Annales de l'institut Fourier ### NIKOLAI S. NADIRASHVILI ## The Martin compactification of a plane domain Annales de l'institut Fourier, tome 44, nº 5 (1994), p. 1351-1354 http://www.numdam.org/item?id=AIF 1994 44 5 1351 0> © Annales de l'institut Fourier, 1994, tous droits réservés. L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ # THE MARTIN COMPACTIFICATION OF A PLANE DOMAIN ### by Nikolai S. NADIRASHVILI In this note we prove the following THEOREM. — The Martin compactification of a plane domain is homeomorphic to a subset of the two-dimensional sphere. Assumptions. — If Ω be a plane domain and $\mathbb{R}^2 \setminus \Omega$ is polar then any positive harmonic function on Ω is a constant. In this case we define the Martin compactification of Ω as a one point set. So we assume from now on that $\mathbb{R}^2 \setminus \Omega$ is non-polar. We may also assume without loss of generality that $\bar{B}_1 \subset \Omega$ where B_1 is the unit disk in \mathbb{R}^2 with the center at 0. Remark. — If a simply connected domain is a proper subset of the plane then by Riemann mapping theorem its Martin compactification is homeomorphic to a closed disk. Conjecture 1. — The Martin compactification of a subdomain of a compact Riemannian surface is homeomorphic to a subset of this surface. Conjecture 2. — Any compact metrizable space can be represented as the Martin boundary of a certain (generally of infinite genus) Riemannian surface. ### 1. The Martin compactification. Let G(x,y) be the Green function of the Dirichlet Laplacian on Ω , with the pole at x. Let us denote $g_x(y) = G(x,y)/G(x,0)$ for $x \neq 0$ and Key words: Martin boundary. A.M.S. Classification: 31A20. $g_0 \equiv 0$. Let $\tilde{g}_x(y)$ be the restriction of the function $g_x(y)$ on $y \in B_1$. So we have a map $$\gamma: x \to \tilde{g}_x \in L^2(B_1).$$ The Martin metric on Ω can be defined as the metric inducted on Ω by the map $\gamma: \Omega \to L^2(B_1)$, (cf. [1]). Compactification of Ω in the Martin metric we denote as Ω^M . Canonical map. We set $$f: x \to \nabla_u g_x(0)$$ and $f(0) = \infty$ by the definition. We claim that the introduced canonical map f has the uniformly continuous inverse map from $f(\Omega)$ to Ω^M . Proof of the theorem. **1.1.** Let $G \subset \mathbb{R}^2$ be a domain and Q a disk such that $\bar{Q} \subset G$. Also, let $a_i \in \partial Q, i = 1, ..., 2n$, be distinct points on ∂Q . We assume that the a_i are indexed in the order in which they are encountered when traversing ∂Q . Let f be a continuous function in $G \setminus Q$ such that $f(a_i)f(a_{i+1}) < 0$ for all i = 1, ..., 2n - 1. We denote by $G_i \subset G \setminus \bar{Q}$ the domain where f does not change sign, such that $a_i \in \bar{G}_i$. **Lemma** ([2]). — At least n + 1 of the domains G_i , i = 1, ..., 2n, are distinct. **1.2.** Let $$x_1, x_2 \in \Omega$$. We prove that if $f(x_1) = f(x_2)$ then $x_1 = x_2$. Let $u=g_{x_1}-g_{x_2}$. Then $\Delta u=0$ in $\Omega\setminus \{\{x_1\}\cup \{x_2\}\}$, $u(0)=\nabla u(0)=0$. Let Γ be the nodal set of u, $\Gamma=\{x\in\Omega,u(x)=0\}$. If $u\not\equiv 0$ then in a neighborhood of 0, Γ consists of n smooth curves intersected at the point 0, where n is an order of vanishing of the function u at 0 (cf. [2]). By Lemma Γ splits the domain Ω at least on three distinct subdomains. By maximum principle each of those subdomains should contain a pole of the function u. Since function u has only two poles x_1,x_2 , it follows that $u\equiv 0$. 2. Now we prove that the map $$F: z = f(x) \in f(\Omega) \to \tilde{q}_x$$ is uniformly continuous. - **2.1.** Let $\bar{B}_1 \subset B$, $\bar{B} \subset \Omega$. By Harnak inequality for any $x \in \Omega \backslash B$, $\tilde{g}_x < C$, where C > 0 is some constant. - **2.2.** Let $x_n, z_n \in \Omega, n = 1, 2, ...,$ and $g_{x_n} \to h_1, g_{z_n} \to h_2$ on any compact in Ω as $n \to \infty$, $h_1 \not\equiv h_2$. Its required to prove that $\nabla h_1(0) \not\equiv \nabla h_2(0)$. Let us assume the contrary, namely that $\nabla h_1(0) = \nabla h_2(0)$. We denote $h = h_1 h_2$ and let k be an order of vanishing of the function h at $0, k \geq 2$. - **2.3.** Let Γ be the nodal set of the function h. There exists such a small $\rho > 0$ that on $S_{\rho} = \partial B_{\rho}$, $|\nabla h| > 0$ and the cardinality of the set $S_{\rho} \cap \Gamma$ is equal to 2k. - **2.4.** We prove the existence of two bounded non-constant harmonic functions v_1, v_2 in Ω , such that $\nabla v_1(0) \neq 0$, $\nabla v_2(0) \neq 0$, $\nabla v_1(0) \neq a \nabla v_2(0)$, for any $a \in \mathbb{R}$. Let us choose discs $D_1, D_2, D_3 \subset \mathbb{R}^2$ such that $D_i \backslash \Omega$ non-polar, i=1,2,3, and for any points $x_i \in D_i$ the quadrangle $0,x_1,x_2,x_3$ is convex. Let μ_i be a probability measure on $D_i \backslash \Omega$ such that the convolution $\ln |x| * \mu_i$ is bounded from below. We set $v_1 = \ln |x| * (\mu_1 - \mu_2), v_2 = \ln |x| * (\mu_3 - \mu_2)$. Then v_1, v_2 are bounded harmonic functions in Ω and the $\nabla v_1(0), \nabla v_2(0)$ have the required property. For any $\alpha \in \mathbb{R}^2$ there exists a unique linear combination $$w_{\alpha} = \beta_1 v_1 + \beta_2 v_2 - \beta_1 v_1(0) - \beta_2 v_2(0)$$ such that $\nabla w_{\alpha}(0) = \alpha$, $w_{\alpha}(0) = 0$. Further, if $|\alpha| \to 0$ then $|w_{\alpha}| \to 0$ uniformly in Ω . 2.5. Let us denote $$\nabla g_{x_n}(0) - \nabla g_{z_n}(0) = \alpha_n,$$ $$q_n = g_{x_n} - g_{z_n} - w_{\alpha_n}.$$ Then $q_n(0) = \nabla q_n(0) = 0$ for all n = 1, 2, ... From (2.1), (2.2), (2.4) it follows that $q_n \to h$ in B_1 and hence also $q_n \to h$ in $C^1(B_\rho)$ as $n \to \infty$. Therefore, if Γ_n is a nodal set of q_n then for a sufficiently large $n \geq N$, $S_{\rho} \backslash \Gamma_n$ is a union of 2k distinct intervals I_n^1, \ldots, I_n^{2k} and $$\sup_{n\geq N} \inf_{1\leq j\leq 2k} \sup_{I_j^j} q_n > a > 0$$ with some constant a. Since $w_{\alpha_n} \to 0$ uniformly in Ω as $n \to \infty$ then for sufficiently large $n \ge N' \ge N$, $|w_{\alpha_n}| < a$ in Ω . Hence $|q_n| < a$ on $\partial \Omega$ for $n \ge N'$. **2.6.** Since $q_n(0) = \nabla q_n(0) = 0$ then by Lemma the set $\Omega \setminus \Gamma_n$ contains at least three components G_1, G_2, G_2 such that $0 \in \bar{G}_i$, i = 1, 2, 3. From (2.5) it follows that for $n \geq N'$ and i = 1, 2, 3 $$\sup_{G_i \cap B_{\rho}} |q_n| > \sup_{\partial G_i} |q_n|.$$ By the maximum principle from the last inequality it follows that any of the domains G_i , i = 1, 2, 3 contains a pole of function q_n . Since the function q_n has only two poles we get a contradiction which proves the theorem. #### BIBLIOGRAPHY - J.L. DOOB, Classical potential theory and its probabilistic counterpart, Springer, 1984. - [2] N.S. NADIRASHVILI, Multiple eigenvalues of the Laplace operator (Russian), Matem. Sb., 133 (175), 1987; English translation in Math. USSR Sbornik, 61 (1988), 225–238. Manuscrit reçu le 13 avril 1994, révisé le 21 juillet 1994. Nikolai S. NADIRASHVILI, Institute of Earth Physics Moscow (Russia).