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RATIONAL FIBRATIONS,
HOMOGENEOUS SPACES WITH POSITIVE

EULER CHARACTERISTICS AND JACOBIANS

by H. SHIGA and M. TEZUKA

1. Introduction.

Since D. Sullivan described his differential graded algebra model
for the classifying space for fibrations with a given fiber, it has
become possible to study rational homotopy theory for fibrations
by algebraic methods. The purpose of the present paper is to study
fibrations whose fiber has the homotopy type of G/U, where G
is a connected compact Lie group and U is its closed subgroup of
maximal rank. Then our main result is :

THEOREM A. — Let G be a connected compact Lie group and
U be a closed subgroup such that rank U = rank G. Then every
orientable fibration

G/U -^ E —^ B

with a fiber G/U is totally non homologous to zero, that is, the
induced map

f : H* (E,Q) —> H* (G/U,Q)

is surjective.

Due to the theories of the Sullivan classifying spaces and of
the Serre spectral sequences of fibrations. Theorem A is equivalent
to the following algebraic result ([ 11 ], [ 13], [ 15]):

THEOREM A\ - Let G and U be as in Theorem A. Then
we have
Key-words: (Rational) Fibration — Homogeneous space — Invariant polynomial

(under Weyl group) — Derivation — Jacobian.
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n. (H*(G/U,C)=0, ;>0.

Here D^.(A) denotes the Orvector space of Orderivations of a graded
commutative algebra A over Q which decreases the degree by i.

An outline of the proof of Theorem A' goes as follows. Let T
be a common maximal torus of G and U. We fix generators of the
cohomology ring of the classifying space BT and so

H * ( B T , C ) = C [ X i , . . . ,XJ .

The cohomology ring of BG can be written as

H * ( B G , C ) = C [ I ^ , . . . , I J

where I^ , . . . , 1̂  are polynomials of X ^ , . . . ,X^ which are inva-
riant under the action of the Weyl group. In our proof, the Jacobian
det(3I^./3X.) plays the key role. Using the works of H. Coxeter and
B. Kostant et al. in 1950's, we can prove that the Jacobian is not
contained in any prime ideal of the ideal generated by 1 ^ , . . . , I^_ i
where we choose 1 ^ , . . . , 1̂  so that deg 1^ < . . . < deg !„ . From
this and the fact that H* (BT , C) is faithfully flat over H* (BG , C),
we can deduce Theorem A'. In the case G/U is a complex flag mani-
fold, the Jacobian becomes the Vandermond's determinant and
Theorem A' can be proved more elementally. Partial results in this
case were obtained by W. Meier [9].

As examples of G/U in Theorem A we have complex flag mani-
folds

W ( ^ , . . . , ^ ) = U ( ^ ) / U ( ^ ) x . . . xU(^ ) (n=n^ + . . . + ^)

and So(2n)l\J(n). A list of such homogeneous spaces are given in
[2] when G is a simple Lie group.

Theorem A is a special case ofHalperin's conjecture.
Related to the proof of Theorem A we show the following result:

THEOREM B. — Let K be a field with characteristic zero and
P ^ , . . . , P ^ be a homogeneous (a quasi homogeneous) W -regular
sequence of elements of the polynomial ring K [X^ , . . . , X^ ], where
^l is the maximal ideal (Xi , . . . , X^). Then the Jacobian

detOP^/aX^)
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does not lie in the ideal (P^ , . . . , P^).

If K[Xi , . . . ,XJ is positively graded and (P^ , . . . ,P^) is a
homogeneous ideal of decomposable (i.e. having no linear term)
elements, Halperin [6] shows that the quotient ring

K [ X I , . . . , X J / ( P , , . . . , P J
satisfies the Poincare duality. Theorem B implies that the Jacobian
det(3P,./3X^) is a fundamental class. Theorem B is obtained by cons-
tructing a chain map between the Koszul complex for (P^ , . . . , P )
and that for ( X ^ , . . . ,XJ.

We also study the case of mod p coefficients. We show that
Theorem A is valid for mod p coefficient if the prime p does not
divide the order of the Weyl group of G.

After we wrote the first version of the manuscript, we obtained
following related results:

1) The ideal of H* (BT , C) generated by I i , . . . , I ^ _ i is an
intersection of prime ideals on which W (G) acts transitively ([16]).

2) If G is a simple group of type A^ , then the mod p version
of Theorem A is true if and only if the prime p does not divide the
order of W(G)([17]).

3) Let G be a simple group of other type than D^ . Then we can
describe the graded algebra automorphism group of H* (G/U , C)
in terms of the Weyl group of G and U ([18]).

This paper is organized as follows. In § 2 we review Sullivan's
theory of classifying spaces for later use, in § 3 we study the
property of the invariant polynomials and their Jacobians, in § 4
the proof of Theorem A is given, in § 5 the proof of Theorem B
is given, and in §6 the case of mod p coefficients is treated.

We would like to take this opportunity to thank Professors
S. Halperin and J.C. Thomas for valuable communications and
also to Professors A. Kono, K. Shibata and N. Yagita for careful
reading of the manuscript and giving many advices.

2. Sullivan's classifying space.

Let F ——> E —> B
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be an orientable fibration over a connected space B such that the
fiber F is connected and simply connected. Let m(F) be a minimal
model of F and A(B) be a differential graded commutative algebra
(abbreviated D.G.A.) representing B. Then there is a corresponding
D.G.A. model

(m* (F) , rfp) —> (m* (F) ® A* (B), d) ——> (A* (B) , ̂ ).

The differential of the total space has the following form :

d( l ®6) = 1 ^ d ^ ( b ) , & G A * ( B ) ,

d(x<^ \ ) = d y X < S 1 + ^ (- l)^1)^1 ^ 0 ( I / ) (x)®6 ( ^^ , (2.1)
i > o y > i

xGm*(F),

where 0 (y) is a derivation of m*(F) decreasing degree by i, that
is,

000 (^) = 0^) (^C)^ + (- D11^ ^^^^ (^)

and {^.+ i ; i/ = 1 , 2 , . . .} is a basis of A1^ x (B).

Let D^.(F) be a set of Q-derivations of w(F) decreasing
degree by ; for z > 0 , D o ( F ) = { c f F 0 - ^ | 0 E D i ( F ) } . Then
D^ (F) = 0 D .̂ (F) forms a graded differential Lie algebra by the rule

i^ o

1) [01 , 02 1 = 01 ^2 - (- 1)17 02 01 ' where 01 e D/ (F) and

02^D^(F) ,

2 ) § 0 = d F 0 - ( - l ) 1 0 1 0^.

Let A (#5D^ (F)) be the Koszul cochain complex of D.G.L.
D^ (F), that is, the free D.G.A. on the dual vector space D^ (F) with
the degree being shifted up by one, with the differential defined as
the dual of 5 + the dual of the bracket. From the d-formula of the
fibration (2.1) we have a family of linear maps

# A i + l ( B ) —^ D,(F) 0 -0 ,1 , . . . )

#b ^—— S (-l)1^ 1: 0^ ( b ^ ^ # b ) .
i> 0 v > 1
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Sullivan and Schlessinger-Stasheff [11] showed that the set of
homotopy class of D.G.A. maps [A(# s D^ (F)) ,A* (B)] corresponds
bijectively to the set of equivalence class of rational F-fibrations
over B via the above procedure. So we may regard A(#sD^ (F))
as a D.G.A. representing the rational homotopy type of BAutgF,
the classifying space for orientable fibrations with fiber F, and hence
it implies

H, (D^ (F), §) = TT^ , (BAutsF).

Let F be a simply connected space such that H^(F,Q) and
TT^ (F) ® Q are finite dimensional vector spaces and \^ (F) = 0
where

X ^ ( F ) = Z (- i y d i m 7 r / ( F ) ® Q.
i>2

Then Halperin [6] showed that the minimal model of F can be
written as

m ( F ) = ( X i , . . . , X ^ 0 i , . . . , ^ )
with I Xf | = even in the degree and

^ X , = 0 , ^ = P / a = 1 , . . . , n) ,
where P, are polynomials of X[ s and the sequence ( P i , . . . , P ^ )
is a regular sequence. Immediately the cohomology ring H* (F) is
isomorphic to Q [ X ^ , . . . , XJ/(Pi, . . . , P^).

LEMMA 2.1 ([15]). -Let F be as above. Then we have
K^n ( D * ( F ) . S ) = Devon (H* (F)) .

Proof. - Since every derivation of m (F) can be uniquely
determined by its values on the generators, a derivation of degree
2 k can be written as

n n

0= S (XpR/)+ 1 (0/,Q/),
i= 1 /= 1

where R .̂ and Q^ are elements of m* (F) and (a,b) denotes the
derivation taking a to b and annihilating the other generators. The
boundary operator is given by
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5 (XpR,) = (X,,dR,) + (- 1)1*' f (0,,aP^/9X, • R,)
1= i

§ (9,, Q,) = (0,, dQ,).

Hence <j> is closed if and only if

dRi=0, (i ^ !,...,„),
/I

(S ap,/ax,-R,) + J Q , = O , a = ! , . . . , „ ) . (D

Suppose R, and R, are cohomologous and let
0 = 2 ( X , , R , ) + 2(0,,Q,)

be closed. Then we prove that 0 and 0 are homologous. We can
choose elements S such that dS^ = R/ — R/ (/ = 1 ,2 , . . . ) . Set
T, = Q, — Qf. Then we have

0-0 == 2:(X/,rfS/) + :S(0,,T/)
and

6 (x,, s/) = (x/,^s/) == I, (^, ap^/ax/ • s/).
^

Hence we have

0 - 0 = 5 (Z(x,,s,))-l S (0^ap^/ax/-s/)+ S (^,T^)
/ k k

= 5 (l:(x,,s,))- l:(e,, I ap,/ax,-s/) + S(0,,T,). (2)
^ / fc

From (1) we see

d (-1 ap^/ax, • s/ + T^) = - S ap^/ax/ • js/ + ̂  = o.

Hence — S BP^/BX, • S, + T^ is a closed element of the ideal
/

( ^ i , . • • , 0^) . Since the cohomology ring H* (F) is generated by
even degree generators, any closed element of odd degree is exact.
Hence there are G^ G m* (F) (k = 1 , . . . , n) such that



FIBRATIONS WITH HOMOGENEOUS FIBER 87

dGj, = - Z ap^/ax/ - s/ 4- T^ .
I

By (1) and (2) we get

0-0 = §(Z(X/,S/)-2(0/ ,G/)) .

Thus 0 and 0 are homologous. For closed elements
R, (/ = 1 , . . . , n), we can take R^ from Q [ X ^ , . . . , XJ so that
R, and R .̂ are cohomologous. Then by (1)

1: (ap^/ax/) - R, E (P, , . . . , pj c Q [ x ^ , . . . , xj.

Therefore we have the induced derivation ^ (X/, R,.) on H* (F).
i

For D E D^ (H* (F)), take R/ to be a representative in
Q [ X , , . . . , X J of

D (X,) E H* (F) = Q [X, , . . . , XJ/(P, , . . . , ? , ) .
n i ^P \

Since 1 \-^-) R, = D (P,) E (P,, . . . , P,) C Q [X,, . . . , XJ , we
,== i OA^.

can take Q .̂ € m (F) that satisfies condition (1).

q.e.d.

3. Weyl groups and regular elements.

Let @ be a finite dimensional simple Lie algebra over C and
-?> be its Cartan subalgebra. We denote by A the set of roots with
respect to S . For each root a E A , we define a reflection of the
dual space S*

R^(X) = X - 2 ( a , X ) / ( a , a ) a

where ( , ) is an inner product induced from the Cartan-Killing
form restricted to S* . The group W (S) generated by {R^JaeA
is called the Weyl group of % . Let {a,}^^^ be the set of the
simple roots. Then the transformation of % defined by

R = R., • . • R.,
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is called a Coxeter-Killing transformation. We call an element z of
S regular if a (z) =^ 0 for each a G A . We quote some results
due to Coxeter et al.

PROPOSITION 3 A.-Let h be the order of a Coxeter-Killing
transformation. Then there exists an eigen vector z with eigen value
e^1^ such that z is a regular element of S .

For the proof we see [ 3 ] and [12].
Let G be an adjoint group of @ . Then the Poincare polynomial

PG (t) has the form

P c ( ^ ) = ( l + r 2 w l + l ) ( l + , 2 w 2 + l ) . . . ( l + ^ 2 w " + l ) .

The integers m^ are called the exponents of W (@) and n is the
rank of G. We arrange the exponents so that m^ < . . . < m^ .

PROPOSITION 3.2. - nif + m^_^ i = h, m^ = 1 .

For the proof, see [3] and [12].
For a complex vector space V we denote by S (V) the

symmetric algebra generated by V. If we fix a basis of S* , we have
an isomorphism S (S*) = C [ X ^ , . . . , XJ .

PROPOSITION 3.3 (Borel [I] , Chevalley [4]). -

H*(BG, 0=8(8^ = C [ I , , . . . , I J ,

where 1̂  are homogeneous polynomial in the variables X ^ , . . . , X^
and 1 ^ , . . . , 1̂  are algebraically independent over C. Moreover
the sequence is a regular sequence in S (S*) and deg 1̂  = m^ + 1 .

Let V ( I i , . . . , 1^) be an algebraic set in C" defined by the
equations I^ = . . . = 1̂  = 0.

LEMMA 3.4. - The irreducible decomposition of V(I i , . . . , I^_ ^)
is given by

V ( I , , . . . , I , _ , ) = U L /

where L, is a line through the origin.
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Proof. - Since I i , . . . , !„- i is a regular sequence, each
irreducible component has dimension one. If (x^ , . . . , x ) G C1

is a point on the algebraic set, the point (\x^,. . . , \x^) (X G C)
is also a point on it. Hence each irreducible component is a line
through the origin.

q.e.d.

LEMMA 3.5.- V ( I i , . . . , ! „ ) = 0.

Proof. — Since ^ , . . . , 1̂  is a regular sequence, we have
dim V ( I ^ , . . . , l^) = 0 . If there is a non zero point x on V ( I ^ , . . . , 1 ^ ) ,
then a line \x G C" is also contained in it. This contradicts to the
fact V ( I i , . . . , I ^ ) = 0 .

q.e.d.
The next proposition is essentially due to B. Kostant [7].

PROPOSITION 3.6.-Let @ be a finite simple Lie algebra over
C. Then each non zero point on V (1^ , . . . , I^_ ^) is a regular
element of % .

Proof. — Since @ is a simple Lie algebra over C, from
Proposition 3.2 we have

Wi == 1 < . . . < m^_ i < m^ < h.

According to Proposition 3.1, we take an eigen vector z of a
Coxeter-Killing transformation R with eigen value ^27^///l . Then
we have

T f \ /r»— 1 T \ / \ T / r » \ v / 2-fTi/h . 27ri(mjc+ l)fh „ , ,I^(z) = (R 4) (z) = 1^ (Rz) = 1̂  (e z) = e ' k 1̂  (z).

Since ^^^^"^ l ) / h ^ \ for ^ ^ ^ ̂  ^ — i ^y proposition 3.2,
z is a point on V ( V ^ , . . . , I^_ ^ ) . Let ^ be any non zero point on
V (1^ . . . , I^_ ^ ) . Then we can take a constant c G C that satisfies
ly, (z) = I^(cx) from Lemma 3.5. Now we will prove that z and
v = ex are conjugate under the action of W (®).

Let A = {z^ - z,z^\ . . . , z^} be the set of all elements
of which are conjugate to z , and B = {i/0 = v , . . . , i/0} be
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a set of those which are conjugate to v . We assume A H B = 0,
and will deduce a contradiction. We can obviously choose constants
a\ (1 < ; < n, 2 < / < s) to define

F^(X)= I ^(X.-z^KK/^)
/= i

such that F .̂ (z) ^ 0, where z0^ denote the / — th component
of z0^ with respect to the basis X ^ , . . . , X^ . Similary we can
choose b^ (1 < / < n, 1 < k < t) to define

n
^TO-I ^(X^-^^d <^<r)

such that G^ (z) ^ 0 . We set

F (X) = n F, (X) G^ (X)
2 < ; < 5 , Kk<t

and consider the average of F

F = ( 1 / I W j ) H w F .
wew

Then we have F (z) ^ 0 and F (i;) = 0. But F is an invariant
polynomial, and so is a polynomial of I^ , . . . , 1̂  . Hence we get
F (z) = F (v). This is a contradiction. Therefore z == w (v) for
some w € W. Then, for each a E A , we have

a (x) = c ~ l a (v) = c~l a (w~1 z) = c~l (wa) (z) ̂  0f
since z is a regular element.

q.e.d.

PROPOSITION 3.7. - Let I ^ , . . . , \ be a basis system of the
invariant algebra S (S * )w ( ^ ) . Then

det (31,/aX,) = c n a
a€A +

where A'^ denotes the set of positive roots and c is a non zero
complex number.

We refer to [3] for the proof. From Proposition 3.6 and 3.7,
we have
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PROPOSITION 3.8. - The polynomial function det (8I./3X/) is
not identically zero on any irreducible component of
V(I , , . . . , I ^ ) .

Now we show that Proposition 3.8 is also valid when G is
not simple.

Let G be a compact connected one connected Lie group. Then
G has a decomposition into the product of simple groups
G^ x . . . x G^ and a maximal torus T of G into the product
TI x . . . x T^, where T/ = G/ 0 T. Using Kunneth formula,
we have

H*(BG,C) = ® H*(BG/,C)
i= 1

and we have

H*(BG/,C) = H^BTpC)^0^

We fix notations as follows : H* (BT/, C) = C [X\, . . . , X^ ], and
H*(BG,,C) = C [ I ^ , . . . , I^Ldegl^ < . . . < d e g l ^ . I (f) denotes
the ideal of H*(BT,C) generated by all the 1̂  except 1 .̂ Let
Ti and ff be the Jacobian, det (SI^/axj) 1 < m,/ < n^ considered
as the element of H (BT/,C)/(I^ , . . . , 1 )̂ and H(BT,C)/I(0
respectively.

PROPOSITION 3.9. - The polynomial function // is not identically
zero on any irreducible component of V (I (0).

Proof. - Let A (f) be an ideal of H* (BT, C) generated by
Y1 Y^"l ^ T< Y^ x Y^AI , . . . , A ^ ^ _ ^ , 1^ , . . . , 1^_^ , ̂ i , . . . , ̂  .

Then V (l\, . . . , I^_ i) in C^ will be identified with V (A (0)

in c"^""'^. Since A ( O D I ( O , we have
V(A(Q) C : V ( I ( f ) ) .

Let P be a point of V (I (J)). Then

X ^ ( P ) = . . . = X ^ ( P ) = 0 ( / ^O

by Lemma 3.5. So P is a point on V(A(0) and we have
V (A (0) = V (I (0). By Proposition 3.8 // is not identically zero



92 H. SHIGA, M. TEZUKA

on any irreducible component of V (l\, . . . , 1̂  _ ^ ) and it clearly
implies that ff is not identically zero on any component of
V ( A ( 0 ) = V ( I ( 0 ) .

q.e.d.
Proposition 3.9 implies that f^ is not contained in any associated

prime ideal of I (0. Hence the sequence
Tl T/ T/ f T/+ 1 Tfc Tfci\ ^ ' ' - •> 1! ? • • • ? ^m— i » J f "i ? • • • ? A! > • • • ? 1^

is a regular sequence of H* (BT ,C) = C [X\ , . . . , X^ ].

4. Proof of Theorem A.

Let G be a compact connected Lie group and L (G) be its
Lie algebra. Then the complexifications 9 and U of L (G) and
L (U) respectively have a common Cartan subalgebra 3 . Let U
be a closed subgroup with the maximal rank and L (U) its Lie
algebra. Then their complexification a and U have a common
Cartan subalgebra % . Then we recall Borel's result.

PROPOSITION 4.1 ([1]). —Let G be a compact connected Lie
group and U be a closed subgroup with the same rank. Then
we have

H*(G/U,C) =S(yfw|S+ (S*)^

where S^ (S*) denotes the ideal generated by the positive
elements of S^*)^^.

Let G be a compact connected Lie group. Then it is known
that G has a presentation T x G ^ / K , where G^ is a compact
connected one connected semisimple Lie group, T is a torus group
and K is a finite group contained in the product of the center of
G and T. A closed subgroup of maximal rank has a presentation
T x U i / K , where U^ is a closed subgroup of G^ of maximal rank.
Let 81 and U^ be complexifications of corresponding Lie algebra
of G^ and U^ respectively and S^ be their common Cartan
subalgebra. Then Proposition 4.1 takes the form
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PROPOSITION 4.2. -

H* (G/U , C) = S(y,f(ul)/S+ (S^)W ( 0 1 ) = H* (G^ , C).

For the present we prepare the next Lemma that is a slight
modification of [8] (20.D. p. 150).

LEMMA 4.3. — Let G be a connected compact Lie group and
T be a maximal torus. Then the inclusion map

H * ( B G , K ) —> H*(BT,K)

is faithfully flat if K is a field with characteristic zero. Moreover for
an ideal I < H* (BG , K) we have I • H* (BT , K) H H* (BG , K) = I.

Proof. - The cohomology ring H* (BT , K) is isomorphic to
K [ X , , . . . , X J and H* (BG , K) to K[X, , . . . , XJ^0) where
n is the rank of G and W(G) the Weyl group of G. Then we see
K [ X , , . . . , X J W ( G ) = K [ P , , . . . , P J and P, , . . . , P, is a
regular sequence [1] (proposition 26.1 and Lemma 26.2). Then
it is known that K [X^ , . . . , XJ is a free K [P^ , . . . , PJ module.
Hence it is faithfully Hat over K [P^ , . . . , PJ. The second assertion
follows from [8] (4.c, p. 27-28). q.e.d.

LEMMA 4 .4 . -S + (%*) W <9 ) .S (S^nS^^^^S-^S*)^)

Proof. - We apply Lemma 4.3. q.e.d.
Now we prove Theorem A'. To prove Theorem A' it is enough

to show that

D / ( H * ( G / U , C ) ) = 0 , / > 0 .

We may assume that G is a compact connected one connected semi-
simple Lie group by Proposition 4.2. Let G = G^ x . . . x G^ be a
decomposition into simple factors. Let U .̂ = U H G .̂ and ] [ , . . . , ] 1 ,
be generators of H*(BH,C) . We use the same notations as in the
proof of Proposition 3.9, then we have by Proposition 4.1

H * ( G , / U , , C ) = C [ J ^ . . . , j y / ( H , . . . , i y ,

H * ( G / U , C ) = ® H*(G^/n.,C).
/=!
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Let D : H * ( G / U , C ) —> H* (G/U , C) be a negative derivation.
Then D can be lifted to a C-derivation

D • C f J 1 J1 J2 ]k ]k 1u . O L J ^ , . . . , J^ , J^ , . . . , J ^ , . . . , j ^ j

— — C [ J i , . . . , J ^ , J ^ . . . , J ^ ]

such that D ( I ^ ) £ ( I ; , . . . , I ^ , I ^ . . . , I ^ . . . , I ^ ) for
w - 1 , . . . , n^, / = 1 , . . . , ^ . Since D is a negative derivation,
we have

D ( I ^ ) G i a ) , m = l , . . . , n ^ i= 1 , . . . , ^ .

From Leibnitz's law we have

ni a^ ^
D( I^= I ̂  • D( J?- m = l , . . . , ^ , / = 1 , . . . , ^ .

/ = i U J /

Then by Cramer's formula

^(1^) .D(J ; : )GI (0 , z = l , . . . , ^ . (1)
""C K W , £ < M /

We embed H* (BU , C) into H* (BT , C) and let IQy be an ideal
generated by all the 1^ except 1^ in H*(BT,C) . Then we have

^.(^).B(J;)»d,.(^) ^(^).5o;)eior
•y fi iy

by (1). Then by Proposition 3.9 and the account below i t ,

det(——^-) is not a zero divisor of C [X1 . . . , X^ ]/I (iY .v d X , ' 1 "fc
Hence we have

Dcrpeior , / = i , . . . , n / , / = i , . . . , f c .
Applying Lemma 4.2, we obtain

D(JpEioy n H * ( B U ) = l ( 0 .
This implies that D is zero derivation, q.e.d.
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Now we prove Theorem A (compare [9] and [15]). Combining
Theorem A and Lemma 2.1 we have

7 r ^ d ( B A u t s F ) ® Q = 0 .

Therefore the generators of the minimal model of BAutg F possess
even degree. Hence we have H0^ (BAut, F , Q) = 0. Taking

0

account of H0^ (F , Q) = 0, the Serre spectral sequence of the
universal fibration

F —> E" —> BAuts F

collapses at the E^-level, which implies that this fibration is totally
non homologous to zero. Since every fibration is induced from the
universal one, we have Theorem A.

5. Koszul complex and Jacobian.

In this section we prove Theorem B. First we consider the case
when P^ , . . . , P^ are homogeneous polynomials.

Let (P^ , . . . , P^) be a homogeneous 9JI -regular sequence in
K [ X i , . . . , X J . We denote K [ X i , . . . , X J and ( P i , . . . , P J
by A and I respectively.

LEMMA 5.1. — The natural surjection

A/I —> A/W

induces the map

Ext^ (A/W , A) —> Ext^ (A/I , A)

K A/I
U U

1 ——> cdetOP^/aXp

n

where c is a non-zero constant defined by c = ( II deg (P/)V
v / == ! /
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Proof. - Let
n

C= ® A ® A 5 ( ^ , . . . , ^ ) , r f ( ^ ) = P , ( / = ! , . . . , „ )
^==0

be the Koszul complex associated with the regular sequence

( P I , . . . , P , )and
n

C= C A ® A5 (A,. . . , / , ) , d(f,)=X,
s=0

be the_Koszul complex with the regular sequence ( X i , . . . , X ^ ) .
Let ^ A ^ A 1 ^ , . . . , ^ ) — — ^ A ® A 1 ^ , . . . , ^ ) be a
A-linear map defined by

0(^)=^-1^ ap/yax^.y;.
7

and Hf denote the degree of P,. We can extend 6 to 1) : C —> C
by

6(e^ . . . ^ ) = 0 ( ^ ^ ) A . . . A 0 ( ^ ) .

For the polynomials

P = V n Y04 Y^^ Z. ^r..^ ^i • • • x ^ 5

a i + . . . + a^=^.

we get

0(.,)=^-1 S f^,...„^x:•...x7- l...x<:"/,
a i + ... + a ^ = / i ^ . 7 = 1

and

d0(.,)=n,-1 t a^.,^a/.X: l...X;/...X:"
y= i

-P,.

Therefore the following diagram commutes
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A 6?i 0 . . . 0 A ^ -^ A —)- A/I

A /i + . . . + A /„ ̂  A —^ Aim .

Next we have

d ( e , A^. ) =0(P^.-P^)

= P, (^-1 ^ ap,/ax, •/J -p^ (^^ s ap//ax, •/,)
fc fc

and

do (., A .,)=^ ((^1 }; 9P//9X.-/J A (^-1 l: ap,/ax,-/J)
k k

-P, h-1 l:Bp,/ax,-/J -p, (n^1 ^ ap//ax,-/J.
•^ K

In this way we see that

e : c —> c
is a chain map.

In dimension n, the following diagram commutes

0 —> A e, A . . . A ^ —^ C^_ i ——^

O — ^ A ^ A . . . A / , — — C,_, ——

Then 6 is expressed

0 ( e , A . . . A ^) =6(e,) A . . . A 0 ( ^ )

- (^T 1 I a P i / 3 x , - / j A . . . A ( ^ 1 I ap,/ax,-/J
fc ^
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n~t1 api/aXi ^ ' ap^/ax,
= det /I A . . . A /„

^•api/ax,, n,,-1 ap^/ax^

= ( n «,)-1 det (ap;/ax.) /i A . . . A /„.-1= i '
Hence 0 induces a homomorphism

0 : EXIA <A/SK,A) —^ Ext^ (A/I, A)

H ( I I
Q A/I

such that 0 ( 1 ) = (IIn,)"' det (BP,/aX,.) mod I.

Now we show
q.e.d.

THEOREM B'. - Let (P, , . . . , ?„) be a homogeneous regular
sequence. Then we have

d e t ( a p , / a x , ) ^ ( p i . . . . , p ^ ) .
Proof. — Since dim^ A/I < o° , there exists a positive integer

r such that Sf C I . Especially (X',, . . . , X;,) C I. We consider
the commutative diagram of natural surjections

'•3
A/I <——A/(X'i , . . . , X;,)

A/TO

It induces the commutative diagram

Ext^ (A/I, A) -^ Ext^ (A/(X'i,. . . , X;,) , A)

Ext^ (A/SOT , A)
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It is easy to see that ^ ^= 0 . Therefore from Lemma 4.1, we obtain

de tOP, /3X, )^ (P i , . . . ,P , ) .

q.e.d.
We call P (Xi , . . . , XJ is a quasi homogeneous polynomial

if it is obtained from a homogeneous polynomial in the variables
YI , . . . , Y^ by polynomial transformations X^ = X/ (Y^ , . . . , Y^)
where X^ , . . . , X^ is a regular sequence of K [Y^ , . . . , YJ .

Finally, we prove the general case.
Let B = A [ Y i , . . . , YJ and (P^ . . . , PJ be an ideal

generated by P^ (Y), . . . , P^ (Y) in B . Then - ® B is exact
by the argument in the proof of Lemma 6.3. Hence Pi (Y), . . . , P^ (Y)
is a regular homogeneous sequence of B and we obtain by
Theorem B'

det OP,/8Y,) = det (8P//aX^) det OX^/3Y,) ^ (P,, . . . , P^ .
Therefore

det OP,/aX? ^ (Pi , . . . , P^ .
Then we have

detOP, /3X^(Pi , . . . ,P , ) .

This completes the proof of Theorem B.

6. The case of mod p coefficient.

In this section we discuss Theorem A in case of modp
coefficient. We check our previous argument for the case of
characteristic p . The purpose of this section is to prove the following
result:

THEOREM C. — Let G be a compact connected Lie group and
U be a closed subgroup of G such that rank G = rank U . Let

G/U —^ E —> B

be any orientable fibration with G/U as a fiber Then the
induced map
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/ * : H * ( E , F p ) —^ H*(G/U,F^

^ surjective if a prime p does not divide the order of the Weyl group
W(G) o /G, where Fp denotes a prime field of characteristic p .

The proof of Theorem C is very similar to that of Theorem A.
So it is sufficient to write the detailed proof at where we cannot derive
from previous one soon. Let D/(A) denote a F vector space of
Pp -derivations of Fp algebra A decreasing the degree by ;'.

LEMMA 6.1. -Let F —> E —> B be an orientable fibration.
Then the induced map f* : H* (E,Fp) —> H* (F,Fp) is surjective
if D / ( H * ( F , F p ) ) = 0 for i>0.

Proof. - Suppose that d^ = . . . = dy_ ^ = 0. Then we can
write E,0' *= H* (F) and E^-^ l = H'(B) ® H*-^ l (F) and the
differential is considered as a derivation

< :H*(F) —^ H'(B)® H*-^^).

For b G HT(B) evaluating on the dual of b we have a map

^ :H ' (B)® H^^^F) —> H*-^^).

Then the composition p^ o dy is a Fp derivation on H* (F)
decreasing the degree by r — 1 . By assumption we have p^ o d,= 0
for any b. This implies dy = 0. Hence the Serre spectral sequence
collapses at E^ level.

q.e.d.
From this Lemma we can reduce Theorem C to the following:

THEOREM C. - Let p be a prime such that p does not divide
the order of the Weyl group W (G). Then D^.(H* (G/U, k)) = 0
for i>0 where k is an algebraic closed field of characteristic p .

Let S be a Cartan subalgebra of (^ and A"^ be the set of
positive root. Since the Cartan Killing form is non degenerate on
S we can choose a unique element h^ G S satisfying
(h ,/0 = a (h) for all h G ^ . Let H = {a^ . . . , c^} be a

2
fundamental root system. Then we define h^ = — — — / z ' and set

(a, a) a
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/z, 3= h^ (i = 1 , . . . , n). We denote by W ( @ ) the Weyl group
generated by reflections R^..

n
LEMMA 6.2. - Z^ S ^ " e Z^- Then W ( © ) acr o^z S^

a^rf h^ is contained in %z for each root a.

For the proof see [12] (Lemma 1 p. 2).
Throughout this section k denotes an algebraic closed field

of characteristic p such that (p, |W(G) |) == 1 and Z^ denotes
the localization of Z at p . Let V be a module over a commutative
ring A and B be a A algebra. Then we write Vg = V ® B and
V^ = H o m ^ ( V , B ) = V * ® B . A

A

LEMMA 6.3. - Let p be a prime so that ( p , | W ( G ) | ) = 1.
Then n = {o^ , . . . ,c^} is a basis for %^

^oo/ - Let A .̂ 1 < ; < ^ be the element of S, defined
by A/(/zp=§^.. Then {A^.} 1 < ; < ^ is a basis for Sj . Then
we can write p

n
a! = Z ^7 A/ 1 < ? < ^2 and a^ G Z^ .

/ = i
Taking the value on h. G %^ , we have

<^(^)=^ and ^(^)=2(^,ap/(^.,^.).
This implies that a matrix (a,? is a Cartan matrix. From [3] (p. 45)
det (a^) is given as follows:

type det (a^)
A, n+ \
B, 2

C. 2
D. 4
E6 3
E, 2

E, 1
F4 1

G, 1
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We see that det (^.) is a unit of Z^. By Cramefs formula {a/}
1 < / < n is a basis for S ̂  . q g ^

LEMMA 6.4. - Let A4' &6? r/2(? image of ^ under the reduction
map ^ ( p ) ——^ s^ ' r/^ r/^ cardinality of ^+ and A4- are
equal. p

n
Proof. - Note that if a = ^ m,^ E A+ then m, is non

< = i
negative integer not greater than the corresponding of the dominant
root. Then we have the Lemma from the list of dominant root.

tyPe dominant root

\ a! + • • • + ̂

B^ a, + 2 ̂  + . . . + 2 a^
C, 2 a ^ 4- . . .+2o^ +a^

D, a^ +2a , + . . . + ^ _ , + ^ _ ^ +a^
E^ Q^ + 2 ̂  + 2 ̂  + 3 ̂  + 2 Og + c^

E^ 2 a^ 4- 2 ̂  ^ 3 03 4- 4 a^ + 3 05 4- 2 ̂  4- a^
Eg 2 o^ + 3 ̂  4- 4 ̂  4- 6 c^ + 5 ̂  4- 4 o^ + 3 ̂  + 2 a,
F^ 2 c^ 4- 3 0-2 + 4 o;3 + 2 ̂
G^ 3 a^ 4- 2 ̂

Let V be a Z^^ module and V^ be V^ ® A:. Then we denote
(P)

by x the element x ® 1 G V^ . Since R/ is an isomorphism on
^(p)5 we "̂Ĵ 1116 a Coxeter Killing transformation R of S^
with respect to fl = { a ^ , . . . , o^ } by

R == RI o . . . o R^.

We denote by ^ a primitive m-th root of unity.

_ PROPOSITION 3.1'. - Let h be the order of R. Then we have
h=h. Moreover there exists an eigen vector Fe %^ with an eigen
value ^ such that a(z)^0 for all o'EA.

Proof. - Since h (the order of a Coxeter Killing transformation
over R) divides the order of W ( @ ) , p does not divide h. Let
e1"1^ be an eigen value of R and P = Q ( e 2 n i ^ ) be a field
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extension of a rational field Q by e 2 " 1 ^ . Let W^ be a group
generated multiplicatively by e2^1^ and A be the set of algebraic
integers in F. Let ^ be a prime ideal of A such that
^ Ft Z = (p ) . Then we have

X'1-1 + . . . + x + i = n (x-s).
?£W^
^ i

By setting X = 1 we have h = H (1 - ^). Since ^/z, this implies
Sew^
^ i ___

that l - ^ E ^ P if ^1. Therefore l l ^ e l ^ i l h ^ k is a primitive
h - th root of unity. Let z G S^ be an eigen vector with eigen
value ^. Suppose that a ( z ) = = 0 for a G A . Since w (II) is also a
fundamental root system, we may take R = R. . . . R. R^ as
Coxeter Killing transformation where w (II) = {f5^ , . . . , j3^ _ ^ , c^ }.
Set R' = R^ . . . R^ . Then we have R' (z) = [tz since R^ (z) = z\
Therefore R' has an eigen value e2711^. This contradicts to the
table 2 in Coxeter [4]. q.e.d.

PROPOSITION 3.3'. - The invariant subalgebra SCS^^ is
generated by Ii , . . . , 1̂  over k and deg I- = deg I. 1 </ < n.
Moreover the sequence ^ , . . . , 1̂  is a regular sequence in S(S^).

Compare [ 1 ].
Let V(I , , . . . ,J^) be an algebraic set in ^ defined by the

equation Ii = . . . = l^ = 0. We call z~G S^ a regular element if
a ( z )=^0 for all a E A . By Proposition 3L1 and Proposition 3.3,
the proof of Proposition 3.6 goes well in this case. Thus we have

PROPOSITION 3.6'. - Each non zero point on V(Ip . . . , I ^ _ i )
is a regular element of % ^ .

The following result is obtained in parallel with the proof of
Theorem B :

THEOREM B'. - Let Pi , . . . , P^ be a homogeneous W -regular
sequence in k [Xi , . . . , X^ ] such that (deg P^., ch (k)) = 1 ,
1 < / < ^ . Then we have detOP^./aX? ̂  (P, , . . . ,PJ.

PROPOSITION 3.7'. - Let T, , . . . ,\ be a basic system of the
invariant algebra S^)^^. Then det(8I//3^) =c II_ a

a£A +
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where c is a non zero element of k.

Proof. - Since

n

i W ( ^ ) | = n (m^ + 1) and (ch(yfc) J W(@) |) = 1,
k =1

we have det (3^/3^) ^ 0 by Theorem B. Consider a formal de
Rham complex

C==k[a, , . . . ,aJ ^)A(rfai , . . . ,rfaJ.

Then W ( @ ) act on C by

R,(o,) =^ -2(a/,ap/(^-,apa/

R, (rfap = rf^ - 2 (^ , ap/(^., a^) rfa,.

It is clear that this action is compatible with d . Hence we have

d\, A . . . A d\ = ^ ( R ^ T i ) A . . . A d(R^\)

= R^(rfTi) A . . . A R^ (rfT^)

= R^ (c?7, A . . . A d^) = R^ (det (3^/3^) ̂  A . . . A ^c^)

= - R^ (det (al^/aa,)) rfa^ A . . . A da^

Therefore we get R^ (det (a^./a^.)) = det (R^) det (ai^/ac^) for
ae^A+- Let i; be a point on a Hyperplane H^ defined by
a (HJ = 0 . Then we have

- det (a^/aap (u) = R^ (det (ai^/a^.)) (i;)

= det (a^./aa? (R^)

= det(a^/aap(i;).

This implies det (ai^/aa^) (v)^=0 . For w E H^ , aE ^+ , we can
take R^ , H .̂ so that H^ = R^ H,_and we have dot (ai^/ao^) (w) = 0
by similar way. Therefore H a divide det (ai^/ao.). Comparing

aGA'1"aGA'1"

the degree we have the Proposition.

q.e.d.

LEMMA 4.3'. - Let U be a closed subgroup of compact
connected Lie group G with rank U = rank G and T be a common
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maximal torus. Then H* (BT, k) is a finite free module over
H* (BU, k) via the natural inclusion H* (BU , k) —> H* (BT, k).
In particular for an ideal I C H* (BU, k) we have

I . H* (BT, k) H H* (BU, k) = I .

Proof. - Noting that p^\ W (G) | implies p^\ W (U) I , the
proof is done in the same way as the proof of Lemma 4.3.

q.e.d.

For other part our previous argument goes well with minor
change. Thus we have proved Theorem C.

Remark. — The condition that a prime p does not divide the
order of the Weyl group need not be best possible.
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