynomial. Then (i) k^}0 is a c.i.;
(ii) either V or its dual is contained in the following table.

Table

Group

An

An

An

A3

As

A5
A5

A5

B2

B2

Cs

D4

DQ

DQ

V = Vi + V2

oV^ + bV^ + (2-b)V^, + (4-a)V^

V2^i +aV^ +bV^ +(l-b)V^, +(2-a)V^

V2^i + 2V^ + 2V^

v^ + 3^2 + y^
2^1 + 3^2

V^ + V^2 + ̂ 3 + ̂ 5

2^1 + ̂  + ̂ 3

2^1 +1^3 + ̂ 4
2Yy,i 4- 2V^

3Vy,i + ̂ 2

^2 + ̂ 3

fcy^i + ̂ ^3 + mv^
2^4 + 2y^

2Vy,i + aV^ + bV^

Conditions
a < 2 ;

a > 6, if n is even

a + 2b 7^ 2, if n is even

f c + Z + m = 6,
max{A;, Z,m} < 4

a+b = 2

hd

<n

<n

<3

< 2

< 2

<3

<3

<3

1

< 2

<2

<4

< 5

<6

An upper bound for homological dimension is given in the last
column. It is an attractive problem to find the precise value of homological
dimension. The lower bound (which is at least 1) is often suggested by
the explicit form of the Poincare series. The representations V\^Vez are
not indicated explicitly, because they are uniquely determined by V. For
instance, if G is of type A5 then V\ is always V^. The only exception is the
first representation of Ba. There are two possibilities for V\ in this case:
2V^ or V^ + V,V2'
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4.4. Example: double cones I. — In this subsection G is simple.
For A € X+, let G(A) denote the closure of the G-orbit of highest weight
vectors in V\. This is a variety with rational singularities. A double cone
is a G-variety of the form G(Ai)xG(A2). Since each G(A) is a cone in the
respective vector space, G(Ai)xG(A2) is acted upon by the extended group
G = GxT2, where T^ is a two-dimensional torus. According to [31], G(A) is
factorial if and only if A is fundamental. Factorial double cones which are
spherical with respect to the G-action were classified by Littelmann [17].
The algebra A;G(Al)xG(A2)]£/ is polynomial in this case and one can apply
the above general strategy to quadruple cones, i.e. to the product of two
double cones. We shall say a factorial quadruple cone Z is excellent^ if it
is the product of two G-spherical double cones. Below I give a summary of
my computations of algebras of G-invariants on excellent quadruple cones.

CLAIM. — Let G be of type Bn, Cn, Ee, or Ey and Z = XxY be
an excellent quadruple cone. Then

(i) (^[Xj^^y]^01^ is a c.i. and its homological dimension ̂  rkG;

(ii) k\Z\0 is a c.i. as well and hd^Z]0 ^ rkG.

In many cases, it turns out that both these algebras are even polynomial.

Proof. — (i) By [17], Table 1 and straightforward computations.

(ii) Since Z is the product of cones, one can apply (3.5) to G = ^Z}0

and grG = (fcpC]^ 0 ̂ [V]^)71. D

For G of type Ayi, every factorial double cone is G-spherical [17].
Therefore a factorial quadruple cone Z may be presented as the product
of G-spherical double cones in (at most) three different ways. I did not
succeed in getting a general description of k[Z}0 by deformation method.
In [10], it was stated that k\Z^0 is always polynomial. However, D. Wehlau
observed that k\Z^ is a hypersurface for G = SL^ and its unique factorial
quadruple cone Z. This is the only exception.

For G of type Dyi, there are also many excellent quadruple cones
Z = XxY such that (^Xf 0 ̂ Y}^^ and hence fc[Z]0 is a c.i.
Nevertheless, (^[X^ xk^}^ Y is not a c.i. for some of them. For instance,
this is the case for n = 5 and X = Y = C{^)xC{(p^). However it may be
true that k[XxY]° is still a c.i.

There are no excellent quadruple cones for G of type Es, ?4, €2.

Most (but not all) of the previous examples are covered by the
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following general assertion. We shall say X is a G-cone, if k[X] admits
00

a grading k[X] = ̂  k[X}i such that G respects it and k[X]o = k.
i=0

4.5. THEOREM. — Let G be semisimple and X^Y be factorial
G-varieties having only rational singularities. Suppose ^X}17^^}17 are
polynomial and are generated by functions whose weights are fundamental.
Then (A;[X]17 0 ^[V]17011)71 is a c.i. and its homological dimension <: rkG.
Moreover, if either ^X}0 = k\Y}0 = k or X, Y are G-cones, then the same
holds for k[X xY}°.

Proof. — We have a representation of T on N := Spec(A;[X]^ 0

A^y]^). Then N = © N,, where ; = rkG, No = TV71, and the weights ofT
i==0

in TV, belong to the set {^, -(pi}. Therefore ̂ N^ = ̂ [M^O^i^A^).
Let N^~ (resp. A^"~) denote the subspace corresponding to weight ̂  (resp.
-(^). It follows from [22], 2.4 (i) that dimN^ < 2. Therefore ^[A^
is at worst a hypersurface (if dimNi = 4). This proves the assertion on
^N]7'. If anyone of two extra constraints imposed on XxY holds, then one
completes the proof by applying either (3.4) or (3.5) to grG = ^N}7' and
c^^xxY}0. D

Another series of examples is connected with symmetric varieties.
Let G be semisimple and 0 e Aut G be an involution such that the
symmetric variety G/Ge is of the maximal rank, i.e. dimGe = dimU.
Here GQ denotes the fixed-point subgroup of 0. One may assume that 0 is
chosen such that 0(B) = B°P and 0{t) = t~1 for all t C T (see e.g. [33]).
Then GQ H B°P = {t e^T \ t = t-1} ^ (^)1 and GeB0^ is dense in
G. Therefore by (1.4), Ge = (^ • U and ^ = r(G/Ge) is generated by
2( /? i , . . . , 2(pi. It then follows from (2.2) that

(8) g^k[X}G^k[X^^(k[X}u)^l

for any affine G-variety X. Suppose ^[X]^ is polynomial. Then
Spec(gr ^X}00) is the quotient of a linear space by (^2)^- In each indi-
vidual case, it is easy to determine whether this algebra is a c.i. It is also
possible to give a sufficient condition, which is similar to Theorem (4.5).

4.6. THEOREM. — Let X be a factorial G-variety having only
rational singularities and either X be a G-cone or ^X}0 = k. Suppose
fc[X]17 is polynomial and is generated by functions whose weights are
fundamental. Then ̂ X}06 is a c.i. and hd^X}06 < I = rkG.
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Proof. — It goes through similar to that of (4.5). We have a linear

representation of (l.^)1 on M = Spec^X]^). Then M = @ M^ where
1=0

Mo = M1 and Mi (i ^ 1) corresponds to ̂ . Since the %th factor of (^)1

acts only on M,, we have ^(M]^2)' == k[MQ\^{^\^k[MiY"2). Again, by [22],
2.4, dim Mi < 2. Therefore A^/Z2 is at worst the quadratic hypersurface
in A3 and gi^X}00 ^ k[M]^1 is a c.i. of homological dimension < I .
Finally, one can apply either (3.4) or (3.5) to gr^X}00. D

Consider several examples related to this theorem. We retain the
conventions from (2.4).

1. Let G = SLn and X = V^ + V^ + V^ (n > 5). Then Go = SOn
and X \s0n= 2V^ + V^. Since ^[X]^ is polynomial and the weights of
generators are fundamental [5], Table 1, one concludes k[2V^ -^-V^}801^ is
a c.i. and its homological dimension < n — 1.

2. Let G = Spin^ and X = V^ + V^. Then GQ = SL^xSL^ and
X [ce^ V^ (g)I +10 V^ + V^ 0 Vy,, + V^ 0 ̂ 3. By the same reason, the
algebra of invariants of the latter representation is a c.i. and its homological
dimension <, 6.

3. Let G = Sping and X = V^ + V^ + V^. Then GQ = (^La)4 and
X \GQ is the sum of 6 four-dimensional irreducible representations. Each
of them is tensor product of 2 trivial representations and two simplest
representations, for all possible pairs of simple factors of GQ. Again, the
algebra of G^-invariants is a c.i.

4.7. Remark. — I think the examples in this section should be
helpful in classifying of reducible representations of simple groups such that
A^V]0 is a c.i. (The irreducible ones have been classified by H. Nakajima
in [19].) Namely, I hope that if a reducible representation does have this
property, then in most cases this might be proved by a deformation-type
argument.

5. The dual G-variety and doubled actions.

An interesting class of reducible actions consists of the doubled ones.
Informally speaking, in this case, X and Y are isomorphic as abstract
varieties but k[X] and k[Y] are dual G-modules. The first example of this
kind is the sum of a representation and its contragredient. The precise
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definition makes use of the selected B^T C G and goes as follows. (It
makes sense for arbitrary varieties, but we content ourselves with the affine
case in this paper.) For any G-variety X, we define another ("dual") G-
action on X. In order to distinguish these two actions, the variety equipped
with the dual action will be denoted by X*. By abuse of language, we shall
say that X* itself is the dual G-variety. Let i : X —^ X* be a (fixed)
isomorphism and a-* := i(x). The twisted action is defined by

(g.x^^gox" :=(0(g)x)\ x ^ X . g e G ,

where 0 e Aut G is an involution such that 6(B) = B°P and 6(1} = t~1

for any t € T. The last condition is automatically satisfied on G' D T.
Therefore it is essential only for the connected center of G. The using of
"*" presuppose that it is clear which group acting on a variety is born in
mind. For a G-module V, the G-module V* in the sense of above definition
is isomorphic to the dual module in the usual sense. It follows that if X is
equivariantly embedded in V, then X* is equivariantly embedded in V*.

The diagonal G-action on XxX* is said to be doubled (with respect to
the original G-action on X). Denote by G the natural semi-direct product
of G and {0) ^ Z^' The doubled action of G on XxX* is extended to G
by0(^*)=Q/,^).

In what follows, we use the usual notation for quotients. If an affine
variety X is acted upon by an algebraic group A, then X / / A := Spec ̂ [X^
whenever the algebra A^X^ is finitely generated. The inclusion A^X^ <—^
k[X} induces the quotient morphism TTA : X —>• X//A.

5.1. PROPOSITION. — The T-varieties (X//U)* and X* //U0^ are
canonically isomorphic. (Here the first ̂  denotes the dual T-variety and
the second one denotes the dual G-variety.)

Proof. — Since 0(U) = U0^, this is almost tautological. It follows
from the fact that the highest weight of an irreducible representation is
opposite to the lowest weight of the contragredient one. D

This proposition and (4.2) show that, given a doubled G-action, the
associated graded algebra for G-invariants is the algebra of r-invariants of
some doubled torus action. This observation allows us to give another proof
of the fact that ^XxX*]0 is polynomial whenever A^X]^ is polynomial
and X is a spherical G-variety (cf. [23], Prop. 5). Indeed, in this case X//U
is a T-module, and the weights of T in X//U are linearly independent.
Therefore k[X//Ux(X//U)*]T is generated by the products of the pairs of
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corresponding coordinates, i.e. it is polynomial. The following result shows
there is a substantial application of (4.2), when the algebras of ^/-invariants
are not necessarily polynomial. It relies on the theory developed in [24].
Recall that the complexity of a G- variety is the minimal codimension of B-
orbits in it. It then easily follows that the complexity of the affine G-variety
X equals the minimum of codimension of T-orbits in X / / U .

5.2. THEOREM. — Let X be an affine factorial unirational G-
variety of complexity one such that ^X}0 = k and k[X] does not contain
non-constant invertible elements. Suppose hdA^X]^ < 1. Then ̂ XxX*}0

is either a hypersurface or a polynomial algebra.

Proof. — By (3.7) and (4.2), it suffices to obtain the same conclusion
for (fctXj^^A^X*]^01')71. In this form the assertion concerns only properties
of the r-variety X//U and its dual. Therefore one may assume T acts
effectively on Y := X//U (simply by taking the quotient of T by the kernel
of the action). Then the assumption on complexity reads dimT+l = dimV.
The case hdA;[V] == 0 is easy. For then one has a self-dual T-module
V + Y* of dimension 2dimr + 2, and an explicit computation shows
k[Y + Y'*]7^ is a hypersurface (see [24], 3.10). Further we assume Y is
a hypersurface. The variety Y is again factorial and unirational. Since
k^Y^ = ^[X]0 = k and the only invertible functions on Y are constants,
the single closed T-orbit in Y is a fixed point. Let N be the tangent
space at this point. This is a V-module of dimension dimY + 1 and by
Nakayama's lemma there is a closed equivariant embedding Y c—^ N.
Obviously, Y is a cone in N. Put r = dim TV. Let a:i,...,a;r be the
coordinates in a weight basis of N. According to [24], Section 2, the
equation defining Y in N is a sum of exactly three monomials in a^'s,
say mi (a:), m^x), m^x). Let t / i , . . . ,2 / r be the coordinates in the dual
basis of TV*. By (5.1), we have V* = X*/^°P ̂  TV* and the equation
defining V* is the sum ofmiQ/), m^(y)^ 7713 (y). Of course, rrii(y) denotes
the same monomial as above but in y^s. Since Xi and yi are weight functions
of opposite weights, the same holds for mj(x) and mj(y). Therefore the
functions XiVi (i = l , . . . , r ) and mi(x)mj(y) (i ^ j) are contained in
k[N © TV*]71. From the description of the weighted structure of of k[Y] and
k[N] given in [24], Section 2, it follows that k[N ® TV*]71 is generated by
these functions. Therefore edk[N ® TV*]7^ = r + 6. Restricting this set of
generators on VxV*, one can remove all mi(x)mj(y), except one, out of
the generator system. (The bar is used for denoting restricted functions.)
Indeed, assume that we have mt(x)m^(y). Since m\(x)m\{y) belongs to
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the subalgebra generated by a^'s, one obtains m\(x}m^(y) by using the
relation miQ/)+m2(^)+m3Q/) = 0, etc. Thus fclYxy*]71 is generated by r+1
functions ^1^1,..., XrVr, ̂ i{x)m^(y). Since T-action on YxY* is effective
and stable, the Krull dimension of ^[VxY*]71 equals 2dimy — dimT = r,
and we are done. D

Remark. — In [24], I proved that X//U is a c.i. under the hypothesis
of (5.2). Therefore the assumption for X//U to be a hypersurface is less
restrictive than it might appear at first glance. Actually, I do not know
examples of X as in (5.2) and such that hdA^X]^ > 2.

My last goal is to obtain some results on the canonical module of
the algebra of invariants of a doubled action. In view of (5.1), we first
consider doubled actions of tori in more details. Let V be a normal affine
T- variety. Without loss of generality, one may assume that the T-action on
V is effective. We let Y^ denote the non-singular locus of Y. Since T is
reductive, the quotient mapping 71-7 : YxY* —>• Y x Y * / / T is well defined.
Consider two open subsets of VxV*:

R = {p | Tp is finite},
S = {p | p e (VxY*)^, 7rr(p) € (YxY^/TY^ and TTT is smooth in p}.

5.3. PROPOSITION.

(i) The complement of R does not contain divisors.

(ii) IfY is factorial, the same is true for the complement of S.

Proof. — (i) It is easy.

(ii) Assume not. Denote by D the union of all irreducible components
of y x y* \ S which are of codimension one. Since Y x V* is factorial, the
defining ideal V(D) of D is principal. Since D is T-stable, V(D) is generated
by a T-semi-invariant, say /. Recall that T = Tx{0} also acts on VxV*.
It is immediate that D is r-stable as well. Therefore 6 ' f = ±f. On the
other side, by definition of 0, the semi-invariants / and 0 ' f have opposite
weights. Hence / is a T-invariant. This implies 7Tr(£)) is a divisor as well
and D = -Trj^TrT^D)). Now the same argument as in [12], Satz 2, shows
that D D S ^ 0. This contradiction proves the assertion. D

This proposition contains the necessary ingredients for obtaining
results on the canonical module of the algebra of invariants of doubled T-
actions. Recall that the canonical module (canonical sheaf) o;y is defined
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whenever Y is a Cohen-Macaulay variety, and this is a reflexive module of
rank one (see e.g. [7], Ch. 3). In this case, Y is called Gorenstein, ifo;y is
invertible (locally free).

5.4. PROPOSITION. — Let Y be an afnne factorial T-variety having
only rational singularities. Then

(i) Q := Y x Y " / / T is Gorenstein;

(ii) there is an T-equivariant injection cjyxy* ̂  TT^Q.

Proof. — (i) By (5.3) and [13], Kor. 2, it suffices to prove that
(^Yxy-)71 is a free ^YxY*^-module. Since ^YXY* ^ ^Y ®^Y^ and ujy is
free, it follows from the definition of the dual action that fc[Yxy*]-module
^YxY* is generated by a r-invariant element.

(ii) It follows from the preceding exposition that all assumptions of
[12], Satz 1, are fulfilled. D

From now on assume also that k[Y] is N-graded such that fc[y]o ==
00

k and T preserves this grading. Let Fky{z) = ^dimfc[y]^ be the
1=0

corresponding Poincare series. Since ujy is also graded, one can consider
the analogous series F^y{z). It is well known that both of them are the
expansions of rational functions in z and that F^y(z) = (—l^Ffey^"1)?
where d = dimV. This relation holds whenever Y is normal and Cohen-
Macaulay, see 4, 4.1. We set qy := — deg-Fj^y]. Then qy equals the smallest
degree of non zero elements in c^y. Since fc[yxV*] and kQ = ̂ YxY*}71 are
N^graded, one can consider their Poincare series and introduce similarly
the 2-component vectors qyyy* and QQ. Clearly gyxy* == (^y^y), because
QY = <?y* •

5.5. COROLLARY. — 9yxy- = QQ-

Proof. — Since the complement of R in Y x V* is of codimension
> 2, one can apply [12], Kor. 4. For the sake of completeness, I shall
give some details of that argument. In the graded case, the injection of
modules in (5.4) is degree-preserving. Therefore qyxY* > QQ- Let ri,r2 be
the homogeneous generators of cjyxy- and UJQ respectively (in the graded
case these modules are free). Then ri = fr^ for some / € A^Yxy*]71. Since
/ does not vanish on A, it must be constant. Therefore qyyy* = degri =
degr2==(?Q. D
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Let us return to the G- variety X. Suppose X is a G-cone. We shall
obtain some information on the graded structure of k[XxX*}0 by using
the results on Y := X / / U . Consider A;[X]17 with the inherited N-grading,
that is, k[X}V = k^f H k[X]i. Then k[X}^ = k and qx//u is well defined.
For N^graded algebra C = ̂ XxX*}0, the 2-component vector qxxx^//G
can be defined. More precisely, let

Fc(zi^Z2)= ^ dim(k[X]n 0 ̂ X^z^z^
n,m>0

be the respective Poincare series. Then
QXXX-//G •'= (- deg^ Fc, - deg^ Fc).

5.6. THEOREM. — Let X be an affine factorial G-cone having
only rational singularities. Then X x X * / / G is Gorenstein and Qxxx*//G =

(Qx//u 5 Q x / / u ) '

Proof. — (i) Since C is a Cohen-Macaulay domain, the condition of
being Gorenstein can be stated in terms of Fc [27]. We consider A;[X]17 and
hence grG = (^[X]^ 0 k^}^)71 with the inherited grading. Therefore
FC = Fgrc (see (3.6)). Thus the Gorenstein property for grG (5.4) implies
that for C.

(ii) In view of (5.5) and the equality Fc = FgrCi o11^ has qxxX*//G =

QYXY-//T = QYXY- = (Qx//u 5 q x / / u ) ' D

The equality for degrees of the Poincare series was conjectured in
[22]. This allows to predict in many cases degree of relations connecting
generators.

5.7. Example: Double cones II. — We retain the notation of (4.4).

1. Let G be of type Ey and X = C((pi)xC(^)' (Recall that we
number fundamental weights as in [30].) The complexity of X as G-variety
equals one [21], 2.8, and Iu := ^[C'^^xG^)]17 is a hypersurface [22],
3.11. Thus, by (5.2), the algebra 1^ = ̂ C^xC^xC^YxC^Y}0

is at worst a hypersurface. Note that C((pi) ̂  G((^)* as Ey-variety but not
as a G-variety. For varieties of complexity one, there is a recipe for writing
the Poincare series of the algebra of invariants of the doubled action, if the
algebra of [/-invariants is known [23], th. 6. Using degrees of the generators
and of the relation in Iu given in [22], one can write explicitly down the
Poincare series for Jg. I am not going to make it here, but this bulky
formula shows 1^ is not polynomial. Hence this is a hypersurface.
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2. Let G be of type Bn or Cn and X = C{^)xC{(pn), n > 3. By
[22], 3.13, one has the same situation as in the previous example.

3. Combining results in [17] and [22], one may obtain a description
of G-invariants for some quadruple cones which are not excellent. For
instance, take G = Ey, X = C7(^i)x C^), and Y = C^^xC^). Here
^[X]^ is a hypersurface and fe[y]17 is a polynomial algebra (of dimension
8). Then a straightforward verification shows that (A;[X]^rxk[Y}UOI>)T is a
hypersurface. Hence hdA;[C((^l)x(7((^2)XG(y?l)xCr((^7)]]E7 ^ 1.
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