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SUPERHARMONIC EXTENSION
AND HARMONIC APPROXIMATION

by Stephen J. GARDINER

0. Introduction.

Let f2 be an open set in R71 and E be a relatively closed subset of 0.

This paper solves the following problems. Find necessary and suffi-
cient conditions on (Q, E) so that :

(i) for each superharmonic function u on E, there is a superhar-
monic function u on ^ such that u = u on E (or on an open set which
contains E);

(ii) for each harmonic (resp. superharmonic) function u on E and
each positive number e ', there is a harmonic (resp. superharmonic) function
v on ^ such that u — £ < V < U + £ O I I E ' ^

(in) for each function h which is continuous on E and harmonic on
E°, and for each positive number £, there is a harmonic function H on Q
such that \H — h\ < e on E;

(iv) for each harmonic (resp. superharmonic) function u on £', there
is a harmonic (resp. superharmonic) function v on fl. and a positive number
a such that u — a<v<u+aonE.

Tangential harmonic and superharmonic approximation are also dis-
cussed.

Key words : Superharmonic functions - Extension theorem - Harmonic measure
Harmonic approximation - Thin set.
A.M.S. Classification : 31B05.
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1. Super harmonic extension.

Let ^ be an open set in Euclidean space R71 (n > 2) and suppose that
E C n. A function u will be called superharmonic (resp. harmonic) on E
if u is defined and superharmonic (resp. harmonic) on an open set which
contains E. We call (^, E) an extension pair for superharmonic functions if,
for each superharmonic function u on E, there is a superharmonic function
u on ^ such that n = n on ^. Further, (^.^) will be called a strong
extension pair for superharmonic functions if it can be arranged that u = u
on an open set which contains E. In the latter case we preserve not only
the values of u on E, but also the associated Riesz measure on an open set
which contains E. It can be observed immediately that, for either of the
above extension properties to hold, E must be closed relative to ^. For,
if njis the fundamental subharmonic function with pole at some point XQ
of (E\E) H ^, then u is harmonic on E, but any function u on ^ which
satisfies u = u on E is not bounded below near Xo, and so cannot be
superharmonic.

We will use ^* to denote the Alexandroff one-point compactification
of f2, and A to denote the ideal point. However, A, A° and 9A will always
represent the Euclidean closure, interior and boundary (respectively) of a
subset A of ST. A subset A of f2 will be called ^-bounded if A is a compact
subset of ^. Recall that a topological space is called locally connected if,
for each point X in the space and each neighbourhood uj of X, there is
a connected neighbourhood a/ of X such that uj' C a;. In the following
result the set ̂ \E can fail to satisfy this condition only in the case where
X=A.

THEOREM 1. — Let ̂  be an open set in R71 and Ebea relatively closed
subset of ^. Then (^l,E) is a strong extension pair for superharmonic
functions if and only if^\E is both connected and locally connected.

The condition that f2*\£' be connected is clearly equivalent to saying
that ^\E has no ^-bounded (connected) components. The particular case
of Theorem 1 where E is compact (and so the local connectedness condition
on ̂ \E is redundant) is closely related to several known results : see, for
example, [8, Lemma 2.3 and §7], [2, Theorem 1] and [16, Theorem 2.4]. It
appears that only Armitage [2] has previously considered the non-compact
case (but see also the final note of this paper). Theorem 2 of [2] gives
conditions on an open set uj which are sufficient to ensure that, for each
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superharmonic function u on ^, there is a superharmonic function u on
R71 satisfying u == n on the set {X : dist (X, R^cc;) > a}, where a is
a fixed positive number. A question raised by [2] (see the last two lines
of p. 216) corresponds to asking if (R2,^) is a strong extension pair for
superharmonic functions, where

00

E = {(;ri,;r2) : ̂ 2 > 0}\ ^{(^1,^2) : 2k < x-i < 2k-\-1 and x^ < 5k}.
k=l

Theorem 1 supplies an affirmative answer. Below we give an example of a
pair (f^, E) such that Q*\£' is connected but not locally connected.

Example 1. — If

00 f 1 1 1
(1) S = |j ^ (;ri,^2) : ̂  < o-i < ̂  and .2-2 < A: > ,

fc^l v y

then (R2)*^^ is connected. However, (R2)*^^ is not locally connected :
the set (R^V^S U K), where .FC = [0,1] x {0}, is a neighbourhood of A
in (R2)*^^ which does not contain any connected neighbourhood of A.
It follows from Theorem 1 that (R2, 9S) is not a strong extension pair for
superharmonic functions. (In fact, more can be said : see Example 3(b)
below.)

The condition that ^\E be both connected and locally connected
has arisen in the theory of holomorphic and harmonic approximation (see,
for example, Arakeljan [1] and Theorem A below), but we do not make use
of such results in proving Theorem 1. Our proof is based, in part, on ideas
contained in [2].

If E is a relatively closed subset of f^, then E will denote the union
of E with the ^-bounded components of f^\£'. In the case where E is
compact, we note that dist (J^M^Q) > 0, and so R^i? has finitely many
components. If V is an open set such that R^V is not polar, then we
use ^v,x to denote harmonic measure for V and a point X in V. (For
an account of the Dirichlet problem and related concepts, see Helms [13]
or Doob [9].) The collection of all Borel subsets of R71 will be denoted
by B. Before presenting a complete characterization of extension pairs for
superharmonic functions (see Theorem 3) we give below a special case of
the solution which has a simpler formulation.
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THEOREM 2. — Let Q be an open set in R71 and E be a compact
subset offl, such that each point of9E is regular for the Dirichlet problem
on R^I?. Then (0, E) is an extension pair for superharmonic functions if
and only if each ^-bounded component VQ of Q,\E satisfies the following
conditions :

(i) VQ is regular for the Dirichlet problem, and

(ii) given X^ in Vjc {k = 0,..., m), where Vi,..., Vm denote the
components of^^E, there are positive constants ci,..., Cm such that

m

(2) Wo,Xo(A) < ̂ c^v^(A) (A e B).
k=l

It is clear from Harnack's inequalities that, if there exist constants
c i , . . . , C y n such that (2) holds for a given choice of Xo, . . . ,Xy^ then
corresponding constants can be found for any other choice of Xo, . . . , Xm-
Also, conditions (i) and (ii) above together imply that QVo C 9E. (To
see this, we note that 9Vo\E is a relatively open subset of QVQ which has
zero harmonic measure, by (ii). Thus every point of 9Vo\9E is irregular,
and (i) now shows that 9Vo C 9E.) Theorem 2 will be illustrated below
by means of pairs (R2,^), where E is a union of finitely many line
segments. It is straightforward to write down corresponding examples in
higher dimensions. Our assertions are based on the elementary observation
that, if

So = {re10 : 0 < 0 < a and 0 < r < 2}, and Za = e^72 (0 < a < 27r)

(identifying R2 with C in the usual manner), then the restriction of
A^a^a ^° ^ne interval (0,2) is absolutely continuous with respect to one-
dimensional Lebesgue measure A, and there are positive constants fci(a),
k^(a) such that

fci(a)^-1 < {d^.JdX)(t) < Wt^-1 (0 < t < 1).

Examples 2. — (a) Let P denote an open polygon in R2. Then
(R2,^?) is an extension pair for superharmonic functions if and only if
P is convex.

(b) Let

Fi = [0,2]2 U ([2,4] x {2}), F2 = [0,2]2 U ([2,4] x {!}),

Fs = ([0,1] U [2,3])2 U [1,2]2, F4 = ([0,1) U (1,2]) x [0,1],
^M^KI,!)}.
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Then (R^SFi) and (R2,^^) are extension pairs for superharmonic func-
tions. However (R2,^^) and (R2,^^) violate condition (ii) of Theorem
2, and (R2,^^) violates condition (i), so these are not extension pairs.

We come now to the question of characterizing extension pairs (f2, E)
in the absence of any special conditions on E. If W is an open set which
satisfies E C W C ^, then we define a class of superharmonic functions on
Why

S^y == ^y : v is positive and superharmonic on TV, z? = 1 on £'}.

Also, the Riesz measure associated with a superharmonic function v
is denoted by z^. By a countable set we mean one which is either finite or
countably infinite.

THEOREM 3. — Let n be an open set in R77' and E be a relatively
closed subset of 0. Then (^,£") is an extension pair for superharmonic
functions if and only if :

(i) each ^.-bounded component offl\E is regular for the Dirichlet
problem,

(ii) Q.*\E is locally connected, and

(iii) for each countable collection {(Xk^Ck) : k € 1} : of pairs from
(E\E) x (0, oo) such that the points Xk are distinct and have no limit point
in fl, there exist an open set W satisfying E C W C Q and a function v in
Sw such that

(3) IL^EW^^^W (Ae0) '
kei

As in the case of Theorem 2, we observe that conditions (i) and (iii)
above together imply that 9V C QE for each ^2-bounded component V
of ^l\E. Condition (iii) is similar in nature to condition (ii) of Theorem
2, but it also implies that a given compact subset of ^l cannot intersect
"arbitrarily large" ^-bounded components of ^t\E. This is made precise
below.

LEMMA 1. — Let 0 be an open set in W1, let E be a relatively closed
subset of Q,, and suppose that condition (iii) of Theorem 3 holds. Then,
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for each compact subset K of Q, there is a compact subset L of 0 that
contains every ^l-bounded component of^l\E which intersects K.

Examples 3. — (a) Let (P^) be a sequence of open polygons in R2 such
that the closures Pk are pairwise disjoint and only a finite number of the
polygons intersect any given compact set. Then (R2, (J 9Pk) is an extension

k
pair for superharmonic functions if and only if each of the polygons is
convex. The "if part of this assertion can be checked by choosing W to
be [jQk in condition (iii) of Theorem 3, where (Qfc) is a suitable sequence

k _
of pairwise disjoint open sets such that Pjc C Qk for each k. The "only if
part follows from Example 2 (a).

(b) Let S be as in (1). Then (R2, 9S) is not an extension pair, because
condition (ii) of Theorem 3 is violated. Also, (R2, 9SU ([0,1] x {0})) is not
an extension pair because (iii) fails, by Lemma 1.

Theorems 1-3 are established in §4-6, following some preparatory
material in §3. Lemma 1 is proved in §3.3.

2. Harmonic approximation.

We call (f2, E) a Runge pair for harmonic (resp. superharmonic)
functions if, for each harmonic (resp. superharmonic) function u on E and
each positive number ^, there is a harmonic (resp. superharmonic) function
v on fl, such that u — e < v < u - { - e o n E . Further, inspired by the main
result of [I], we call (^2, E) an Arakeljan pair for harmonic functions if, for
each function h which is continuous on E and harmonic on E°, and for
each positive number £, there is a harmonic function H on fl, such that
\H — h\ < e on E. Reasoning as in the opening paragraph of §1, it is clear
that these approximation properties also require E to be closed relative to
f^. The following important result is due to Gauthier, Goldstein and Ow
(see [10, Theorem 3] when n = 2, and [11, Theorem 1] when n > 3).

THEOREM A. — Let fl. be an open set in R72 and E be a relatively
closed subset offl. If^l*\E is both connected and locally connected, then
(f2, E) is a Runge pair for harmonic functions.

The next result shows that the hypotheses of Theorem A can be
considerably weakened.
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THEOREM 4. — Let f^ be an open set in W1 and E be a relatively
closed subset off2. The following are equivalent :

(a) (f^, E) is a Runge pair for superharmonic functions;

(b) (f2, E) is a Runge pair for harmonic functions;

(c) (Q, E) satisfies the conditions below :

(i) fl\E and ^l\E are thin at the same points of E, and

(ii) for each compact subset K of^l, there is a compact subset L of
fl which contains every ^-bounded component of^}\(EUK) whose closure
intersects K.

Theorem 4 appears to be new even in the case where E is compact
(and hence condition (c)(ii) is redundant). It is clear from this result and
Examples 2 that every extension pair for superharmonic functions is a
Runge pair for harmonic functions, but not conversely. Condition (c)(ii)
of Theorem 4 implies that ^\E is locally connected, and also that the
conclusion of Lemma 1 holds. This condition is presented in [10, Theorem
2] as necessary for (f^, E) to be a Runge pair for harmonic functions when
n = 2, but the proof given there is defective : see [5], where it is shown
that ^l*\E must be locally connected. Condition (c)(i) implies that each
f^-bounded component V of Q.\E is regular for the Dirichlet problem and
satisfies 9V C 9E (see the second paragraph of §7.1). However, the converse
of this statement is false when n > 3, as the following example shows. Let
(f)n : [0, +oo) -^ R U {+00} be the function defined by ^{t) = log {1/t) or
(f)^(t) == il~n if n > 3. (We interpret <^n(0) as +oo in either case.)

Example 4. — Let n > 3, let {Y^ : k € N} be a dense subset of
[O,!]71-1, and define

00

u{X') = ̂  2-k^-l{\Xf - y,|) (X' e R71-1).
fc=:l

Further, let

E^ao.ir-^-i.oDu^x',^) e [o.i]71-1 x (0,1] :H(X') <^(^)}.

Then the only bounded component of R^E is given by V = (0,1)71-1 x
(—1,0), which is regular for the Dirichlet problem and satisfies 9V C 9E.
However, R^i? is thin at each point of (0,1)71'1 x {0}, whereas R^^ is
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not. (See §12 for details.) Thus (R71,^) is not a Runge pair for harmonic
functions.

Theorem 4 can be combined with known results to obtain the follow-
ing.

THEOREM 5. — Let n be an open set in W1 and Ebea relatively closed
subset ofO. Then (^, E) is an Arakeljan pair for harmonic functions if and
only if:

(i) Sl\E and Q.\E° are thin at the same points ofE; and

(ii) for each compact subset K of^, there is a compact subset L of
^ which contains every ^-bounded component ofQ,\{EUK) whose closure
intersects K.

Example 5. — Let n > 3, let E be as in Example 4, and let E^ = E.
Then (R71,^) (trivially) satisfies conditions (c)(i)-(ii) of Theorem 4, but
not condition (i) of Theorem 5 (see §12). Hence (M71,^) is a Runge pair
for harmonic functions, but not an Arakeljan pair for harmonic functions.
(Another such example may be found in [5, p. 21].)

The next result shows that the situation described in Example 5
cannot arise when n = 2.

THEOREM 6. — Let n be an open set in R2 and E be a relatively
closed subset of^. The following are equivalent :

(a) (^, E) is a Runge pair for superharmonic functions;

(b) (f2, E) is a Runge pair for harmonic functions;

(c) (0, E) is an Arakeljan pair for harmonic functions;

(d) (i)9E = 9E, and

(ii) for each compact subset K offl., there is a compact subset L of
^ which contains every ^l-bounded component offl,\(EUK) whose closure
intersects K.

Theorems 5 and 6 solve [6, Problem 9.10], posed by M. Goldstein.
Necessary and sufficient conditions for (^2, E) to be an Arakeljan pair for
harmonic functions have recently been given also in [5, Theorem 3.3] and
[12, Theorem I], but the conditions given there are not as explicit as those
above.
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Now suppose that fl, has a Green function G^ (.,.), fix XQ in 0, and
define

g(X) = min{l,G^(Xo,X)} (X e ^).

In this case we can add the following equivalent conditions to Theorem 4 :

(d) (resp. (e)) for each harmonic (resp. superharmonic) function u on
E and each positive number e, there is a harmonic (resp. superharmonic)
function vonfl, such that u — eg < v < u + eg on E.

Also, conditions (i)-(ii) of Theorem 5 are equivalent to the following :
for each function h which is continuous on E and harmonic on E°, and
for each positive number e, there is a harmonic function H on Q, such that
\H — h\ < eg on E. This leads to three additional equivalent conditions in
Theorem 6. These assertions have essentially the same proofs as Theorems
4-6 except that, in place of Theorem A above and Theorem B of §8.1,
we appeal to corresponding recent results of Armitage and Goldstein [3]
concerning tangential harmonic approximation. Saginyan [17, Theorem 1]
has announced a result for tangential harmonic approximation which is
similar in nature to the modified form of Theorem 5 described above, but
no proof has yet appeared.

We call (^}, E) a weak Runge pair for harmonic (resp. superharmonic)
functions if, for each harmonic (resp. superharmonic) function u on E, there
is a harmonic (resp. superharmonic) function v on fl. and a positive number
a such that u — a<v<u-^-aonE.

THEOREM 7. — Let f2 be an open set in R77- (n > 3) and E be a
relatively closed subset ofQ. The following are equivalent :

(a) (Q, E) is a weak Runge pair for superharmonic functions;

(b) (^, E) is a weak Runge pair for harmonic functions;

(c) (f^, E) satisfies the conditions below :

(i) there is a compact subset Cof^l such that fl\E and ^l\E are
thin at the same points of E\C, and

(ii) for each compact subset K ofQ, there is a compact subset L of
fl, which contains every ^-bounded component of^}\(EUK) whose closure
intersects K.

THEOREM 8. — Let fl, be an open set in R2 and E be a relatively
closed proper subset of^l. The following are equivalent :
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(a) (f^, E) is a weak Runge pair for superharmonic functions;

(b) (Q, E) is a weak Runge pair for harmonic functions;

(c) (i) there is a compact subset Coffl, such that 9E\C = 9E\C,

(ii) either E -^ f2 or R2^ is non-polar, and

(iii) for each compact subset Koffl,, there is a compact subset L of
fl which contains every abounded component offl,\{EUK) whose closure
intersects K.

Theorems 4-8 are proved in §7-11. They rely on Theorems 1 and A.

3. Preparatory material.

3.1. The following is a variant of [8, Lemma 2.3 and §7] suitable for
our present purposes.

LEMMA 2. — Let UJQ be an open set in W1 and E be a compact subset
of ujQ. Further, let uj\,..., uji denote the bounded components of R^E"
which are not subsets of c^o, and let Xk e uJk (k = I,...,/). If u is a
superharmonic function on UJQ , then there exist a superharmonic function
v on W1 and a non-negative constant c such that

u{X) = v(X) -c^(f>n(\X - Xk\)
k=l

on some open set which contains E.

To prove this, let -Fo be a compact set such that
i

E C Fo° C FQ C |j uJk
k=0

and R^Fo is connected. Also, for each k in { 1 , . . . , 1}, let Fk be a compact
set with connected interior such that

{Xk} U (^\^o) C Ffc° C Fj, C o;fc,

and define

F=F,\(\JF^\
u=i /
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Now let U, W be bounded open sets such that5 VV UC; UUU.A1U.CU. UpCll OCbO S U.L;li llldl

ECU CU CF0 CFCW CW C o;o\{Xi,. . . , XJ,

and define

wW^^^W (^^W)
[ u(X) (elsewhere in c<;o)?

where H^ denotes the PWB solution of the Dirichlet problem on ^ with
boundary function /. The lower regularization w*, of w, is superharmonic
on 0:0, and equals u on U. Next we define h on W^\F as follows. On
F^ (k = I , . . . , / ) let h be the Green function for F^ with pole at Xj,.
On R^Fo let h be the Green function for (M2)*^ with pole at A if
n = 2, or the solution to the Dirichlet problem for R^Fo with boundary
data 0 on 9Fo and 1 at the Alexandroff point for W1 if n ̂  3.

Now let

M>sup{w*(X) :Xe9F},
m < inf ({(w*(X) - M)/h{X) : X e 9W} U {0}),

and
fw*(X) ( X e F )

s(X) = ^ mm{M+mh(X), w*(X)} (X € Ty\F)
[M+m/i(X) (XeM71^).

It is straightforward to check that s is superharmonic on M^^F U
{Xi , . . . ,X/}), and also on an open set T which contains the regular
boundary points of R^F. Since 9F\T is polar, s* is superharmonic on
R^-fXi,. . . , X]}. Clearly s* = u on U and the function v defined by

i
v(X) = 5*(X) + (-m) ̂  ̂ (|X - Xk\) (X i {X^..., XJ)

fc=i

has a superharmonic extension to all of M71. This completes the proof of
the lemma.

3.2. LEMMA 3. — Let ^ be an open set in W1, let E be a relatively
closed subset of ^l, and suppose that, for each harmonic function h on
E, there exists a superharmonic function u on Q, such that u >_ h on F.
Then, for each compact subset K ofO, there is a compact subset Lof^l
which contains every ^-bounded component of f^\(F U K) whose closure
intersects K.
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To prove this, suppose that the conclusion of the lemma fails to hold.
Then there exist a compact subset K of ^, a sequence (Vk) of distinct
f^-bounded components of 0,\{E U K), and two sequences (Xk),(Yk) of
points, such that Xk^Yk ^ Vk for each fc, and such that Xk —> A and (Yk)
converges to some point YQ in K. Now let U be an f^-bounded open set
which contains K and let UQ be the component of U which contains YQ. By
deleting the first few members of the sequence (Vk) we can arrange that
Vk n UQ 7^ 0 for each A;. We define

(4) ak = ̂ 4,x.W) n 9Vk) {k e N).

If ak = 0, then (see [9, l.VIII.5(b)]) there is a superharmonic function v\
on Vk with limit +00 at each point of UQ Ft 9Vk. Hence the function

(v,(x) (x^UonVk)
^^t+oo {Xeu,\Vk)

is lower semicontinuous and super-meanvalued on Uo. This is impossible,
since UQ D l^+i is a non-polar subset of UQ\Vk. Hence a^ > 0 for each k.

Now let h be a harmonic function on the set ^2i = ^\{Xfe : k € N},
such that, for each A;, the function

/i^+a^^dX-X^I)

has a harmonic extension to f2i U {Xk}. (Such a function exists by [11,
Lemma 2], for example.) By hypothesis there exists a superharmonic
function u on f2 such that u > h on E. Also, since u — h is superharmonic
on 0, we can define & to be a negative lower bound for u — h on (7, and
then define the open set

W = {X G ̂  : n(X) - fc(X) >&-!}.

It follows from the minimum principle, and the fact that K C U^ that
u—h>bon each Vk, and so |j Vk c W. Also, U CW. Clearly the function

k
v defined by v{X) = u(X) — h(X) — b + 1 is positive and superharmonic
on W and satisfies ^({X^}) > a~^1 for each k. It follows from the Riesz
decomposition theorem that a potential on W is defined by

w{X) = ̂ a^Gw{X^X) {X e TV),
k

where Gw{-^ •) denotes the Green function for W. Let T = |j Vk. Then the
k

restriction of w to 9T HW is /^r^-integrable when X E T. However, (4)
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yields

^a^^x^Uo n 9T) = ̂ a^^x^Uo n 9^) = +oo.
fc fe

Also, by monotone convergence, we have

/ w{Y)d^,x(Y) = ̂ >^ / Gw{X^Y)d^x(Y)
jQTnw ^ JQTnw

-E^1 / Gw{X^Y)d^x.(Y).
^ J9Tr\w

Hence the Riesz measure associated with the superharmonic function
X i—> / wd/^r,x is infinite on the compact set UQ D 9T, a contradic-

jQTnw
tion. Therefore the conclusion of the lemma must hold.

3.3. Lemma 1 is now straightforward to prove. Suppose that condition
(iii) of Theorem 3 holds, and that the conclusion of the lemma fails.
Then there exist a compact subset K of f2, a sequence (Vk) of distinct
f^-bounded components of ^\E, and sequences (X/c), (V/c) of points, such
that Xfc, Yk € Vk for each fc, and such that Xk —^ A and (V^) converges to
some point YQ in K. Now let U be an f^-bounded open set which contains
K and let UQ be the component of U which contains Vo, define dk as in (4),
and let c/c = a~^1. (We know from §3.2 that ak > 0.) Inequality (3) now
implies that Vy(UC\E) = +oo. This is impossible, since Ur\E is a compact
subset of W. Hence Lemma 1 is proved.

4. Proof of Theorem 1.

4.1. We begin with the "if part of the proof. Let u be a super-
harmonic function on £', fix XQ in E, let Ai = {Xo}, and let (A^) be a
sequence of compact subsets of ^2 such that Ak C A^ for each k and also
IJAfc = Q. A subset A of ^ will be called ^l-solid if ^2*\A is connected.
k

We will now inductively define a new sequence (Cfe) of compact
subsets of n which satisfy Ck C C^-^ for each k and also

(I) Afc C Cfc, (II) Cfc is Q-solid, (III) Ck U E is 0-solid.

Let C\ = Ai. Then (I)-(III) hold when k = 1. Given Ck, we choose
a compact subset Fi of Q. which satisfies A^+i U CA; C F^°. Since ^*\E is
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locally connected, there is a compact set F^ such that Fi C F^ C 0 and
f^*\(F2 U £') is connected; that is, F^U E is 0-solid. We now define C^+i
to be the union of F^ with all the f^-bounded components of ^\F^y and
observe that C^+i U E = F^ U E. It is clear that Cj, C C^i and that
(I)-(III) hold when k is replaced by k + 1.

Secondly, we inductively define a sequence (uk) of functions such that

(a) Uk is superharmonic on Ck U £',

(b) Uk = u on an open set L^ which contains £\

and such that Uk-^-i = Uk on Cjc for each fc. If we define u\ = n, then (a) and
(b) hold when k = 1. Given u^, we construct Uk-\-i as follows. We know that
Uk is superharmonic on an open set u} (where cj C 0) which contains C^U-E',
and so also contains the compact set E\ defined by E\ = Ck-^-2 H (Ck U E).
Since Ck-\-2 and CkUE are Q-solid by (II) and (III) above, it follows that E\
is 0-solid. Thus Wt\E\ has finitely many bounded components o;i,... ,o^,
and we can choose Xj in o;j\f2 for each j in { 1 , . . . , I}. Lemma 2 can now
be applied (with UJQ^ E^ u replaced by cj, £'1, Uk respectively) to obtain a
superharmonic function Uk on ^^{Xi,..., Xi}, and hence on Q, such that
ZAfc = Uk on an open set a/ which contains £'1. We define V = (o;\Cfe+2)1-1^/
and

f tZfc(X) (Xec^)
"^^^i^X) (xev).

This function is well-defined, and hence superharmonic, on the open set
(7^,2 U y, because the two parts of the definition agree on the region of
overlap, namely C^^ H u j ' . We know that

E\Ck+2 ̂  ^\Cfc+2 and E H C^ ^ E^ C a/,

so E C V and

Cfc+i U £ C C^2 U V.

It follows that Hfc+i is superharmonic on GA;+I U £, that n^+i = ^fc = u on
the open set £4+i =^1^1^ which contains £, and that u^+i = Uk on CA;
(since C7fc C £1 C a;' C V).

The final step of the argument is to define u{X) = lim Uk{X) for
k—>oo

each X in 0. Given Vo m 0, there exists fco such that Yo ^ ^o c ^o'
and ^/c = lA/co on (7/co when k > ko. It follows that u is superharmonic on
a neighbourhood of YQ. Thus u is superharmonic on 0. From property (b)
above, and the fact that u = Uk on Ck, it is clear that u = u on the open
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set \J{Uk Fl C^) which contains E. Hence (f2, E) is a strong extension pair
k

for superharmonic functions.

4.2. Conversely, suppose that (fl^E) is a strong extension pair for
superharmonic functions. If fT\£1 is not connected, then there is an re-
bounded component V of Q\£1. We fix XQ in V, define n(X) = —<^(|X —
Xo|) and conclude, by hypothesis, that there is a superharmonic function
u on f2 such that n = n on an open set u) which contains E. Now let W
be an ^-bounded connected open set such that V C W and W C c<; U V.
Since ZA is subharmonic on f^, we know that H^ < H^ on V. Since u is
superharmonic on ^2, it is also true that H^ > H^ on V. Observing that
u = u on 9V and 9W, it follows that H^ = H^ on V. Hence ̂  - u,
which is a positive superharmonic function on W, takes the value 0 at
every regular boundary point of QV : a contradiction. Thus fl*\E must be
connected.

Since any strong extension pair satisfies the hypotheses of Lemma 3,
we deduce that fl,*\E is locally connected. The connectedness of Q*\£',
shown above, means that E = E, so ̂ \E is locally connected. The proof
of Theorem 1 is now complete.

5. Proof of Theorem 2.

5.1. Let (^, E) be as in the first sentence of Theorem 2, suppose that
each ^-bounded component VQ of fl.\E satisfies conditions (i) and (ii) of
the theorem, and let u be a superharmonic function on some open set uj
(where uj C Q) which contains E. Further, let £ / i , . . . , Ui be the bounded
components of R^E which are not subsets of ^, and let W\,..., Wp be
the remaining bounded components of M^I? which are not subsets of uj.
We choose Yj, in Uj,\^ for each k in { 1 , . . . , 1}, and Zj, in Wk for each k in
{1 , . . . ,p}. It follows from Lemma 2 that there is a non-negative constant
c and a superharmonic function v on R71 such that

( i P 1
u(X) = v(X) -c\Y^ cf>n(\X - Yk\) + ̂  (f>n(\X - Zk\) > (X € E).

[k=l fc=l J

In particular, there is a superharmonic function v\ on Q such that

u(X) = v,(X) - c^n(\X - Zk\) (X e E).
k=l
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Now let Vo = Wi and XQ = Zi. Further, let Vi , . . . , Vm denote the
components of R^E and let X^ G VA; (fc == 1,... ,m). By hypothesis (ii)
there are non-negative constants C i , . . . ,Cy^ such that (2) holds. We now
define

(5) s(X) = <t>n(\X - Xo|) - f 0n(|X - Y\)d^x,(Y)

+EC4/l^(lx-yl)d^A(y)-^(lx-^l)}•
fc=l v

•
/

 J

Inequality (2) shows that the function s(X)—(j)n(\X—Z\\) is superharmonic
on R^^i,... ̂ Xm}i in view of the fact that XQ = Z\. Further, the
regularity of VQ (hypothesis (i)) and of the (finite) boundary points of
R^E ensure that s = 0 on E. To see this when n > 3 we note that, if
X € £', then Q,\Vk is not thin at X, and so

cf>n(\X - Xk\) =R^_^(Xk)

= / (t>n(\X - Y\)dfiy^(Y) {k = 0 , . . . , m),

where Rj denotes the reduced function (reduite) of / relative to a set F
in R71. A modified form of this argument applies also when n = 2. Hence,
if we define

v^(X) = v,(X) + c{s(X) - ̂ {\X - Zi|)} (X € n),

we obtain a superharmonic function v^ on 0\{Xi,. . . , Xm} such that

u(X) = v^X) -c^(j>n(\X - Zk\) (X e E).
fe=2

If we repeat the argument of the previous paragraph with VQ =
Wk {k = 2 , . . . ,p), it follows that there is a superharmonic function Vp^-i
on 0\{Xi,... ̂ Xm} such that u = 'yp+i on E. Since W\E is connected,
we can apply Theorem 1 to the pair (^,£1) to conclude that there is a
superharmonic function u on fl, such that u = Vp+i on E^ and hence
u = u on E. It follows that (^2, E) is an extension pair for superharmonic
functions.

5.2. Conversely, suppose that (0, E) is an extension pair for superhar-
monic functions, let Vo be an ^-bounded component of 0\£', let XQ € Vo,
and define u{X) = —^(|X—Xo|). By hypothesis there is a superharmonic
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function u on Q, such that u = u on E. Thus the function v = u — u is
superharmonic on Q, and vanishes on 9Vo. In particular, v is a positive su-
perharmonic function on Vo which vanishes on 9Vo, so VQ is regular for the
Dirichlet problem.

Now let V i , . . . , Vm be the components of R^E , and let Gfc(.,.) be
the Green function for Vk for each k in {0 , . . . ,m}. Further, let W be an
^-bounded open set which contains E and let Xk € T4\^ for each k in
{!, . . . , m}. For each k in the latter set we can find a positive constant Ck
such that

(6) -CkGk{Xk,X) < v(X) (X e QWnVk).

It follows from the minimum principle that inequality (6) remains true for
all X in W D Vk. It is also clear that v >: GQ^XQ, .) on VQ and that v > 0
on E. Hence the function s defined on W1 by

fGo(Xo.x) (XeVo)
s(X) = ^ -CfcGfc(Xfc, X) (X e 14; fc e {1 , . . . , m})

[ o (X e ^\Yo)
is superharmonic on ^^{Xi,..., Xm}' The function s can be written as
in (5). Since As ^ 0 on ^^{Xi,..., Xm} m the sense of distributions, we
conclude that (2) holds. Thus Theorem 2 is established.

6. Proof of Theorem 3.

6.1. Suppose that conditions (i)-(iii) of the theorem hold and let u be
a superharmonic function on some open set a; (where uj C Q.) which contains
E. We denote by {Vk : k € 1} the collection of ^-bounded components of
fl,\E which are not subsets of a;, choose Xk in Vk for each k in JT, and let

^=^u[\j{Vk\{Xk})\
\kei )\kei

Let K be a compact subset of Q, and define

S = \J Vk, where J = {k C I : Vk H K ^ 0}.
keJ

It follows from (hi) and Lemma 1 that S is ^-bounded. Since dis^^STi
E^W1^) > 0, it is clear that J is a finite set. Thus {Xk '. k C 1} has no
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limit point in ^. Next, for each k in I , we apply Lemma 2 with 9Vk in place
of E. This allows us to construct a superharmonic function s on 0:1 such
that s = n on an open set which contains E, and such that the function

s{X) + c^(|X - Xk\)

has a superharmonic extension to ̂  U {X4 for a suitable choice of non-
negative constant c^.

By condition (iii) there exist an open set W satisfying E C W C ^
and a function v in <?^ such that (3) holds. Let

w(X) = ̂ ck L,(|^ - Xk\) - f^(\X - Y\)d^x,(Y)}
kEl v J J

+ s(x) + ̂ (x) - i (x e Ty n 0:1).
Inequality (3) ensures that w is superharmonic on W n 0:1, and we have
arranged s in such a way that wjias a superharmonic extension to
W H (cj U (U^)), which contains ^. Since ^*\i? is connected (by the

definition of E)^and locally connected (by (ii)), we can apply Theorem 1
to the pair^(n,£;) to obtain a superharmonic function u on ^ such that
u = w on E. Also, w = 5 = -a on E by condition (i) and the definition
of Sw. Hence u = u on £'. It follows that (^,E) is an extension pair for
superharmonic functions.

6.2. Conversely, suppose that (f2, E) is an extension pair for super-
harmonic functions. It follows as in §5.2 that (i) holds, and Lemma 3 shows
that (ii) also holds.

It remains to establish (iii). Let {(Xk,Ck) : k € 1} be a countable
collection of pairs from (E\E) x (0,oo) such that the points Xj, are
distinct and have no limit point in 0 As in the proof of Lemma 3 we
can choose u to be a harmonic function on f2i = ^\{Xk : k e 1} such that
u(X)+Ck(f)n{\X-Xk\) has a harmonic extension to ̂ U{Xk} for each A: in
I . By hypothesis there is a superharmonic function u on ^ such that u = u
on E. Since u - u is superharmonic on ^, it follows from the minimum
principle that u - u > 0 on E. For each kin I let Vk be the component of
E\E to which Xk belongs. We know from Lemma 3 that any given compact
subset of ^ intersects only finitely many of the sets Vk. Also, let Gfc(.,.) be
the Green function for V^ and define G^(.,.) = 0 outside Vk x Vk. Clearly
u - u > ̂  CkGk{Xk,.) on U Vk.

k k
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Let W = {X e ̂  : u{X) - u{X) > -1} and

v(X) = 1 + min {u(X) - u(X), 0} (X e TV).

Clearly W is an open set satisfying E C W C f2, and also ^ e <Syv. Further,
the function s defined by

s(X) = v(X) - 1 + ̂ Gfc(Xfc.X) (X e W)
k^I

is also superharmonic on W. We can rewrite s as

s(X) = v{X) - 1

+EC^(IX-^1)- I^n(\x-Y\)d^x.(Y)} (xew),
kel

and so (3) must hold. This completes the proof of Theorem 3.

7. Proof of Theorem 4.

7.1. Suppose that (Q, E) satisfies conditions (c)(i)-(ii) of the theorem,
let e > 0, and let u be a superharmonic function on an open set uj (where
uj C ^2) which contains E. Further, let V^ Xk^ and 0:1 be as in §6.1.
Following the reasoning given there we can construct a superharmonic
function s on uj\ such that s = u on an open set which contains £', and such
that s{X)-\-Ck(f)-n{\X—Xk\) has a superharmonic extension to uj\\J{Xk} for
a suitable choice of positive constant c^. Using (c)(ii) in place of Lemma 1,
we can also choose {Uk '• k € 1} to be a collection of ^-bounded open sets
such that Vk C Uk for each /c, and such that any given compact subset of
fl. intersects only finitely many of the sets U k '

Next we observe two consequences of condition (c)(i). Let V be any
f^-bounded component of Q.\E. If YQ is an irregular boundary point of V,
then ^\y, and hence fl\E, is thin at YQ. However fl,\E contains V, and
so is non-thin at YQ. This contradicts (c)(i), and so V must be regular for
the Dirichlet problem. Secondly, we note that 9V C 9E. To see this, let
A = QV\QE. Then A C (£')°, so Q,\E is certainly thin at each point of
A. It follows from (c)(i) that Q\£', and hence V, is thin at each point of
A. Hence A is a relatively open subset of 9V which has zero harmonic
measure for V (see [9, 1.XI.13]). Each point of A is therefore irregular for
the Dirichlet problem on V, and so A = 0, as claimed.
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Now fix k temporarily. For each m in N let

Ak,m = [X e Uk : dist (X,E) > 1/m},

and let gk,m be the Green function for Q,\Ak,m with pole at Xk. (This must
exist for all sufficiently large m, even if n = 2, because 9Vk C 9E.) If we
define gk,m{X) == 0 when X € A^y^, then the upper regularization g^^
is subharmonic on f^\{Xfc}. Thus the function g^ = lim g^^ being the
limit of a decreasing sequence, is subharmonic on 0\{X^} and harmonic
on Vk\{Xk}. Further, g^ vanishes on Uk\E, and so vanishes at each point
of 9Vjc where Q,\E is non-thin. If X is a point of 9Vk at which Q,\E is thin,
then condition (c)(i) shows that f^\-E, and hence Vk^ are also thin at X.
The set of all such points X therefore has /Ay^;^-measure zero. It follows
easily that gk coincides (on Vk) with the Green function for the regular set
Vk with pole at Xk. Thus, given a positive number £, there is a compact
subset Kk of Vk such that Xk € K^ and gk < 2-A;-lc^l£ on Vk\K^. Hence,
by the monotonicity of the sequence (<^*y^)m^i ^d DinPs theorem, there
exists rrik such that

Cn.W < 9k{X) + 2-fc-lc^ < 2-kc,le (X € 9Kk).

It follows that g^kW < 2~kcklE on E-
Now let

W=^\(\jAk,m^
VfceJ /

This is an open set because only finitely many of the sets A^yy^ intersect
a given compact subset of fL Also, E C W. Let Gw{"> •) denote the Green
function for W. Then

(7) Gw(Xk, X) ^ g^ (X) ̂  2-fcc,l£ (X € £).

We define

z;i(X) = ̂ CkGw(X^X) (X € W).
feeJ

It follows from (7) that v^ defines a potential on W, and that v\ <, e
on E. The function 1:2 = s + ^i, suitably redefined on the set where it
is the difference of two infinite values, is superharmonic on the open set
Wr\{(jU(UkVk))^ which contains E. Also, s < v^ < s-^-e on E. Since ̂ \E
is connected and locally connected (by (c)(ii)) we can apply Theorem 1
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to obtain a superharmonic function v on fl, such that v = v^ on E. Hence
u < v < u-\-e on E. It follows that (f}, £") is a Runge pair for superharmonic
functions.

7.2. Suppose that (^ E) is a Runge pair for superharmonic functions,
let h be harmonic on E, and let e > 0. We know that there exist
superharmonic functions n, v on ̂  such that |n—/i| < £/4 and \v-}-h\ < £/4
on E. Now let W be the open set defined by

W = {X C fl : u{X) + v(X) > -5/2}.

Clearly E C TV, and the minimum principle implies that E C W. Since
—v{X) — 5/4 is a subharmonic minorant of u(X) + 5/4 on W, there is a
greatest harmonic minorant, /ii say, of u(X) + £/4 on W. Hence

-v{X) -e/4. < h^X) < u(X) +^/4 (X e IV),

and so \h\ — h\ < e / 2 on E.

The function ^ii is harmonic on E. Further, f2*\£' is connected and
also locally connected by our hypothesis and Lemma 3. We can thus apply
Theorem A to obtain a harmonic function H on fl, such that \H—h\\ < e / 2
on E. Combining this with the conclusion of the previous paragraph, it
follows that \H — h\ < e on E. Hence (f^, E) is a Runge pair for harmonic
functions.

7.3. Finally, suppose that (0,£') is a Runge pair for harmonic
functions, let V be an f^-bounded component of fl,\E^ let XQ e V and
let h(X) = (f)n(\X — XQ\). For each positive number e there is a harmonic
function He on f2 such that \Hg — h\ < e / 2 on E. We define the open set

We = [X € ^ : h(X) - He{X) + ^/2 > 0}.

It follows from the minimum principle that E C Wg:, and clearly

h(X) - H,(X) + e / 2 > GW,(Xo,X) (X e We}.

Hence G^(Xo,.) < e on £'. It follows from the arbitrary nature of e that
the Green function for (£1)0, with pole at XQ, vanishes continuously on
9V. This implies that 9V C 9E (and that V is regular for the Dirichlet
problem).

In this paragraph we assume that 0 has a Green function GQ (.,.).
If this is not the case, we could work instead with (f^i,£1), where ^i is
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obtained from f^ by deleting a closed ball contained in fl.\E. (Note that, if
E = f^, then E == f^ by the above paragraph, and so there is nothing to
prove). Let V, XQ and We be as in the previous paragraph. Then

(8) G^(Xo,X) - <^,.)W ^ %(Xo,X) - R^^X)
=GwAXo,X)<e (Xe9V).

Since e can be arbitrarily small, it follows that

G^X,,X) = R^^.)(X) = R^.)W (X e fl\V).

Hence

G^(Y,X)=R^E^{Y) ( V e V )

for each X in 0\y. This holds for all such components V, so

(9) <?x,)=<?x,) (^^)>

and this proves (c)(i).

Finally, Lemma 3 shows that (c)(ii) holds.

8. Proof of Theorem 5.

8.1. We require the following result :

THEOREM B. — Let Q be an open set in W1 and E be a relatively
closed subset offl,. The following are equivalent :

(a) for each function h which is continuous on E and harmonic on
E°, and for each positive number e, there is a function H harmonic on E
such that \H — h\ < e on E ;

(b) fl.\E and ^l\E0 are thin at the same points of E.

Theorem B is due to Keldys [14] and Deny [7] under the additional
assumption that E is compact. For the case of general closed sets £', see
either [15, Theorem 3.10] or [4, Section 8].

8.2. Suppose that conditions (i) and (ii) of Theorem 5 hold, let h be
continuous on E and harmonic on £'°, and let e > 0. Condition (i) implies
that the three sets 0\£', Q,\E and !1\E° are thin at the same points of E.



SUPERHARMONIC EXTENSION AND HARMONIC APPROXIMATION 87

It follows from Theorem B that there is a harmonic function h\ on E such
that \h\ — h\ < e / 2 on E. By Theorem 4 there is a harmonic function H
on ^ such that \H - h-\_\ < e / 2 on E, and so \H - h\ < e on E. It follows
that (f^, E) is an Arakeljan pair for harmonic functions.

Conversely, if (^,£Q is an Arakeljan pair, then Theorems 4 and B
immediately show that conditions (i) and (ii) hold. Thus Theorem 5 is
established.

9. Proof of Theorem 6.

Clearly (c) implies (b). Further, Theorem 4 shows that (b) is equiv-
alent to (a), and that (a) implies (d). (It was observed in §7.1 that, if
condition (c)(i) of Theorem 4 holds, then each ^-bounded component V of
Q,\E satisfies 9V C 9E.) Now suppose that conditions (d)(i)-(ii) hold, and
let Xi be a point of E at which S}\E is thin. Then (because n == 2) there are
arbitrarily small circles, centred at Xi, which are contained in E (see [13,
Theorem 10.14]). Hence Xi G (E)°. It follows from (d)(i) that Xi i 9E, so
Xi € E°, and so ^l\E° is certainly thin at Xi. Hence fl\E and fl\E° are
thin at the same points of E. Applying Theorem 5, it follows that (f^, E) is
an Arakeljan pair for harmonic functions, i.e. (c) holds. Theorem 6 is now
proved.

10. Proof of Theorem 7.

10.1. Let n > 3, suppose that (0,£1) satisfies conditions (c)(i)-(ii) of
the theorem, let C\ be a compact subset of ^1 such that C C C^, and let u be
a superharmonic function on an open set uj (where uj C ^2) which contains
E. It follows that there are only finitely many ^2-bounded components
V i , . . . , Vm of ^l\E which satisfy both Vj, H Ci ^ 0 and V^ ^ 0- For each

k in { 1 , . . . , m} choose Xk in Vk\^. Next define Qi = ^2\{Xi , . . . , Xm}, and
define E\ to be the union of E with the f^-bounded components of ^l\E
which are contained in cj. The pair (^i,£'i) satisfies conditions (c)(i)-(ii)
of Theorem 4, so there exists a superharmonic function v-^ on f2i such that
u — 1 < z^i < IA + 1 on ^i, and hence on E. Further, in view of Lemma 2, it
can be arranged that there are non-negative constants c i , . . . , Cm such that
v\{X) + Ck(f)n(\X — Xk\) has a superharmonic extension to f^i U Vk. Thus,
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if we define

v{X) = v^(X) + ̂ CkG^X^X) (X e fQ,
fc==i

we obtain a superharmonic function v on fl such that u — a <^ v <^ u -\- a
on £', where

m

a = 1 + sup ]^CfcG^(Xfc,X) < oo.
^^i

Thus (f2, £1) is a weak Runge pair for superharmonic functions, i.e. (a)
holds.

10.2. The proof that (a) implies (b) is directly analogous to the
argument given in §7.2.

10.3. Suppose now that (f^, E) is a weak Runge pair for harmonic
functions. It follows from Lemma 3 that condition (c)(ii) must hold.

Next let (Vk) be a sequence of ^-bounded components of fl\E such
that only a finite number of the sets Vk intersect any given compact subset
off2. (If no such sequence exists, then (c)(i) clearly holds.) Also, let (c/c) be
a sequence of positive numbers, and let Xk C Vk for each k. We now define
h to be a harmonic function on the set ^2 = ^\{^0c '• k € N} such that,
for each k, the function h{X) + Ck<f)rt(\X — Xk\) has a harmonic extension
to ^2 U {Xk}. By hypothesis there is a harmonic function H on Q and a
positive number a such that \H — h\ < a on E. We define the open set

W = {X € ^ : H{X) - h{X) + a > 0}.

It follows from the minimum principle that E C W^ and clearly

H{X) - h{X) + a > CkGw(Xk, X) (X € TV; k € N).

Hence CkGw{Xk^.) < 2a on E, and we can argue as in (8) to deduce that

Ck iGn(X^X) - R^^{X)\ <2a (X e 9V^ k C N).

It follows from the arbitrary nature of the sequence (c^), and the reasoning
given in §7.3 that, for all but a finite number of the components Vk,

G^X^X) = R^^(X) = R^^(Xk) {X e fl\Vk).
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Arguing as in (9) we obtain condition (c)(i), and the proof of Theorem 7
is complete.

11. Proof of Theorem 8.

11.1. Let n = 2, let E be a relatively closed proper subset of ^2,
and suppose that (f2, E) satisfies conditions (c)(i)-(iii) of the theorem. If
M2^ is non-polar, then ^l possesses a Green function, and the reasoning
of §9 and §10.1 establishes (a). If R2^ is polar, then (c)(ii) implies that
E -^ ^l. In this case, let B be a closed ball in ^t\E, and let ^o = ̂ \B. Thus
f^o possesses a Green function. The arguments in §9 and §10.1 show that
(f2o,£') is a weak Runge pair for superharmonic functions. It follows, by
applying Theorem 1 to the pair (^,£1), that (fl,E) is also a weak Runge
pair for superharmonic functions.

11.2. The proof that (a) implies (b) is directly analogous to the
argument given in §7.2.

11.3. Now suppose that (b) holds. As before, condition (c)(iii) follows
from Lemma 3.

Next, suppose that E = fL Let VQ be an ^-bounded component of
S}\E, let XQ e Vo, and let u(X) = (f)2(\X - XQ\). It follows, by hypothesis,
that there exist a harmonic function v on Q and a positive constant a such
that \u — v\ < a on E. Hence, by the maximum principle, \u — v\ <, a on
Q,\VQ. Thus u — v + 2a is a non-constant positive superharmonic function
on ^, and this implies that R2^ is non-polar. It follows that (c)(ii) holds.

If f2 has a Green function, then we can argue as in §9 and §10.3 that
(c)(i) must hold. If ^l does not possess a Green function, then we know
from the previous paragraph that E 7^ f2. We can thus reason as before
with (^05 E) in place of (Q, E\ where Qo ls obtained from Q, be deleting a
closed ball contained in Q,\E. This completes the proof of Theorem 8.

12. Details of Examples 4 and 5.

12.1. Let n >, 3, and let {Y^: k € N}, u and E be as in Example 4.
The lower semicontinuity of u ensures that E is closed, and hence compact.
Also, if we define Ey = [X' e W1-1: (X', y) ^ E}, then Ey C E^ whenever
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0 < y < z. It follows that R^E has only one bounded component, namely
V = (0,1)""1 x (-1,0). Clearly V is regular for the Dirichlet problem and
satisfies 9V C 9E.

Define v(Xf,Xn) = u(X') on IT-1 x R. Then v is superharmonic. If
y'e^^'^then

v{X\Xn)=u(Xf)>(|)^Xn)

> WX'.Xn) - (^0)1) {{X'^Xn) € (0, ir\E)^

so R^i? is thin at (V, 0), whereas W\E is not. This establishes Example 4.

12.2. Let E be as above, let E^ = E and let V G (0,1)71-1. Then
§12.1 shows that ST^i (which equals M^Ei) is thin at (V',0). However,
M^E^ is not, because it contains (0,1)71"1 x [0,+oo). This establishes
Example 5.
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Note. — Professor Paul Gauthier has independently obtained an ex-
tension theorem for subharmonic functions in a preprint entitled "Subhar-
monic extensions and approximations", which is to appear in Canad. Math.
Bull. His main result is distinct from, but related to, our Theorem 1. Con-
nections with the theory of harmonic approximation are also discussed, as
are a number of open problems. Problem 1 (concerning the characterization
of extension pairs and Runge pairs for subharmonic functions) is solved by
Theorems 2-4 of the present paper.
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