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Ann. Inst. Fourier, Grenoble
12 (1962), 573-621.

BOUNDARY PROPERTIES OF FUNCTIONS
WITH FINITE DIRICHLET INTEGRALS

by J. L. DOOB (Urbana)

1. Introduction.

Let R be a Green space (Brelot-Choquet [4]) of dimension^ 2.
Denote by D(u, v) the Dirichlet bilinear functional of the
pair {u, P) of functions on R, computed on the set R of finite
points of R. Denote by D(u) (== D(u, u)) the Dirichlet
integral of u on R. We shall as usual write « quasi-every-
where » for « except on a subset of R of outer capacity
zero ». Here capacity is defined using the Green function
of R. Note that if the dimensionality of R is at least 3 a
set of outer capacity zero can contain no infinite point. Let
u be a function defined quasi-everywhere on R, and let \u^
n^i} be a sequence of infinitely differentiable functions
on R, with finite Dirichlet integrals. Suppose that

(a) lim D(u» — uj == 0
m, n->oe

and that (6) lim u^ = u quasi-everywhere on R. Then u is
n->oo

fine-continuous (continuous in the Cartan fine topology
on R) quasi-everywhere on ft. If (c) u is even fine-continuous
quasi-everywhere on R we shall call u a « BLD function »
(Beppo Levi-Deny) following Brelot. The class of BLD
functions was introduced by Deny. (See also Aronszain [2]).
We refer to Deny [5], Deny-Lions [6], where such a function
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is called a « BL function made precise », and Brelot [3] for
the fundamental properties of these functions.

If u is a BLD function, gradu is defined almost everywhere
on R, and D(u) is finite. If [u^ n ^ l j is a sequence of
BLD functions satisfying (a) above, and if there is a pointwise
limit quasi-everywhere on R, then the limit u necessarily
exists quasi-everywhere on R, is a BLD function, and

D(u——Un) -^0.

The sequence will be said to converge « in the BLD sense ».
If only (a) is satisfied, there is a subsequence of the u^ sequence
which, when centered by suitable additive constants, converges
in the BLD sense. Thus the condition (&) is not so stringent
as it appears to be at first sight. Finally, if u is a BLD
function locally on R, and if D(u) is finite, then u can be
extended to be a BLD function on R.

The BLD harmonic functions on R are simply the harmonic
v

functions with finite Dirichlet integrals over R. At the
other extreme are the BLD functions which we shall call
those « of potential type)). A BLD function will be said
to be of potential type if it is the BLD limit of a sequence of

\r

infinitely differentiable (on R) functions with compact sup-
ports.

In this paper, H will denote the Hilbert space of BLD
functions with inner product D(u, ^), two functions being
identified if the restriction of their difference to the comple-
ment of some set of zero capacity is a constant function.
The class of BLD harmonic functions corresponds to a closed
linear manifold H/» of H, and the class of functionals of poten-
tial type corresponds to the orthogonal complement Hp of H^.

Brelot showed that every BLD function u has a limit in a
certain Li sense along almost every Green line (orthogonal tra-
jectory of level manifolds of the Green function with a preassi-
gned pole) defining the ((radial » of u, a function on the set
of Green lines, and Godefroid [10] showed that u even has
the radial as an ordinary limit along almost, every Green
lines ^Here the limit is to be taken along the Green line as
the point on the line recedes to oo, that is as the Green func-
tion decreases to 0, and the measure of a set of Green lines
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is the measure of the solid angle of their initial directions at
the pole, normalized to have maximum value 1. In this
paper the Brelot theorem just quoted will be strengthened
to Lg convergence, if the function is harmonic. Brelot also
proved that BLD convergence of a sequence of functions
implies Li convergence of the sequence of radials, and it
will be shown that there is even Lg convergence of the latter
sequence.

Let RM be the Martin boundary of R. In this paper it
is shown that every BLD function has a fine topology limit
at almost every (harmonic measure) point of R^ Thus
there is always a « fine boundary function ». The fine boun-
dary function is in I^R^, and it is shown that BLD conver-
gence of a sequence of functions implies Lg convergence of
the sequence of boundary functions. Moreover, if u is BLD
harmonic, with fine boundary function u', D(u) is evaluated
in terms of u'. This evaluation reduces to that of Douglas [9]
when R is a disc. It is known that when R is a domain in
Euclidean N-space with a sufficiently smooth boundary, the
boundary function of a sufficiently smooth BLD function is
in L2 relative to ordinary boundary « area » (Sobolev [14],
Aronszajn [2]). The interest of the present version of thijs
result lies in the absence of any smoothness hypothesis on
either the space or the function.

These results are used in treating the first, second, mixed,
and an unusual form of the third boundary value problem.
Only in treating the latter problem (Sections 18 and 19)
is any condition imposed on the Green space. The boundary
of R is always taken as R^ and it is accordingly necessary
to define a generalized normal derivative, denoted by ^u/Bg,
on RM. There is always a Green function of R, by definition
of a Green space (except in Doob [7] where the nomenclature
was poorly chosen). It is shown that there is always a Green
function of the second kind, with the usual properties, as
well as a mixed Green function. Let u be a BLD harmonic
function with fine boundary function u'. The characteristi.c
value problem ^uf^g == const. fju is solved, for cr a positive
(but not necessarily strictly positive) bounded function on W.
The solution involves a complete orthogonal sequence in H^,
corresponding to a sequence of BLD harmonic functions
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whose fine boundary functions form an orthonormal sequence
on RM (relative to a measure determined by o" and harmonic
measure). Series expansions in terms of these orthogonal
sequences are found for the kernels involved in the various
Green functions studied.

2. Harmonic measure on R^

In the following we shall write p.(2;, A) for the harmonic
measure of a subset A of R1^ relative to the point ^ of R.
The class of sets on R^1 of harmonic measure 0 is independent
of the reference point ^, and we write « almost everywhere
on RM » to mean « except for a set of pi.(^, .) measure 0 ». The
class of functions on RM which are measurable and whose
absolute values have integrable p-th powers with respect to
a(S, .) on a measurable subset A of R1^1 is independent of $
and will be denoted by Lp(A). The property of mean conver-
gence with specified index of a sequence of functions on R1^
relative to p.(^, .) is also independent of S, so there is no need
to mention the reference point in discussing mean conver-
gence. We choose a point S;o °t R once and for all as a refe-
rence point, and any otherwise unspecified concepts involving
a measure on RM will always be relative to the measure ^oy .).

Let i Ryi, n ̂  1 \ be an increasing sequence of open subsets
of R, with union R, containing no infinite points on their
boundaries, whose closures are compact subsets of R. In
the following such a sequence of sets will be called a « stan-
dard nested sequence of subsets of R ». In fact, somewhat
more generally, we shall even allow R^ not to have its full
closure in R, as long as its relative boundary R, has harmonic
measure 1 relative to points in it. For example, we can
choose R^ as the set of points where the Green function of R,
with specified pole, is greater than o^ where a^ is chosen so'1
that Rn has no infinite point on its boundary a^ < — and

a^ is supposed less than the value of the Green fonction
at the pole, if the pole is an infinite point. Harmonic measure
of subsets of Rn relative to S; will be denoted by ^(^, .).
It is well known that p.n(S, .) ~> p.(S, .) in the weak (vague)
sense.
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If a function on R has a limit at a point of R n R^ on
approach to the point in the fine topology of Cartan-Brelot-
Naim, it is said to have a fine limit at the point, denoted
by « f lim ». If the function has a fine limit at almost every
point of R^ it will be said to have a fine boundary function on
IP*. In generative shall use primes to denote fine boundary func-
tions, so that u will denote the fine boundary function of u.

It is known (Doob [7], [8]) that a superharmonic function
on R, under suitable restrictions, for example if positive, has
a finite fine boundary function, in L^R^. We shall use
the following related fact. Let \ R^, n ̂  1 \ be a standard
nested sequence of subsets of R, and let ^o be a point of R.
Let u be a function harmonic on R. If the sequence of
restrictions of u to ^R^, n^_\.\ is uniformly integrable
with respect to the sequence of measures \^^-> • ) ? n^H,
then u has a fine boundary function u' and

(2.1) ^)^^(^)

for all ^ in R. Conversely if u is any function in L^R^
and if u is defined by (2. 1), u has the above uniform inte-
grability property and has fine boundary function u. Moreo-
ver u is then the solution to the Dirichlet problem correspon-
ding to the assigned boundary function u as derived using
the Perron-Wiener-Brelot method. A function u defined ]yy
(2. 1) will be called a Dirichlet solution for the boundary
function u\

We shall also use the following fact, a slight extension of a
well-known one, which we state as a lemma for ease in reference.

LEMMA 2.1. — Let f be a bounded function on R u 1^ with
the following properties, (a) The restriction offtoR is a Baire
function. (6) The restriction of f to R^1 is measurable, (c) f
has the fine limit f(^) at almost every point r\ of R^ on approach
from R. Then if \ R^, n ̂  1 j is a standard nested sequence
of subsets of R,

( 2 - 2 ) i""^^^-)-^^^-)-
If fine limits are interpreted as limits along probability

paths, this lemma is proved by an elementary transition to a
37
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limit under the sign of integration. In particular, if f is
continuous on R u RM this lemma expresses the convergence
(JL^ -> p. already noted. An easy corollary of the lemma,
the only case we shall use, is that if u is a harmonic function
which is a Dirichlet solution for the fine boundary function u',
and if y is a continuous bounded function from the reals to the
reals, then

(2. 3) UjnJ;̂ (u)̂ , d .) =J^{ufM, d .).

3. Decomposition of u2.

All potentials, unless specifically described otherwise, will
be defined by means of the Green function g of R as kernel.
The potentials of positive measures are positive superharmo-
nic functions and are characterized among these functions
by the fact that they have fine boundary function 0 (almost
everywhere) and enjoy |the uniform integrability property
described in the preceding section.

Throughout this paper we denote by q either 2iT if R has
dimension N = 2 or the product of N — 2 and the unit ball
boundary « area » if N > 2.

THEOREM 3.1. — Let u be a function harmonic on R. (i)
Suppose that u is the Dirichlet solution corresponding to the
fine boundary function u' and that u e= I^R^. Then we
can write u2 in the form

(3. 1) u2 = nu — pU

where ^ is harmonic, the Dirichlet solution corresponding to
the fine boundary function u'2, and pU is the potential of a positive
measure. Moreover the total value M(^oo) of this measure
is 2D(u)/g. (ii) Conversely if u2 is dominated by a harmonic
function, the hypothesis of (i) is satisfied.

Proof of (i) Under the hypotheses of (i), let ^u be the Dirichlet
solution corresponding to u'2,

(3.2) ^)==f^u^d.),

and define pU == /»u — u2. An application of Schwarz's ine-
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quality shows that u2 <^, ̂ u. Then pU is a positive super-
harmonic function with fine boundary function 0. Since ^u
is a Dirichlet solution, it has the uniform integrability property
described in the preceding section, so that the smaller
function pU also has the property. Then pU is the potential of
a positive measure. The evaluation of M is obvious from the
fact that

— ApU = A(u2) = 2|grad u|2.

Proof of (ii) Conversely if u2 is dominated by some harmonic
function, ^u, and if | R^, n ̂ : 1 ^ is a standard nested sequence
of subsets of R, with compact closures, omitting the members
of the sequence not containing a preassigned point ^, then

^P^/R^2^ d9}^SUPf^hU^n^ d.) <^U(S) < 00.

Thus u has the uniform integrability property described
in Section 2, so u is a Dirichlet solution corresponding to a
fine boundary function u'. Since u2 is dominated by the
fine boundary function of ^u, u' is in the class I^R^, as was
to be proved.

As an application of the decomposition of u2 in Theorem 3.1
we strengthen a theorem of Brelot. Let u be a BLD function,
let S;o be a point of R, and let Uy,(l} be the value of u at the
point of the Green line I from ^o where the Green function
with pole ^o has value a. Then Brelot [3] proved that, if
dl refers to the measure of Green lines (see Section 1),
Ua has a mean limit u of index 1,

(3. 3) lim f \uM) — u(l)\ dl = 0.
a-x^

The following theorem strengthens Brelot's result by increasing
the index to 2, under the added hypothesis that u is harmonic.

THEOREM 3.2. — Let u be a BLD harmonic function on J?.
Then

(3. 4) lim f \u^{l) — u{l)\2 dl = 0.
a-x^

We use Theorem 3.1. Since ^u is a Dirichlet solution,
its restriction to the boundary Sa of the set Sa where g(^o, S;) > a
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defines a family uniformly integrable with respect to harmonic
measures relative to ^o on the members of |Sa, a > O j contai-
ning no infinite points. Since u2 <_ ^u, i^2 has this same uniform
integrability property. Now (Brelot-Choquet [4]) Green line
measure dl determines a measure on Sa a Green line correspon-
ding to the point in which it meets Sa, which is precisely harmo-
nic measure relative to E;o. Hence the family of integrands in
(3.4) is uniformly integrable. Since the integrand converges to
0 when a —> 0, almost everywhere, (3.4) must be true.

4. The fine boundary functions of BLD harmonic functions.

THEOREM 4.1. — Let u be a BLD harmonic function on
R. Then the hypotheses of Theorem 3.1 (ii) are satisfied, so
that u has a fine boundary function u' in L^R^, u is the Dirichlet
solution corresponding to u\ and D(u) = gM/2.

To prove the theorem we first remark that — u2 is super-
harmonic, with corresponding measure of total value 2D(u)/^.
The Riesz decomposition of —u 2 therefore yields (3.1),
where now pU is the potential of a measure of the above
total value and ^u 1s a harmonic function. Since u2 < ^u
the hypotheses of Theorem 3.1 (ii) are satisfied, as was to
be proved.

Thus each BLD harmonic function u has both a radial u
and a fine boundary function u'. (The radial is defined
relative to a specified initial point of Green lines). The
functions u and u are each defined on a measure space of
total value 1. We shall now prove that the distributions of
these measurable functions are the same, that is, that if f
is a continuous bounded function from the reals to the reals,
and if the Green lines start at S;o?

(4.1) ffW]dl=f^f{u')^,d.}.

To see this we use the notation of Theorem 3.2. Obviously

(4. 2) Vi^ff[u^l)]dl =ff[u(l)}dl.

Moreover, since the measure on Sa induced by dl measure
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by way of the transformation from I into the point in which I
meets S^ is harmonic measure relative to S;o,

(4.3) ff[^{l)]dl=f^f(u)^(d^

where ̂  is harmonic measure on Sa relative to So- Finally,
as we remarked in discussing Lemma 2.1 the integral on the
right in (4. 3) has as limit (a -> 0) that on the right in (4. 1).
Combining this fact with (4. 2) and (4. 3) we see that (4. 1)
is true. Since this equation is true for bounded continuous f
it is true for every Baire function f for which either integral
exists, and we shall use this fact without further discussion
in the next section.

We can obtain a stronger result in exactly the same way.
If /*is a continuous bounded function from M-space to the reals,
and if Ui, . . . , u ^ are BLD harmonic functions, then

(4. 1') ff[u^ . . ̂ u^l)]dl =f^f{u^ .. ..uQ^o, d.Y

That is, the joint distribution of Ui, . . . , u^ is the same as that
of u[, . . ., u'n.

THEOREM 4.2. — Let u be a BLD harmonic function on 7?,
with radial u and fine boundary function u\ Let ^ be a point
of jR. Then there is a constant c, depending on R and ^ but
not on u such that

(4.4) /lu^—u^l^Z^^Ju'—u^o)!2^^.)^^^).

We can and shall suppose in the following that u(^o) == 0.
Since u and u' have the same distribution, we need only prove
the inequality involving u. Using the notation of (3. 1)
this inequality takes the form

(4. 5) ,u(^o) = pu(^o) ̂  cD(u) = cqM/2.

Unless the theorem is true, there is a sequence \u^ n^> 1\
for which in the obvious notation

(4. 6) ,u^o) = pu^o) = 1, D(uJ = <?MJ2 ̂  g2-n+l.

But then ^ p Un is the potential of a measure of total value 1
n

or less. Hence the series converges and pU^ -> 0 except
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possibly on a set of zero capacity. Since D(uJ-> 0 and
^(^o) == 0, u^ -> 0 uniformly on compact subsets of R. Com-
bining these facts we obtain at once that ^ -> 0 except
possibly on a set of zero capacity. Since ̂  is positive the
Harnack inequality yields the fact that ^u^ —> 0 uniformly
on compact subsets of R, contradicting (4.6). The theorem
is therefore true.

The normalization by an additive constant in (4. 4) is
not essential. In fact, for example, it A is a measurable
subset of R^ of strictly positive measure, and if we consider
the class of BLD harmonic functions u with u = 0 almost
everywhere on A, then there is a constant y for which

(4. 4') fWdl=f^^d.)^^{u)

for every u in the class. The constant y depends on A. If
there were no such constant, there would be a sequence
{u^ ^ ̂  1} of functions in the class such that

(^•7) f^ulM„d.)=l, D(u,)^0.

But then u'n — u^o) -> 0 in the mean, according to Theorem
4.2, contradicting the fact that u'n vanishes almost everywhere
on A and that (4. 7) is true.

We observe that (Brelot [3]) if u is an arbitrary BLD func-
tion it is the sum of a uniquely determined harmonic BLD
function and an orthogonal (in H) function of potential type
with radial vanishing almost everywhere. It will be shown
in Section 6 that the fine boundary function of a function
of potential type exists and vanishes almost everywhere on
R^ It is therefore obvious that (4. 4) remains true if u is
merely supposed a BLD function^ at the price of replacing
u(^o) by the value at ̂  of the harmonic component of u. Ine-
quality (4. 4') is true with no change for general BLD functions
vanishing almost everywhere on A. Since the constant OQ
replacing u(^o) in (4. 4) is the average of the radial, as well
as the (Ji(^o? • ) average of the fine boundary function of u,
the constant OQ is the constant minimizing

f[u(l) - a? dl =f^[u' - a? (^o, .)
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Suppose that u^ and u are BLD functions with radials u^,
u and fine boundary functions Un, u' respectively, and that
u^ -> u in the BLD sense. Brelot proved that then u^ -> u in
the mean, index 1. We shall improve this result by showing
that there is mean convergence of index, 2 for both ju^, n^ 1|
and | Un, n ̂ >_ 1 j . This result, together with our earlier
results, illustrate the central role of Lg spaces in the study of
the Dirichlet integral. For analogous results in a somewhat
more classical framework, involving domains in Euclidean
space with smooth boundaries see Sobolev [I],

THEOREM 4.3. — Let u^ u be BLD functions on -fi, with
radials u^y u and fine boundary functions u'^ u'. Then if
u^ —> u in the BLD sense,

(4. 8) lim /^-u^^lim L\Un—u^ (x(^.) ==0.
n-> oo «-' n->oo l/"

Since the nth integrals involved are equal, we need discuss
only the u'n sequence. By our extension of (4. 4) there is a
sequence of constants | a^ n ̂  1 \ such that u'n — u1 — a^ -> 0
in the mean of order 2. Since u^ -> u quasi-every where
on R, a^ -> 0, so that we can take a^ = 0. Then (4. 8) is
true.

An alternative statement of this theorem is that if
D(i^i — u) ~> 0 then

(4. 8') lim /[u,(0 - u{l) — u^) + u($)|2 dl
n-> oo ^

= lim Lk - "' - "n(S) + u(S)|2 P^o, d.) = 0,
n-> oo t/ n

for quasi-all ^, all ^ if the functions involved are harmonic.
We omit the easy proof.

This theorem means that the transformation form H/i
into I^R^ representing an element of H/i by a harmonic
function vanishing at a preassigned point, the image being
the fine boundary function of this harmonic function, is
continuous.
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5. Some results involving capacity.

THEOREM 5.1. — Let u be a BLD function of potential type
on R. Then if a > 0,

(5. 1) cap ^ : |u(^)| > a| ̂  D(u)/(a^).

Here the capacity is that relative to the whole space R,
the Green function capacity. This theorem was proved by
Deny and Lions [6] for R-Euclidean space of dimensionality
> 2. Their proof is applicable to the more general case
stated here, with the help of the decomposition technique
used by Brelot [3, pp. 390-391].

We shall need the following rather trivial lemma.

LEMMA 5.2. — Let A. be a Borel subset of R, of finite capacity.
Then A has almost no point of R1^1 as fine limit point.

In fact if u is the equilibrium potential of A, u, like any
potential, has fine limit 0 at almost every point of R^ Since
u has the value 1 quasi-everywhere on A, almost no point
of W1 can be a fine limit point of A.

6. The fine boundary function of a BLD function.

In this section we shall prove that every BLD function u
has a fine boundary function. Since u can be written as the
sum of a BLD harmonic function and a BLD function of poten-
tial type, and since we have already proved the theorem
for u harmonic, all that remains is to deal with functions of
potential type.

If R is a bounded domain in N-dimensional Euclidean
space, satisfying certain restrictive hypotheses, Deny [5]
proved that a BLD function u can be extended to a BLD
function v on the whole space. Since v is fine continuous
quasi-everywhere, Deny concluded that u has a fine limit
quasi-everywhere on the relative boundary of R. Here
« fine limit » refers to the fine topology on the entire N-space.
One can also conclude that at almost every (harmonic measure)
point of R^ u has a fine limit in our sense, in which the fine
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topology is relative to R u RM. [Since this conclusion is
only incidental here, the argument will only be sketched.
The continuity properties of BLD functions imply that such
a function is continuous on almost all Brownian stochastic
process paths in its domain, excluding the initial path point
if the function is not fine-continuous there. Then v is conti-
nuous on almost every Brownian stochastic process path from
a fine-continuity point S; of R. Hence u has a limit at the
relative boundary points of R on almost every Brownian
path from ^ to the first point at which the path hits the rela-
tive boundary, that is, u has a limit on almost every Brownian
path from \ to R^ (the paths involved are identical). This
property is equivalent (Doob [7]) to the property that u have
a fine limit at almost every point of R^]

Deny and Lions [6] proved that if R is any domain in
N-dimensional Euclidean space (we take N ^> 3 to simplify
the discussion) then a BLD function u on R is of potential
type if and only if its extension by 0 is a BLD function on
the entire space, also if and only if u has fine limit 0 (fine
topology relative to the entire space) at quasi-every point
of the relative boundary of R. Here oo is a point of the
relative boundary if R is unbounded. This theorem implies
that u is of potential type if and only if u has fine limit 0
in our sense at almost every point of R^ [If u is of potential
type the argument used in the preceding paragraph shows
that u has limit 0 on almost every Brownian path from a
point of R to R^ and so fine limit 0 almost everywhere on R^
Conversely if u has fine limit 0 almost everywhere on R^
write u as the sum ^ + Ug, where Ui is a BLD harmonic
function on R and Ug is of potential type on R (see Deny-
Lions [6] or Brelot [3]). We have already shown that Ug
has fine limit 0 almost everywhere on R1^ so Ui must have the
same property. But Ui is a Dirichlet solution, as such is
the harmonic average of its fine boundary function, and hence
must vanish identically. Thus u = u^ as was to be proved.]
The corresponding result for radials is due to Brelot [3] who
proved that a BLD function is of potential type if and only
if it has radial 0.

The Deny-Lions results are extended to Green spaces in the
following theorem.
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THEOREM 6. 1. — If u is a BLD function on J?, it has an
almost-everywhere finite fine boundary function. Moreover u
is of potential type if and only if its fine boundary function
vanishes almost everywhere on R^

Suppose first that u is of potential type. Then according
to Theorem 5. 1 the set B^ where u(^) ̂  ifn has finite capacity.
Now a set of finite capacity has almost no fine limit points
on R^ according to Lemma 5. 2. Hence if A is the union
of the set of non-minimal points of R^1 and of the union over
n of the set of fine limit points of B^ on R^ A has harmonic
measure 0 and R — B^ is a deleted fine neighborhood of
every point of RM — A for every value of n. Then u has
fine limit 0 at every point of R1^ — A, and therefore almost
everywhere on R^ If u is a BLD function on R, it is the
sum of a uniquely determined BLD harmonic function Ui
and a BLD function Ug of potential type (see Deny-Lions [6]
or Brelot [3]). Theorem 4.1 and the result just obtained
combine to show that u has a fine boundary function u'.
Moreover Ui is the Dirichlet solution for the boundary func-
tion u'. Then u is of potential type if and only if its fine
boundary function vanishes almost everywhere. The proof
of the theorem is complete.

7. The 9-potentials of Nairn.

Let R be a domain in N-dimensional Euclidean space, with
relative boundary R' so smooth that the following heuristic
unrigorous reasoning looks plausible. We denote by pi(S;, .)
the harmonic measure relative to ^ in R of subsets of R'
and by g the Green function of R. The following directional
derivatives are with respect to the second arguments, when
there is any ambiguity in the notation, along inner normals.
It is classical that

(7.1) ^(S,ri)^=^,^), S e R , yi eR'.

Thus if u is harmonic in a neighborhood of R u R', with
boundary function u',

(7.2) ^)=j_r^)^j
q J w on
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and
(7. 3)

D^^-ru^)^)^^-1^ r U^)U'(YI)—^-^^.
t/R' <^ SJR'^R' bn^n^

Since the integral of each side in (7. 1) is q, for all ^, we can
differentiate the integral to get 0,

(7.4) r ^ _ ^ o.
JR' ̂  ̂  '

Combining (7. 3) with (7. 4) we « derive »

(7. 5) D(u) = - f f [u'(^) - U(Y))]^-^- ̂  rf^.
^I/R'JK' ()n^n^

See Osborn [13] for a justification of (7. 5) under suitable
hypotheses on u, when N == 2 and R is sufficiently regular.
The evaluation was given by Douglas [9] for N = 2 and R
a disc.

Now let R be more generally a Green space, with Martin
boundary R^ and denote harmonic measure on W^ relative
to ^ by p.(S;, .). Let ^o 1̂  a specified point of R, to serve
as a reference point, and to be held fast throughout the
discussion. Let Ro === R — { ^ o } . Nairn [11] has defined
a kernel 6 on (Ro u R^2 which on the direct product of the
boundaries is a generalization of the one appearing in (7. 5)

(7. 6) 6(^, ri) pL(Eo, ^) ̂  dr^) ̂ 1^-^ ds^.
q~ ony on^

Let u' be a function on TV^ measurable with respect to
harmonic measure, and define D'(u') by

(7.7)

D'(u') = t f f [u'(S) - u'W^, y]) E^o, ̂ ) (^o, dyi).
^ JR^JR^

n Section 9 it will be shown, as suggested by (7. 5), that if
u is a BLD harmonic function on R, with fine boundary
function u', then D(u) == D'(u').

We now recall a few facts about 9 and related matters
(see Nairn [11]). Nairn defines 9 on RS by

<7•8) '̂'̂ t^,,/ S•1 1•R ' •
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The domain of definition is then extended to Ro X (Ro u R^
on which 0 is continuous, and

(7. 9) 1̂̂  = 9(^ ri) (^o, d^ ^ R,, T) e R, u R^

The domain of 9 is then enlarged to (Ro u R^2 in such a way
that 9 is lower semicontinuous as well as continuous in the
fine topology in each variable. This function can be used
to define «9-potentials » of Radon measures on Ro u R^
A 9-potential is fine-continuous if the measure assigned to
the class of nonminimal boundary points is 0. It is convenient
to define the function K by

K(TI,$) = 9(^, YI) g(S;o, ^), ^Ro, r^^R^
and K(Y], ^o) = !• The function K is continuous.

8. Fine normal derivatives on R1^.

Let u be a function on R u R^ and let Y] be a point of R1^.
Suppose that the fine limit

fam^-^
^ g(^o, ^)

exists. The point ^o ls a fixed reference point in R. Then u
will be said to have this fine limit as « fine normal derivative »
at Y]. We use the notation 6u/5g for this derivative, the ana-
logue of the classical inner normal derivative. Its value,
but not its existence or finiteness or vanishing, depends on
the choice of reference point.

If u is any strictly positive superharmonic function on R,
and if Y] is a minimal point of R^ Nairn [11] has proved that
u/g(^o? .) has a strictly positive not necessarily finite fine
limit at Y]. Thus u has a fine normal derivative at that point,
if u is defined as 0 at Y).

Let u be the potential of a measure p., with (^•(^oP^'O*
Then u has fine boundary function vanishing almost
everywhere, and we define u on W^ as 0 in discussing the
fine normal derivative. We can write u in the form

(8. 1) u(^) = g(^, S) f 9(?, vi) E )̂, (̂ ri) = g(^o, 7))^).
J R
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The function ujg^ .) is a 6-potential, and Nairn's continuity
theorem for these potentials implies that, if ^ is a minimal
point of R^ at which we define u to be 0 in computing the
normal derivative at the boundary,

(8.2) ^)^ro(^)p4(rfy])
°& J R

^00.

THEOREM 8. 1. — Let v be a Dirichlet solution in R, with
fine boundary function v\ and let u be the potential of a positive
measure [x. Then if ̂ uf^g is the fine normal derivative of u
on R^

(8.3) r^);x(^)= r ̂ (̂ .)
^R jR^g

whenever either integral is well-defined (in which case the other
is also). In particular

(8.3') y.(R)= C ^p.(^.)(^oo).
J R" °5

If one writes Green's first formula in the present context
one obtains formally

(8. 4) D(u, P) = - q C 1%'̂ , d.) + q f ^(rf.).
Jv^Qg JR

Since u is a potential and v is harmonic, D{u, v) = 0 if u and p
are both BLD functions. Thus in that case (8. 4) reduces
to (8. 3). In other words this theorem extends Green's
first formula to the present context. According to (8. 3'),
^uf^g must be finite almost everywhere on R^ if (JL(R) < oo.

Equation (8. 3) to be derived is trivially true if a has support
| So} - I11 view of the linearity here we can and shall suppose
from now on that ^o) =0. If v^.0 we find, using (8. 2)
and reversing the order of an integration,

(8.5) J^)^0;)i^o,^)

=0,^) t^o, ^) fe(^ vi) (x,(^) = C^n) (̂ ).
v n o' R */ R

If v is not positive, we can write v ' as the difference between
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two positive functions on R^ ^' == ^ + ^2, where v\ has
Dirichlet solution ^, and the result already obtained for
positive v can be applied to ?i and ^2.

9. The evaluation of D(u) in terms of u.

We shall now put (7. 5) into a precise form, using the
following lemma.

LEMMA 9.1. — Let u be a BLD harmonic function on R,
with fine boundary function u'. Let pU be the potential compo-
nent of u2 {{see (3. 1)) and let ^ be a minimal point of R^ at
which u' is defined. Then

(9. 1) /•lim-^= f [uW-u^]2^ ̂ o, ^).v ^g^o, 0 J^
If this limit is finite,

.9 ^ Him^-^-O.
{992) f^ g^O
Note that if ^ is in the set of almost all boundary points at

which pU has fine limit 0, the left side of (9. 1) can properly
be interpreted as the fine normal derivative of pU at S;. Define
the function y by

(9. 3) ?(^, ^) =f^[UW - ̂ W^ Y!) !̂  ^)

= f^[uW - u{W ̂  d^lg{^ ^o).

The right side of (9. 1) is then 9^, ^). Applying elementary
manipulations,

'9-4' ̂ r^^^^'^^-^^. . ̂ . ^
According to the fine limit theorem of Nairn quoted in

Section 8, the fine limit of the left side of (9. 4) exists. Hence,
applying Fatou's lemma,

(9.5) /4mi9(^)^?(U).
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For fixed ^, <p(i;, .) is a 9-potential and as such is fine continuous,
so that

(9.6) ^Hm^O=y(U).

Applying (9. 5) and (9. 6) to (9. 4) we find that (9. 1) is
true, and that (9. 2) is true if the left side of (9. 1) is finite.

We recall that the functional D' in the following theorem
was defined in (7. 7).

THEOREM 9. 2. — Let u be a harmonic function on the
Green space J?. Then if D(u) < oo, u has a fine boundary
function u and D(u) = D'(u'). Conversely if u is an arbi-
trary measurable function on R1^ with D'(u') < oo, then

u9 e L )̂

and, if u is the Dirichlet solution for the boundary function u
D(u) = D'(u').

If u is a BLD harmonic function on R and if we decompose
u2 as in (3. 1), D(u) = gM/2, according to Theorem 3.1,
where M is the total mass corresponding to the potential u.
According to Theorem 8. 1 and Lemma 9. 1 this total mass
is the integral of the right side of (9. 1) with respect to the
measure (^o, .), so that D(u) = D'(u').

Suppose conversely that u is a measurable function on R^
for which D' is finite. Then y(^, ^) is finite for almost every ^
on R^ Choose some ^ at which this function value is finite.
Then y(^, .), a 9-potential which has y(^, ^) as limit at ^ in
the fine topology, is finite at some point ^ ̂  ^. Hence
[u' — u{^)] e I^R^ so u e L^R^ also. Let u be the Diri-
chlet solution for u\ To prove the theorem we prove that
D(u) < oo. We decompose u2 as in Theorem 3. 1. All we
need show is that the total mass M for pU is finite. Just
as above (9. 4) is true, so that

"•^ ^^^T^'-^-
Applying Theorem 8. 1 we find that

(9. 8) D(u) = qM/2 ̂ -|ĵ <p(i;, ̂ , ̂ ) = D'(u') < oo,

as was to be proved.
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From now on we shall call a function on R" which is measu-
rable and makes D' finite a «BLD boundary function ».
Then a function is a BLD boundary function if and only it
it coincides almost everywhere with the fine boundary func-
tion of a BLD harmonic function. If two BLD boundary
functions are considered identical when their difference coin-
cides almost everywhere with a constant function and if
the bilinear functional D'(u', ?') (defined in the obvious way
from our definition of D' in (7. 7)) is accepted as the inner
product function, the space obtained is a Hilbert space HA.
The transformation from a BLD harmonic function to its
fine boundary function defines a unitary operator from H,,
onto Hi,.

10. Linear functionals on La(A).

Let Eo be a fixed reference point of R, as usual, and let A
be a measurable subset of R". Let L*(A) be the class of
functions 9 on A satisfying the following two conditions:

(i) 9 e Li (A) and, if p.(^o, A) = 1, 9 is orthogonal to 1,

^<p^o, <L)=0;
(ii) The integral in the following inequality is defined and

the inequality is satisfied for some constant c» and every
BLD harmonic function v with v = 0 almost everywhere
on R11 — A.

(10. 1) f^ 9^0, d . ) 2^ CyD(P).

If (x($o, A) < 1, and if 9 e Lg(A), 9 can be extended to RM in
such a way that the extended function is in I^R") and is
orthogonal to 1. Then, using Theorem 4. 2, if v ' vanishes
almost everywhere on R"—A, the left side of (10. 1) can be
written in the form

(10. 2) /^9^-^o)]^o, d.)!2^/^!2^, d.W,

so that L*(A) 3 Lg(A). If ^(So, A) = 1 the obvious contrac-
tion of this reasoning shows that L*(R") includes all functions
in L2(R1") orthogonal to 1.
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11. The generalized normal derivative on R^

The class of BLD harmonic functions, and hence the class
of BLD boundary functions, may be small. For example,
if R is finite N-dimensional Euclidean space, with N > 2,
the only BLD harmonic functions are the constant functions.
This is a degenerate case in which R^1 contains only one point.
Ahlfors and Royden [1] have given an example of a Riemann
surface with a Green function but supporting no non-constant
BLD harmonic functions even though harmonic measure on
the boundary is not atomic. Because of such examples, we
make the following definition. Let B be a measurable subset
of RM. A function 9 in L*(B) which is orthogonal to every
BLD boundary function v vanishing almost everywhere on
W1 — B, in the sense that

(11.1) f^^d.)=0,

will be called « negligible on B ». The class of these functions
is an invariant of the space. Thus the fact that this class
consists of the almost everywhere on B vanishing functions
when R is a plane disc implies that the class consists of the
almost everywhere on B vanishing functions when R is any
simply connected hyperbolic Riemann surface.

Let Ui be a function on R, and let B be a measurable subset
of R^ Let u be a function on R with the following properties.

(a) u is the sum of a BLD harmonic function u^ and the
potential Up of a not necessarily positive measure pi.

(b) If ^ is a BLD harmonic function and if v vanishes
almost everywhere on A = W^ — B, then v is integrable
(finite-valued integral) on R relative to the absolute variation
of (JL.

(c) The restrictions of u and u^ to R less some compact
subset of R are identical.

We now make the following definition of an analogue of the
classical inner normal derivative at the boundary, suggested
by Green's first formula (8. 4). We shall say that « u^ has
a generalized normal derivative » y on B if f^'^o, d.)

38
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is well-defined and finite for every BLD harmonic function
v whose fine boundary function vanishes almost everywhere
on A, and if there is a function u with properties (a), (&), (c)
above for which

(11. 2) D(u,, ^ = — 9^,9^0, d.) + qf^d.),

for every v as just described. Note that it (JL has finite energy,
so that u is a BLD function, the left side of (11. 2) is equal
to D(u, v).

We denote the generalized normal derivative on R^ as
well as the fine normal derivative there, by ^ — l ^ g leaving
it to subsidiary notation or explicit statement to distinguish
between the two.

It is clear that if u; has generalized normal derivatrice 9^
on B then c^ + CgUg has generalized normal derivative
(^ -^ ^92 on B. If Ui has generalized normal derivative 9
on B and if Bo is a measurable subset of B, then Ui has a genera-
lized normal derivative on Bo, the restriction of 9 to Bo.

The function 9 on B is generalized normal derivative of the
function 0 if and only if 9 is negligible on B. Then it Ui
has generalized normal derivative 9 on B, the class of all
generalized normal derivatives of Ui on B is the class of all
functions on B differing from 9 by negligible functions on B.
In the classical applications, the negligible functions on B
are those vanishing almost everywhere on B, and functions
then have essentially unique generalized normal derivatives.

Using Theorem 8.1, (11. 2) can be written in the form

(11. 2') D(^, ̂  = - q^ [9 -(^) ] ̂ {^ ^.),

where (^p/^g)/ is the fine normal derivative on 1̂  of Up.
Note that if u is an arbitrary function satisfying the conditions
(a), (6), (c) imposed on u, then, in the obvious notation, u^, == u/».
Moreover the potentials Up, Up are identical outside some
compact subset of R, and these potentials therefore have the
same fine normal derivatives on R^ Thus the condition
(11. 2') is satisfied, if at all, independently of the choice of u.
In particular, if u^ itself has properties (a) and (6), (11. 2)
and (11. 2') are satisfied with u replaced by Ur
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Applying Schwarz's inequality to the left side of (11, 2')
we see that y — (^Up/^ (on B) is in the class L^B).

If u is a BLD harmonic function, it has a generalized normal
derivative y on B if and only if y <= L*(B) and

(1L3) ^u,v)=-qf^v^d.)

for every v with the properties listed in (6) above.
If u is the potential of a measure p. satisfying the conditions

listed in (6) above, u has the restriction of its fine normal
derivative to B as generalized normal derivative on B. For
example, every potential of a (not necessarily positive) mea-
sure with compact support has a generalized normal deriva-
tive on every set B, the restriction to B of its fine normal
derivative. In particular, g(i;, .) has generalized normal
derivative K(., ^) on W\

Finally, if u is the sum of a BLD harmonic function u^
and of the potential Up of a measure (JL with the properties
listed in (&), then u has generalized normal derivative <p
on B if and only if u/i has generalized normal derivative
9 — {^Upl^g)f on B.

THEOREM 11.1. — Let B be a measurable subset of R^
0 < t^o? B) ̂  1. Let f be the restriction to A == R^ — B
of a BLD boundary function, and let y be a function in the
class L*(B). Then there is a BLD harmonic function, unique
if p.(^o, B) < 1, unique up to an additive constant if^{^ B) = 1,
wUh fine boundary function coinciding almost everywhere on
A with f and with generalized normal derivative y on B.

Let 3% be the class of BLD harmonic functions whose fine
boundary functions coincide with f almost everywhere on A.
Then 3% corresponds to an affine manifold SBt0 in H, linear
if /*==0. Moreover 9%° is closed, by Theorem 4.3. Let
9?° be the closed linear manifold of differences between pairs
of elements of 2%°, corresponding to the class 91 of BLD har-
monic functions whose fine boundary functions vanish almost
everywhere on A. The functional of v defined by

—^T^o, ^ )—D(uo , P), p e % ,

where UQ is a fixed BLD harmonic function in 3K, defines
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a bounded linear functional on 91°. It follows that there is
a unique element in 91° corresponding to a function VQ in 91
such that

(11. 4)
D(^o, ^)=—g^?^(So, ^.)—D(uo, ^), if ^^

That is, there is a function u == UQ + ?o m 'iB1?? unique or
unique up to an additive constant, as stated in the theorem,
such that

(11.5) D(u, (.) ==—?/'9^0, ^.), if pe%.
*/ B

We shall indicate an alternative proof of this theorem in Sec-
tion 13.

12. Weak convergence.

Let \u^ n^>, I j be a sequence of BLD harmonic functions
on R. Suppose that the fine boundary function sequence
|i4, n^. 1} converges weakly in I^R^*) to some function i^.
Such convergence is independent of the reference point for
harmonic measure. We now show that the function u'^
is the fine boundary function of a harmonic function u^
and that u^, -> u^ uniformly on compact subsets of R. Choos-
ing some reference point So? our hypothesis is that

(12.1)
lim r^^o, r f . ) = fu'V^ d.\ if p'eL^R^.
n -> oo U K u S\

Since i^el^R^), u^ is the fine boundary function of its
Dirichlet solution u^. If we choose v = K(., S;), the limit
equation (12. 1) states that u^(^) —> u^(^). Since the Lg
norm of u'n is bounded independently of n, and since K is
uniformly continuous on any direct product of R1^ and of
a compact subset of R, there is uniform convergence of the u^
sequence on compact subsets of R.

Now suppose that the sequence ^u^ n^ 1^ of BLD har-
monic functions converges weakly as a sequence of elements
of H to some u^. Then the sequence of Lg norms of the
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boundary functions is bounded, according to Theorem 4. 2
if the sequence is normalized by the proper additive constants.
From now on we suppose that this has been done, supposing
that every u^ and also u^ vanishes at our reference point ^o,
and we show that u^—>u'^ weakly in L^R^. Now if p is
a BLD harmonic function with generalized normal derivative
on R^ this derivative in I^R^, then D(u^, v) -"-> D(u^,, ^),
so that

(12.2) lim f u^a(^,d.)== f u,^^o,d.).
n^ooJnM Og JRM Og

Since the generalized normal derivative can be any function
in I^R^ orthogonal to 1, and since the limit equation (12. 2)
is trivially true when the generalized normal derivative is
replaced by 1, we have proved that u^ —> u^ weakly.

In terms of fine boundary functions, u^ -> u^ weakly in
H if and only if D'(Un, v ' ) —> D^ul,, ^f) for every fine boundary
function ^ of a BLD harmonic function, but this condition
is not easy to use.

In many applications, that is, for many spaces R, whenever
^n —> ^oo weakly in H, u^ —> u'^ strongly in L^R^, if suitable
additive constants are adjoined. In other words in many
applications the continuous transformation from H into
I^R^ defined at the end of Section 4 takes the closed unit
ball into a compact set. When this is true we shall say
that « R satisfies the complete continuity condition )). This
condition will be imposed only in Sections 18-19.

THEOREM 12. 1. — If g(So? •) ^as li^it 0 at every point of
R^ that is if ̂ : g(^o5 S;)^:^ is a compact subset of R for
every £ > 0, then R satisfies the complete continuity condition.

We observe that the hypothesis is independent of the refe-
rence point ^o? ^d that it is an intrinsic condition on a Green
space. For example it is a conformally invariant property,
so that every simply connected hyperbolic Riemann surface
enjoys it. If R is a domain in Euclidean N-space, the hypo-
thesis is satisfied if and only if every relative boundary point
is regular for the Dirichlet problem.

To prove the theorem suppose that there is a sequence
{Un, n „>: 1 \ of BLD harmonic functions vanishing at $o?
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the sequence being weakly convergent in H to the function 0.
Then we have proved that u'n -> 0 weakly in L^R^ so that
u^ -> 0 pointwise, uniformly on compact subsets of R. We
write Un as in (3. 1),

(12. 3) u^ = ̂  — ̂  D(u,) = gMJ2,

where we recall that M^ is the mass associated with the poten-
tial pU^. Since the sequence of L^ norms of the ^u'n sequence
is bounded, the ̂  sequence is locally uniformly bounded on R
and therefore (going to a subsequence if necessary) we can
suppose that this sequence of positive harmonic functions
converges uniformly ou compact subsets of R to a function ^u.
Then pU^ -> ̂ u also. There is strong convergence in I^R^
of the u'n sequence if and only if ^u = 0. Suppose that pU^
is the potential of the measure ^. Since ApU^ -> 0 uniformly
on compact subsets of R, the ^ measure recedes to R^
Our hypothesis implies that g(^ .), extended by 0 to R^
is continuous on R u R^ aside from the infinity at S;? it S
is a finite point. Hence pU,, -> 0 = ^u as was to be proved.

13. A mixed boundary value problem.

If u is a BLD harmonic function with fine boundary function
0 almost everywhere on A and with generalized normal
derivative ^u^g on B = RM — A, then the classical formula
expressing D(u) in terms of its boundary function and boundary
normal derivative becomes in our context

(13.1) D(u)==-^u'^^o,rf.).

This evaluation, simply an application of the definition of the
generalized normal derivative, implies the uniqueness assertion
of Theorem 11.1. We now take up again the problem treated
in Theorem 11.1, using the notation of the proof of
that theorem.

If u is a BLD harmonic function with generalized normal
derivative 9 on B, and if v is a BLD harmonic function whose
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fine boundary function, as well as that of u, coincides with f
almost everywhere on A, then from (13. 1)

(13. 2)
D(p)+2^y^(^rfO==D(u)+2^yu^o,rf.)+D(^—u).

Hence u is the element of 3%, unique if y.{^ B) < I? unique
up to an additive constant if p(.(^o, B) == 1, minimizing the left
side of (13. 2). The class 3K° is a closed affine manifold in H
and the integral on the left in (13. 2) defines a bounded
functional on 3%° so the existence of a minimum of the left
side of (13. 2) also follows from the classical Beppo-Levi
reasoning in accordance with which a minimizing sequence
converges in H to the solution. We observe that the left
side of (13. 2) is only increased if we add a function of poten-
tial type to v, so that u minimizes the left side for all BLD
functions with fine boundary functions equal to f almost
everywhere on A, determining in H a closed affine superspace
of a»°.

If f = 0 (in particular if B has harmonic measure 1) the
problem becomes homogeneous. In that case

(13. 3) D(^) + 2^ ̂ j^o, d . ) >. — D(u) = qf^ u'y^o, d . )

for every BLD harmonic function v in 3% == 91 and, multi-
plying v by a suitable constant, this inequality becomes

^rr^y^o^.n2
(13.4) IL^«_IL^D(U).

Thus D(u) is the maximum of the ratio on the left for all v
in 3R. Then u is the unique up to a multiplicative constant
BLD harmonic function, vanishing at S;o ^ t^o? B) = 1,
with fine boundary function equal to 0 almost everywhere
on A, maximizing the left side of (13. 4).

As an application of the minimal property embodied in
(13. 2) we prove the following intuitively obvious theorem.
By « ess sup » we mean the supremum neglecting sets of mea-
sure 0. We always write « strictly » positive or negative if
zero is to be excluded.
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THEOREM 13. 1. — Let u be a subharmonic function on R,
u = u^ + Up, where u^ is a BLD harmonic function and Up
zs the potential of a negative measure. Let B be a measurable
subset of R^ and suppose that pi(^, B) < 1. Then if u has a
generalized normal derivative on B, which is positive, it follows
that u<i ess sup u'(^), where A = RM — B.

S€A '
If B has harmonic measure 0, so that in effect A = R^

u is the Dirichlet solution for its fine boundary function and
as such is bounded from above by the essential supremum
of u' on A. If B has strictly positive harmonic measure, let
S be the essential supremum in the theorem. It is sufficient
to prove the theorem for u harmonic, u = u^ In fact if
the theorem is known to be true for u harmonic, the theorem
is applicable to the component u^ because S is the essential
supremum of u/i on A and u^. has a positive generalized normal
derivative on B. Then u<_u^<i^ as was to be proved.
Thus in the following we can and shall assume that u = u^
Up = 0. Let u[ = min [u , S], and let Ui be the Dirichlet
solution for the boundary function Ur Then u^^,S and the
restrictions of u' and Ui to A are identical. Hence according
to the discussion centering around (13. 2),

(13.5)
D(u,)+2q f^u^d^D{u)+2q f^u'^o,^.)

J^°S JBOg

and there is equality only when Ui = u. Since (trivially)
D'(ui) <i D'(u') and since the integral on the left must be
at most equal to the one on the right, there must be equality
in (13. 5) and we conclude that u = u^ <. S, as was to be
proved.

We shall use the following remarks in later sections. Sup-
pose that B (of strictly positive harmonic measure) and f
are specified, and that u^ is the BLD harmonic function with
fine boundary equal to f almost everywhere on A, with genera-
lized normal derivative y^ in La(B) on B. If A has harmonic
measure 0 we take u^o) = 0 to ensure uniqueness. Then

(13.6) D{u,—u,)=—q f (91-92) (^—uQ^o^.).
JB
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Hence if |[ [ J B denotes the L^B) norm, and if either Theorem 4. 2
or the discussion following the proof is applied, depending
on the harmonic measure of B,

(13.7) W)\\u[-u^D(u,-u,)
^^Hyi—yallBll^—^iiB^yYi^—y^BD^—u^2,

where y is a constant independent of the choice of u^ and Ug.
It follows that

(13. 8) |K — ^IB ̂  fD{u, — u,) ̂  q^\\^ — 9,||B.
These inequalities imply that the transformations from y

in La(B) into u and u' are continuous.

14. Application to the geometry of various function classes.

A measurable subset A of RM is supposed chosen, and various
concepts will be defined relative to A. The point S;o 1s a fixed
reference point and we suppose that 0 <, pi(S;o, A) < 1. Let f
be a measurable function on A and let 9% (/*, A) be the class
of BLD harmonic functions with fine boundary functions equal
to f almost everywhere on A. Then 3% (/*, A) is an affine
possibly empty manifold which determines a closed affine
submanifold of H (Theorem 4. 3); 3% (/•, A) is the class of all
BLD harmonic functions if A has harmonic measure 0.
Let %(/*, A) be the subclass of 3%(/', A) whose functions have
generalized normal derivatives on B = R^—A, in Lg(B).
Then %(/•, A) is affine. Let 3%' (/*, A), %'(/•, A) be the classes
of restrictions to B of the fine boundary functions of the
members of 3% (/", A), ^(/>, A) respectively. The following
theorem is phrased for f = 0. Corresponding results in the
general case can be obtained by differencing.

THEOREM 14. 1. — (a) (H topology) 9?(0, A) is a dense subset
of 9ft (0, A); (&) The class of negligible functions on B, in
Lg(B), is the orthogonal complement of 91'(0, A) in La(B).
If 9l'(0, A) is dense (La(B) topology) in La(B), a function on
B is negligible on B if and only if it vanishes almost everywhere
on B.

To prove (a), let u be a BLD harmonic function in SK(0, A),
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orthogonal to 91(0, A). We shall prove that u must be a
constant function, corresponding to the zero function in H.
By definition of generalized normal derivative, if v is in %(0, A)

(14. 1) 0 = D(u, v) = — q f u ^ E^o, rf .) .
J a og

It A has strictly positive harmonic measure, v can be chosen
to make ^/^g equal to u almost everywhere on B. Then u
must vanish almost everywhere on R^ so u == 0. If A has
zero harmonic measure, v can be chosen to make b^/^g any
function in I^R^ orthogonal to 1. Hence u must be a
constant almost everywhere, so u is a constant function, as
was to be proved. To prove (&), let 9 be a function in La(B)
orthogonal to 9l'(0, A), that is

(14.2) f^^d.)=0 if -^%(0,A).

This is precisely the condition that 9 be negligible. Conver-
sely if 9 is in La(B) and is negligible on B (14. 2) is satisfied,
so 9 is orthogonal to 9l'(0, A). Finally, if ^'(0, A) is dense
in La(B), that is if there is no not almost everywhere 0 negli-
gible function on B in Lg(B), let 9 be any negligible function
on B. Then (14. 2) is true, that is this equation is true for
functions v whose restrictions to B constitute a certain linear
class dense in I^B). Since this class contains the functions
max [0, ^'], min [1, ^'] when it contains ^', the class contains
a sequence of functions, with values between 0 and 1, converg-
ing almost everywhere on B to the' indicator function
of any preassigned measurable subset C of B. But then

\ 9(^(^0? d.) = 0, so that 9 vanishes almost everywhere on B,
as was to be proved.

We now investigate the the infinities of Nairn's 0-kernel
discussed in section 7. The measure used on R1^ X R1^ is
the product measure p.(^o5 • ) X p.(S;o? • ) -

THEOREM 14. 2. — Let ^i, ^2, .. ., be the points on R^ of
strictly positive harmonic measure, if any. ThenQ{^ ^n) == °°?
n ̂  1 and, if e^ery negligible function on RM vanishes almost
everywhere, 6 is finite almost everywhere on R^^ X R1^ — ^ n{ (^n? ̂ n)} •

The minimal harmonic function corresponding to ^ is
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K(^ ,.) = ;x(., i^O/^o, |^0- This function has fine limit
1/^(^0? |^0 a! ^ra? ^d the Green function with an arbitrary
pole has ordinary limit 0 at ^ because it has ordinary limit
0 almost everywhere on R^ by a theorem of Nairn [11].

It follows that

(14.3) e^^^/'llmO^^^^lim1^^^^.
S^E" ^n g^O^)

If every negligible function on W1 vanishes almost everywhere,
suppose, contrary to the assertion of the theorem, that 6
is infinite on a set Ag c R^1 x R^1 of strictly positive harmo-
nic measure, containing no point either of whose coordinates
is a ^. Let u be any BLD harmonic function. Then
D'(u') < oo, so that u'(^) == u(r\) almost everywhere on Ag,
say on the subset Ag(u) of the same measure as Ag. Let
{u^ M ^ I J be a sequence of BLD harmonic functions
chosen, as is possible according to Theorem 14. 1, in such
a way that the corresponding sequence of boundary functions
is dense in I^R^ and let Aa = n ^Ag^). Then there is a
point Y]o of R^ not of strictly positive harmonic measure,
such that the set Ai of points Y) with (v]o, r\) in Ag has strictly
positive measure. Clearly every u'n is constant on Ai, and
hence every function in I^R^ is constant almost everywhere
on Ai. This situation is impossible, however, because Ai
contains no point of strictly positive measure. Hence the
theorem is true.

15. Green functions of the second kind.

Let ^o be a fixed reference point for the kernels 6 and K
defined in Section 7 and let ^ be any point of R. The func-
tion y = 1 — K(., ^) is continuous on R1^ and, if u is a BLD
harmonic function,

(15.1) f^u^d.}=u(^)-u(^

Then y is in the class L^R^ defined in Section 10. Let
a(^, .) be the BLD harmonic function with generalized normal
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derivative y on RM, vanishing at So- The function gg = a 4- g
is our version of the Green function of the second kind. It
has and is uniquely determined by the following two proper-
ties, once ^ is specified.

(i) ga(S, .) — g(S, • ) can be defined at S to be continuous
there, and is then a BLD harmonic function, vanishing at So-

(ii) ^(S? • ) has generalized normal derivative 1 on R^
We shall write a'(S, .) and ga(S, .) respectively for the

(almost everywhere equal) fine boundary functions of a(S, .)
and g^S, • ) • Using the defining property of generalized
normal derivatives, if u is any BLD harmonic function,

(15. 2) D(a(S, .)) = ga(S, S), D(a(S, .), u) = g(u(S) - u(So)).

From (13. 4),

(15.3) l̂ p '̂)!̂ ,̂ ,

with equality if and only if u — u(So) is a multiple of a(S, .).
From (15. 2,)

(15.4) D(a(S,.), a(Ti,.))=ga(Yi,S).

Hence a and gg are symmetric functions. According to
(13. 8), a(S, .) as an element of H depends continuously on
its normal derivative viewed as an element of L^R^. We
conclude that a is a continuous function on R X R.

The function a(S, .) is bounded, and in fact is bounded
uniformly for S restricted to a compact subset of R. We only
sketch the proof. Fix S and consider the function

u= ga(S, . )—g(So, •)•

This function is harmonic on R except at S and So ^d has
generalized normal derivative 0 on R^ Let Ro be R less a
compact neighborhood of ^ u ^ S o j - Then it can be shown
that the restriction of u to Ro is a BLD harmonic function,
with generalized normal derivative 0 on R1^1 considered as
a subset of R?1, with a bounded boundary function at the
set B (the rest of R^) of boundary points of Ro in R. This
presupposes that B is sufficiently smooth. It follows from
Theorem 13. 1 that u is bounded in Ro by the bounds of
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u on B. Hence a($, .) is bounded as stated above. It
follows readily that for almost all points r^ ot RM f lim a(^, Q

^v\
exists, uniformly on compact ^-sets. The limit harmonic
function will be denoted by a(., Y]); a(v], .) is defined similarly.

Theorems 15. 1 and 15. 2 are our versions of the representa-
tions of a harmonic function using the second Green function.
Note that in these theorems only the fine boundary function
ga(S? .) is involved, which can be replaced by the almost
everywhere equal a'($, .).

THEOREM 15. 1. — Let u be a BLD harmonic function.
Then

(15.5) ^)-^o)=D'(g^,.) ,u)/y.

This theorem is a trivial consequence of (15. 2).

THEOREM 15. 2. — Let u be a BLD harmonic function with
generalized normal derivative on R^ Then

(15. 6) u(S)-^o)=-^g^ .)^o^.).

The representation (15. 6) is derived from (15. 2) with
the help of the defining property of generalized normal deri-
vatives.

Let p. be a (positive) measure on R with compact support
and define the a-potential u by

(15.7) ^)=f^^(d^

Since a ( . , Y ] ) is harmonic, the function is, in small open sets,
the harmonic average of its boundary values. Hence u has
the same property, so u is harmonic. Obviously u($o) = 0.
A similar argument shows that differentiation under the inte-
gral sign is admissible and we obtain, if v is any BLD harmonic
function,

(15. 8)
D(u, P) = ̂  D^(a(^, Y]), p)(x(rfy)) == q f^)—^]]y.{d^.
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In particular u is itself BLD harmonic and has a generalized
normal derivative on R*1,

(15. 9) D(u) == q C f a(^, TI) (A (^) y. {d^),
' »/ JK. U Jtt.

^^=^[l-K(^ri)]^Yl).

If ^ is the a-potential of the measure v with compact support
(15. 8) becomes

(15. 10) D(u, ̂  = ̂ f^f^ ̂ WW

Now let pL be any measure for which the double integral
in (15. 9) exists as an absolutely convergent integral. Then
if R = u ^ A^, where A^ is a set whose closure is a compact
subset of R, with A l c A ^ c . . . , if ^(B) = p.(B n AJ, and
if Un is the a-potential of the measure [ ,̂ D(u^ — u^) -> 0
so that lim i^ exists, pointwise locally uniformly and also

n-^ oo
in the BLD sense. Hence the a-potential u of [x is defined
and BLD harmonic. If ^ is a signed measure whose absolute
variation makes the double integral in (15. 9) converge abso-
tely, we define the potential of (^ in the obvious way. In
all cases the potential u is BLD harmonic, has a generalized
normal derivative on R^ given by (15. 9), and (15. 10) is
valid if ^ satisfies the same conditions as [x.

Now let p. be a measure of finite energy for whose absolute
variation the double integral in (15. 9) converges absolutely,
and let u be the ga-potential of [^,

(15. 11) U(^) =^g2(^)[^W

Then u is the sum of the g-potential (ordinary Green potential)
of u and of the a-potential. The function is therefore a BLD
function. If ^.(R) is finite, the generalized normal derivative
of u on R^ exists and is [x(R). This potential is the unique (up
to an additive constant) BLD function which has constant
generalized normal derivative on 1̂  and whose component
of potential type is a Green potential with an assigned measure,
corresponding to the classical problem of finding a function u
with constant normal derivative at the boundary and assigned
Laplacian Au.
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16. Mixed Green functions.

We have used two Green functions, g and ga. The func-
tion g(^ .) has fine boundary function (and even ordinary
boundary function) 0 almost everywhere; the function
ga(i;, • ) has generalized normal derivative 1. The two func-
tions have the same singularity at ^. The classical idea of
a mixed Green function is the following. Let A be a boundary
set. Then g^, .) is to be a function which is harmonic except
at E;, where it has the same singularity as g(S, .), and is to
have the boundary function 0 on A, boundary normal deri-
vative 0 on RM — A = B. When A is the whole boundary,
gA is then g. When is the empty set, a change must be made
because the integral of the normal derivative is the mass due
to the singularity, so that the boundary normal derivative
is required to be 1 instead of 0. This leads to gg. We
accordingly can and shall restrict A by the inequality
0 < (x^o, A) < 1 below.

Since the argument developing the properties of gA is
similar to that for g^ it will only be sketched. Let ^ be a
fixed reference point and suppose that both A and its comple-
ment B on the Martin boundary have strictly positive harmonic
measure. Let o^S;, .) be the BLD harmonic function whose
fine boundary function vanishes almost everywhere on A,
and which has generalized normal derivative — K(., ^) on B.
Define gA = <XA + g. Then gA has and is uniquely determined
by the following two properties, when ^ and A are specified.

(1) gA^, . ) — g(^, .) can be defined at E; to be continuous
there, and is then a BLD harmonic function.

(ii) The fine boundary function of g^, .) vanishes almost
everywhere on A$ gA^, .) has the generalized normal deriva-
tive 0 on B.

The same kind of reasoning as that used to prove the
boundedness of a($, .) can be applied here to prove the posi-
tivity of gA(S, .) and the fact that o^, .) is uniformly bounded
for ^ in a compact subset of R. Since g(^, .) is dominated
by every positive superharmonic function with the same
singularity at ^, (XA^, .) must be positive.
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If u is any BLD harmonic function whose fine boundary
function vanishes almost everywhere on A-,

(16. 1) D(a^, . ) ,u)=gu(^ .

Then
(16. 2) D(aA(S, .), aA(Y], .)) == q^, ̂ ).

We conclude as in Section 15 that OA is symmetric and is
continuous on R X R.

Following the reasoning in Section 15, for almost every Y)
on R^ there is a harmonic function which we denote by
a A ( . , Y l ) and OA^, .) such that a^. ,^) -> a^., Y]) uniformly
on compact subsets of R when S; -> Y) in the fine topology.
We denote by (XA^, .) and g'^ .) the fine boundary functions
of the functions denoted without primes.

The difference a^, .)—aA^, .) is BLD harmonic, and, if
Ag => Ai, this function has a fine boundary function <i 0 on
Ag, vanishing generalized normal derivative on RM — Ag.
Applying Theorem 13. 1 we deduce that the difference is
negative: <XA decreases when A increases. We now prove
that gA^ \ g is A^f R^ In fact if ^ is a point of R and if (XA^) ^ u
say, u is a positive harmonic function, which we show vanishes
identically. In the first place it is a BLD harmonic function,
because

D(u) ̂  lim D(aA,(^ .)) - q lim o^, ^) = qu(^).
n->oo ra->oo

In the second place, since u<i^J^, .), the fine boundary
function of u must vanish almost everywhere. Hence u == 0,
and we have proved more than we stated, since we have
proved that OA^, .) -> 0 in the BLD sense. A slight extension
of the reasoning shows that OA^, . ) ->0 when ^.(^o, A) -> 1.

Going in the other direction we can only show that it A^ \ 0
then there is a symmetric continuous function ^ on R X R
such that

(16. 3) OA^, .) — OA^O, So) -> ̂  .),
uniformly on compact subsets of R, for each point ^ in R and
that

(16.4) aA,(S, . )—aA^o, -)->^ •)
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in the BLD sense. Moreover a($, .) — p^, .) has generalized
normal derivative 0 on A^ for every re, and

(16.5) p (^ . )=0 , D(^,.))=^(S^).-

We would of course like to identify v with a, but this seems
impossible without further hypotheses. These results can
be deduced using standard Hilbert space reasoning based
on the following facts. Let ^(S, .) = a^S, .) — o^o, •).
Then (H — geometry) a(^, .) — ^(S, •) is orthogonal to every
^c(^, .) with C D A and ^(^, . ) — ^ c ( ^ , .) is orthogonal to
every ^, .) with E => C =? A. We omit the details.

If u is a BLD harmonic function whose fine boundary
function vanishes almost everywhere on A, and if neither A
nor its complement B with respect to R^ has harmonic measure
0, u can be expressed in terms of its fine boundary function,
using (16. 1),

(16. 6) u(S) = D'(al(S;, .), u)lq = D'(gl(!;, .), u)fq.

If in addition u has a generalized normal derivative on B
we can manipulate (16. 1) to obtain

(16.7)

^)=-/^^, .)^o^.)==-^^g^ .)f^.).

Geometrically the integral (16. 7) represents a projection.
The classes of BLD harmonic functions with fine boundary
functions vanishing on A and with generalized normal deri-
vatives existing and 0 on B are images of closed linear manifolds
in H which are orthogonal and span H^. If u is a BLD har-
monic function with a generalized normal derivative on B,
the integral in (16. 7) represents the projection of u on the
first class. It thus solves the problem of minimizing D(u)
for the generalized normal derivative assigned on B, the dual
of a minimum problem considered in Section 13.

We shall now find the projection of u on the second of the
above classes and then combine the two results to obtain an
expression for u. We make an extra, undesirable, hypothesis.
Suppose that (x.^ •) has a generalized normal derivative on

39
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R^. Th^n if u is a BLD harmonic function with a generalized
derivative on RM which vanishes on B,

(16. 8) D(a(^, . )u) = - q f^ ̂  . ) |? ̂  .) = 0

———^f'5^"'^0^-)JR" &g
= - ?^b-I -̂) ^f^o, d-) + <P(S).

Hence

(16.9) ^)=^J'S^u'^,d.).

Conibining our results, and making use of the decomposition
of u into the sum of its projections on the two classes des-
cribed above we find that if u is a BLD harmonic function
with a generalized normal derivative on B, then (under our
extra hypothesis that o^S;, .) has a generalized normal derivative
on R^,
{ (16. 10)

^) =f^}g^ u^05 ̂ )-J,>(^ -)^(^ ^- ) -

This is the desired representation of u in terms of the mixed
Green function.

17. The third boundary value problem.

Let ^o I36 a reference point of R and let o" be a posi-
tive bounded measurable function on R^ not vanishing
almost everywhere. Let A be the set of zeros of o-, and
define the measure v of subsets of B == RM — A by setting
v(cR;) == pi(^o? cR;)/<r(i;). Let La(v) be the Lg — space of functions
on B relative to the measure v with inner product denoted
by ( , ). Then Lg^v) c La(B). Let L be the subclass of Lg(v)
satisfying the condition (9, o-) == 0. If y e L define Sy as the
.restriction to B of cru', where u is the unique BLD harmonic



BOUNDARY PROPERTIES OF FUNCTIONS 611

function with generalized normal derivative on: R^ and
satisfying

bu r\ A, = O o n A , ,
^g au es L.

=== y on B
The last condition is always possible, with the help of an
additive constant in u. Then Sy = 0 if and only if the exten-
sion by 0 of y to RM is negligible on R^ (See Section 11 for
the definition of negligibility.) If ^ is determined by y;
as u is by y above,

(17. 1) (Syi, y,) = - D(ui, u^q.
Thus S is a negative definite symmetric linear transformation
from L into itself. It is therefore bounded and selfadjoint.
We shall use below the fact that 1 is in the resolvent set of S.

We now consider the following boundary value problem.
Let f be a function in the class L^R^ defined in Section
10 or at least a function differing by a constant multiple of <r
from such a function. For example f may be any function
in I^R^. The problem is to find a BLD harmonic function
U, with generalized normal derivative on R^ one of whose
generalized normal derivatives satisfies the boundary condi-
tion

(17.2) ^h^^-

Note that the solution to (17. 2), if there is one, is unique,
since 1 is not a characteristic value of S. An application of
Theorem 13. 1 shows that if u is a solution of our boundary
value problem

(17. 3) inf (— /•/(T) ̂  u ̂  u sup (— //a)
where the extremes are on the set where df does not vanish.
Thus u is a bounded function if these extremes are finite.

If a is any constant, it is sufficient to solve the problem
with the boundary condition

(17.3') ^==au+(/ t—^)

instead of (17. 2), because if u is a solution of (17. 2') u— a
is a solution of (17. 2) and conversely. Hence it is no restrie-
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tion to solve (17. 2) under the restriction that f^ L^R^)
and we shall do so. Let f^ be the restriction to B of TO},
whre Uyis the BLD harmonic function with generalized normal
derivative f on R^ and whith (ru}in L. Since 1 is in the resol-
vent set of S, there is a unique function <p in L satisfying the
equation 89 — y = — /i. By definition of S, (y — ^i)/ar
coincides on B with a certain BLD boundary function u'.
The function u + Uy is the desired solution of (17. 2).

The functions u(H-topology) and u (I^R^-topology)
depend continuously on /^L^R^-topology) if /* is supposed
in L^).

We now define a Green function for our boundary value
problem. For each point S of R let P(^, .) be the BLD
harmonic function with generalized normal derivative
(rp(S, .) — K(., ̂  on R^ Let §3 == P + g. Then §3 has and
is uniquely characterized by the following properties.

(1) g3^j •) — g(S? •) can he defined at S; to be continuous
there and if so defined is a BLD harmonic function.

(ii) gs(S, .) has generalized normal derivative o"g3(S, .) on R .̂
Let 8'($, .) and gs{^ .) be the almost everywhere equal

fine boundary functions of the functions denoted without
the primes. By definition of the generalized normal deriva-
tive, if u is a BLD harmonic function,

(17. 4) D(^, ^u)=qu^)-qf^^ .)u^o, d.)
Hence
. (17.5)

D(P(^.),P(TI, .)=^(Y), ̂ -qf^^ .)P'(YI, .)(^o,rf.).

From which it follows, as in the analogous discussions in
previous sections, that P and ga are symmetric continuous
functions.

THEOREM 17. 1. — If u is a BLD harmonic function satis-
fying (17. 2), with f and o- as described^ u can be represented
in the form

(17. 6) u(i;)=-^JPU .)^d.)=-f^fg^ .)^d.).

This representation follows from an elementary manipula-
tion of <17. 4).
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If fis a negligible function on IP1, the corresponding solution
u vanishes identically. More generally, different choices of f
will lead to the same solution it and only if the difference
between the choices is a negligible function on R^

The ga-potential of a signed measure on R,

(17.7) u(S)=/^,»i)^), „:

is, at least formally, a function which is the sum of a harmonic
function and the Green potential of (A, and satisfies the
boundary condition ^uf^g = cru'. It is easy to verify that
u is in fact a BLD function for which these assertions are true
if (A is a signed measure of finite energy for which the integrals

9fJ^^W)V'W,
t/ tt»/ tt

?/H"XX ̂ ' ̂ ' WWd^y.^, ̂ )

converge absolutely when (JL is replaced by its absolute varia-
tion. Under this condition D(u) is equal to the first of these
integrals less the second.

18. A characteristic value problem.

The characteristic value problem treated in this section
goes back to Pleijel (1951). See Odhnoff [12] for references and
a more recent treatment.

In this and the next section we suppose that R satisfies the
complete continuity condition discussed in Section 12. The
transformation S of the preceding section is accordingly
completely continuous. There is therefore a sequence |<pn,n^l j
of characteristic functions of S, corresponding to the non-
vanishing characteristic values of S, an orthonormal sequence
in L, complete in the orthogonal complement of the charac-
teristic manifold for the characteristic value 0. If U^ is
the BLD harmonic function in terms of which S<pn == <rUn
is defined (see the beginning of Section 17),

(18.1) ^==—§^U^

Sl = D(U,, UJ/gS, == (oU,, a^), :
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where §1, §2, ..., are the negative reciprocals of the non-
vanishing characteristic values of S. We can suppose that
0 < §1 :<! §2 ̂  .. . . Thus the U^ and crU^ Sequences are
both orthogonal in their respective spaces H and L. The
sequence {(jV'n, n<^t\ together with the class of functions y
in La(v) whose extensions by 0 to W^ are negligible on R^
and with the constant multiples of (T, span LJv).

Instead of relying on the general theory of completely
continuous self adjoint transformations on a Hilbert space
we could also have proceeded using extremal procedures <
In fact there is a BLD harmonic function u^ minimizing D(u)
for u a BLD harmonic function with f aru'2?^, d.) = 1 and the
usual argument yields the fact that ^u^g = — cr^i/gD(ui).
Thus MI is a solution of our characteristic value problem,
and §1 = l/gD(ui). The function Ui is a linear combination
of the members of the Vj sequence with S, = §1. At the
next step we would minimize D(u) for u a BLD harmonic
function with J^ cru'2^, r f . ) == 1 and D(u, u^) = 0, and so on.

The formulation of the results becomes more elegant after
a change in the reference measure. Define the measure Vi
of subsets of RM by Vi(^) ==(7(^)^0, d^), and denote by La(vi)
the Lg space for this measure. Define Uo=l/T f^pL^o,^.)]172.
Then [V^ n^. 0} is an orthogonal sequence in Lg^i) and the
orthogonal complement is the class of functions y in L^Vi)
for which o-y is negligible on R^ Then any function in
W^i) can he expressed as the sum of its Fourier series
(convergent in the mean with the weighting Vi) and a function
y in the class just described. In particular, let u' be a BLD
boundary function. Then u is orthogonal in Lg^i) to the
class of functions y and we obtain the following Fourier
expansion

(18. 2) u' == S a^ a, == f u'U (̂E;o, rf.)
n^o •/"

convergent in the mean with weighting v^.
The sequence [V^ n^i\ corresponds to an orthogonal

sequence in H^, and the orthogonal complement of the latter
sequence corresponds to the family of BLD harmonic functions
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v for which ov' is negligible on R^*. For such a function v* must
vanish almost everywhere on B because J „ ̂ ^(So? d.) = 0,
and conversely this vanishing of v characterizes the family.
We thus obtain the representation

(18. 3) u = S a,U, + U,
n>0

where U is a BLD harmonic function whose fine boundary
function vanishes almost everywhere on B. The coefficient
On is the same as the nth coefficient in (18. 2). The series
converges in H^, and the term OoUo is of course equivalent to
0 in considering the representation as one in H/^. If the
representation is to be made into a functional representation,
additive constants can be adjoined, say to make each summand
vanish at S;o, which will make the series converge pointwise, that
is, in the BLD sense. But then the corresponding sequence
of fine boundary functions converges in the mean relative to
harmonic measure, and so in the mean relative to Vi-measure.
On comparing this conclusion with the representation (18. 2)
we see that the series in (18. 3) itself converges in the BLD
sense and that the representation of u can be taken as an
ordinary representation of the function.

Applying Bessel's inequality to (18. 3) we find

(18.4) S ^A< °°.
n>o

and an application of the Riesz-Fischer theorem then completes
the proof of the following theorem.

THEOREM 18. 1. — A function in the class Lg^i) coincides
almost everywhere (harmonic measure) on B with a BLD
boundary function if and only if (a) it is orthogonal in La(vi)
to every 9 for which (79 is negligible on R^ and if (b) its Fourier
coefficients relative to the V'n sequence satisfy (18. 4).

The condition (a) is equivalent to the following: (a') it
is orthogonal in Lg(B) to every function in L^B) whose extension
by 0 to R^ is negligible on R^.

The complete continuity hypothesis we have imposed is
necessary to obtain our results. In fact if <r === 1 the complete
continuity condition on R follows from (18. 3) and (18. 4)
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knowing that ^ -> oo if there are infinitely many characte-
ristic values.

For R a disc of radius 1, central angle X, with center S;o?
if o- == 1,

U^i(X) = \/2 cos k\ U;,(X) == \/2 sin k\
§2^-1 = §2fc = /C, /C > 1.

Every negligible function on R^ vanishes almost everywhere.

THEOREM 18. 2. — If u is a BLD harmonic function, given
by (18. 3), and if u has a generalized normal derivative on
RM which vanishes on A and whose restriction to B is in the
class La(v), then U = 0 and

(18.5) 5a^<oo.

Conversely, if (18. 5) is true 5 ^n has generalized normal
' • n>0

derivative — (T 5 ^AUn which has the two stated properties.
n>,i "

If the generalized normal derivative of u vanishes on A,
u is orthogonal (H) to every BLD harmonic function whose
fine boundary function vanishes almost everywhere on B.
Hence U == 0 in (18. 3). Moreover, using the other stated
property of ^u/bg, there is a constant y for which

(18.6) D(U,^<:Y^'^)

for every BLD boundary function v ' . If (18. 6) is true, choose

v^^aWn' Then (18. 6) becomes

[ffS^T^TS^

and we conclude that (18. 5) is true. Conversely if (18. 5)
is true S ^AUi converges in La(vi), that is in the mean with

ra> 1

weighting Vi. The sum multiplied by —o- can be verified
directly to be a generalized normal derivative of ^ a^U^ and to

n>0
have the two properties stated in the theorem.

It is convenient for some purposes to modify the charac-
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teristic value problem we have treated in this section when,
as we shall suppose in the remainder of this section, A has
strictly positive harmonic measure. Define the transforma-
tion T on L^) by Ty = au where u is the BLD harmonic
function defined by

^u T.— = <p on B
bg
u' = 0 almost everywhere on A.

Then (17. 1) is true for T as well as S; T is a bounded self-
adjoint negative definite transformation from L^v) into itself,
and Tp == 0 if and only if <p is negligible on B.

Just as in the discussion at the beginning of this section
we find that there is a sequence |V^n^l | of BLD harmonic
functions (a sequence which may be empty or finite) satis-
fying

(18.1') ^ - ^V , onB
^g
Vn == 0 almost everywhere on A,
§,, = D(V,, V,)/^ = (<rV,, aV,),

where 0 < §1 <i §3 <; ... and these numbers are the negative
reciprocals of the nonvanishing characteristic values of T,
repeated according to their multiplicity. The ^-sequence here
is not the same as that in (18. 1). The sequence {\n,n^l}
is orthonormal in La(vi) and, together with the functions y
with ay negligible on B, span I^Vi). If u is a BLD harmonic
function for which vf vanishes almost everywhere on A, u9

has the Fourier expansion

(18.2') u'=^a^ a^f^u'y'^,,d.)

and

(18. 3') u = S a^.'n ' TI*
n>l

The first series converges in the 1-2(^1) topology, the second in
the BLD sense. The function U in (18. 3) has no counter-
part in this development. Theorem 18. 1 becomes the
following.
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THEOREM 18. I'. — A function in the class Lg^i) which
vanishes almost everywhere (harmonic measure) on A coincides
almost everywhere on R^ with a BLD harmonic function if and
only if (a) it is orthogonal in Lg^i) to every y for which ory
is negligible on B and if (b) its Fourier coefficients relative to
the V^ sequence satisfy (18. 4).

The condition (a) is equivalent to the following: (a') it is
orthogonal in Lg(B) to every function in Lg(B) which is negligible
on B.

Theorem 18. 2 becomes Theorem 18. 2' which we do not
state explicitly but which differs from the former theorem
only in that Un is replaced by Vn that u is to vanish almost
everywhere on A, and that the generalized normal derivative
is on B rather than on R^

19. Series expansions.

Under the hypotheses of Section 18, namely the complete
continuity hypothesis for R and the positivity and bounded-
ness of (T, we can express our fundamental kernels in Fourier
series.

If <j is strictly positive,
(19. 1)

a(^, YI) = ̂  a'(^, .)^o, d.)/^ + 5 [V^) - U,(^)]U,(y])/§,,

, = S [VnW - U^o)][U^)^ U^o)]/S.,
n^l

^ , Y ] € E R , (To =^(T(X(^,rf.).

The series converge in the BLD sense for fixed E;, and uniformly
on compact subsets of R X R. The representation is also
valid for Y] in R^ if we use the relevant boundary functions.
For fixed ^ in R the series obtained in this way converge
in the mean, weighting v^ on R^

If <j is strictly positive,
(19. 2)

K(T],S;) ̂  ̂ )/ao + a(Ti)^ U^)U,(Y))

^ 1 + a(Y)) S [U",% - VnWnW, \ e R, Y) e R"
n^l
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where « c^ » means that, for fixed S;, there is equality up to
a function negligible on R^

Still supposing that (T is strictly positive,

(19. 3) (3(S;, Y]) = 1/CTo + 5 U^)LL(ri)/(l + ^), S;, Y] ^ K,
n^l

where the series converges in the BLD sense for fixed S;, and
uniformly on compact subsets of R X R. The representation
is also valid for Y] in R^ if we use the relevant boundary
functions, and is then convergent in the mean, weighting v^,
for fixed S;.

If the set A of zeros of (T has strictly positive harmonic
measure,

(19. 1') a^, Yj) = S V^)V^)/^, ^ Y) e R.
n>l

We recall that the characteristic values here are not the same
as those in the preceding series. The series converges in the
BLD sense for each S; and converges uniformly on compact
subsets of R X R. With the same conventions as above,
the representation is also valid for one argument on the
boundary.

APPENDIX

Since the theory of uniform integrability of function families
is less well known than it should be, the following outline
of that part of the theory most useful in studying boundary
value problems is appended. Let f^ be a function from a
measure space X^ to the reals, for t in an index set I.
The measure on X< will be denoted by RL(. It is supposed
that this measure is positive and that sup p4 (X()<;QO. The

function family is called uniformly integrable if
fc^JAI^^o

uniformly on the index set I, where Aa,( is the set where the
integrand exceeds a. For proofs of the following facts see
the fundamental papers by C. de la Vallee Poussin [Trans.
Amer. Math. Soc. 16 (1915), 435-501] and S. Saks [Trans.
Amer. Math. Soc., 35 (1933), 549-556, 965-970].
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(1) If the set I is finite, the family is uniformly integrable
if and only if each member has a finite integral.

(2) The family is uniformly integrable if and only if the
following two conditions are satisfied:

(a) supjj/(|^<oo;

(6) lim sup|J^/( rf(X(] = 0.
8->o

where the supremum is taken for all ( in I and measurable
subsets A( of X^ with ^(A^) < S.

(3) The family is uniformly integrable if and only if there
is a Baire function $ from the positive reals to the positive
reals such that,

(a) lim—L-/= oo,
r->oo T

(b) supj^d^D^Oo.

Moreover in this case there exists a $ which is even monotone
increasing and convex.

In (4) and (5) it is supposed that the index set I is the set of
positive integers that there is only a single measure space,
X( == X, p4 == (JL, and that fn -> f in measure.

(4) There is Li-convergence if and only if the sequence is
uniformly integrable.

(5) The sequence is uniformly integrable if and only if f is
integrable and j f^ d^ —> j.fdy. for every measurable A
(or for A == X if the functions are all positive).
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