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FOLIATIONS ON THE COMPLEX PROJECTIVE PLANE
WITH MANY PARABOLIC LEAVES

by Marco BRUNELLA

Let F be a holomorphic foliation with isolated singularities on the
complex projective plane CP2. The leaves of F are non compact Riemann
surfaces whose structure can be very complicated and may be analyzed from
various points of view. From the function theoretic point of view, there is
a classical distinction between parabolic and hyperbolic (=not parabolic)
Riemann surfaces [Tsu] : a Riemann surface R is said to be parabolic
if it does not admit a positive non constant superharmonic function, or
equivalently if it does noet admit a Green function. Parabolic Riemann
surfaces have a “small” ideal boundary and are, in some sense, the simplest
Riemann surfaces; examples are closed surfaces minus a finite set. On the
other hand, their topology can be arbitrary and so their simplicity is only
from the analytical point of view.

Aim of this paper is to prove that a foliation with “sufficiently many”
parabolic leaves must have a very simple dynamics. We need the following
concept [Suz]. Let V C CP? )\ Sing(F) be a F - invariant set, then we say
that V has positive capacity if there exists a disc T' transverse to F such
that TNV C T has positive (logarithmic) capacity [Tsu]. We also recall
that a singularity p € Sing(F) is hyperbolic if the linear part at p of a
vector field which generates F near p has eigenvalues different from zero
and with non real ratio. See [Arn|, §36, for the topology of this kind of
singularities. Clearly, a generic foliation has only hyperbolic singularities.

THEOREM. — Let F be a foliation with hyperbolic singularities on
CP?. Assume that the set of parabolic leaves

P = {p € CP?\ Sing(F) | L, is parabolic}

Key words : Holomorphic foliations — Harmonic measures — Parabolic Riemann surfaces.
A.M.S. Classification : 58F23 — 32L30 — 57R30.



1238 MARCO BRUNELLA

has positive capacity. Then F is a linear hyperbolic foliation, i.e. there is
an affine chart C?> C CP? such that F|c: is given by zdy + \ydx = 0, for
some A € C\ R.

Let us observe that some hypothesis on Sing(F) is necessary to obtain
the conclusion of the theorem. For example, a foliation with a meromorphic
first integral or a foliation which is the pull-back of a linear foliation by a
rational map of CP? (of degree > 2) has all its leaves parabolic, but also
has non hyperbolic singularities.

The proof of the theorem is in two steps : first we prove the existence
of an algebraic leaf L € F (i.e., a leaf whose closure is an algebraic curve),
using the theory of harmonic measures [Gar], then we analyze the structure
of L in order to apply the constructions of [CLS2].

1. Existence of an algebraic leaf.

We firstly recall the (well-known) fact that there is only a countable
set of leaves of F with nontrivial holonomy. This is a consequence of the
finite generation of the holonomy pseudogroup of F, together with the
property that nontrivial fixed points of one dimensional biholomorphisms
are isolated.

For every L € F we denote by L its holonomy covering, i.e. the
covering of L associated to the kernel of the holonomy representation of
L. Because a countable set has zero capacity, the hypothesis that P has
positive capacity means that

P = {p € CP?\ Sing(F) | f/p is parabolic}

has also positive capacity.

Take now the restriction F* of F to any affine chart C? c CP?,
with CP? \ C? not F- invariant. To every leaf L € F there corresponds
a leaf L* € F* obtained from L by deleting a discrete set, so that the
parabolicity of L or L is equivalent to that of L* or L* [Tsu]. The foliation
F* is defined on a Stein manifold and the leaves with parabolic holonomy
covering form a set of positive capacity. Hence we may apply theorem I of
[Suz] to conclude that every leaf of F* has parabolic holonomy covering. It
follows that every leaf of F has parabolic holonomy covering (in particular,
every leaf of F is parabolic).
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Let pi,...,px € CP? be the (hyperbolic) singularities of F. For
every j = 1,..,k let U; be a small round neighborhood of p;, with
S; = 0Uj real analytic and transverse to F. Let G be the foliation obtained
by doubling the foliation F|g P2\US_ U, 5 it is a transversely holomorphic
foliation without singularities and defined on some compact manifold M
(which is not complex). Moreover, the leaves of G have a natural complex
structure, obtained by doubling the complex structures of the leaves of
Flc PR\UE_,U; (Schwarz’s reflection principle). A theorem of Kusunoki and
Mori [KM] asserts that if R is a parabolic Riemann surface and S C R
is a subsurface with real analytic boundary then the double of S is still
a parabolic Riemann surface. Hence we deduce that every leaf of G is a
parabolic Riemann surface.

In order to continue the proof, we need a few facts about harmonic
measures [Gar], [Ghy]. Fix a Riemannian metric g on M, such that the
restriction of g to every leaf of G is hermitian. Let AY denote the foliated
laplacian associated to (G, g). A probability measure p on M is said to be
harmonic if its foliated laplacian is zero, i.e. u(A9 f) = 0 for every function
f continuous on M and of class C? along the leaves (we are considering
a measure as a linear functional on the space of continuous functions). It
is established in [Gar] that the set of harmonic measures is non empty;
more precisely, if K C M is a compact G - saturated set then there exists
a harmonic measure whose support is contained in K [Ghy].

The simplest example of harmonic measure is constructed by combin-
ing a holonomy invariant measure (if it exists) with the area form on leaves
of G. Conversely, it is proven in [Ghy] that if 4 is a harmonic measure such
that for p - almost every p € M the leaf L, € G does not possess a positive
non constant harmonic function, then u can be decomposed as a product
of a holonomy invariant measure with the area form on leaves.

All these properties of harmonic measures hold for any foliation on a
compact Riemannian manifold; but in our case the leaves are parabolic
Riemann surfaces and so they do not have positive non constant (su-
per)harmonic functions (recall that the metric g is hermitian on leaves).
Hence a consequence of the previous theory is that for every compact G-
saturated set K C M there exists a holonomy invariant measure whose
support is contained in K.

Let now K C M be a minimal set of G (possibly K = M) and let p
be a holonomy invariant measure with supp(u) C K, that is supp(p) = K.
Denote still by Si, ..., Sk C M the 3-spheres arising from the boundary of
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CP?%\ ij U;. If KN LkJ S; = @, then K corresponds to a compact minimal
! A

set of fﬂc P2\Sing( _7.-)]; but this is not possible because such a minimal set
cannot support a holonomy invariant measure [CLS1]. Hence K intersects
some sphere S;, and KNS; is a compact set saturated by the foliation G|s,,
which is a one - dimensional foliation with two hyperbolic closed leaves as
limit set. The measure p induces a holonomy invariant measure v for G|s,
with supp(v) = K N S;, it follows that K N S; is contained in the union of
the two closed leaves and hence K is a compact leaf of G.

Returning to F, we see that there exists an algebraic leaf L € F. The
closure L is an algebraic curve with normal crossings, obtained adding to
L some singular points of F.

2. Holonomy of L and linearization of F.

Because L contains singularities (all hyperbolic), if L is uniformized
by C then L is isomorphic to C* and L either is smooth (diffeomorphic to
a sphere) and contains two singularities, or contains only one singularity
which is a normal crossing. In particular, in both cases the holonomy of L is
cyclic (because 71 (L) is) with a hyperbolic generator (because singularities
are hyperbolic).

Now assume that L is uniformized by D, i.e. L = D/T where
I' >~ m;(L) is a finitely generated Fuchsian group. Observe that I' contains
parabolic elements, because L is a closed Riemann surface minus a finite
non empty set. The holonomy covering L of L is isomorphic to D / I', where
I is the normal subgroup of I" corresponding to paths with trivial holonomy.
The holonomy group G of L is then identifiable (as an abstract group) with
r/T.

The parabolic elements of I' corresponding to paths freely homotopic
to the ends of L have infinite order in the quotient I'/ I, because the sin-
gularities in L are hyperbolic and hence their separatrices have hyperbolic
(= infinite order) holonomy.

Recall that L is a parabolic Riemann surface, and that this is
equivalent to say that I' is a Fuchsian group of divergent type [Tsu]. We can
apply a theorem of Varopoulos [Var] asserting that (because I" has parabolic
elements of infinite order in I'/T") the group I'/T" is a finite extension of Z.



FOLIATIONS ON THE COMPLEX PROJECTIVE PLANE 1241

In fact, the holonomy group G ~T'/ I' is abelian. To see this, assume
that it is not; then G contains a hyperbolic germ h and also a germ g
tangent to but different from the identity, and clearly id # h™ # g™ # id
Vn,m € Z\ {0}. But this is impossible, because a finite extension of Z
cannot contain two infinite cyclic subgroups Hy, He with H; N Hy = {id}.

Because G is abelian and contains hyperbolic germs (even when L ~
C*), we may apply the methods of [CLS2] to construct in a neighborhood of
L a closed meromorphic 1-form w which defines F, and then to extend w to
all of CP? by a Levi type theorem. The polar divisor (w)eo of w is composed
by irreducible algebraic curves I'y,...,I'; C CP?, and the hyperbolicity of

n
Sing(F) implies that (J I'; is an algebraic curve with normal crossings
=1

n
(singularities of _Ul T'; are also singularities of F).
]:

Fix an affine chart C? C CP? such that CP?\ C? does not contain
singularities of the foliation. Let fi, ..., f, be irreducible polynomials which
define T'y, ...,I',, in C?, then we have [CLS2]

df;
w|cz Z/\J =<
fi
where the complex numbers ); are related to the eigenvalues at the
n
singularities and satisfy Y Ajdeg(f;) = 1. Again the hyperbolicity of the
j=1

singularities (\;’s are pairwise rationally independent) implies that every
T'; is smooth (i.e. without selfintersections), and that n > 3.

n
The foliation F does not have singular points outside |J I';, because
j=1
outside this set w is holomorphic (and closed). Hence the cardinality of
Sing(F) is given by

tSing(F) = 3 dea(fi)deg(f;) = (Z deg(f;) ) — 3 (dea(f;))?
>7 Jj=1
On the other hand, F|g: is generated by a polynomial vector field of degree
= lz deg( fj)] —1 (> 2) and hence (because the line at infinity is not
j=1
invariant)

#Sing(F) = (d— 1)+ (d-1)+1=d?> —d+1.
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Comparing the two expressions :

Xn:(deg( fi)=-d*+4d-1

j=1

and, taking into account that d > 2 and n > 3, the only possibility is d = 2,
n = 3, deg(f;) = 1 Vj, from which it follows easily the conclusion of the
theorem. '
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