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THE RATIONAL HOMOTOPY
OF THOM SPACES AND THE SMOOTHING
OF ISOLATED SINGULARITIES

by Stefan PAPADIMA
1. Introduction.

Let YCC"*! be an algebraic variety having the origin as an
isolated singularity. Suppose that Y is pure-dimensional and
denote its codimension by s (s > 0).

The link of the singularity, i.e. the intersection K=Y NadB
with the boundary of a sufficiently small ball centered at the
origin, is known to be a differentiable submanifold K <— §?"*!
with complex normal bundle of complex dimension s (compare
with [8]).

Let F denote C or R and let MF(s) stand for the
universal Thom space MU() or MO(2s). The Thom map
[14] of the link K determines a well-defined element
0r(Y)EM,,, MF(s).

1.1. DEFINITION. — The singularity of Y is F-topologically
smoothable if ©(Y)=20.

This definition appeared as a topological approximation
of the algebraic smoothability problem : if the singularity is
algebraically smoothable, i.e. there is (locally) an algebraic
family of varieties Y, (¢ being a small parameter in a neighbour-
hood of the origin in C) such that Y, =Y and the other
fibers Y, are smooth, then the singularity is complex, and
consequently real topologically smoothable (see [4], [10]). As we
are not going to deal with the algebraic version of the problem,
we shall mean by smoothability the topological smoothability.

Mots-clés : Topological smoothing — Nonzero multiple — Thom construction —
Formality — Minimal model.
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At a first glance the computational difficulties encountered
when trying to decide the smoothability might seem enormous,
since one knows that the rational homotopy Lie algebras
n, MF(s) ®Q contain free Lie algebras with infinitely many
generators, for s> 1 ([1]). D. Sullivan suggested in [13] that,
when starting with algebraic objects, there must be severe
restrictions on the associated homotopy obstructions.

1.2. Sullivan’s conjecture. — ©,(Y) ® Q is expressible as
a linear combination of simple Whitehead products, for any Y.

One may find a proof in [11], for Y a conical singularity.
The reason is that the general method of proof developed in [11]
depends on the order of connectivity of the link K, which is
provided for conical Y by the result of [7]. Once one has this
result for an arbitrary Y, as generalized in [3], the rational
homotopy method of [11] solves the conjecture in full generality.

The first main result of this paper is related to the real
form of the above conjecture and asserts that there are no rational
obstructions to real smoothability. Since our method is a rational
homotopy one, it is quite expectable that it will imply geometric
results only up to a nonzero factor :

1.3. DEFINITION. — We shall say that some nonzero multiple
of Y is F-smoothable if there is an algebraic map C"*' 1> C"*1,
with f~'(0) =0 and transverse to Y\{0}, such that f~'Y
is F-smoothable.

THEOREM L — Some nonzero multiple of any Y is R-smoo-
thable.

) Section 2 contains the proof of this result, which is based
on the method of formal rational homotopy computations ([6], [13])
and on the general formality properties of Thom spaces derived in

91

In Section 3 we restrict our attention to the complex smooth-
ability problem for conical singularities. If V" CP*C is smooth
algebraic, of codimension s =n —r, there are certain well-known
relations among the degrees of the Chern monomials of the normal
bundle of V which must hold if the vertex of the cone Y =CV
is smoothable (in fact, this was the way which enabled Thom
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to produce the first examples of non-smoothable algebraic singularities,
see [4]). It is also shown in [11] that these numerical conditions
are the only rational obstruction to the smoothability of the cone.

Our aim is to generalize this kind of results, by formulating
these conditions (in fact a larger number of them, including the
Thom ones) for an arbitrary differentiable submanifold V?” =— P"
with complex normal bundle of complex dimension s and by
pointing out their relationship with the problem of realizing
(a multiple of) V as a linear section in a higher-dimensional
complex projective space.

We shall make use of the Thom map of V, ¢:P" —> MU(s)
in order to define normal degrees as follows : if KE&N?,
K=(k,,...,k), put: [|KIl=k +2k,+...+sk,, and
define an integer Dy for any such K with |[K[<n —s by the
equality :

t*(uS.CK)=DK ‘a:+|Kl (*)
where u, is the universal Thom class, cX is the monomial
c'f‘ ...c:s in the universal Chern classes and a€H?*(P" ;Z) is

the canonical generator. Notice that, if V is algebraic, then
Dy coincides with deg cg(N), N being the normal bundle of
V  ([4], [11]). Define next integers Ry, , for any K and L
such that |[K+ L|<n —s by:

Rg, =DgD; —D Dy, (**)
and consider the following conditions on the L-class [14]
of V, defined forany 1 <k <s:
(Ry)Rg, =0, forany K and L such that:
IK+Ll<n—2s+k

(for k = 1, one recovers Thom’s conditions [4]).

1.4. DEFINITION. — We shall say that a nonzero multiple of
V is a linear section in prtk if there is a differentiable map :
f:P" —> P"  transverse to V, which is a rational homotopy
equivalence (i.e. has nonzero degree, deg(f) =D being defined
by : f*a =D-a) such that f~'V is L-equivalent to a transverse
intersection: P" NW, W being a differentiable submanifold of
P"*k with complex normal bundle of complex dimension s.
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THEOREM II. — Suppose : 1 <k <s.

i) If some nonzero multiple of V is a linear section in P"*%
then relations (R,) hold.

ii) The converse is also valid, provided : n < 3s + 3 or the
Thom map of V is formal If in addition V is algebraic, then the
‘“nonzero factor” f in Definition 1.4 may be chosen to be a
regular algebraic map transverse to V.

Thanks are due to A. Dimca for providing Lemma 2.1.

2. Proof of Theorem 1.

2.1. LEMMA . — Some nonzero multiple of Y is F-smoothable
iff ©x(Y)®Q=0.

Proof —If f:C"*' — C""' is an algebraic map as in
Definition 1.3, the transversality assumption implies the equality :
Op (f7'Y) = deg (f)* Op(Y), where:

deg(f) = dimg Clz, ,...,2,]/ideal (fy,...,f,)
is finite, due to the fact that : f~'(0)=0.

Suppose then that : m* Ox(Y) =0, with m > 0. Anyway,
we may find a hyperplane in C"*! transverse to Y\{0}. Assuming
that it is given by : z, = 0, we may define f by :

fzy,z,,...,2,)=08 .2y ,...,2,).

2.2. Proof of Theorem I. —We may well suppose n=>2s + 1,
m—72s

since otherwise m,,,, MU() ®Q =0 ([1]). Set m = +1

and start as in [11] by factoring the rationalized classifying map of the
normal bundle of K, v, : K, —> BO(2s),, through Hi>mK(Q,4i);
this. uses [3]. If m <s, this helps to factor (Mv), through
M@n ,s) > MO(2s),, where M(m,s) appears as a cofibre
in the sequence :

T K@Q,4) — 11 K(Q,4) — M(m,s). *)
i=m i=m

Otherwise, a similar construction factors (Mw), through
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M-t MO(2s),, with M=K(Q,4s) or M= S“ and we are
done, since in both these cases m,,,, M =0. Write then
Or Y)®Q=m,,,, ua), with a€m,,,, M(m,s).

Observe next that Or (Y) ® Q comes from = MSO(2s)®Q,
hence it is annihilated by the rational Hurewicz map ([1 ]) On the other
hand, since itis easy to see that u induces an injection in rational
homology, it follows that « has the same property. Using this, we
are going to show that a=0.

Since M(m,s) is the cofibre of a formal map, it is a formal
space ([2]). Moreover, the cofibration (*) indicates that it should
behave homotopically like a localized universal Thom space. This is
indeed the case : using the same argument as in [9] (Proposmon 2.7
and Corollary 2.8) it can be shown that :

kerh = D, ad (73 45) (2 4,),
i>1

where h is the rational Hurewicz map, m; M(m,s) = 612 7r”
p=20

as a consequence of the formality of M(m,s) ([6], [13]), and ad

refers to the Whitehead product bracket structure.

The graded space 1r‘;= is isomorphic to
H'M(mn ,s)/H'M(@n ,s) - HHM(m , 5).

Therefore 73, is nonzero only in degrees > 4(s + m) (compare
with (2.4) from [9]). It follows that k4 is injective in degree
2n + 1, and « equals zero.

2.3. Remark. — It should be mentioned that all the obvious
implications between the various smoothability properties are
strict.

In [12] one may find examples of complex topologically
smoothable (conical) singularities which are not algebraically
smoothable.

Taking Y to be the cone on the Segre embedding
P'xP*<— P" we may see, using the stability properties
of the homotopy groups of Thom spaces [14] that Y is both
real topologically smoothable and complex topologically smoothable
up to a nonzero factor (by the result on rational homotopy groups
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of complex Thom spaces from [1]). The computations in [10]
show that Y is not complex topologically smoothable.

At last there are examples, such as the cone on P!xP?
Segre embedded in P°®, of singularities which are neither real
topologically smoothable (see [4]) nor complex topologically
smoothable up to a nonzero factor (were O (Y)®Q =10, we
would also have O.(Y) = 0, since 7, MU(2) = Z, see [5]).

3. Conical singularities.

From now on V will denote (the L-class of) a differentiable
submanifold V?” embedded in P"C with complex normal
bundle of complex dimension s and will be often identified
with the homotopy class of its Thom map : ¢:P" —> MU(s),
[14].

3.1. PROPOSITION. — i) Suppose : 1 <k <s. Then :@ relations
(Ry) hold iff there is a graded algebra map F making the diagram
below commutative, where i stands for the usual inclusion .

*pnt+k .
H*(P 3 2Z) <

~

i* N
~
” . \\
H*(P" ;Z) «———— H*MU(s) ; Z)

i) If IK+L|<n—2s, then R, =0.
iii) If k, or 1, is nonzero, then Ry, = 0.

Proof. — i) The following descriptions of the algebra H*MU(s)
make clear the role of the relations Rg; . We have an isomorphism :

AL ITENTY |z | = 25 + 2|11} /ideal {ry |0 <I<J}
— H*MU(s)
where :

(M)ry =207z, —z3z5""  and the order is lexicographic,
which sends z}, to u,c' (see[9], [11]), coming from the standard
identification :
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H*MU(s) = ideal (¢,) C H*BU(s) (**)

given by : u,c® —> ¢, - K.
If relations (R,) are satisfied, one obtains an algebra map
F by defining : F(z})=D;-a**" if [I|<n—s, and zero

otherwise (where the integers D; are constructed from the Thom
map ¢ as in (*) of Section 1) which plainly lifts ¢* to H*P"**.

If there is an algebra lifting of ¢*, it defines integers Fy ,
for any KE€N’ such that |K|<n—s + k, by the equality :
F(u,c®) = F¢ +a** . Writing that :

Fl(ugc®) (uye™) — (uy,e®) (we®* 1)1 =0
one obtains, if |[K + L|<n — 2s + k, equalities :
Fy Fp —FoFg.p =0.
Since : i*F = t*, one finds out that we have : Fy =Dy, if
IM| <n —s, which gives, by (**) of Section 1, the relations (R, ).
ii) is rather standard. One has only to write that :
t*[(ugc®) (u,c™) —(uyc®) w,c®*)]=0, for [K+L|<n—2s.

As far as iii) is concerned, one starts by examining, for any
K such that |K| <n —s, the equality :

t*[(ugc®) — (uy,c® Vs (w,e')1 =0

where : 1= (k,,...,k,_,) and deducing that : Dy = (D,)*sD;.
Consequently : Ry, =(D0)k~'“-'-RlJ , for any K and L such
that [K+Ll<n—s. If : kK, +1,>0, then [I+J|<n—2s
and by ii) : Rgp = 0.

3.2. Remark. — If V is algebraic there are many other relations
R¢, , besides those in the above Proposition, which are trivially
satisfied. For instance, an interesting result in [11] asserts that, if
n is even, all relations (R,) hold.

3.3. LEeMMA.-Let (AZ,d) be the bigraded model of the formal
space MU(s) ([6], [9]).

i) The set of homotopy classes of maps between rational
spaces : [Py ,MU(s),] is in one-to-one correspondence with the
set of homotopy classes of d.g.a. maps between minimal models :
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[(AZ=?" ,d), (A, (x),0)]. If P" <L P*** s inclusion then
the induced map between topological homotopy classes is identified
with the map induced between algebraic homotopy classes by
restriction ;

WIf i>1, then: Z] =0 for p<(i+1)Q2s+ 1)+ 3.

Proof. — The first part is proved by Sullivan’s equivalence of
rational topological and minimal d.g.a. homotopy categories
[13], wusing standard algebraic obstruction theory, taking into
account that : HPP" =0 for p>2n and that the bigraded
minimal model of the formal space P” is given by an elementary
extension :

(A (x),0)®A,,,, (¥)), with: dy = x"*1 .
d

The second part uses [9] : by Corollary 2.8. [9] we have for
any i > 0 an equality of graded vector spaces :

(Z)* = span {[(z,™)*, . .., [zg~ )%, )*]. .. 11, > 0}

where the star denotes Sullivan duals of indecomposables of the
bigraded model as rational homotopy elements, the bracket stands
for the Whitehead product, Ii is a multiindex in N*~! and the
space Z, of indecomposable generators of H*MU(s) is to be
identified (see the proof of Proposition 3.1.i)) with

span {z}|I > 0}. We may now evaluate :
Io | I;
LZoD* ... [, @EH*] ..
=2sG@+ 1)+ 2(|Io| +.. .+ LD —i.
If i>1 and the iterated bracket above is nonzero we must have :
2 II,.I =i + 2, which proves claim ii).

The next lemma shows that Definition 1.4 is of a rational
homotopic nature.

3.4. LEMMA . — If there exists a map S making the following
diagram homotopy-commutative :
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Pn +k
0 \\
AN
N S
AN
AN
N
iy N
t N\
P(')' MU(s)o

t being the Thom map of V, then some nonzero multiple of V
is a linear section in P"** .

Proof. — We first make some general remarks related to Definition
1.4. A complex normal V of complex codimension s in P”
is itself (L-equivalent to) a transverse intersection with W
embedded in P""* as in Definition 1.4 iff the Thom map #(V)
is extendible over P"** ([14]). Since : t(f~EV)y=¢t(V)of,
for f transverse to V, the property stated in our definition
is equivalent to the fact that : there is f with deg(f)# 0 and
such that #(V)of extendsto P"*¥ .

Denote by 1,, 1,,, and 1, the localization maps for
P", P"** and MU(s). Given S, standard obstruction theory
shows the existence of a self-map of P"**, F', with : deg(F)>0,
and of a map: T':P"** — MU(s) whose localization is S,
with respect to the localization maps 1,,, F' and 1, . Denoting
by f' the restriction of F' to P", an easy localization argument
gives that : (T'i), = (¢#f'), (with respect to 1, and 1),
therefore, by obstruction theory again, one finds a self-map of
P", f", with : deg(f")>0 such that : T' if" ~¢f'f". If
F" is a self-map of P"** such that: deg(F') = deg(f""), one may
take : f=f'f" and notice that T'F'" extends tf over P"*k.

3.5. Proof of Theorem II —If some nonzero multiple of V
is a linear section in P*** , We just saw that there is a self-map
of P*, with : deg(f)=D+0, and a map : P"** T MU(s)
extending #f. Passing to cohomology, Proposition 3.1 shows that
the relations (R,) are satisfied by #f. An easy computation with
definitions (*) and (**) of Section 1 shows that :

RKL (tf) = D23+|K+L| . R](L (t)
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for any K and L satisfying : |[K+ L|<n—s, hence the
relations (R, ) also hold for ¢.

For the converse implication, let us notice first that, as soon
as relations (R,) are satisfied, one may find an algebra map F
making the diagram below commutative :

H*P‘r;+k

%
i F

t*
H*P! <0 — H*MU(s),

(without any other assumptions). If ¢ is formal, we may use the
previous lemma and take S to be the formal map with : S*=F
(i being formal too).

If n<3s + 3, it will be enough (by Lemmas 3.3 and 3.4) to
construct a dga. map : S:(AZS*U"TR g) — (A,(x),0)
such that : S[(AZ<?",d) =1 (the accent indicates the passage
to the minimal models). The assumption : n < 3s + 3 gives, taking
into account Lemma 3.3 ii) : AZS2("*¥) = Az32(n+ )

For any IEN*"! such that : |I|<n—s+k, the algebra map
F defines an integer F; by the equality : Flzg]=F [x}F*'l.
Writing, for |[I +J|<n — 2s + k, that:

Flz{]: Flz}]1=F[z] " F[z}*']

one sees that : FFy —F F,,;, =0, for any such I and J.
The restriction of 7 to Zfz" is given by a linear function :
C:Z5%*" — Q, namely : #(z) = C(z) - x'?1#!, for z€Z5,

Define then S by: S)=F, - x**W, for [I|<n—s+k,
S|ZS2(*K) =0 and, for z€Z52"*H) . S(z) =C(z) - x'21,
if |z] < 2n, and zero otherwise.

Since Z; is evenly graded and d is homogenous of degree
— 1 with respect to the lower graduation [6], one immediately sees
that Z, is evenly graded too, while Z; is oddly graded. Recalling

that : i} F = ¢, one infers that : SI(AZ<?*" ,d) = ¢.
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It remains to show that S is a d.g.a. map indeed, i.e. that :
Sd|z<*"*%) =0, which is obvious for Z, and Z,. But one
knows ([9]) that : Z, = span{z}!|I,JEN*"';0<I<J} and:
dz{J =ryy, given by (*) in the proof of Proposition 3.1 i) ; then one
mayuse: FiFy —F,F ., =0,|[I+J|<n—2s5+k.

If in addition V is algebraic then, tracing through the proof

of Lemma 3.4, one has only to replace f by a regular algebraic map
transverse to V of the same degree.

There is a certain overlap between the two additional conditions
imposed in Theorem II ii), as shown by the following

3.6. ProroSITION. —If n<3s+ 2, then any map
t:P* — MU(s) is formal.

Proof. — It suffices, by algebraic obstruction theory, to show
the commutativity of the diagram (see also Lemma 3.3 1)) :

a

(AZ5*" ,d) —L— (A,(x),0)

| J

7%

t
H*MU(s) —— > H*P”

where the vertical arrows are the restrictions of the modelling
maps of [6], hence : zE€Z  goes to [z], x goes to [x], while
Z,, goes to zero. But this is immediate, because n < 3s+ 2
implies, via Lemma 3.3 ii), that : (AZ<?",d) = (AZS%",d) and
Z, isoddly graded.

3.7. Remark. — Nevertheless, this overlap is far from being 'total,
see Example 4.1 of the next Section.

The next proposition indicates the connection with the complex
topological smoothing problem for conical singularities.

3.8. PROPOSITION . — Suppose k = 1. Then :

i) Conditions (R,) are equivalent to : w*"*'%|Zi"*1 =0
(n*t denoting the map induced by the Thom map t of V between
the indecomposables of the minimal models).

ii) If n<4s + 2, then conditions (R,) are equivalent to :
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Ton+1t®Q=0 (m t®Q being the map induced between
rational homotopy groups).

iii) If 'V is algebraic, then conditions (R,) are equivalent
to the complex topological smoothability of the cone CV up to a
nonzero factor or, still equivalently, to the existence of a regular
algebraic map P" L5 P", transverse to V and such that the
coneon f~'V is complex topologically smoothable.

Proof. —1i) Let:
t:(AZ,d) — (Az(x),0)§A2n+, ) (dy =x"*1)

be the minimal model. If IEN*"' and [I[<n —s, wecan easily
see that we must have: #(zj) = D; *x**!!| where D, is defined
by (*) of Section 1. We also have :

21" =span{z}]’ II,LJEN*"1 ;0<I<T;|I+J|=n—2s+1}

with 1 dz}? =zlz) —z9z!*7. For any such 1 and J we have
an equality : f(z{’) =Ry; *y, due to the fact that ¢ is a d.g.a.
map. It follows that the condition : 727+ 1#|Z2"* ! = ( js equivalent
to : R;; =0, any I,JEN*"! such that : 0<I<]J. and
[I+J|=n—2s+1. Recalling Proposition 3.1 ii) and iii), a little
analysis shows that this is in turn equivalent to the whole set of
relations (R,).

ii) Since n<4s+2, Lemma 3.3 ii) shows that
2?1 =72% ", which implies : Z*"*! =72"*1 7 and Z,
being evenly graded. The result follows now from the previous one,
by Sullivan duality.

iii) If V is algebraic, the results of [11] imply that
w2n¥1§|Z3NT 1 = 0, hence conditions (R,) are equivalent, as
above, to : m,,,,t®Q = 0. Denoting by : h:8>"*! — prC
the Hopf map, it is not difficult to see that: O, (CV)=[th] as
elements in m,,, ,MU(s). By Lemma 2.1, m,,,,t®Q=0 is
equivalent to the complex topological smoothability of CV up to a
nonzero factor. The equivalent projective version of this
property may be immediately deduced, once one notices that :
if f is a regular algebraic self-map of P"C transverse to V, then :
O (Cf~1 V) = deg(f)**! - ©,(CV).
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3.9. Remark. — The example of P!'xP* Segre embedded
in P! quoted in Remark 2.3 shows that the conditions of Thom,
though being necessary for the complex topological smoothability
of the cone, are not in general sufficient.

4. Examples.

The codimension one case is quite uninteresting : every map :
P" — MU(1) is formal, every algebraic hypersurface is a
(genuine) linear section.

4.1. Example. — On the contrary, for any s> 1, there are
non-formal maps : P3**3 — MU(s).

We claim that it will be enough to construct a d.g.a. map :
f (AZS%F¢ [ d) — (A,(x),0) with  the  properties
f'Z<6.\‘+6 =0 and: flz6s+6 #*0.

Indeed, having such an f at hand, we may use Lemma 3.3 i)
and then obstruction theory as in the proof of Lemma 3.4 in order
to find a nonzero integer D and a map : £:P***3 — MU(s)
such that : F|(AZ<%°*% d)=D*-f. Since: #* =0, the
formality of ¢ would imply that fis nullhomotopic. Supposing
this, we shall derive a contradiction.

Let: H:(AZ%%**%,d) — (A,(x),0)®(u,du) be a
homotopy between the trivial d.ga. map and ¢. For any
zE€Z3%*% we must have: H(z) = p,(w) - x"?¥!. H being a d.g.a.
map the polynomial p,(u) must be constant. Moreover, since :
H(z) | (u = 0) = 0, we conclude that : H|ZJ ®**¢ =0.

If zEZT ¢ then: H(z) =q,(u) *xY2Us-D gy,
and if z€Z5%*S, then: H(z) =r, () xV24!,
We have

spn u=1_m <6s+6

i) = H@) Iu o= H@n, for any zezgete,
which is zero since : dZ, C ideal (Z,) for any bigraded model.
zero since : dZ, C ideal (Z,) for any bigraded model.

By Lemma 3.3 ii): (AZ<®%**¢,d)=(AZ$*%,d) and:
Z56*6 = 75°* ¢ Showing that, for any s> 1, Z""'J'6 #0, we
are done, since we may then take : f|Z<‘”+ ¢ =0 and: le“”6 #0
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arbitrary. Consider the rational homotopy element (see the proof
of Lemma 3.3 ii)) : [(z)*,[(z))*,z})*]] with I,JeN*"!
givenby: I=(1,0,...,0) and J =(2,0,....,0).

It is nonzero and Sullivan dual to Z$** ¢ . Our proof is complete.
4.2. Example. — We are going to show that the range : n <4s + 2
in Proposition 3.8 ii)is sharp, by constructing a map T : P!'-— MU(2)
which satisfies relations (R,) and has the property : T T®QF#0.

(Note that, by Proposition 3.8 i), if m,,,, T®Q =0, then relations
(R,) hold, for any n).

Suppose that we have constructed :
t:(AZ%% ,d) — (A,(a), 0)
with the properties :
(*) td 2% =0
(**) td |23 # 0.

As in the previous example, we may find a map T whose minimal
model T still satisfies (*) and (**). (*) shows that : 723 T|Z% =0
while (**) shows that : 723 T+#0.

Using [9] we may completely describe (AZg, ,d):
Z, =span{z, |k >0;lz,| = 2(k ¥ 2) and dz, = 0}

Z, = span {x,, 10<p<gq 3d%Xpq =The =2,2, 292,44}
Lemma 3.3 ii) shows that : Z<% =732 @ 75% @72
By direct computation Z3% =span{u,,...,u;} and

ng = span {v},
duy =zo(xy3 —X5) t 2%, —2,x,
du, =20y —X53) + 2, x5 —25%,
duy =zo(X 4 —X53) + 2, X5 =2, %,
dv =z,(u, —uz)—z,u; +x,, Ax, .

Pick any nonzero integers ¢, and ¢, ; defining #(z,) =1r%¢, *a¥+?
for 0<k<9,fIZ§? =0, #w,)=d" and #@,)=0 for
1 <i<6, the d.g.a. map ¢ is easily seen to have all the required
properties.

The last example shows that the condition : n <3s+3 in
Theorem II ii) is the best one in general.
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4.3. Example. — There is amap : T : P'® — MU(2) for which
conditions (R,) are satisfied but no nonzero multiple of the associated
complex normal submanifold V is a linear section in P'? .

We claim that, using the d.g.a. map #:(AZ** ,d) — (A, (a),0)
of the previous example, it is enough to know that :

(*) td 2% =0

(**) for any other t': (AZ<** ,d)—> (A,(a),0) such that
t'" and f become homotopic when restricted to (AZ% ,d) we
still have : ¢'d'|Z* +# 0.

Indeed we may find a nonzero integer D and a map T with
the property : TI|(AZ* ,d) =D*:7[(AZ°®,d). Using
definitions (*) and (**) of Section 1, it is easy to see that :
D, =(D¢#,)* (D*t,), for any 0<k<8§, which shows (R,) to
be true.

Were some nonzero multiple of V a linear section in P2 , we would
be able to find a map : T':P? —> MU(2) and a self-map f'
of P! with deg(f') =D'+# 0 such that : T'|P®~Tf'. But then

. | QRNOR ..
we may take : ' =(D—D—,—)T'I(AZ<22,d) and see that : ¢'=¢
on (AZ<*,d), but : ('d|Z® =0, since 7' extends to
(AZ<* q).

In order to verify the property (**), start with a homotopy :
H:(AZZ3® ,d) — (A,(a),0) ® (u,du) between the restrictions
of f and #'. Using the same method as in Example 4.1, one sees
that : H(z,) =1¢'(z,) = f(z,), for any 0<k <8 and that we
have : coefficient of

{808 (y) = 8@ )] — [F@y) — #uy)] + [ (uy) — E(u,)]} = 0.
Putting: #'(u;) = Uj-q'2uil = for j=1,2,3, we may
compute :
t'dv = [t,(Uy —U})—t, ,U}]a' = — ¢, 1, o

by the previous equality.

4.4. Remarks. — Using for example the result of [11] quoted
in Remark 3.2 it is easy to produce formal maps ¢:P" — MU(s)
which do not come from algebraic varieties. Nevertheless it would
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be interesting to know if the Thom maps of smooth projective
varieties are always formal (in- connection with Theorem II ii) for
instance). It can be shown that this is indeed the case for complete
intersections (and, of course, in the range: n <3s + 2, by
Proposition 3.6).
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