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ON DEFORMATIONS
OF HOLOMORPHIC FOLIATIONS

by J. GIRBAU and M. NICOLAU

Introduction.

This paper deals with deformations of holomorphic, and transversely
holomorphic foliations on a compact manifold. A transversely holomorphic
foliation on a differentiable manifold At is given by an open covering
{Ui}iei of M, differentiable submersions fi: £/,->• 0 and holomorphic
isomorphisms gij from fj(UinUj) onto /,((7,n£/,) such that fi = gijQfj'
If we assume, in addition, that the manifold M is endowed with a
complex structure with respect to which the submersions /i are
holomorphic, then we obtain a holomorphic foliation on M.

Girbau, Haefliger and Sundararaman stated a Kuranisbi theorem
for transversely holomorphic foliations and for holiomorphic foliations [10].
Concretely, given a transversely holomorphic foliation ^ (or a holo-
morphic foliation) on a compact manifold M, they proved the existence
of a family of deformations of y (called versal family) parametrized
by a germ of (non-reduced) analytic space (called Kuranishi space) from
which any other family of deformations of ^ can be obtained by
inverse image. Such a theorem had been obtained before in a weaker
form by Duchamp and Kalka [7]. The proof giveik in [10] in an
adaptation to the case of the foliations of a method of Douady for
deformations of complex structures [4]. The framework of the present
paper will be also that of Douady.

Let ^ be a holomorphic foliation on a compact complex manifold M.
In particular ^ is a transversely holomorphic foliation if we forget the
complex structure of M. We denote this foliation by ^tr. The purpose
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of this paper is to relate the deformations of ^rtr as transversely
holomorphic foliation or ((r-deformations) with the deformations of ^
as holomorphic foliation (or ^-deformations).

First of all we consider the deformations of the holomorphic foliation
^ which keep fixed its transversal type. This kind of deformations,
called /-deformations, can be defined as follows. Given an analytic
space R let F^ be the pseudo-group of local holomorphic automorphisms
of R x C9 x C""9 (where q is the complex codimension of ^ ) of the
form

/(r.z^z-) = (r,/^),/1^^))

with a , f c = l , . . . , ^ and M , v = 1, . . . , n - q. A family of
/-deformations of ^ parametrized by R can then be defined as a
restructure over R x M\ that is an analytic structure over
the topological space X = R x M given by local charts
(p,: U,:-> R x C9 x C"-9 of the form (p,(r,x) = (r, (|),(x)) such that
(p^-(pr1 belong to the pseudogroup F-^. For each re R, Mr = M x {r}
is a complex manifold endowed with a holomorphic foliation ^\. ^o»
where 0 is a distinguished point of R, is assumed to be isomorphic to
^ . Notice that all the foliations ^\ coincide as transversely holomorphic
foliations.

Two families of /-deformations of ^F parametrized by R, X and
X ' , are equivalent if there is a holomorphic isomorphism between them
whose local expressions are elements of F^. In particular X and X' are
equivalent as families of ^-deformations. One should notice, nevertheless,
that equivalence as /-deformations is in general a relation stronger than
equivalence as holomorphic deformations. The equivalence of the families
of /-deformations X and X' implies that the transversely holomorphic
foliations ̂  and ^'^ are in fact the same and not only isomorphic.

Families of /-deformations can be viewed as families of complex
structures on M for which ^rtr becomes a holomorphic foliation. Even
more, a /-deformation of ^ can also be defined as an unfolding of
^ ; i.e. a holomorphic foliation ^\ over the complex space X of the
same codimension as ^ and transverse to the projection X -> R such
that its restriction to M x {0} is isomorphic to ^ . The study of the
infinitesimal /-deformations of a holomorphic foliation has been done
by Gomez-Mont in [13].

Our first result is a Kuranishi theorem for /-deformations (section 1).
Thus, given a holomorphic foliation ̂  on M, we have three Kuranishi
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spaces K, A^ and Kf parametrizing respectively the versal families of
h-deformations, rr-deformations (cf. [10]) and /-deformations of ^ . Our
purpose is to relate these three spaces.

Let @y be the sheaf of germs of holomorphic vector fields over M
preserving ^ and denote by @y the subsheaf of @y consisting of those
elements of @y tangent to the leaves of ^ . By setting ©^ = @yl©y
we obtain the exact sequence

(1) 0 -^ ©S. -̂  Qy -̂  Q% -> 0.

The Kuranishi spaces K, A^ and Kf are germs at the origin of analytic
subspaces of H\M,Qy), H^M^f) and H\MW respectively.

The versal property of K^ asserts the existence of a morphism
n: K -> K^. This is the map which « forgets the complex structure »
of the manifold M. The fibre TT'^O) of this map parametrizes the
holomorphic deformations of ^ which are trivial from the transversely
holomorphic point of view. Since equivalence as /-deformations is a
relation stronger than equivalence as holomorphic deformations the
spaces Kf and 71 ̂ (O) do not coincide in general. We prove in section!
that Kf is isomorphic to TT'^O) x S where E is the germ at the origin
of a linear subspace of J^°(M,0^) supplementary to the image of the
morphism Po: H\M,Qy) -> H\M^}) induced by (1).

In section 3 we consider the problem of deciding, for a given
foliation SF , if any transversely holomorphic deformation of y comes
from a holomorphic deformation ; in other words, if the map
n: K -> K^ is an epimorphism. Concerning this question we find two
different conditions: (i) the existence of a holomorphic foliation ^^
transversal and complementary to e^, and (ii) the vanishing of the
cohomology group H2(M,Qy), which independently ensure the existence
of a section of TT. If this two conditions are both fulfilled then
K ^ f^ x ^tr (this is a particular case of theorem 3.2).

In section 4 we compute some examples. We consider, for instance,
the case in which ^ is transverse to the fibres of a holomorphic
compact bundle p : M -> B. Under certain cohomological assumptions
the space A^ coincides with the versal space KB of deformations of the
complex manifold B and K ^ Kg x A^. This improves theorem 2.5 in
[10]. Among the examples of section 4 we wish to remark here the
foliation on the product T3 x CP1 (where T9 is a complex torus of
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dimension q) whose leaves are the fibres of the projection 7^ x
CP1 -> T 9 . The space Kf is a certain analytic subspace of C35. One
might believe that the /-deformations have to deform the complex
structure of the leaves because (by definition) they can not deform the
transversal structure. This is not the case in this example since the
leaves are isomorphic to CP1 which is rigid.

Throughout this paper we will deal with (non-reduced) analytic
spaces R and with their germs (^,0) at a distinguished point O e j R .
When there is no danger of confusion we will use the same symbol R
to denote the analytic space or its germa a tO. The subscripts (or
superscripts) a, b, c... will run from 1 to q and the subscripts (or
superscripts) u, v , w,... will run from 1 to n — q, where q is the
complex codimension of ^ and n is the complex dimension of the
manifold M. We will use the Einstein summation convention.

1. Deformation of complex structures preserving
a transversely holomorphic foliation.

Let M be a smooth (of class C°°) manifold of dimension m. We
recall that a transversely holomorphic foliation ^ on M of (complex)
codimemion q is given by an open cover { t / ihg j of M, a collection of
differentiabre submersions / : Ui -^ C9 and holomorphic isomorphisms
gij of fj{Uir\Uj) on fi^UinUj) such that fi = q^of^ If the submersions
fi are holomorptec with respect to a given complex structure on M
then 3F is a holomophic foliation.

Denote by T^ the pseudogroup of local differentiable automorphisms
/(z0,^) = (/V) of C9 x tR7"-29 fulfilling

ar sf0^-^-O (^=l, . . . , . . . ,^=l, . . . ,m-2^).

Then a transversely holomorphic foliation on M is nothing but a
structure of r^manifold. Similarly, if m == In, a holomorphic foliation
on M is given by a F-structure, where r is the pseudogroup of local
holomorphic automorphisms/(z^z") = (f^f14) of C9 x C""9 fulfilling

r̂̂ ^ 0 ( a = = l , . . . , ^ ; M = = l , . . . ,n-^) .
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In the following we investigate holomorphic foliations on M that
are close to a fixed holomorphic foliation ^ and that coincide with ^
as transversely holomorphic foliations.

1.1. Let ^F be a transversely holomorphic foliation of codimension
q on M. Let L be the tangent bundle of ^ and N = TM/L the normal
bundle. The submersions f, defining y induce an almost complex
structure on N and thus a splitting of the complexified normal bundle
in the usual way W = 7V1'0 ® N011. The kernel F of the canonical
projection TM -> N110 is an involutive complex sub-bundle of TM
verifying L == TM n F and TM = F + F, where F denotes the complex
conjugate of F . We will use the following version of the complex
Frobenius theorem due to Nirenberg (cf. [21]).

THEOREM (Nirenberg). — Let F be a complex sub-bundle of TM of
complex codimension q with TM = F + F . Assume that F is involutive,
then F is obtained from a uniquely determined transversely holomorphic
foliation on M of codimension q as in the above discussion.

Suppose now that ^ is holomorphic with respect to a given complex
structure on M. If TM = T 1 ' 0 © T0'1 is the splitting of the complexified
tangent bundle associated to this complex structure, then T0'1 is a sub-
bundle of F . From the above theorem one gets

PROPOSITION. — There is a one-to-one correspondence between the set
of holomorphic foliations on M of codimemion q and the set of pairs
(r0'1,^7) of complex sub-bundles of TM of codimensions n and q
respectively (where In is the real dimension of M} and verifying

(i) TM = F + F == T1-0 C T0'1 (where T 1 ' 0 = T^)
(ii) F and T011 are involutive
(iii) T0-1 c= F .

Proof. — The bundle F defines a transversely holomorphic foliation
SF of codimension q and T 0 ' 1 defines a complex structure <() on M (a
transversely holomorphic foliation of codimension n is nothing but a
complex structure on M). Now the inclusion T011 <= F implies that the
submersions defining y are holomorphic with respect to <(). D.

From now on ^ will be a fixed codimension-^ holomorphic foliation
on a compact manifold M of complex dimension n and (T0'1,^) the
pair of sub-bundles of TM defining ^ . The holomorphic foliations ^i
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which coincide with ^F as transversely holomorphic foliations are
represented by pairs of bundles of the form (T;'1,^). We denote by
Fol/^) the set of holomorphic foliations on M given by pairs of
bundles of the form (T^'\F) and which are close to ^ in the sense
that r^nT1 '0 = 0.

Let A^^T) be the vector space of differential forms on M of type
(0,fe) with values in T1'0. If "TM = T°,1 ® T°,'1 is a splitting with
j^.i ^ j-i.o ^ Q ^ ^^ ^ ^ unique element weA°'\T) such that T;-1 is
the graph of - co; i.e., T;'1 = (id-co) (T°'1). We put 7^1 = T0,1. It
is well known that 7^'1 is involutive if and only if co verifies the
integrability equation

1.1.1 3(0 - -[(o,o)] = 0.

An easy computation shows that 7 '̂1 is contained in F if and only
if the vector 1-form G) belongs to the subspace A0'1^) of A^^T) of
those forms taking values only in L1'0 = °L n T1'0. Thus there is a
natural injective map

1.1.2 a: Fol/^) -> A011^)

with image contained in the set of elements of A^(L) verifying
equation I.I.I.

Remark. - Let ^ ' be an element of Fol/J^) defined by a pair
(T^\F). The bundle 7^1 induces an almost complex structure on L
defined by the splitting.

1.1.3 CL=L^@L^

where L°^1 = T0^ n ' L . If the bundle morphism 00: T°'1 -^ L1'0 vanishes
on L°'1 then 1.1.3 coincides with the splitting ' L = L°'1 © L°'1 induced
by T011 and so any leaf in ^ F ' carries the same complex structure as
the corresponding leaf in ^ (recall that ^ and ^ ' coincide as
transversely holomorphic foliations). However, the complex structures
on M defined by T011 and T^'1 are different if co ^ 0. An example
where this phenomenon occurs is exhibited in 4.3.

1.2. Families of deformations. Throughout this paper we will deal
with non reduced analytic spaces. For a summary of the basic notions
concerning analytic spaces we refer to [19].
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Given an analytic space R we will denote by F^ the pseudogroup
of local differentiable automorphisms of IR x C9 x C"~9 of the form
/(r.z^z") = (r,/0,/") where /a and /" depend differentiably on the
variables r , z", z", holomorphically on r , and such that

a/0 a/0 a/0

ai^az^ai^0 (^=l--^=l-•^-^
We denote by r^ the sub-pseudogroup of r^ consisting of those

elements of F^ which depend holomorphically on r, z°, z". Let F^ be
the sub-pseudogroup of FR consisting of those elements of F^ such that
the /a do not depend on r .

Let R be an analytic space with a distinguished point 0. A family
of deformations of ^ as a transversely holomorphic foliation (briefly,
a family of tr-deformations) parametrized by R is a topological space
X with a proper projection p : X -> R and a restructure on X such
that, in the local coordinates (r.z^z") of this structure, the projection?
is the canonical projection (r^z") -)- r . This restructure induces on
each fibre Mr = p ' ^ r ) a Restructure, that is, a transversely holomorphic
foliation ^r • We suppose that there is given a PMsomor-
phismf: (M,^) -> (Mo.^o). It can be shown that all the fibres M, in
a neighbourhood of 0 are diffeomorphic.

In the same way, but using F^ instead of F^, we define families
of holomorphic deformations (briefly, families of ^i-deformations) of ^
parametrized by R. These notions of families of tr-deformations and
A-deformations are well known. We also define the notion of a family
of deformations of the complex structure of M that preserve ^ as
transversely holomorphic foliation (briefly, family of /-deformations) as
a family of A-deformations, p : X -> R, in which the restructure of X
is induced by a restructure.

r^-morphisms (resp. r^-morphisms, r^-morphisms) of families of
^-deformations (resp. A-deformations, /-deformations) are required to be
compatible with the given isomorphisms i: (M,^) -> (Afo,^)-

We are only interested in the behaviour of families near the fibre
MQ , that is, in « germs of families ». Thus, a family p : X -^ R will be
identified with its restriction to any neighbourhood ofO and it will be
considered as parametrized by the germ (R, 0) of R at 0. For the sake
of brevity we will denote the family p : X -> R simply by X/R or X,
the projection map p, the distinguished point 0 e R and the isomorphism
i being understood.
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Notice that any family of/-deformations X/R is T^-trivial. Conversely,
a family X/R of A-deformations which is F^-equivalent to the trivial
family is, in fact, a family of /-deformations. This follows from the
following result.

PROPOSITION. — Let X/R and Y/R be families of tr-deformations and
h-deformations respectively and let h: X -> Y be a r^-isomorphism. There
is a restructure Xh on X such that

(i) the restructure of X is induced by Xh

(ii) h\ Xh -> Y is a T'^-isomorphism.

Proof. - Let {(t/,,r,z?,z?)} and {(^,r,<,w?)} be atlases defining,
respectively, the r^-structure of X and the restructure of Y. Assume
h(t/,)cF,. The atlas {(^.,r,z?, (;?)}, where ( ; ?=<o / i , defines a
restructure on X fulfilling the required conditions. D

Let A^ stand for any of the pseudogroups F^, r^ or F^. Let X/R
be a family of A^-deformations of ^F and (p : (R',0) -> (R,0) a morphism
of germs of analytic spaces. The fibre product X^ = X x ^ R' inherits,
in a natural way, a structure of a family of A^ ̂ -deformations of ^F . A
family X/R of A^-deformations is called versal if, for any family X ' / R '
of A^-deformations there is a morphism of germs of analytic
spaces <p : (R',0) -> (R,0) such that: (i) X ' j R ' and X^/R' are
A^-isomorphic, and (ii) the tangent map d^ of (p at 0 is unique. If
the morphism (p, and not only its linear part, is unique, then X/R is
called universal. If a versa! family X/R exists it is unique up to
isomorphisms (cf. [24], th. 1.7); then R is called the versal space.

1.3. "The Kodaira-Spencer map for families of f-deformations. Let Qy
be the sheaf of germs of holomorphic vector fields on M which preserve
the holomorphic foliation ̂ . In a local chart (z01,^") of M, flat with
respect to ^ (i.e. SF is defined locally by the submersion (z°,z") -> (^a)),
the sheaf Qy can be described as the sheaf of germs of vector fields
of the form

^W)^+W,z")^

where ^a and ^u are holomorphic, i;° depends only on the coordinates z^.
Denote by ©^r the subsheaf of Qy consisting of those elements of @y
which are tangent to the leaves of ^ and let ©J? be the quotient sheaf
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Qy/Qy. We obtain the exact sequence

1.3.1 0 --> @y -^ @y -^ ©^ -> 0

which induces the long exact cohomology sequence

1.3.2 ...H\MW -a^ ^(M,©^) -^ ^(M,©J?)
^ H^^MW...

Notice that Qy is a coherent analytic sheaf on the complex manifold
M and thus Hk(M,©f^) is finite dimensional (recall that M is assumed
to be compact). The Lie bracket of vector fields gives a bilinear map
[, ]: ©^r x ©^ -> ©^r inducing a structure of graded Lie algebra on the
cohomology groups ^f*(M,©^).

Let X/R be a family of /-deformations of ^ . In a similar manner
to that of tr-deformations or ^-deformations (cf, : [10] or [17]), the
family X/R induces a linear map

p^: T,R ^ H\M,@^),

which depends only on the F^-isomorphism class of X/R, defined in
the following way. Let {(£/,,r,i|/?,v|/?)} be an atlas defining the
r^-structure of X. The coordinate changes will be of the form

1.3.3
[^ = (^(v|/.?)
[v|^=(^(r,v|^v|/r),

?\ / ?\ \
(notice that ^ does not depend on r). Given —eToR,pf(—} is

defined as the cohomology class of the cocycle associating to Mp n Ui n Uj
the section of ©^|(Mon^n£/,):

Q __y^. f S \

'~L^^te;

This map py is called the Kodaira-Spencer map associated to the family
of /-deformations X/R.

The chain rule shows that the Kodaira-Spencer maps py and p}
associated to the families of/deformations X/R and X ^ / R ' , where X^
is the family induced by a morphism (p: (R\0) -> CR,O), are related by
the expression p} = pyorio(p.
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Assume that ^ admits a versal family X/R for /-deformations. A
well known argument (cf. [24]) shows that the Kodaira-Spencer map py
associated to this family is an isomorphism from ToR onto
H\MW.

Remark. — The Kodaira-Spencer maps p/,: ToR -> Hl(M,@y),
ptr : ToR -> H\M,©^) associated to families X/R, Y/R of
^-deformations and tr-deformations respectively can be defined in a
similar way (cf. : [17], [10]). If py, p^ denote the Kodaira-Spencer
maps associated to a family of /-deformations X/R when regarded
as a family of /-deformations and /i-deformations respectively,
then one can check from the definitions that p / , = a i 0 p y where
ai: 7T(M,©^) -^ H\M,Qy) is the map in 1.3.2.

1.4. Existence of the versal space of families of f-deformations. The
existence of versal spaces (often called Kuranishi spaces) corresponding
to the tr-deformations and A-deformations of the foliation ^ on the
compact manifold M has been shown by Girbau, Haefliger and
Sundararaman in [10]. In this paragraph we state the corresponding
result for families of /-deformations. The proof presented here is an
adaptation of the proof of Kuranishi's theorem given by Douady in [4].

THEOREM. — Let ^ be a holomorphic foliation on a compact manifold
M and let ©^r be the sheaf of germs of holomorphic vector fields on M
tangent to ^.

There is a germ of analytic space (Kf,0) parametrizing a family Zf|Kf

of f-deformations of y which is versal with respect to f-deformations.
More precisely, there is an open neighbourhood V of 0 in Hl(M,@f^)
and an analytic map ^y: V -> H^(M^y) such that (A/,0) is isomorphic
to the germ at 0 of ^(O). The jet of order two of ^ at 0 is the
quadratic map v -> [v, v].

If H°(M,©^) = 0 then (A^O) is universal.

COROLLARY. — If H2(M,@fy) = 0, then the versal space of
f-deformations of ^ is smooth. Indeed it is isomorphic to an open
neighbourhood of 0 in H^^M.Q^).

For the proof of the theorem we will need the following lemma.
Let X/R be a family of/deformations and denote by L(X) the disjoint
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union of the holomorphic vector bundles Z^'° tangent to the foliations 9"\.
L(X) is endowed, in a natural way, with a structure of a holomorphic
vector bundle over the complex space X.

LEMMA. — Let jr denote the zero section of L^.'0. By restricting R
to a small neighbourhood of 0 one can find a neighbourhood U of
{YrOO; r e j R , x e A f } in L(X) and a smooth map g\ U -> M such that

(i) g(7r(x)) = x.
(ii) Let gr,x denote the restriction ofg to (L^10)^ n U. The differential

of gr,x at y,(x) is the identity of (L;'0)^
(iii) For any r e R , x e M , gr,x is a, holomorphic isomorphism of

(L^'°)x n U onto its image \vhich is contained in the leaf of ̂ r through x.

Proof. — Let ^ be the sheaf of germs at YoC^O °f local differentiable
mappings of L(X) into M verifying the conditions of the Lemma. Using
local coordinates this sheaf is shown to be locally soft («mou») and
hence also globally soft. Now the result follows from th. 3.3.1, p. 150,
in [12]. D ,

Sketch of proof of the theorem. - Let A^^L) denote the space of
differential forms on M of type (0,k) with values in L110. Let us consider
the elliptic complex

1.4.1 A^\L) -^ A^CL) -^ ̂ (L) - > . . . .

Choose a real analytic Hermitian metric on M and denote by 8 the
adjoint of 8 with respect to this metric. The Laplacian Ay = 8Q 4- 83
is a real analytic elliptic operator. Set

Nf= ^(oe^^L);^®^ and ^©-.[(O.G)]) = 0^.

The space Nf is a finite dimensional submanifold whose tangent space
at 0 is the space H} ̂  H\M, ©^) of harmonic elements of A011^). It
is easily checked that Nf can also be described as

1.4.2 Nf= -[(oe^o•l(L);(o=^(o+l^G^(D,(D]^

or

^= ^(oe^o' l(L);8[3(o- l[co,G)])+a&(o=0^
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where Hf denotes the orthogonal projection onto the space of harmonic
elements and Gf is the Green operator. It follows from the last
description of Nf that its elements are real analytic because they are
solutions of an elliptic equation with real analytic coefficients.

The Kuranishi space (A/,0) will be the germ at 0 of the analytic
subspace of Nf defined by

f^= ^eAofl(L);^=Q and aco-1^,®]^

or equivalently (cf. [18], p. 83),

1.4.3 ^= {(oeA^;7^[G),(o]=0}.

Any element o) of Kf close to zero defines a real analytic sub-
bundle r^'1 = (id-(o)r0-1 of 'TM contained mF. It follows from the
classical Frobenius integrability theorem in the real analytic case with
complex parameters © that T^1 defines a family Zf|Kf of complex
structures on M. Because of the inclusion 7 '̂1 c: F this is in fact a
family of /-deformations of SF .

Let g : U -> M, with U an open neighbourhood of the zero section
of ^(ZQ, be the exponential map constructed in the above lemma. Let
^/ be the family over Kf of diffeomorphisms h^ of M of the form
x -^ ̂ 00). where E, is a section of class C' of L^'° contained in U/^
is a Banach C-analytic space «lisse» over f^ (cf. [4]) and there is a
section CT : ̂ /-> r+l^ induced by the (difierentiable) identification
Kf x M = Z^

Let ^^(L) be the Banach space of differentiable forms on M of
class C' of type (0,fe) with values in L1'0. L^Q\rAQ1\L)-^r~lAQ•<i(L)

be the analytic map © -> 3(0 - .[o),(o] and denote by J the analytic
subspace O'^O) of r^o.iW'

For any diffeomorphism h^ e r+ ̂ /, ^(^) is a holomorphic foliation
which, since condition (iii) in the above lemma is fulfilled by g , coincides
with ̂  as a transversely holomorphic foliation. So it is an element
of Fol/^) (cf. 1.1). We define a map

^: r+^f _, j

by ^(AO)) = ^SC^o))) (cf. 1.1.2). ^ is a holomorphic map. A
computation similar to that in [20], pp. 170-171 shows that the tangent
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map of ^o'.^^^J (the restriction of sf to the fibre r+l^ of
M•l^/ over Oe^) at the point o(0) coincides with the morphism
8: ̂ ^^"(L) -^ '^(L). Now we can adapt here the rest of the proof
of Kuranishi's theorem given by Douady in [4].

2. A Description of the space Kf.

Let K and A^ be the versal spaces corresponding to /i-deformations
and rr-deformations respectively of the holomorphic foliation ^ on the
compact manifold M. Denote by ZjK and Z^/K^ the corresponding
versal families. The fact that Z/K is in particular, a family of
tr-deformations and the versality of K^ give us a morphism

TT : K -> K^

such that ZjK and Z^ are r^-isomorphic. Recall that the tangent
spaces to K and K^ are H^M^y) and /r(M,ej?) respectively.
Although the morphism n is not uniquely determined, its tangent map
don is unique. It coincides with the morphism pi :

H\M^) -^ H\M,@^)

in 1.3.2.

We assume that n has been fixed once and for all and we denote
by K° the fibre TI'^O) of n overO. It follows from Prop. 1.2 that the
restriction Z°/K° of the versal family Z/K to K° is a family of
/-deformations. In this section we establish the relation between Kf and
K° by showing (th. 2.3) that ^/ decomposes as a product of K° by a
smooth factor S ; i.e., Kf ^ K" ^ Y.

2.1. Let R be an analytic space with structural sheaf OR and let 0
be a distinguished point of R. The correspondence that assigns the
analytic C-algebra O^o to the germ (7?,0) and to any morphism of
germs (p: (R,0) -> (R\0) the corresponding morphism of analytic
C-algebras cp* : ̂ /,o -> (9^ is an antiequivalence between the category
of germs of analytic spaces and the category of analytic C-algebras.

We recall also that, for any germ (R,0) there is an embedding of
germs i: R -^ C* (here, C" stands for the germ of Ck at the origin)
with k = dime ToR. Such a morphism is called a minimal embedding.
In this situation we will identify R with its image in C^.
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In the following proposition we obtain a sufficient condition for a
morphism of germs of analytic spaces to be an isomorphism.

PROPOSITION. — Let (|): S x T -> R and (p : R -> T be morphisms of
analytic spaces such that.

(i) the tangent map do^ ls an isomorphism,
(ii) the diagram

<)>S x T—^R

P\ /<P

T
is commutative,

(ili) (|) maps S =. S x {0} isomorphically onto (p'^O).

Then (^ is an isomorphism.

Note. — If S is smooth then condition (iii) is implied by (i) and
(ii) (cf. [24], prop. 1.5).

Proof. — By choosing minimal embeddings S c: C^, T c= C^ and by
identifying S ^ T with its image in R through the map (|), we can also
assume that there is a minimal embedding R c: C* x C/ such that

(a) S x T is an analytic subspace of R
(b) The map (p : R -^ T is the restriction to 7? of the projection

C11 x C^ -^C^
(c) S = 7?n(C*x{0}).

Let x = (x,), ^ = (^) denote the linear coordinates of C^ and C''
and set Os,o = C{x}//s, ^r,o = C{^}//r and (9^ = C{x,^}//^, with
^ = 000), ^T = (^00) and 7^ = (^(x,^)).

It follows from (b) that the ideal of C{x,y} generated by (g^OO)
is contained in I R . So IR can be written in the form
IR = Wx.y) = ^(^), ̂ (^^)) with 8 = 1, . . . , p . The inclusion
S x T c R is equivalent to IR c= (^(y),/a00) and thus we can write

h^x.y) =af(x,y)Mx) + b^x,y)g,(y).

By a suitable choice of the functions /i§ we can in fact assume that

2.1.1 h^y) = at(x,y)Ux).
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Now condition (c) can be written

Is = 0) = (M^O)) == (^(x,0)./,(;c)).

One sees from 2.1.1 that there is an inclusion of ideals of C{x,y}:

aM)c=(A5(x^))+(^).(A(x)).

The Nakayama's lemma implies now C/a(x)) c: (h^(x,y)). Hence we get
IR = (/a.^p) and s o R = S x T. D

2.2. 77î  morphism %: Kf -^ K°. Let (7?,0) be the germ of an analytic
space 7?, ^o Ae associated analytic C-algebra and m^ the maximal
ideal of ^,o. The /0th infinitesimal neighbourhood of 0 in R is the
analytic subspace R^ of R defined by the analytic algebra
6^0/m^1. If X/R is a family of deformations, its restriction to the
subspace R^ will be denoted by X^/R^.

Following Wavrik (cf. [23]) we describe a basis of the finite
dimensional C-algebra ^p.o/w^1 in the following way. Fix a minimal
embedding of CR,O) in (C^O) and let r = (r i , . . . , r j be the linear
coordinates of C7" (or their restriction to R). The ideal m^ is generated
by the r17, where J denotes a multiindex with \J\ == ^. Choose, for
each <f , a set / { of multiindices with |J| = £ such that the classes of
r17 ( J G / ^ ) provide a basis of w^/m^1. Then {r7; J e / ^ ^==0, . . . ,k}
is a basis of ^.o/w^1.

This basis of 6^,0/w^1 can be used to represent sections of sheaves
over X^ as a generalization of Taylor series expansion. For instance,
if V is an open set in At, then every holomorphic function / on

k

V x R^ may be uniquely written in the form / = ^ ^ /jr17, where
^=OJ6^

/j are holomorphic functions on F. This «Taylor polynomial»
representation reduces many proofs to simple calculations.

PROPOSITION. — Let (p : R -^ A^ be a morphism of the germ R into
the versal family K^. If Z^/R is T^-isomorphic to the trivial family then
(p is the zero map.

Note. — The corresponding statements for families of A-deformations
or /-deformations are also true.

Proof. — Let Y/R be the trivial family and denote by G^ and
(j^ the sheaves of germs of local r^)-automorphisms and
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r^)-automorphisms respectively of Y^/R^. G^ is a sheaf of normal
subgroups of G^. Set G^ = G^IGf. By virtue of th. 2.2 in [23] it
suffices to prove that any element of H\M,G^~^) can be extended to
an element of H\M,G^).

Let {(Ui,z^zf)} be an atlas of M flat with respect to the holomorphic
foliation ^ . The coordinate changes Fj, which define the trivial family
Y/R can be written in the form F,,(r,z?, z?) = (r,zj1, zjQ with
^ = ^(z?) and z^ = ^(z?^). Let -T^ denote the sheaf over M of
germs of vertical, transversely holomorphic vector fields on Y^/R^
vanishing on Y^ = M. The sections of V^ over an open set V c- M
are described by morphisms ^;: (Fn^) x R^ -> c9 such that its
restriction to (Fn^) x ^(0) ^ ^n U, vanishes and verifying

^^fli)^ (a , fc=l , . . . ^ ) .V17"^/

The sheafs G'^^ and i^^ are isomorphic (cf. [23], th. 3.2). In particular
H°(M,G^)= H(M^^Y

Now, by means of the «Taylor polynomial» representation one
easily checks that any global section of ^^-1) can be extended to a
global section of ^^). D

The versal family of /-deformations Zf|Kf (cf. 1.4) is in particular
a family of ^-deformations. Thus the versality of K induces a morphism
of germs % : Kf -^ K such that Zf|Kf and Z J K f are r^-isomorphic.
The above proposition asserts that n o ̂ : Kf->Ktr is the zero map.
Hence, the universal property of the fibre K° = TT'^O) implies that the
morphism/ factors through the subspace A"0 giving the following
commutative diagram:

2.3. Existence of an isomorphism Kf ^ K° x £. Let us choose a
splitting of the exact sequence of bundles

0 -> F -> "TM -> N110 -> 0
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(see 1.1 for the definition of F and N110). This gives a direct sum
decomposition T1'0 = L1'0 © N ^ . Let {(^z^z?)} be an atlas of M,
flat with respect to ^. In a coordinate neighbourhood £/i, the vector
bundle N1'0 will be generated by vector fields

Z,,a = ̂ + ̂ "^ ( f l= l , . . . , ^ , M = l , . . . , n - ^ )

where t^a are differentiable functions on Ui such that, on Ui n £7,

^ ^ 34.^
^ az? 3z? '•*az; 3t?'

One easily checks that, also on E7, n V,,

2.3.1 ^Hp-

An element ^e7:f°(M,©^) will be locally written in the form

2.3.2 ^by'
where ^? = i;?(z?) are holomorphic functions depending only on the

^-a

coordinates z? and verifying ^ = — ̂ .
OZi

It follows from 2.3.1 that the expression

^ 1 1 V.' — V-a 7 _ pa __ i pa^ __2.3.3 i, -^•Z^-^+^t,^

defines a global differentiable vector field on M which preserves y as
a transversely holomorphic foliation.

Let 8: /{"(M,®^)-> ^^l(M,Qy) be the connecting homomorphism
associated to the exact sequence 1.3.1. If !,eHV(M,@ty) is given locally
by 2.3.2, then 8(i;) is the cohomology class of the cocycle {e,,} denned
by

^^-
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THEOREM. — Let Z be the germ at zero of a linear subspace
£ of ^°(M,OJO complementary to Ker8. There is an isomorphism of
germs of analytic spaces K : K° x £ -> Kf making commutative the following
diagram:

2.3.5

In particular, if O i : Tf^M,®^) -> ^(M.Q^r) is injective, then
Kf ̂  K\

Proof. - Let us fix a basis T | i , - - - » r i ^ of £ and
m

identify C"" ^ £ through the isomorphism s = (si, • • • » s^) -> ^ s^.
^=1

Let r|^ denote the vector field on M obtained from T|̂  as in 2.3.3 by
means of_a_fixed splitting T1'0 = L1'0 © N 1 ' 0 . For any seC7", ^=
^(s^.r|H+5n.r|^) is a real vector field whose exponential, f c s = e x p £ , s ,
p
is a diffeomorphism preserving ̂  as a transversely holomorphic foliation.

The family Z°/K° is trivial as family of ^r-deformations. By means
of a r^o-isomorphism (p: Z° -^ M x j^° we can extend A5 to a
r^o-isomorphism ^s of Z°; that is, /T5 is the automorphism of the
family of ^r-deformations Z°/K.0 making commutative the diagram

M x K ° h s x i d ^ M X K °

<P M>
i p i

yO " ^ yO

The family of P^o-isomorphism {K^sec^ induces now a r^oxr-iso-
morphism, h: Z^-> Z^, defined by the condition that h coincides with
{Is on K° x {s}. Notice that h is the identity over K° x {0}.

Let {(^,r,\|/?,\|^) be an atlas defining the P^o-structure of Z° with
coordinate changes of the form 1.3.3 and assume Uir\ Mo = Ui
and v(/? [ Ui = z?, v|/," | (7, = z?. With respect to these coordinates the
isomorphism h will be written in the form

(r,s,i|/?,v|/r) -^ (r,s^(s^\h^r,s^^))
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(where hf are only differentiable functions) and the r^oxs-struc-
ture on Z^, that we denote (Z^)\ constructed in Prop. 1.2, is given
by the local charts (r,5,(;?=v|/?, ^=A?(r,s,v|/?,^)).

Let us compute the Kodaira-Spencer map p^ associated to the family
of /-deformations (Z^^/K0 x £. The restriction of this family to
K° x {0} coincides with Z°/K\ It follows from this and Remark 1.3
that pf\To(K°x{Q}) is an isomorphism from ToK° ^ Irnai onto a
subspace of H^M,^) complementary to Kerai.

Now let ^ be an element of To({0}xE). its image by p^ is the

class in H^M,®^) of the cocycle {9,,} given by

9 -^ Q -^ 8 -^ p^\ s

^"^ ^^"V"""^^

where ^e{a,u} and ^ =-^Q(0,s,z)\^, (cf. [20], pp. 148-149). In our

case, C? = 0, C? = C = ̂ ^, and |j = ̂ ^ == g. Thus

A - ̂ a .u ^b ,v ^^ 8

Qji~[^jtj•a~^t'ti'b'8zuJ^

==[^ ^.f82!82!^^82'8^} n^- ^1 8

L^' 3z? Waz? ^^^"^^^J^
= -.^A^'az?^'

Hence, P/( .—) = - 8(r|n) (cf. 2.3.4) and we conclude that p^ is an
\c's^^/

isomorphism. Thus the morphism K' : K° x S -> ̂ / given by the versal
property of A^ is an immersion (its tangent map is an isomorphism).

Let i: K° -> K° x S be the canonical inclusion and set v|/ = ^ o K' o L .
Since the families Z°/K° and Z^/A:0 are r^o-isomorphic one has d^ = id
and thus \|x is an automorphism of A:0 (cf. [24], prop. 1.4). Clearly
K = K' o (\|/ x id^) is an immersion which makes commutative the diagram
2.3.5. Now prop. 2.1 implies that K is in fact an isomorphism. D

Example. - We construct here a holomorphic foliation ^ on a
compact manifold W for which the space £ in the above theorem does
not reduce to a point.
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Denote U = C x (C2-^}) and let a e C , with 0 < |a| < 1, be
fixed. Let h: U -+ Uhe the holomorphic isomorphism defined by

A(u,Zi,Z2) = (M,azi+uz2,az2)

and set U = U/G where (7 = {^" |n € Z}. We get a fibre space n^ : U -^ C
whose fibres T^(MeC) are Hopf surfaces. Notice that ̂  ^ H^ if u,
M' e C* and H, ̂  H^ if u ̂  0 (cf. [25]). Let IT be another copy of U
and glue them together in the following way: the map

C* x (C2-^}) -^ C* x (C2-^})
(u,Zi,Z2) -> (1/u, ^1+^2,01^2)

where a e C* and fc G C, commutes with the action of G and thus
induces a holomorphic isomorphism Tiu^C*) ->• Tiu^C*) commuting with
the projections 7iu and n^. By means of this identification we obtain
a compact manifold ^endowed with a canonical projection p : W -> €P1.

Let ^ denote the holomorphic foliation on W whose leaves are the
fibres of p. Using the description of the holomorphic vector fields
on Hopf surfaces given in [25] one easily checks that
H\W^y) ̂  C4 , H°(W,@^ ^ C4 and H\W^) ̂  C3. Hence oco is
an isomorphism, Po is the nul map and £ is the germ at zero of
H^W^y) ̂  C3.

3. Sufficient conditions for the versal map n: K -> K^
to be an epimorphism.

The versal map n: K -> K^ is not an epimorphism in general
(cf. [15]). In this section we investigate the image of 71 and give sufficient
conditions for it to be the whole space K^. We also show that, under
suitable cohomological assumptions, the versal space K decomposes as
the product of K^ by the fibre K° = ^"'(O); that is, K ^ K° x ^tr.

3.1. Extensions of families of deformations. Let R be a germ of an
analytic space and denote by Y/R the trivial family of ^-deformations
of ^ parametrized by R. As in the proof of Prop. 2.2, let G^
(resp. G[^) denote the sheaf of germs of local r^)-automorphisms (resp.
r^^-automorphisms) of Y^/R^ and set G^? = G^/G^. (Notice that
the sheaf G^ is also a quotient of the sheaf of germs of local
r^-automorphisms of Y^/R^.) So we have an exact sequence of
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sheaves of (non Abelian) groups over M

3.1.1 1 -^ G^ -^ G^ -"-> G^ ^ 1.

The morphism P : G^ -^ G^'^ which maps any element of G^ to
its restriction to y^-1)/^-1) is clearly an epitnorphism. If we denote
by G^ the kernel of P we obtain the exact sequence

3.1.2 1 ^ G^ -^ G^ -^ G^-^ -> 1.

In a similar way we denote by G^ and G[^ the respective kernels of
the restriction epimorphisms P : G^-^ G^'^ and P : G ^ ^ G ^ ' ^ .

Let m^ be the maximal ideal of 6^0 ^d set m1^ = m^/m^1. By
means of the « Taylor polynomial» representation one can show

PROPOSITION. — G1^, G^ and G[y are sheaves of Abelian groups
contained in the center of G^. G^ and G[^ respectively. Furthermore,
there are natural isomorphisms

G^ ^ ©^ ® m^

3.1.3 G^ ^ @y ® m^
G i ? ^ © ^ ® m ^ .

The morphisms of sheaves a and T in 3.1.1 commute with the
restriction morphism P. So they induce morphisms or: G^ -> Gw and
T : G1*1 -> G[y which coincide, through the identifications 3.1.3, with
a 00 1 : ©^r ® m^ -^ @y ® m^ and P ® i : Qy (g) m^ -^ ©^ (x) m^1.
(See 1.3.1 for the definition of a and P.)

From 3.1.1, 3.1.2 and the exact sequences analogous to 3.1.2 which
correspond to G'}'0 and G[y one gets the following commutative and
exact diagram of cohomology sets (cf. [9])

O^H^M,@y)®m^ -^H^M^) -p- H\M,Gf-^) -Q- H^M^^m^

a i ( g ) l j , CT [ a [ a 2 ® l j ,

3.1.4 Q^H^M^^my ^H\M,G{k))^H\M,G(k-v))-Q--H\M^y)®m{S}

P l ® l 1 T i X i 13201 i

O-^H^M^^m^ -^H^M^Gy) -p-^ H^M.G^-^) -Q- H\MW)0my

where Q is the connecting map. The injectivity of A" can be shown by
the same argument as in the proof of Prop. 2.2.
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The set of isomorphism classes of families of ^-deformations (resp.
/-deformations, rr-deformations) parametrized by R^ can be identified,
in a natural way, with the cohomology set Hl(M,G(k)) (resp.
H^M^G^), ^(M.G^)); the class of the trivial family corresponding
to the distinguished point in the cohomology set. If a family of
deformations j^-1)/^-1) ;§ represented by a cohomology classy, then
<g(y) is the obstruction of X ^ ' ^ / R ^ ' ^ to be extended to a family
overT^.

Notice that if a family j^-1)/^-1) of /i-deformations can be
extended as a family of (r-deformations, then their obstruction to be
extended as a family of /i-deformations lies in H2(M,@f^) ® m^.

3.2. A Theorem of decomposition. In this paragraph we proof that,
if H2(M,@fy) = 0 then K decomposes as the product K° x 7^. This
implies when oci: H\M,@y)-^H\M,@^ is injective that K^K^K^.

PROPOSITION. — Assume that the versal space K is smooth (for instance
if H2(M,©y)=0) and that Pi is surjective, then K^ and K° are smooth
(and so is K^ and K ^ K° x K " .

Proof. — It follows from prop. 1.5 in [24] and the implicit function
theorem. D

THEOREM. - Assume that H\M^y) = 0. Then K° = TT-^O) is
smooth (and so is Kf) and there is an isomorphism (j) : K° x K^ -> K
making commutative the following diagram

K° x K^ -> K
3.2.1

Proof. — Let S denote the germ at 0 of the vector space
ker don = ker Pi c: Hl(M,@y}. We want to construct, for any k e N ,
a morphism of germs ^(k): (S x K^)(k) -> K^ making commutative the
diagram

(SXK^ ^ K^

3.2.2 /^V /^)

K^
and in such a way that ((/^ is an isomorphism and ^(k) is an extension
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of (j)^"1) for any k. For fe == 1, we simply define

(j)^ : (^x ^tr)(1) = ker Pi x Im Pi -> H\M,@^ = K^
to be the product i x e where f : ker Pi-^ ^(M.O^) is the canonical
inclusion and £ : Im Pi -> H^^M^Qy) is a section of Pi.

Assume that we have defined c})^, • • • •> (j)^"10 and let us construct
(j)^. We will use the sheaves defined in paragraph 3.1 for R = S x K^.

Let Z ^ / K ^ be the versal family and Z^/5' x K^ the family induced
by the projection p^\ S ^ K^ -> K^. For any m e N , the restriction of
this last family to (SxKir)(m) determines a cohomology class
^€H\M,G^).

Let ^(A-1) e ̂ ^M,^"1^ be the cohomology class associated to the
family of A-deformations over {S^K^)^'^ obtained from ZfK by pull-
back of the morphism (^^"^. The commutativity of 3.2.2 for k — 1
implies T^^"^) = ^-1).

Since ^ (A-1) is not obstructed, that is Q^'^) = 0, it follows from
the commutativity of 3.1.4 and the injectivity of Pa ® 1 that Q^'1)) = 0.
Thus there is an element ^°e H\M,G^) extending ^k~l\ which
determines a family of /i-deformations X^/^Sx K")^. Let ( ^ ( k ) :
(SXK^Y^ -> K^ be the versal map associated to that family. Since
X^^S^K^ is an extension of Z^/c-D/^x 7^)^-1) we can assume
that (J)^ is an extension of ^"^ (cf. [6], prop. 1, VIII, 3).

The morphism p^ x (^cxp0): (S x K^-> S^ x ^tIw maps
(5 fx^: t r)< fc ) isomorphically onto itself. This automorphism of (5'x A^)^,
that we denote by u, is the identity over (5'x ̂ tr)a-l). We define
(j)^) == ^^^o n"1. This morphism extends ((/^^ and makes commutative
the diagram 3.2.2.

The morphisms of local C-algebras, ((j^)* : ̂ ,o/w^1 ->
^ S X T ^ / ^ K K ^ , induce a morphism between the completions of the local
algebras OK,Q^S^K^ ,o

$ = Imi ((l)^^* : g^o -̂  ^x^r,o

such that the diagram
^ (b -o
,̂0 ——" ^Sx^tr^

is commutative.
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A theorem of M. Artin [1] shows that, in this situation, we can find
a morphism of germs of analytic spaces 4): S x K^ -> K which is an
immersion and such that the composition no ̂  coincides with the
projection p ^ : S x K^ -> K^. In particular ()) maps S ^ S x {0} into
K° and, since S is smooth, this is in fact an isomorphism of S onto
K°. Now the statement follows from proposition 2.1. D

Remarks. - If O^L110) denotes the sheaf of germs of Z/^-valued
holomorphic j-forms (see 1.1 for the definition of L110), then
©^ = Q°(L1'0). When M is Kahler and L1'0 is k-negative one has
H\M^{L^)) = 0 for i + j < q - k + 1 (q = codimension of e^).
(See [22], def. (3.1) and th. (6.32).)

3.3. Deformations of ^ when it admits a transversal holomorphic
foliation ̂ ^. In this paragraph we study the deformations of ^ in the
special case in which there is another holomorphic foliation ^^ on M,
transversal and complementary to ^ .

With this assumption the exact sequence of sheaves 1.3.1 splits
giving rise to the exact sequence

0 -> H\M,Qy) -> H\M,@y) -> H\M,@%) -^ 0.

In particular Kf coincides with the fibre K° of n over zero and it
follows from prop. 3.2 that, if K is smooth, then Kf and K^ are smooth
and K^ Kf x K^.

PROPOSITION 1. — Assume that there is a holomorphic foliation ^^
which is transversal and complementary to ^ . Then there is a morphism
K ' . K^ —> K which is a section ofn. In particular K is an epimorphism.

Proof. - Let {(L^.,z?,z^)} be an atlas of M such that the foliations ^
and ^rh are locally given by the holomorphic submersions
(z?,z?)^(z?) and (z?,z?) -> (z?) respectively. Assume that the
r^tr-structure of the versal family Z^ is given by local chart
(£A,r,v|/?,\|/?) with U, = ̂  n Mo and such that v|/?|^=
z? and ^\U, = zf. Then the family of charts {(^,r,^=\|/?,^=^)}
defines a F^tr-structure (Z^)1 on Z^ which underlies its
r^tr-structure. In this way we get, from the versality of K, a morphism
X : K^ -^ K such that Z^K^ and (Z^/K^ are isomorphic as families
of ^-deformations.
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The families Z^^/K^ and Z ^ / K ^ are r^tr-equivalent and the
versality of K^ implies that d^n o X) = Id. It follows from this that
7i o X is an automorphism of K^ (cf. [24], prop. 1.4). Now,
\ = Xc^TcoX)" 1 is a section ofrc. D

As a corollary of th. 3.2 we obtain

PROPOSITION 2. — If there exists a holomorphic foliation ^F^ transversal
and complementary to ^ and ^I2(M,@f^) = 0 then A/ 15 smooth and
K^ Kf x K " .

We end this paragraph by pointing out an alternate way of computing
the versal space A^. When there is a transversal holomorphic foliation
^^ this new approach is sometimes useful to describe the relations
among the spaces Kf, K and K^.

Let O^r be the sheaf of germs of vector fields ^ on M whose
expression in a flat local chart is

^.aA+^A+.a-A+E.-A
" q 82° " 3Z" s OZ6 s ^u

with ^ = ^(z6) and ^u = ^(z6,^) holomorphic functions. The sheaf
Qy is a quotient of 0^- by a fine subsheaf, so their cohomologies
coincide except in degree 0. We denote by

o -^ e^ -^ (t>° -D- ̂  -D- ^2 -^ ...

the resolution of the sheaf O^r used by Kodaira and Spencer in [17]
to study the holomorphic deformations of ^. It can be described at
follows.

Let A*(M) denote the algebra of C-valued differential forms on M
and let I p (resp. Ty) be the ideal of A*(M) formed by those forms
whose restrictions to F (resp. T0'1) vanish. Let ^k be the space of
complex derivations 8 of A*(M) of degree k such that 8(7^) c: I p and
8(/r) c= I T . The derivations 86^°* are given, locally, by couples ((p,0
of vector valued differential forms of degrees k and k + 1 and where
(p is globally defined. The sheaf (^k is the sheaf of germs of elements
of ^k and D is the differential operator defined by D (8) = [d,S\ where
d is the exterior derivative and [,] is the bracket of derivations.
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Let us consider also the resolution of ©^ used by Duchamp and
Kalka in [7] to study the ^r-deformations of 3F .

0 ^ Q% -^ 0° -dF- Q1 -^- Q2 -^ . . . .

The sheaf Q* is the sheaf of germs of elements of A^N), where
A^N) denotes the space of sections of the vector bundle A^F*) (g) N110.

Let p : ^k-> A^N) be the projection defined as follows. Given
S e ^ k represented locally by couples (cp,Q, then p(8) is the element of
A^N) defined by

p(8)(^,...,^)=^((p(^,...,^))

where ^i, . . . , ̂  are sections of F and p ^ : TAf ->• A^110 is the canonical
projection. These maps induce a projection p : (|>* -> Q* of resolutions
whose kernel (|>* can also be used to construct the Kuranishi space for
the/-deformations of ^ (cf. [11] for details). Indeed, the correspondence
which maps (oey4°'*(L) to the derivation §0, defined locally by the
couples ((o,rfco—3o)) is an inject! ve homomorphism of A^^^L) into the
space of sections V} of the sheaf ^. This correspondence induces
isomorphisms at the cohomology level (except for degree zero).

If there exists a holomorphic foliation ̂  transversal and comple-
mentary to ^ it can be used to obtain a decomposition TM = F © N110

and the elements of Af(N) can be viewed as vector valued differential
forms on M. The correspondence

s-.AW -> ^h

defined by s(\|/) = 5^, where 8^ is the derivation locally defined by the
couples (\|/,rf\|/-rf^), is a section of p. Thus we get the direct sum
decomposition of complexes (F* = <F* © s(Af(N)) (cf. [11]).

If one uses a Hermitian metric on M with respect to which ^ and
^ are orthogonal, then the Laplacians A, A} and A^r , associated to
the operator!) in the complexes (F*, ^* and s(A^(N)) respectively,
verify A = A} + A^r. In particular, we have an orthogonal decomposition
of the corresponding spaces of harmonic derivations

3.3.1 7^= H ' / Q H ' ^ .

Then one can construct the versal spaces K, Kf and K^ by expressions
analogous to 1.4.2 and 1.4.3 (cf. [10] and [11]). These decompositions
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of A and H1^ motivate the use of the complexes S'*, ^ and
s(A^(N)) for the computation of the versal spaces K, Kf and K^,
particularly when one is interested in describing the relations among
these spaces (cf. example 4.4). One can easily see for instance that if
there exists a holomorphic foliation ^rrh transversal and complementary
to ^ and the versal space K is smooth, then Kf and K^ are also
smooth and K^ Kf x K^.

4. Some examples.

In this section we study the deformation of some specific examples
of holomorphic foliations on compact manifolds.

4.1. Flows over Hopf manifolds. A Hopf manifold is a complex
manifold W^ obtained as the quotient of W = C" - {0} (n>2) by a
polynomial automorphism h of C71 such that: (i) h fixes the origin,
(ii) the derivative h'(0) at 0 has eigenvalues ^ = (^i, . . . ,^n) inside the
unit circle (so h is a contractive map), and (iii) h is ii-resonant; i.e., h
commutes with the diagonal linear map

/'1 °\
/ ^2 \

^=

.0 -^

Let W^ be a Hopf manifold defined by an automorphism h of C"
as above. Any holomorphic vector field ^ on W^ without zeroes defines
a holomorphic foliation ^ whose leaves are the orbits of £,. In this
situation one has

PROPOSITION. - H\W^Q^ = C and H\Wf,,©^) = 0. In particular
the versal space Kf is smooth of dimension 1 and K ^ K° x K^ (recall
that K° denotes the fibre over 0 of the versal map n: K-^K^) where K°
is also smooth.

Proof. — Let (9 and (9^ denote the sheaves of germs of holomorphic
functions on W and W^ respectively. Let ^ = {£/,} be a covering of
W^ by 1-connected Stein open subsets and set ^ = {Ui} where
^i = p"1^,) and p : W -> W^ is the canonical projection. % is an open
covering of W by (non-connected) Stein open subsets invariant by h.



444 J. GIRBAU AND M. NICOLAU

An argument of Douady [3] shows that the sequence of complexes

0 -. C?*^,^) -p^ ^ile(<i,^) l ~ ^ > (?*(<i,^) -> 0

is exact, so it gives rise to a long exact sequence

. . . -^H^W^O^) -^ H\W,(9)-'L—^Hh(W,(S)
-.^+l(^,^)^ ...

In a similar manner to that of Haefliger in [14] one can see that
(1-^*): H^W^) -> H\W^ is an isomorphism for k ^ 1 and that
it has a cokernel of dimension 1 for k = 0. So H^^W^Q^ = C and
H'i{W^(()^ = 0. Now the statement follows from the observation that
the sheaves (9^ and ©^ are isomorphic and from th. 2.3 and the
corollary to th. 3.2. D

Remark. - Let us consider the special case for which n = 2,
A is the homothety ^(zi.Zg) = (az^az^ with 0 < |a| < 1 and

^ == Zi— + z2—. In this situation^ is a fibration W^ -> CP1 with
OZi OZ2

fibre a complex torus. By means of a representation of AT^^,®^)
and H1^^,®^) as spaces of vector 1-forms harmonic with respect to
a metric on W^ one easily checks that these spaces have complex
dimension? and 6 respectively. Furthermore, the map 7^°(H^,©^) ->
j^°(^,©^) is an epimorphism. A computation similar to that of
Duchamp and Kalka in [8] shows that the versal space K^ is not
smooth.

4.2. Foliations tranverse to the fibres of a bundle. Let ^ be a
holomorphic foliation transverse to the fibres P of a holomorphic bundle
p : M -> B, where M and B are compact connected complex manifolds.
The bundle and the foliation ^ are completely determined by the global
holonomy

H:n,(B,b) -> Autc(P)

where Autc(P) denotes the group of holomorphic automorphisms of P
(cf. [10]).

It has been shown by Girbau, Haefliger and Sundaraman in [10]
that the versal space K^ is isomorphic to the versal space of
7ii(2?,ho)-equivariant deformations of the complex structure of P (where
7ti(2?,fco) acts on P through^) as defined by Cathelineau in [2].
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The homomorphism H induces an action of n^B,bo) on H^P^p)
where (9p is the sheaf of germs of holomorphic functions on P. Let
j€\P,Gp) denote the locally constant sheaf on B with fibre H\P,Op)
associated to this representation. Let ©5 denote the sheaf of germs of
holomorphic vector fields on B. In this situation we obtain the following
result which improves th. 2.5 in [10].

THEOREM. - Assume that the sheaf ©5 (g) ^(P,^?) has no non
trivial sections over B. Then Kf is isomorphic to the versal space Kg of
deformations of the complex structure of B. Furthermore, K ^ K g ' ^ K ^ .

Note. - The hypothesis of the theorem are fulfilled if H1 (P^p) = 0
(for instance if P is a 1-connected Kahler manifold) or if H acts
trivially on H^P^p) and H°(B,@B) = 0 (for instance if B is a Riemann
surface of genus > 1).

Proof. — Any ^--deformation of ^ is given by a deformation of
the holonomy H . So any rr-deformation gives rise to a ^-deformation
of ^ uniquely determined by the requeriment that the complex structure
on B remains fixed and the projection? is still holomorphic. Thus we
get a commutative diagram of germs of analytic spaces

Kn x K^ -^ K

From the spectral sequence of the fibration p : M -> B we obtain
the exact sequence

0 -^ H\B,@B) -^ H\MW —> H(B,(9p)) -^

-^H\B,@^) -^H\MW.

By the hypothesis made, a is an isomorphism and P is injective. The
restriction 4/ of ()) to KB ^ Kg x {0} is an immersion (its tangent map
is a) with image contained in Kf •= TI'^O).

Let X|Kf be the trivial family of deformations of the complex
structure of B (X=BxKf) and let G^ denote the sheaf of germs of
holomorphic automorphisms of the family X^KK^ . Let Y/Kf be the
trivial family of/-deformations of ^ (r==MxA/) and let G^ denote
the sheaf of germs of P^-isomorphisms of Y(k)/(KfYli).
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Denote by m}̂  the quotient mf/m^1 where my is the maximal ideal
of ^^/o. Since, any holomorphic deformation of B induces a
/-deformation of ^, we obtain, in a similar manner as that used in
3.1, the following commutative diagram with exact rows

0 -> H\B,Q^) ® <1 -^H^B^) -^H\B,G^ 1)) ^ ^(^©a) ® <1

° '®l 1 i i P ® l i
0 ̂  /^(AW) ® m^ ^ H^M^) -^ H^M^Gf-^) -^ H\M^) ® m^.

Since (3 is injective, we can repeat the argument used in the proof
of th. 3.2 to construct a morphism q > : Kf -> KB which is a section of
4/. This implies that ()/ is an isomorphism (cf. [24], prop. 1.4). Now
the second part of the statement follows from prop. 2.1. D

4.3. Let M be the product T9 x CP\ where T9 is a complex torus
of dimension q, and let us consider on M the holomorphic foliation ^
whose leaves are the fibres of the projection p i : T9 x CP1 -^ T9.

Since the leaves of ^ are simply connected, Ky is isomorphic to
the versal space KT ^ C92 of deformations of the complex structure F9

(cf. [10], th. 4.3). In particular, the holomorphic projection pi is preserved
by tr-deformations of ^ .

The space Kf is isomorphic to the analytic subspace of
H\MW ^ C39 defined by the 3^-1) equations

^jYk - ^hY] = 0
X j Z k - Xi,Zj = 0 (1 </ < k < 2q)
y j Z k - YkZj = 0

where x,, y^ z, ( f = l , . . . , ^ ) are the linear coordinates of C39 (cf. [11]
for explicit computations). Notice that the /-deformations of ^ do not
change the complex structure of the leaves (they are isomorphic to CP1

which is rigid). This is an example of the situation described in
Remark 1.1.

Although the foliation ^ is not in the hypothesis of th. 3.2 or
th. 4.2 one has K ^ Kf x K^. One can see this by means of the
method indicated at the end of paragraph 3.3 (cf. [11] for details). The
versal space K coincides also with the versal space KM of deformations
of the complex structure of M (cf. [16] part. II, § 16).

4.4. Flo\vs over a complex torus. Let F" be the complex torus defined
by a subgroup A of C" generated by In [R-linearly independent elements



ON DEFORMATIONS OF HOLOMORPHIC FOLIATIONS 447

of C", i.e. 7^ == C7A. Any vector field ^ on T" is induced by a linear
vector field <f on C". We can take coordinates z, w1, . . . , w"~1 on C"
which are linear functions of the canonical coordinates of C", with
y 0 , , , S 8 8
C = .- and such that —. ——, • • • , are orthogonal with respect

cz 8z <3w 3w
to the Euclidean metric.

Let ^ be the foliation on T" induced by a vector field ^ ^ 0. The
sheaf ©^ is isomorphic to the sheaf (9r of germs of holomorphic
functions on T\ So dime H^T^Q^) = dinic^T",^) = n. Indeed,

\dz(S—.d\va(S)—^a=l,...,n-l[ is a basis of the space of harmonic[ 8z 82 J '
vector 1-forms H} defined in 1.4. One easily checks that [co,co] = 0
for any co e H} and now it follows from 1.4.2 and 1.4.3 that
Kf = Nf = H} ^ H\T\Q^}.

Let (9^ denote the subsheaf of (9 T formed by the germs of those
functions which are constant along the leaves. The exact sequence of
sheaves

0 -> (9^ -^ GT -LL> OT -> 0,

where L^ denotes the Lie derivative with respect to ^, induces the long
exact cohomology sequence

• • • -^'(r^?) -> H\T\OT) ——H^T^OT) -^ H^^T^O^-^
By representing the elements of 7^(7"",^) by harmonic forms one can
see that L( is the zero map. So dime 77 ̂ T^^?) =
dime H\T\(9T) + dime 771(^^^) = n + 1. Since ©^ is isomorphic to
(^T-1, dmH^T^Q^) == n2 - 1. Hence

dime 771(T", 0,0 = n2 + n - 1.

The space 771(7^,(M)^) is isomorphic to the space of harmonic
derivations 771 ^ 77}1 @ 77;r1 (cf. 3.3.1). H ' / is the space of derivations
8(0= (o),d(o-3co), where CD belongs to 77j1, and 77^ is the space of
derivations 8^ = (\|/,rf\|/-^v|/), where \|/ belongs to the subspace of

^ ? ^
AW spanned by dz ®——. dz ®——, d^ (S) —— (a,fc= 1, . . .,n- 1).

One has [8^,6J = [8^,5^] = [8^,5^] = 0 for any 8^ 77;1 and 8^e77;;.
From this and from the descriptions of K and K^ analogous to that
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of Kf given in 1.4.3 (cf. [10]) it follows that the versal spaces K and
K^ are smooth and that K ^ Kf x K " .

We can collect these results in the following statement.

PROPOSITION. - Let y be the filiation, on a complex torus T",
whose leaves are the orbits of a non zero holomorphic vector field. Then
the versal spaces K, Kf and K^ are smooth of dimensions n2 + n - 1,
n2 - 1 and n respectively and K ^ Kf x K^.
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