Annales de l'institut Fourier

Ebbe T. Poulsen
 A simplex with dense extreme points

Annales de l'institut Fourier, tome 11 (1961), p. 83-87
http://www.numdam.org/item?id=AIF_1961__11__83_0
© Annales de l'institut Fourier, 1961, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A SIMPLEX WITH DENSE EXTREME POINTS

By Ebbe Theu POULSEN (Aarhus)

1. - Introduction.

Let L be a locally convex linear topological space, and let C be a compact convex subset of L . The Krein-Milman theorem [3] asserts that C is the closed convex hull of the set $\mathrm{E}(\mathrm{C})$ of extreme points of C . It follows that for every $x \in \mathrm{C}$ there exists a positive measure μ_{x} of mass 1 on $\overline{\mathrm{E}(\mathrm{C})}$ such that

$$
x=\int_{\overline{\mathbf{K}(\mathbf{C})}} y d \mu_{x}(y) .
$$

This representation is of little interest in the case where $\mathrm{C}=\overline{\mathrm{E}(\mathrm{C})}$, and according to a result due to Klee [2] this is the rule rather than the exception.

Recently Choquet [1] has shown that if C is metrizable the measures μ_{x} may be chosen so as to be supported by $\mathrm{E}(\mathrm{C})$ itself, and furthermore that these measures are uniquely determined if and only if C is a simplex (i.e. such that the intersection of any two positive homothetic images of C is either empty, a single point or a positive homothetic image of C).

The question is raised by Choquet whether the situation $\mathrm{C}=\overline{\mathrm{E}(\mathrm{C})}$ can arise when C is a simplex. It is the object of this note to construct an example which shows that the answer is affirmative. The ideas governing the construction
are closely related to the ideas of [4] where a simple example of a convex set with dense extreme points is exhibited. In § 2 we perform the actual construction of the simplex S and observe that $\mathrm{S}=\overline{\mathrm{E}(\mathrm{S})}$, and in $\S 3$ we prove that S really is a simplex.

2. - Construction of the example.

In the Hilbert space l^{2} of sequences

$$
x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots\right)
$$

we denote by e_{j} the unit vector having the coordinates $\xi_{i}=\delta_{i j}$. Further, we denote by E_{n} the subspace spanned by $e_{1}, e_{2}, \ldots, e_{n}$ and by P_{n} the projection on E_{n}.

We first construct a sequence of simplexes S_{n} with the following properties:
(i) $\mathrm{S}_{n} \subset \mathrm{E}_{n}$ for every n.
(ii) $\mathrm{S}_{n} \subset \mathrm{~S}_{m}$ and $\mathrm{E}\left(\mathrm{S}_{n}\right) \subset \mathrm{E}\left(\mathrm{S}_{m}\right)$ for $n<m$.
(iii) $\mathrm{P}_{n} \mathrm{~S}_{m}=\mathrm{S}_{n}$ for $n<m$.
(iv) for every $\varepsilon>0$ there exists an n such that every point of S_{n} has distance at most ε from $E\left(S_{n}\right)$.

The construction of the simplexes S_{n} falls in groups as follows :
a) The first group consists of one simplex

$$
\mathrm{S}_{1}=\left\{x \mid 0 \leqq \xi_{1} \leqq 2^{-1} ; x \in \mathrm{E}_{1}\right\} .
$$

b) Assume that $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{n_{\rho}}$ have been constructed, $\mathrm{S}_{n_{\rho}}$ being the last simplex in the p 'th group. Choose points $y_{1}, y_{2}, \ldots, y_{q_{p}}$ in $\mathrm{S}_{n_{p}}$ such that every point of $\mathrm{S}_{n_{p}}$ has distance at most 2^{-p} from the set $\left\{y_{1}, y_{2}, \ldots, y_{q_{p}}\right\}$.

For $n_{p}<k \leqq n_{p}+q_{p}=n_{p+1}$ we define $z_{k}=y_{k-n_{\rho}}+2^{-k} e_{k^{\prime}}$,
whereupon we define S_{k} as the convex hull of the set

$$
\mathrm{S}_{n_{p}} \cup\left\{z_{n_{\rho}+1}, \ldots, z_{k}\right\} .
$$

With this construction it is clear that the sets S_{n} are simplexes satisfying (i), (ii), (iii) and (iv).

Now define

$$
\mathrm{T}_{n}=\mathrm{P}_{n}^{-1}\left(\mathrm{~S}_{n}\right)=\left\{x \mid \mathrm{P}_{n} x \in \mathrm{~S}_{n}\right\}
$$

and

$$
\mathrm{S}=\bigcap_{n=1}^{\infty} \mathrm{T}_{n}
$$

It then follows that
(ii') $\mathrm{T}_{n} \supset \mathrm{~T}_{m}$ for $n<m$.
(iii') $\quad \mathrm{P}_{n} \mathrm{~T}_{m}=\mathrm{S}_{n}$ for $n<m$.
(iii') $\quad \mathrm{P}_{n} \mathrm{~S}=\mathrm{S}_{n}$ for all n.
(iv') The set $\bigcup_{n=1}^{\infty} \mathrm{E}\left(\mathrm{S}_{n}\right)$ is dense in S .
Thus, to prove that $S=\overline{\mathrm{E}(\mathrm{S})}$ it suffices to prove that $E\left(S_{n}\right) \subset E(S)$ for all n. The proof of this is exactly the same as in [4], but it is so short that we may as well repeat it here : Let $z \in \mathrm{E}\left(\mathrm{S}_{n}\right)$ and let $y \neq 0$. Then there exists $m \geqq n$ so that $P_{m} y \neq 0$, and by (ii) $z \in \mathrm{E}\left(\mathrm{S}_{m}\right)$. Therefore, the segment

$$
\left\{x \mid x=z+t \mathrm{P}_{m} y ;-1 \leqq t \leqq 1\right\} \nsubseteq \mathrm{S}_{m}
$$

and consequently

$$
\{x \mid x=z+t y ;-1 \leqq t \leqq 1\} \oplus \mathrm{S}
$$

Hence, $z \in \mathrm{E}(\mathrm{S})$.
Finally, let us note for completeness that S is compact and convex.

3. - Proof that \mathbf{S} is a simplex.

We must prove that every set of the form

$$
\mathrm{A}=\mathrm{S} \cap(q \mathrm{~S}+a) \quad \text { with } \quad q>0
$$

containing at least two points is itself of the form

$$
\mathrm{A}=r \mathrm{~S}+b \quad \text { with } \quad r>0
$$

Now since

$$
\begin{aligned}
\mathrm{A} & =\bigcap_{n=1}^{\infty} \mathrm{T}_{n} \cap\left(q \bigcap_{n=1}^{\infty} \mathrm{T}_{n}+a\right) \\
& =\bigcap_{n=1}^{\infty}\left(\mathrm{T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right)\right)
\end{aligned}
$$

each of the sets $\mathrm{T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right)$ contains at least two points, and therefore

$$
\mathrm{P}_{n}\left(\mathrm{~T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right)\right)=\mathrm{S}_{n} \cap\left(q \mathrm{~S}_{n}+a_{n}\right),
$$

where $a_{n}=\mathrm{P}_{n} a$, is non-empty for every n and contains at least two points for sufficiently large n.

Since S_{n} is a simplex, we have

$$
\mathrm{S}_{n} \cap\left(q \mathrm{~S}_{n}+a_{n}\right)=r_{n} \mathrm{~S}_{n}+b_{n} \quad \text { with } \quad r_{n} \geqq 0
$$

for every n and $r_{n}>0$ for sufficiently large n. Now, for $m>n$ we have
i.e.

$$
\mathrm{P}_{n}\left(\mathrm{~S}_{m} \cap\left(q \mathrm{~S}_{m}+a_{m}\right)\right) \subset \mathrm{P}_{n} \mathrm{~S}_{m} \cap \mathrm{P}_{n}\left(q \mathrm{~S}_{m}+a_{m}\right),
$$

or

$$
\mathrm{P}_{n}\left(r_{m} \mathrm{~S}_{m}+b_{m}\right) \subset \mathrm{S}_{n} \mathrm{n}\left(q \mathrm{~S}_{n}+a_{n}\right)
$$

$$
r_{m} \mathrm{~S}_{n}+\mathrm{P}_{n} b_{m} r_{n} \mathrm{~S}_{n}+b_{n}
$$

from where it follows that

1) $\boldsymbol{r}_{m} \leqq r_{n}$.
2) $\mathrm{P}_{n} b_{m} \in \boldsymbol{r}_{n} \mathrm{~S}_{n}+b_{n}$ (since $0 \in \mathrm{~S}_{n}$).

By the construction all points of S_{n} have all their coordinates non-negative, and hence, writing

$$
b_{n}=\left(\beta_{n 1}, \beta_{n 2}, \ldots, \beta_{n n}, 0, \ldots\right)
$$

we get
3) $\beta_{m i} \geqq \beta_{n i}$ for all i.

From 1) it follows that

$$
r_{n} \rightarrow r(\geqq 0) \quad \text { for } \quad n \rightarrow \infty
$$

and from 3) that

$$
\beta_{n i} \rightarrow \beta_{i}(\text { for } n \rightarrow \infty) \text { for all } i .
$$

It is easily seen that the sequence

$$
b=\left\{\beta_{1}, \beta_{2}, \ldots\right\}
$$

belongs to l^{2} and that

$$
b_{n} \rightarrow b \quad \text { for } \quad n \rightarrow \infty
$$

whence $b \in \mathrm{~A}$.
We shall complete our proof by showing that

$$
\mathrm{A}=r \mathrm{~S}+b
$$

First, since $r \leqq r_{m}$ for every m, we have

$$
r \mathrm{~S}+b_{m} \subset r \mathrm{~T}_{m}+b_{m} \subset r_{m} \mathrm{~T}_{m}+b_{m}=\mathrm{T}_{m} \cap\left(q \mathrm{~T}_{m}+a_{m}\right)=\mathrm{T}_{m} \cap\left(q \mathrm{~T}_{m}+a\right)
$$

for every m, and since

$$
\mathrm{T}_{m} \cap\left(q \mathrm{~T}_{m}+a\right) \subset \mathrm{T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right) \quad \text { for } \quad m>n
$$

we have

$$
r \mathrm{~S}+b_{m} \subset \mathrm{~T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right) \quad \text { for } \quad m>n
$$

Since T_{n} is closed, it follows that

$$
r \mathrm{~S}+b \subset \mathrm{~T}_{n} \cap\left(q \mathrm{~T}_{n}+a\right) \quad \text { for every } n,
$$

whence $\quad r \mathrm{~S}+b \subset \mathrm{~A}$.
Secondly, since
we have

$$
\begin{array}{cc}
r_{n} \geqq r_{m} \quad \text { for } \quad m>n, \\
\text { we have } \quad r_{n} \mathrm{~T}_{n}+b_{m} \supset r_{n} \mathrm{~T}_{m}+b_{m} \\
& \supset r_{m} \mathrm{~T}_{m}+b_{m} \\
& =\mathrm{T}_{m} \cap\left(q \mathrm{~T}_{m}+a\right) \\
& \supset \mathrm{A} \quad \text { for every } \quad m>n .
\end{array}
$$

It follows that

$$
r_{n} \mathrm{~T}_{n}+b \supset \mathrm{~A} \quad \text { for every } n,
$$

hence also that
whence $\quad r_{n} \mathrm{~S}+b \supset \mathrm{~A}$ for
From here, finally, it follows that

$$
r \mathrm{~S}+b>\mathrm{A},
$$

and the proof is completed.

BIBLIOGRAPHY

[1] Choquet Gustave, Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes. Séminaire Bourbaki (Décembre 1956), 139-01-139-15.
[2] Klee V. L. Jr., Some new results on smoothness and rotundity in normed linear spaces. To appear.
[3] Krein M. and Milman D., On extreme points of regular convex sets. Studia Math., 9 (1940), 133-138.
[4] Poulsen Ebbe Thue, Convex sets with dense extreme points. Amer. Math. Monthly, 66 (1959), 577-578.

