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Résumé. — Nous montrons que pour une grande classe d’anneaux R, le nombre de variétés
abéliennes principalement polarisées sur un corps fini dans une classe d’isogénie ordinaire
simple avec un anneau d’endomorphismes R est égal soit à 0, soit à un rapport de nombres
de classes associés à R, à quelques petits facteurs calculables près. Cette classe d’anneaux
comprend l’ordre maximal du corps CM K associé à la classe d’isogénie (ce résultat était déjà
connu), ainsi que l’ordre R engendré sur Z par le Frobenius et le Verschiebung.
Pour ce dernier ordre, on peut utiliser les résultats de Louboutin pour estimer la rapport

approprié des nombres de classes en fonction de la taille du corps de base et des angles de
Frobenius de la classe d’isogénie. Les termes d’erreur dans nos estimations sont assez grands,
mais les termes trigonométriques de l’estimée sont suggestifs : combinés avec un résultat de
Vlăduţ sur la distribution des angles de Frobenius dans les classes d’isogénie, elles donnent
une explication heuristique du théorème de Katz et Sarnak sur la distribution limite du multi-
ensemble des angles de Frobenius pour les variétés abéliennes principalement polarisées de
dimension fixée sur les corps finis.)

1. Introduction
In this paper we consider the problem of estimating the number of isomorphism

classes of principally polarized abelian varieties (A, λ) such that A lies in a given
isogeny class of simple ordinary abelian varieties over a finite field. We approach this
problem by subdividing isogeny classes into their strata, which are the subsets of
an isogeny class consisting of abelian varieties sharing the same endomorphism ring.
(To avoid awkward locutions, we will say that a principally polarized variety (A, λ)
lies in an isogeny class C or a stratum S when A lies in C or S.)
Our main result concerns strata corresponding to endomorphism rings R that are

convenient. A convenient ring is an order in a CM field with the properties that, first,
R is stable under complex conjugation; second, the maximal real subring R+ of R is
Gorenstein; and third, the trace dual of R is generated by its pure imaginary elements.
(We explain these terms and present results on convenient rings in Section 2.) If S is
a stratum of an isogeny class corresponding to a convenient order R, we can express
the number of principally polarized varieties in S in terms of the sizes of the Picard
group of R and the narrow Picard group of the maximal real subring R+ of R; the
definitions of these groups are also reviewed in Section 2.
Theorem 1.1. — Let S be a stratum of an isogeny class of simple ordinary

abelian varieties over a finite field, corresponding to an endomorphism ring R. Sup-
pose that R is convenient and that the norm map NPic from the Picard group of R
to the narrow Picard group of R+ is surjective. Let U be the unit group of R and
let U+

>0 be the group of totally positive units of R+. Then the number of varieties
A ∈ S that have principal polarizations is equal to # kerNPic, and each such A has
[U+

>0 : N(U)] principal polarizations up to isomorphism, where N is the norm map
from R to R+.
Corollary 1.2. — Under the hypotheses of Theorem 1.1, the total number of

principally polarized varieties (A, λ) in the stratum S, counted up to isomorphism,
is equal to

1
[N(U) : (U+)2]

# PicR
# PicR+ ,
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Principally polarized abelian varieties 679

where U is the unit group of R and U+ is the unit group of R+. Furthermore, the
index [N(U) : (U+)2] is equal to either 1 or 2, and is equal to 1 if K/K+ is ramified
at an odd prime.

In Section 4 we prove these two results and give some reasonably weak sufficient
condition for NPic to be surjective. Special cases of these results are known already;
in the most fundamental case, when R is a maximal order, these results can be
obtained from the work of Shimura and Taniyama [ST61, § 14], combined with the
theory of canonical lifts. Other examples occur, for instance, in [LPP02, § 8], [How04,
Proposition 2, p. 583], and [IT20, Lemma 19]. But none of the previous results we
are aware of apply as generally as Theorem 1.1 and Corollary 1.2.
To every n-dimensional abelian variety A over Fq one associates its characteristic

polynomial of Frobenius fA, sometimes called the Weil polynomial of A. This is a
polynomial of degree 2n, whose multiset of complex roots can be written in the form{√

qe±iθj

}n
j=1

for an n-tuple sA = (θ1, . . . , θn) of real numbers, the Frobenius angles ofA, normalized
so that(1)

(1.1) 0 6 θ1 6 θ2 6 · · · 6 θn 6 τ/2.
The theorem of Honda and Tate [Tat71, Théorème 1, p. 96] gives a complete de-
scription of the set of Weil polynomials. In particular, Tate showed that two abelian
varieties over Fq are isogenous if and only if they share the same Weil polyno-
mial [Tat66], so it makes sense to speak of the Weil polynomial of an isogeny class.
We see that an isogeny class of abelian varieties over a finite field is determined by its
Weil polynomial, by the multiset of roots of its Weil polynomial, and by the multiset
of its Frobenius angles. For simple ordinary isogeny classes, all of the inequalities
in (1.1) are strict.
We will see (Corollary 3.2) that the ring R generated over Z by the Frobenius

and Verschiebung of a simple ordinary abelian variety A is convenient. We call
this ring the minimal ring of the isogeny class of A, because every endomorphism
ring of a variety in C contains R, and there are varieties in C with endomorphism
ring equal to R [Wat69, Theorem 6.1, pp. 550–551]. We call the corresponding
stratum the minimal stratum of the isogeny class. Using results of Louboutin, we
can (somewhat crudely) estimate the number of principally polarized varieties in the
minimal stratum in terms of the Frobenius angles of the isogeny class. Our theorem
uses the following notation: If {am} and {bm} are two infinite sequences of positive
real numbers indexed by integers m, we write am ∼∼∼ bm to mean that for every ε > 0
there are positive constants r and s such that bm 6 ra1+ε

m and am 6 sb1+ε
m for all m.

Theorem 1.3. — Fix an integer n > 0. For each positive integer m, let Cm be an
isogeny class of simple n-dimensional ordinary abelian varieties over a finite field Fqm ,
and let Rm and Sm be the minimal ring and minimal stratum for Cm. For each m,

(1)Note: Throughout this paper we use τ to denote the ratio of the circumference of a circle to its
radius. We express values in terms of τ not to take sides in a philosophical dispute, but simply
because we reserve π for denoting a root of a Weil polynomial.
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680 E. W. HOWE

let {θm, i}ni=1 be the Frobenius angles for Cm. Let Pm be the number of principally
polarized varieties in Sm. If qm → ∞ and if each norm map PicRm → Pic+ R+

m is
surjective, then

Pm ∼∼∼ qn(n+1)/4
m

∏
i< j

(cos θm, i − cos θm, j)
∏
i

sin θm, i.

The relation indicated by the ∼∼∼ symbol is a very rough comparison of magnitudes,
and indeed, if there is an ε such that |θm, i − θm, j| > ε and |sin θm, i| > ε for all m,
i, and j, then the conclusion of the theorem is equivalent to saying simply that
Pm ∼∼∼ qn(n+1)/4

m . However, if the Frobenius angles of the sequence of isogeny classes
do not stay a bounded distance from one another and from 0 and τ/2, then the
trigonometric factors on the right hand side of the relation do make a difference.
We will see examples of this in Section 7.
The trigonometric factors in Theorem 1.3 may have only a tenuous influence on

the asymptotic predictions of the theorem, but they provided a key motivation for
this work. To explain this, let us consider another approach toward estimating the
number of principally polarized abelian varieties in an isogeny class, an approach
that considers the question in terms of limiting distributions.
It is well-known that for a fixed positive integer n, the number of principally

polarized n-dimensional abelian varieties over a finite field Fq grows like
2qn(n+1)/2

as q → ∞, in the sense that the ratio between the two quantities tends to 1; this
follows simply from the existence of an irreducible n(n + 1)/2-dimensional coarse
moduli space for these abelian varieties, together with the fact that generically a
principally polarized abelian variety over a finite field has two twists. On the other
hand, the number of isogeny classes of n-dimensional abelian varieties over Fq grows
like

(1.2) vn
ϕ(q)
q
qn(n+1)/4

as q →∞, where ϕ is Euler’s totient function and where

(1.3) vn = 2n
n!

n∏
j=1

(
2j

2j − 1

)n+1−j

(see [DH98, Theorem 1.1, p. 427]). It follows that the average number of principally
polarized varieties per isogeny class is

2q
vnϕ(q)q

n(n+1)/4.

But there is finer information available. To explain this, we require some notation.
Let Sn be the space of all n-tuples (θj) of real numbers satisfying (1.1). There is a

map from USp2n(q) to Sn that sends a symplectic matrix M to the multiset of the
arguments of the eigenvalues of M . The Haar measure on USp2n(q) gives rise to a
measure µn on Sn; this measure is determined by
(1.4) dµn = cn

∏
i< j

(cos θi − cos θj)2∏
i

sin2 θi dθ1 · · · dθn,
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where cn = 2n(n+1)/τn, so that µn(Sn) = 1. (The value of cn is provided by
Weyl [Wey97, Theorem 7.8.B, p. 218]; to see this, one must keep in mind that
Weyl’s variables ϕi are related to our θi by θi = τϕi, and his functions c(ϕ) and s(ϕ)
are given by c(ϕ) = 2 cos(τϕ) and s(ϕ) = 2

√
−1 sin(τϕ) [Wey97, pp. 180, 217].)

We also get a measure on Sn from the principally polarized n-dimensional abelian
varieties over Fq: For every open set U of Sn, we set

µn, q(U) = cn, q ·# {principally polarized (A, λ) such that sA ∈ U} ,
where 1/cn, q is the total number of principally polarized n-dimensional abelian vari-
eties (A, λ) over Fq, so that µn, q(Sn) = 1. Katz and Sarnak [KS99, Theorem 11.3.10,
p. 330] proved the following:
Theorem 1.4 (Katz–Sarnak). — Fix a positive integer n. As q → ∞ over the

prime powers, the measures µn, q converge in measure to µn.
By considering isogeny classes C of n-dimensional abelian varieties, we get another

family of measures. Given any isogeny class C, we let sC be the n-tuple sA for any A
in C. Given a prime power q, we define a measure νn, q on Sn by setting

νn, q(U) = dn, q ·# {isogeny classes C such that sC ∈ U} ,
where 1/dn, q is the total number of isogeny classes of n-dimensional abelian varieties
over Fq, so that νn, q(Sn) = 1. Vlăduţ [Vlă01, Theorem A, p. 128] proved that the
νn, q have a limiting distribution as well:
Theorem 1.5 (Vlăduţ). — Fix a positive integer n. As q → ∞ over the prime

powers, the measures νn, q converge in measure to the measure νn defined by
(1.5) dνn = dn

∏
i< j

(cos θi − cos θj)
∏
i

sin θi dθ1 · · · dθn,

where

dn = 2n(n+1)/2

vn
= 2n(n−1)/2 n!

n∏
j=1

(
2j − 1

2j

)n+1−j

.

Consider what this means for a region U ⊂ Sn contained within a small disk
around an n-tuple (αi), where we assume that the αi are distinct and that none of
them is equal to 0 or τ/2. Suppose U has volume u, with respect to the measure
dθ1 · · · dθn. For large q, the number of isogeny classes with Frobenius angles in U is
νn, q(U)/dn, q, and using Equations (1.2) and (1.3) we see that this is roughly equal
to

1
dn, q

νn(U) ≈ dn
dn, q

u
∏
i< j

(cosαi − cosαj)
∏
i

sinαi

≈ 2n(n+1)/2u
ϕ(q)
q
qn(n+1)/4 ∏

i< j

(cosαi − cosαj)
∏
i

sinαi.

On the other hand, the number of principally polarized abelian varieties with Frobe-
nius angles in U is µn, q(U)/cn, q, which is roughly

2qn(n+1)/2µn(U) ≈ 2qn(n+1)/2 2n(n+1)

τn
u
∏
i< j

(cosαi − cosαj)2∏
i

sin2 αi.
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Therefore, for the isogeny classes with Frobenius angles in U , the average number
of principally polarized varieties per isogeny class is roughly

(1.6) 2(n2+n+2)/2

τn
q

ϕ(q)q
n(n+1)/4 ∏

i< j

(cosαi − cosαj)
∏
i

sinαi.

Conversely, estimates for the number of principally polarized varieties in a given
isogeny class — estimates like our Theorem 1.3 — can be combined with Vlăduţ’s
result to give a heuristic explanation of the Katz–Sarnak theorem. This line of
reasoning was the initial motivation that led to the present work. It is especially
suggestive that the trigonometric factors in the expression (1.6) match the those
that appear in Theorem 1.3.
A special case of this type of heuristic argument, which is perhaps familiar to

some readers, concerns elliptic curves. The case n = 1 of Theorem 1.4 was proven
by Birch [Bir68]. To every elliptic curve E/Fq we can associate its trace of Frobe-
nius t, which lies in the interval [−2√q, 2√q]. Dividing the trace by 2√q, we get
a normalized trace that lies in the interval [−1, 1]. For each q we can consider the
counting measure on [−1, 1] that tells us what fraction of the elliptic curves over Fq

have their normalized traces lying in a given set. Birch proved that these counting
measures converge in measure to the “semicircular” measure, that is, the measure
associated to the differential (4/τ)

√
1− x2 dx. (This is equivalent to the measure

µ1 = (4/τ) sin2 θ dθ on S1, since x = cos θ.)
Now, if t is an integer in the interval [−2√q, 2√q] and if (t, q) = 1, then the number

of elliptic curves over Fq with trace t is H(t2 − 4q), where H denotes the Kronecker
class number. But H(−n) grows roughly as

√
n; more precisely, for every ε > 0 there

are positive constants c and d such that

cn1/2−ε < H(−n) < dn1/2+ε

for all positive n ≡ 0, 3 mod 4, so that H(−n) ∼∼∼ n1/2 for these n (compare [Len87,
Proposition 1.8, p. 656]), and the average value of H(−n)/

√
n for discriminants n

in quite small intervals is τ/12 (see [Byk97, Theorem 2, p. 722]). Thus it seems
reasonable to expect that the number of elliptic curves over Fq with trace t will be
about c

√
4q − t2 on average, for some constant c. Scaling this down, we find that for

any x in [−1, 1], we expect there to be about c′
√

1− x2 ∆x elliptic curves over Fq

having scaled traces in a small interval of size ∆x near x. As q increases the constant
c′ will have to tend to 4/τ , and we find that we are led to believe that the counting
measures should converge to the semicircular measure.
(Gekeler [Gek03] shows how the crude approximation that “H(−n) grows like

√
n”

can be modified with local factors in order to make this interpretation of Birch’s result
more rigorous, at least in the case of finite prime fields. Achter and Gordon [AG17]
provide an alternate explanation for Gekeler’s work, and extend it to arbitrary finite
fields.)
Unfortunately, there seems to be little hope of turning this heuristic argument

into an actual proof of Theorem 1.4. We find it interesting, nevertheless, that the
trigonometric factors in the measure given by Equation (1.4) get split evenly between
the measure defined by Equation (1.5) and the approximation in Theorem 1.3.
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The referee notes that some of the expressions in the Frobenius angles θi of an
isogeny class that appear in this paper would be simplified if they were rewritten
in terms of the coefficients of what we might call the scaled real Weil polynomial of
the isogeny class — that is, the monic polynomial in R[x] whose roots are 2 cos θi.
This is indeed true; nevertheless, we have chosen to express our results in terms
of Frobenius angles because their use is fairly well-established in the literature on
measures associated to abelian varieties.
The structure of this paper is as follows: In Section 2 we explore the properties of

convenient orders, give some examples, and define a norm map from the invertible
ideals of a convenient order to the invertible ideals of its real subring. In Section 3
we look at convenient orders related to isogeny classes of abelian varieties. In Sec-
tion 4 we use Deligne’s equivalence [Del69] between the category of ordinary abelian
varieties over a finite field and the category of Deligne modules [How95] to prove The-
orem 1.1 and Corollary 1.2. In Section 5 we review a theorem of Louboutin [Lou06]
on minus class numbers of CM fields and extend it to apply to convenient orders. We
apply the theorem to the minimal orders of isogeny classes and obtain Theorem 1.3.
In Section 6 we give some examples that show that while the average number of
principally polarized varieties in a given isogeny class is given by Equation (1.6),
there are isogeny classes for which this number is significantly larger than the average
value. Finally, in Section 7 we give examples showing that the trigonometric terms
in Theorem 1.3 are necessary.
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2. Convenient orders
In this section we define convenient orders and prove some results about them.

The definition involves the concept of Gorenstein rings. Most of what we will need to
know about Gorenstein rings can be found in the paper of Picavet-L’Hermitte [PL87].
In particular, we will use the following facts:

(1) An order R in a number field K is Gorenstein if and only if its trace dual is
invertible as a fractional R-ideal [PL87, Proposition 4, p. 20], [BL94, Propo-
sition 2.7, p. 230]; here the trace dual R† of R is the set of elements x ∈ K
such that TrK/Q(xR) ⊆ Z.
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(2) An order R in a number field K is Gorenstein if and only if every fractional
R-ideal A with EndA = R is invertible [PL87, Proposition 4, p. 20], [BL94,
Proposition 2.7, p. 230].

(3) A ring that is a complete intersection over Z is Gorenstein [Mat86, Theo-
rem 21.3, p. 171], and in particular every monogenic order Z[α] is Goren-
stein [BL94, Example 2.8, p. 231].

Let K be a CM field, that is, a totally imaginary quadratic extension of a totally
real number field K+. We refer to the nontrivial involution x 7→ x̄ of K/K+ as
complex conjugation, and we say that an element of K is pure imaginary if it is
negated by complex conjugation.
Definition 2.1. — We call an order R in K convenient if it satisfies the following

properties:
(1) R is stable under complex conjugation;
(2) the order R+ := R ∩K+ of K+ is Gorenstein;
(3) the trace dual R† of R is generated (as a fractional R-ideal ) by its pure

imaginary elements.
We call the ring R+ from property (2) the real subring of R.
Proposition 2.2. — Every convenient order is Gorenstein.
Proof. — Let ι be a pure imaginary element of R. By assumption R† is generated

by its pure imaginary elements, so ι−1R† = (ιR)† is generated by its totally real
elements. Since clearly (ιR : ιR) = R we have ((ιR)† : (ιR)†) = R. Let I be the
fractional R+-ideal (ιR)† ∩K+. Then IR = (ιR)† because (ιR)† is generated by its
totally real elements, and since ((ιR)† : (ιR)†) = R we must have (I : I) = R+.
By assumption, R+ is Gorenstein, and therefore I is invertible, so there is a fractional
R+-ideal J with IJ = R+. Then we have (IR)(JR) = R, so IR = (ιR)† is an
invertible fractional R-ideal. It follows that R† is invertible, so R is Gorenstein. �
Proposition 2.3. — The maximal order O of K is convenient.
Proof. — The maximal order O clearly is stable under complex conjugation, and

the real subring O+ is the maximal order of K+. Maximal orders are Gorenstein
(because their trace duals are invertible), so O satisfies the first two conditions of
Definition 2.1. For the third, we note that the trace dual of O is generated by pure
imaginary elements if and only if its inverse — the different of O — is generated
by pure imaginary elements. Now, the different of O is the product of the different
of O+ and the relative different of O over O+, so it suffices to show that the
relative different can be generated by pure imaginary elements. We know ([Nar04,
Theorem 4.16, p. 151], [Neu99, Theorem 2.5, p. 198]) that the relative different
is generated by the elements f ′α(α) for all α ∈ O \ O+, where fα is the minimal
polynomial of α over K+ and f ′α is the derivative of fα. But f ′α(α) is equal to α− ᾱ,
which is clearly pure imaginary. �

Proposition 2.4. — Let R be an order in K that is stable under complex
conjugation and whose real subring R+ is Gorenstein. If there are elements α and β
of K and invertible fractional ideals A and B of R+ such that R = Aα⊕Bβ, then
R is convenient.
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Proof. — By hypothesis, R satisfies the first two conditions in Definition 2.1, so
we need only check the third.
The trace dual of R is the product of the trace dual of R+ with the relative trace

dual D of R over R+. The trace dual of R+ is obviously generated by totally real
elements, so we just need to check that D is generated by pure imaginary elements.
Set

α∗ = β̄

αβ̄ − ᾱβ
and β∗ = ᾱ

βᾱ− β̄α
.

We note that
TrK/K+ (αα∗) = TrK/K+ (ββ∗) = 1 and TrK/K+ (αβ∗) = TrK/K+ (βα∗) = 0,

so the relative trace dual D of R is given by
D = A−1α∗ ⊕B−1β∗

and we have (
αβ̄ − ᾱβ

)
ABD = Aᾱ⊕Bβ̄ = R̄ = R.

Since A and B are fractional R+-ideals and αβ̄ − ᾱβ is pure imaginary, we see that
D is generated as a fractional R-ideal by pure imaginary elements. �

We close this section by showing that there is a natural norm map from the
invertible ideals of a convenient order to the invertible ideals of its real subring. We
prove the statement in a more general context.

Lemma 2.5. — Let L/K be a quadratic extension of number fields, with nontrivial
involution x 7→ x̄. Let S be an order of L that is stable under the involution, and let
R = S ∩K. For every invertible fractional ideal B of S, there is a unique invertible
fractional ideal A of R such that A⊗R S = BB̄.

We call the ideal A the norm of B. Our proof of the lemma follows ideas in [LPP02,
§ 6].
Proof of Lemma 2.5. — Let Ẑ := lim←−Z/nZ ∼=

∏
p Zp be the profinite completion

of the ring Z, and for an arbitrary ring E let Ê denote the tensor product E ⊗Z Ẑ.
For our order S we find that Ŝ ∼=

∏
q Sq, where the product is over the primes q of

S and where Sq is the completion of S at q. Similarly, L̂ ∼= Q ⊗Z Ŝ is the subring
of ∏q Lq consisting of those elements all but finitely many of whose components lie
in Sq. Finally, the group Ŝ∗ is the product ∏q S

∗
q , and the group L̂∗ is the subgroup

of ∏q L
∗
q consisting of those elements all but finitely many of whose components lie

in S∗q .
The invertible ideals of S are the ideals that are locally principal [Neu99, Propo-

sition 12.4, p. 74], so one sees that the group of invertible ideals of S is isomorphic
to the quotient L̂∗/Ŝ∗. Likewise, the group of invertible ideals of R is isomorphic to
K̂∗/R̂∗.
The field norm L→ K induces a norm map from L̂∗/Ŝ∗ to K̂∗/R̂∗, and under the

isomorphisms just described, this gives us a norm map from the invertible ideals of
S to those of R. Since the composition of the field norm L→ K with the inclusion
K → L is given by x → xx̄, we see that the norm A of an invertible S-ideal B
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satisfies A ⊗R S = BB̄. The norm is the unique ideal with this property, because
if there were another invertible ideal of R that lifted to BB̄, the quotient of A by
this other ideal would be a nontrivial ideal E such that E⊗R S = S. We would then
have E ⊆ R, and also that E contains a unit of S. This unit would then also be a
unit of R, so E = R, contradicting the nontriviality of E. �

Remark 2.6. — Let R be a convenient order. Recall that the Picard group PicR
of R is the group of isomorphism classes of invertible R-ideals. The narrow Picard
group Pic+ R+ of the real order R+ is the group of strict isomorphism classes of
invertible R+-ideals, where two invertible R+-ideals A and B are said to be strictly
isomorphic if there is a totally positive element x of K+ such that xA = B. The
norm map on invertible ideals gives us a homomorphism NPic from PicR to Pic+ R+,
which we continue to call the norm.

3. Isogeny classes and convenient orders

In this section we show that some rings associated to a simple ordinary isogeny
class of abelian varieties over a finite field are convenient.
Suppose that C is an isogeny class of simple n-dimensional ordinary abelian varieties

over a finite field k with q elements, and let f be its Weil polynomial. Honda–Tate
theory shows that f has degree 2n and is irreducible, and that the number field K
defined by f is a CM field. Let K+ be the maximal real subfield of K, and let π be
a root of f in K.

Proposition 3.1. — Let B be a Gorenstein order in K+ that contains π + π̄.
Then the ring R = B[π] is convenient.

Proof. — The minimal polynomial of π over K+ is x2 − (π + π̄)x+ q, so 1 and π
form a basis for R as a B-module. It follows easily that R is stable under complex
conjugation and that R+ = B. The result follows from Proposition 2.4. �

Corollary 3.2. — The order R = Z[π, π̄] of K is convenient.

Proof. — It is not hard to show that one basis for R as a Z-module is{
1, π, π̄, π2, π̄2, . . . , πn−1, π̄n−1, πn

}
,

and from this one sees that R+ = Z[π + π̄]. The ring R+ is Gorenstein because it is
integral over Z and monogenic. The corollary follows from Proposition 3.1. �

Example 3.3. — Here we give an example that shows that condition (3) of Defi-
nition 2.1 does not follow from conditions (1) and (2), even if we assume that the
ring R is Gorenstein.
Let p = 19 and let f be the ordinary irreducible Weil polynomial x4−4x3 +10x2−

4px+ p2, corresponding to an isogeny class of abelian surfaces over Fp. One checks
that π + π̄ = 2 + 4

√
2 for a choice of

√
2 in K. Let R be the Z-module generated by

1, 2
√

2, π − π̄
2 , and (π − π̄)

√
2

2 .
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Using the fact that (π− π̄)2/4 = −10 + 4
√

2, we see that R is closed under multipli-
cation and is therefore a ring.
It is clear that R is stable under complex conjugation, and that R+ = Z[2

√
2].

The ring R+ is Gorenstein because it is monogenic. Thus R satisfies conditions (1)
and (2).
We compute that R† is the Z-module generated by

1
4 ,

√
2

16 ,
1

2 (π − π̄) , and
√

2
4 (π − π̄) .

The pure imaginary elements of R† are the elements of the Z-module generated by
1

2 (π − π̄) and
√

2
4 (π − π̄) .

The R-module generated by these elements is spanned as a Z-module by
1
4 ,

√
2

8 ,
1

2 (π − π̄) , and
√

2
4 (π − π̄) ,

and this has index 2 in R†. Thus, R does not satisfy condition (3) of Definition 2.1,
even though it satisfies conditions (1) and (2). Furthermore, R is Gorenstein: If we
let Λ be the Z-module generated by 32− 40

√
2, 136

√
2, 8(π − π̄), and 4

√
2(π − π̄),

then Λ is an R-module and R†Λ = R, so R† is an invertible fractional R-ideal. �

4. Principally polarized varieties and ratios of class numbers

In this section we will prove Theorem 1.1 and Corollary 1.2, and we give some con-
ditions under which the norm map from PicR to Pic+ R+ is surjective. Throughout
the section we continue to use the notation set at the beginning of Section 3: k is a
finite field with q elements, C is an isogeny class of simple n-dimensional ordinary
abelian varieties over k, f is the Weil polynomial for C (and is irreducible and of
degree 2n), K is the CM field defined by f , K+ is its maximal real subfield, and π
is a root of f in K.
Before we begin the proof of Theorem 1.1, let us make one comment on the

restriction to strata corresponding to convenient orders. If A is an abelian variety
in C and if A has a principal polarization, then EndA is stable under complex
conjugation because the Rosati involution on (EndA) ⊗ Q = K associated to a
principal polarization takes EndA to itself, and the only positive involution on K is
complex conjugation. Thus, every stratum of C that contains a principally polarized
variety must correspond to an endomorphism ring R which satisfies condition (1) of
Definition 2.1. In general, however, EndA need not be convenient.
Proof of Theorem 1.1. — To understand the category of abelian varieties in the

ordinary isogeny class C, we turn to the theory of Deligne modules and their po-
larizations as set forth in [How95], based on Deligne’s equivalence of categories [Del69]
between ordinary abelian varieties over a finite field and a certain category
of modules.
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Deligne’s equivalence of categories involves picking an embedding of the Witt
vectors over k̄ into the complex numbers C, and this embedding determines a p-adic
valuation v on the algebraic numbers in C. We let

Φ = {ϕ : K → C | v(ϕ(π)) > 0}

so that Φ is a CM type, that is, a choice of half of all the embeddings of K into C,
one from each complex-conjugate pair.
Following [How95], we see that the abelian varieties A in S correspond via Deligne’s

equivalence to the classes of fractional ideals A of R with EndA = R, and since R is
Gorenstein these are precisely the classes of invertible fractional R-ideals. According
to [How95], if A corresponds to (the class of) an ideal A, then the dual Â of A
corresponds to (the class of) the complex conjugate of the trace dual of A. Let d be
the different of R; since R is stable under complex conjugation, so is d. The trace
dual of an invertible R-ideal A is d−1A−1, and we see that Â corresponds to the class
of d−1Ā−1 in PicR.
An isogeny from one Deligne module A to another B is an element x ∈ K such

that xA ⊆ B. The degree of this isogeny is the index of xA in B. A polarization of
A is an isogeny A→ Â that satisfies certain symmetry and positivity conditions. In
the category of Deligne modules, a polarization is an isogeny x from A to d−1Ā−1

such that x is pure imaginary and such that ϕ(x) is positive imaginary (that is, a
positive real times the element i of C) for every ϕ : K → C in the CM type Φ.
Fix an arbitrary pure imaginary ι ∈ K such that ϕ(ι) is positive imaginary for

every ϕ : K → C in the CM type Φ. Then a polarization of a Deligne module A is
an isogeny ιx from A to d−1Ā−1 such that x is a totally positive element of K+.
It is now easy to characterize the Deligne modules A, with EndA = R, that have

principal polarizations. We see that such an A has a principal polarization if and
only if there is a totally positive x ∈ K+ such that ιxA = d−1Ā−1. This condition is
equivalent to xAĀ = (ιd)−1.
Since R is convenient, the different d can be generated by pure imaginary elements,

so the ideal ιd can be generated by real elements. Let d′ = (ιd) ∩ K+. Then d′ is
a fractional R+-ideal with d′R = ιd. In fact, we have End d′ = (End ιd) ∩ K+ =
R ∩ K+ = R+, and since R+ is Gorenstein, this means that d′ is an invertible
fractional R+-ideal.
Let D be the norm of A. Then the equality xAĀ = (ιd)−1 of invertible fractional

R-ideals is equivalent to the equality xD = (d′)−1 of invertible fractional R+-ideals.
In other words, we see that the abelian variety corresponding to the class of A
in PicR has a principal polarization if and only if this class maps, via the norm
map PicR → Pic+ R+, to the class of (d′)−1. Since this norm map is surjective by
assumption, the number of principally polarizable classes [A] is simply the quotient
(# PicR)/(# Pic+ R+).
Finally, we count the number of distinct principal polarizations (up to isomorphism)

on a Deligne module, given that it has one. Suppose λ and µ are two principal
polarizations on a Deligne module A with EndA = R. Then µ−1λ is an automorphism
of A, and it is a totally positive element of R+. Conversely, if u is a totally positive
unit of R+, then uλ is a principal polarization of A.
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Two principal polarizations λ and µ are isomorphic if and only if there is an
isomorphism α : A→ A such that µ = α̂λα, where α̂ is the dual isogeny of α. The
Rosati involution on EndA — which is simply complex conjugation — is given by
x 7→ λ−1x̂λ, so we find that λ and µ are isomorphic if and only if µ = λᾱα. Thus,
the isomorphism classes of principal polarizations on A correspond to elements of
U+
>0 modulo N(U). The theorem follows. �

Proof of Corollary 1.2. — By Theorem 1.1, the total number of principally polar-
ized varieties (A, λ) in the stratum S, counted up to isomorphism, is equal to[

U+
> 0 : N(U)

] # PicR
# Pic+ R+ ,

where U+
> 0 is the group of totally positive units of R+. Since U ⊇ U+, we can rewrite

this expression as

[
U+
> 0 : N(U)

] # PicR
# Pic+ R+ =

[
U+
> 0 : (U+)2

]
[N(U) : (U+)2]

# PicR
# Pic+ R+

= 1
[N(U) : (U+)2]

# PicR
# PicR+ ,

where the second equality is obtained from the fact that # Pic+ R+ is equal to
[U+

>0 : (U+)2] # PicR+. We are left to prove the statements about the unit index.
(In the case of maximal orders, these statements were proven by Hasse [Has19,
Theorem 3.14, p. 76], [Has19, Theorem 3.15, p. 81].)
Given u ∈ U , the quotient ū/u is an algebraic integer whose image in C lies on

the unit circle under every embedding K ↪→ C, so ū/u is an element of the group
Z of roots of unity in U . The map U → Z given by u 7→ ū/u has kernel U+, so the
induced map U/U+ → Z is injective, and therefore U/U+ is a finite cyclic group. On
the other hand, the norm map U/U+ → N(U)/(U+)2 is surjective, so N(U)/(U+)2

is also cyclic. Every nontrivial element of N(U)/(U+)2 clearly has order 2, so the
order of N(U)/(U+)2 is either 1 or 2.
If N(U)/(U+)2 has order 2, then U/U+ must have even order and hence has an

element of order 2. This means there is a u ∈ U such that u 6∈ K+ and u2 ∈ U+.
It follows that K is obtained from K+ by adjoining the square root of a unit, so
K/K+ is unramified at all odd primes. �

Remark 4.1. — Suppose S is a stratum corresponding to a convenient order R,
and suppose the norm map NPic is not surjective; say that the cokernel has order
n > 1. If the class of (d′)−1 in Pic+ R+ is not in the image of the norm map, then there
will be no principally polarized varieties A ∈ C with EndA = R. On the other hand,
if the class of (d′)−1 is in the image of the norm, there will be n(# PicR)/(# Pic+ R+)
principally polarizable varieties A ∈ C with EndA = R, and each such variety will
have [U+

>0 : N(U)] isomorphism classes of principal polarizations. Likewise, the total
number of principally polarized varieties (A, λ) in S, counted up to isomorphism,
will be

n

[N(U) : (U+)2]
# PicR
# PicR+
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or 0, depending on whether or not the class of (d′)−1 is in the image of the norm.

Remark 4.2. — Let R be the endomorphism ring for a stratum S of an isogeny
class. For an alternative viewpoint on Corollary 1.2, we can consider the so-called
Shimura class group of R, denoted by Pic∗R in [LPP02, § 6]. Generalizing the
definition given by Shimura and Taniyama in the case of maximal orders [ST61, § 4.5],
Lenstra, Pila, and Pomerance [LPP02, § 6] define Pic∗R as the set of equivalence
classes of pairs (B, β), where B is an invertible R-ideal and β is a totally positive
element of K+ such that N(B) = βR, and where two such pairs (B, β) and (C, γ)
are taken to be equivalent if there is an element α ∈ K∗ such that αB = C and
αᾱβ = γ.
The group Pic∗R acts on the set X of principally polarized abelian varieties (A, λ)

in the stratum S, as follows: If (A, λ) corresponds to a Deligne module A together
with a totally positive x ∈ K+ such that xAĀ = (ιd)−1 (with notation as in the
proof of Theorem 1.1), then for every (B, β) in Pic∗R we define (B, β) · (A, λ) to
be the principally polarized variety corresponding to the Deligne module BA and
the element x/β ∈ K+. It is easy to see that if the set X is nonempty, then it is a
principal homogeneous space for the group Pic∗R.
Thus, Corollary 1.2 says that when PicR→ Pic+ R+ is surjective, the group Pic∗R

has order
1

[N(U) : (U+)2]
# PicR
# PicR+ ,

and there are this many principally polarized varieties in S. More generally, we find
(as in Remark 4.1) that

# Pic∗R = n

[N(U) : (U+)2]
# PicR
# PicR+ ,

where n is the order of the cokernel of the norm map PicR→ Pic+ R+.

Next we give some conditions under which the norm map PicR → Pic+ R+ is
guaranteed to be surjective. Suppose R is a convenient order in a CM field K. Let f
be the conductor of R+ and let L/K+ be the ray class field for the modulus of K+

determined by f together with all of the infinite primes.

Proposition 4.3. — If K/K+ is not isomorphic to a subextension of L/K+,
then the norm map PicR→ Pic+ R+ is surjective.

Corollary 4.4. — If K/K+ is ramified at a finite prime that does not divide
the conductor of R+, then the norm map PicR→ Pic+ R+ is surjective. �

Proof of Proposition 4.3. — To better understand the norm map from PicR to
Pic+ R+, we take [LPP02, § 6] as a model and identify the Picard groups with
quotients of certain profinite groups, as follows. As in the proof of Lemma 2.5, we
let Ẑ be the profinite completion of Z, and for an arbitrary ring E we let Ê denote
E ⊗Z Ẑ. Then we have

PicR ∼= K̂∗/
(
R̂∗K∗

)
and Pic+ R+ ∼=

(
K̂+

)∗
/
((
R̂+

)∗
(K+)∗> 0

)
,
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where (K+)∗> 0 denotes the multiplicative group of totally positive elements of K+.
The norm map on Picard groups gives us an exact sequence

K̂∗

R̂∗K∗
N //

(
K̂+

)∗(
R̂+

)∗
(K+)∗> 0

//

(
K̂+

)∗(
R̂+

)∗
(K+)∗> 0N

(
K̂∗
) // 1.

Combining this with the analogous sequence for the maximal orders, we obtain the
following diagram with exact rows and columns:(

Ô+
)∗

(K+)∗> 0N
(
K̂∗
)

(
R̂+

)∗
(K+)∗> 0N

(
K̂∗
)

��

K̂∗

R̂∗K∗
N //

��

(
K̂+

)∗(
R̂+

)∗
(K+)∗> 0

//

��

(
K̂+

)∗(
R̂+

)∗
(K+)∗> 0N

(
K̂∗
) //

��

1

K̂∗

Ô∗K∗
N //

(
K̂+

)∗(
Ô+

)∗
(K+)∗> 0

//

(
K̂+

)∗(
Ô+

)∗
(K+)∗> 0N

(
K̂∗
) // 1

Let m be the modulus consisting of the infinite primes of K+ and the ideal f. We
claim that the cokernel of the map PicR→ Pic+ R+ is trivial, under the assumption
that K/K+ is not isomorphic to a subextension of L/K+, the ray class field of
K+ modulo m. To prove this, it will suffice to show that the cokernel of the map
PicO → Pic+O+ is trivial and that the group

(4.1)

(
Ô+

)∗
(K+)∗> 0N

(
K̂∗
)

(
R̂+

)∗
(K+)∗> 0N

(
K̂∗
)

is trivial.
The extensionK/K+ must be ramified at a finite prime, because otherwise it would

be contained in the ray class field of K+ modulo the infinite primes. By [How95,
Proposition 10.1, p. 2385], it follows that PicO → Pic+O+ is surjective.
We are left to show that the group (4.1) is trivial. To do this, it will suffice to show

that for every a ∈ (Ô+)∗ we can express a as the product of an element of (K+)∗> 0
and an element of (R̂+)∗ and the norm of an element of K̂∗.
First let us recall the structure of the profinite groups in question. The group K̂∗

consists of all vectors (aq)q of O where each aq is a nonzero element of the completion
Kq, and where all but finitely many aq lie in O∗q . The group (Ô+)∗ consists of all
vectors (ap)p of O+ where each ap lies in (O+)∗p. The group (R̂+)∗ has an analogous
structure, and can also be viewed as a subgroup of (Ô+)∗. For us, it will suffice to
observe that
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(
R̂+

)∗
⊇
{

(ap)p of O+

∣∣∣∣ ap ∈ (O+
)∗
p
, with ap ≡ 1 mod pe when pe ‖ f

}
.

Suppose we are given an element a = (ap) of (Ô+)∗. First we choose a totally
positive x ∈ O+ such that if pe ‖ f then x ≡ ap mod pe. The ideal xO+ gives us
a class χ in the ray class group modulo m. Because K/K+ is not isomorphic to a
subextension of L/K+, the Chebotarëv density theorem (applied to the extension
L ·K of K+) shows that there is a prime P of O+ that splits in K, that does not
divide f, and whose image in the ray class group is χ−1. This means that there is an
element y of (K+)∗>0 with y ≡ 1 mod* f such that O+ = xyP.
Let Q be a prime of K lying over P, and let b = (bq) be the element of K̂∗ such

that bq = 1 if q 6= Q and bQ = (xy)−1. Then N(b) is the element of (K̂+)∗ that is
equal to 1 at every prime except P, where it is equal to (xy)−1.
We check that for all pe ‖ f, the p-components of a and of xyN(b) are congruent

modulo pe. For all primes p 6= P that do not divide f, the p-component of xyN(b) is a
unit of O+

p . Finally, the P-component of xyN(b) is equal to 1. Therefore, a/(xyN(b))
is an element of{

(ap)p of O+

∣∣∣∣ ap ∈ (O+
)∗
p
, with ap ≡ 1 mod pe when pe ‖ f

}
,

which is contained in (R̂+)∗. Thus, our element a of (Ô+)∗ is the product of the
element xy of (K+)∗>0 and the element a/(xyN(b)) of (R̂+)∗ and the norm of the
element b of K̂∗.
This shows that the cokernel of the map PicR→ Pic+ R+ is trivial. �

5. Minus class numbers and discriminants

We continue to use the notation set forth at the beginning of Section 3.
Corollary 1.2 shows that for the strata S corresponding to certain convenient

orders R, the number of principally polarized abelian varieties in S is equal either
to hR/hR+ or to (1/2)(hR/hR+), where hR is the order of the Picard group of R and
hR+ is the order of the Picard group of the real subring R+ of R. We denote the ratio
hR/hR+ by h−R, as is commonly done in the case when R is a maximal order, and we
call this ratio the minus class number of R. In the case where R is a maximal order
O, a Brauer–Siegel result for relative class numbers [Lou06] gives us an estimate —
a rough estimate, to be sure — for the minus class number h−O in terms of the ratio
∆O/∆O+ , where ∆O and ∆O+ are the discriminants of O and O+. In this section
we review this result on relative class numbers and consider the case of minus class
numbers of convenient orders that are not maximal. In the case where R is the
convenient order Z[π, π̄], we also compute an exact formula for the ratio ∆R/∆R+ in
terms of the Frobenius angles of the isogeny class C. (This argument was sketched
in the email reproduced in [How20, Appendix] and given in detail in [GW19]; we
present a derivation here for the reader’s convenience.)

ANNALES HENRI LEBESGUE



Principally polarized abelian varieties 693

For CM fields that do not contain imaginary quadratic fields, Louboutin gives
effective lower bounds on h−O that are better than the crude Brauer–Siegel approxi-
mations that we discuss here, but for our purposes the added value of these effective
results does not justify the complexity they would add to the discussion. In some
sense, we will be satisfied simply to justify the rough heuristic that “minus class
numbers grow like the square root of the ratio of discriminants,” and we will not try
to quantify the known bounds on h−R more precisely.
Let us make some remarks on the ∼∼∼ notation set in the introduction. Recall that if
{ai} and {bi} are two sequences of positive real numbers indexed by positive integers i,
the expression ai ∼∼∼ bi means that for every ε > 0 there are positive constants r and
s such that bi 6 ra1+ε

i and ai 6 sb1+ε
i for all i. The notation is intended to capture

the notion that the elements of the two sequences grow very roughly at the same
rate. The relation ∼∼∼ is clearly symmetric and transitive. Furthermore, if we have
sequences {ai}, {bi}, {ci}, and {di} with ai ∼∼∼ bi and ci ∼∼∼ di, and if f and g are two
functions from Z>0 to itself, then

af(i)cg(i) ∼∼∼ bf(i)dg(i).

Note also that for sequences {ai} and {bi} that tend to infinity, ai ∼∼∼ bi if and only
if (log ai)/(log bi)→ 1.
For a convenient order R, we let ∆R and ∆R+ denote the discriminants of R

and R+, respectively.
Theorem 5.1 (Louboutin). — As O ranges over the rings of integers of CM fields

of a given degree over Q, we have h−O ∼∼∼
√
|∆O/∆O+|.

Proof. — This is a combination of [Lou06, Corollary 29, p. 216], which discusses
normal CM fields of arbitrary degree with root-discriminants tending to infinity,
and [Lou06, Corollary 32, p. 217], which discusses non-normal CM fields of fixed
degree. �

Theorem 5.2. — As R ranges over all convenient orders of a given degree 2n over
Q for which the norm map PicR→ Pic+ R+ is surjective, we have h−R ∼∼∼

√
|∆R/∆R+|.

Proof. — Let R be a convenient order in a field K for which PicR→ Pic+ R+ is
surjective, let O be the maximal order of K, and let O+ be the maximal order of
the real subfield K+. By Remark 4.2, we see that for this order R the relative class
number h−R is equal to either # Pic∗R or 2# Pic∗R, so it will suffice to show that
# Pic∗R ∼∼∼

√
|∆R/∆R+|.

Lenstra, Pila, and Pomerance show [LPP02, Lemma 6.3, p. 125] that the order of
Pic∗R is equal to

# Pic∗R = #C · w(R)
2n · hO regO w (O+)

hO+ regO+ w(O) ·

[
Ô∗ : R̂∗

]
[(
Ô+

)∗
:
(
R̂+

)∗] ,
where C is the cokernel of the norm map PicR → Pic+ R+ (which is trivial in our
case), where w(R), w(O), and w(O+) denote the number of roots of unity in these
orders, where reg denotes the regulator, and where the ‘hat’ notation is as in the
proofs of Lemma 2.5 and Proposition 4.3.
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We note that the expression

#C · w(R)
2n · regO w(O+)

regO+ w(O)
is bounded above and below in terms depending only on the degree n, so it will
suffice for us to show that

hO
hO+

·

[
Ô∗ : R̂∗

]
[(
Ô+

)∗
:
(
R̂+

)∗] ∼∼∼
√
|∆R|√
|∆R+|

.

Following [LPP02], we let F be the conductor of R, we set f = F ∩R+ = F ∩ O+,
and we define finite rings

A = O/F, B = O+/f ⊆ A, C = R/F ⊆ A, and D = R+/f = B ∩ C.

Then [
Ô∗ : R̂∗

]
[(
Ô+

)∗
:
(
R̂+

)∗] = [A∗ : C∗]
[B∗ : D∗] = #A∗/#C∗

#B∗/#D∗ ,

and by Corollary 5.8 [LPP02, p. 123] and the remark following its proof, we have

#A∗/#C∗
#B∗/#D∗

∼∼∼
#A/#C
#B/#D = [O : R]

[O+ : R+] =

√
∆O/∆R√

∆O+/∆R+

as R ranges over the convenient orders of a given degree over Q. This gives us[
Ô∗ : R̂∗

]
[(
Ô+

)∗
:
(
R̂+

)∗] ∼∼∼
√

∆R/∆O√
∆R+/∆O+

,

and combining this with Theorem 5.1 we find that

hO
hO+

·

[
Ô∗ : R̂∗

]
[(
Ô+

)∗
:
(
R̂+

)∗] ∼∼∼
√
|∆O|√
|∆O+|

·

√
∆R/∆O√

∆R+/∆O+

=

√
|∆R|√
|∆R+ |

,

which, as we noted above, is enough to prove the theorem. �

The ring R = Z[π, π̄] from Corollary 3.2 is contained in the endomorphism ring
of every abelian variety A in C, and for this R there is a very nice expression of√
|∆R/∆R+| in terms of Frobenius angles.

Theorem 5.3 (See [GW19, § 2]). — Let 0 < θ1 < · · · < θn < τ/2 be the
Frobenius angles for the isogeny class C, and let R be the ring Z[π, π̄]. Then we have√

|∆R/∆R+| = 2n(n+1)/2qn(n+1)/4 ∏
i< j

(cos θi − cos θj)
∏
i

sin θi.

Proof. — Clearly R = R+ · 1⊕R+ · π. Arguing as in the proof of Proposition 2.4,
we find that the different of R is π − π̄ times the different of R+, and since R+

is generated by π + π̄ we see that the different of R+ is g′(π + π̄), where g is the
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minimal polynomial of π + π̄. The discriminant ideal is the norm of the different, so
the integers |∆R+ | and |∆R| are given by

|∆R+ | =
∣∣∣NK+/Q (g′ (π + π̄))

∣∣∣ and |∆R| =
∣∣∣NK/Q (π − π̄)

∣∣∣∆2
R+ ,

and we see that
(5.1) |∆R/∆R+| =

∣∣∣NK/Q (π − π̄)
∣∣∣ ∣∣∣NK+/Q (g′ (π + π̄))

∣∣∣ .
The images of π + π̄ under the various real embeddings of K+ into R are

√
qeθi +√qe−θi = 2√q cos θi,

so
(5.2)

∣∣∣NK+/Q (g′ (π + π̄))
∣∣∣ = 2n(n−1)qn(n−1)/2 ∏

i< j

(cos θi − cos θj)2 .

Similarly, the images of π − π̄ in C are the values
√
qeθi −√qe−θi = 2√q

√
−1 sin θi

and their complex conjugates, so
(5.3)

∣∣∣NK/Q (π − π̄)
∣∣∣ = 22nqn

∏
i

sin2 θi.

Combining Equations (5.1), (5.2), and (5.3), we find that
|∆R/∆R+| = 2n(n+1)qn(n+1)/2 ∏

i< j

(cos θi − cos θj)2∏
i

sin2 θi,

and the theorem follows. �

We note that Theorem 1.3 follows from Corollary 1.2, Theorem 5.2, and Theo-
rem 5.3.

6. Isogeny classes containing many principally polarized
varieties

Suppose C is an isogeny class of simple ordinary abelian varieties over Fq and let
R = Z[π, π̄] be the minimal ring of C, where π is a root of the Weil polynomial
of C. We say that an abelian variety in C has minimal endomorphism ring if its
endomorphism ring is R.
We saw in Corollary 3.2 that R is a convenient order, so Corollary 4.4 and Corol-

lary 1.2 show that under a mild hypothesis, the number of principally polarized
varieties in C with minimal endomorphism ring is either h−R or h−R/2, where h−R is
the minus class number of R. Then Theorems 5.2 and 5.3 say that this number is
very roughly on the order of

qn(n+1)/4 ∏
i< j

(cos θi − cos θj)
∏
i

sin θi,

where the θi are the Frobenius angles for the isogeny class. Since this is of the
same order as the average number of principally polarized varieties with Frobenius
angles near (θ1, . . . , θn) given by Equation (1.6), one might be tempted to think that
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the principally polarized varieties with minimal endomorphism ring account for a
nontrivial fraction of the principally polarized varieties in C.
The goal of this short section is simply to demonstrate that one should not succumb

to this temptation. Indeed, even for isogeny classes of elliptic curves, the number of
curves with minimal endomorphism ring can be a vanishingly small fraction of the
curves in the isogeny class.
Theorem 6.1. — For every ε > 0, there is an isogeny class C of ordinary el-

liptic curves over a finite field such that the fraction of curves in C with minimal
endomorphism ring is less than ε.
Proof. — Let C be an isogeny class of ordinary elliptic curves over Fq, say with

trace t, and let ∆ = t2 − 4q, so that ∆ is the discriminant of the ring R = Z[π, π̄],
where π is a root of x2 − tx + q. Write ∆ = F 2∆0 for a fundamental discriminant
∆0, and for ease of exposition let us suppose that ∆0 is neither −3 nor −4.
The number of elliptic curves in C is equal to the Kronecker class number H(∆)

of ∆ (see [Sch87, Theorem 4.6, pp. 194–195]), which is the sum of the class numbers
of all orders that contain R:

H(∆) =
∑
f |F

h
(
f 2∆0

)
.

Let χ be the quadratic character modulo ∆0. Since the only roots of unity in the
order of discriminant ∆0 are ±1, we have

h
(
f 2∆0

)
= h(∆0)f

∏
p|f

(
1− χ(p)

p

)
,(6.1)

so that
H(∆) = h(∆0)

∑
f |F

f
∏
p|f

(
1− χ(p)

p

)
= h(∆0)

∏
pe‖F

(
1 +

(
1− χ(p)

p

)
(p+ · · ·+ pe)

)
and

H(∆)
h(∆) =

∏
pe‖F

(
p−e

(
1− χ(p)

p

)−1
+ 1 + 1

p
+ · · ·+ 1

pe−1

)

>
∏
pe‖F

(
1

pe−1(p+ 1) + pe − 1
pe−1(p− 1)

)

>
∏
p|F

(
p+ 2
p+ 1

)
so

h(∆)
H(∆) 6

∏
p|F

(
p+ 1
p+ 2

)
.(6.2)

The product ∏p(p+1
p+2) diverges to 0, so to prove the theorem we need only show that

for every integer m > 0, there are isogeny classes C for which the conductor of the
minimal endomorphism ring is divisible by m.
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Suppose we are given an m > 0. Let ∆0 < −4 be a fundamental discriminant and
let n = m2|∆0|. Let p be a prime of the form x2 + ny2 (see [Cox13, Theorem 9.2,
p. 163]), and let t = 2x. Then t2 < 4p and p - t, so by a result of Deuring (see [Sch87,
Theorem 4.2, p. 193]) there is an isogeny class of elliptic curves over Fp with trace t.
We see that the discriminant ∆ of this isogeny class is

∆ = t2 − 4p = 4x2 − 4
(
x2 +m2 |∆0| y2

)
= m2y2∆0,

so the conductor for the minimal endomorphism ring is my, and is divisible by m,
as we wished to show. �

7. Examples

In this section, we give three families of strata of abelian surfaces such that, in
the notation of Theorem 1.3, we do not have Pm ∼∼∼ q3/2

m , but instead have Pm ∼∼∼ q5/4
m

(for the first family), Pm ∼∼∼ qm (for the second), and Pm ∼∼∼ q1/2
m (for the third). This

shows that the trigonometric factors in Theorem 1.3 are essential.
We repeatedly use the fact that if a polynomial of the shape f = x4 + ax3 + bx2 +

aqx + q2 is irreducible and defines a CM field, where q is a power of a prime and
where the middle coefficient b is coprime to q, then f is the Weil polynomial of an
isogeny class of ordinary abelian surfaces over Fq; see [How95, § 3].

Example 7.1. — For every prime p that is congruent to 7 modulo 8, let ap be the
largest integer less than √p− 1, and let fp be the polynomial

fp = x4 − 2apx3 +
(
a2
p + p

)
x2 − 2appx+ p2.

We claim that fp is the Weil polynomial of a simple ordinary isogeny class over Fp.
Since the middle coefficient of fp is clearly coprime to p, it will be enough for us to
show that the algebra K = Q[x]/(fp) is a CM field.
Let π be the image of the polynomial variable x in K and let π̄ = p/π. We check

that α := π + π̄ satisfies α2 − 2apα + a2
p − p = 0, so that α = ap + s where s2 = p.

Therefore the algebra K contains the quadratic field K+ = Q(√p). In fact, K is
the extension of K+ obtained by adjoining a root of y2 − αy + p, so to show that
K is a CM field we just need to show that α2 − 4p is totally negative. But this is
clear, because under the two embeddings of K+ into R the element α2 gets sent to
real numbers smaller than 4p. Thus, fp is the Weil polynomial of a simple ordinary
isogeny class Cp of abelian surfaces over Fp.
Let Rp = Z[π, π̄] be the minimal ring for Cp. As we have just seen, R+

p contains a
square root of p and is therefore the maximal order of K+.
We claim that the extension K/K+ is ramified at an odd prime. We prove this by

contradiction: Since K is obtained from K+ by adjoining a square root of α2− 4p, if
K/K+ were unramified at all odd primes then the norm of α2 − 4p would be either
a square or twice a square. We compute that

NK+/Q

(
α2 − 4p

)
=
(
p− a2

p

) (
9p− a2

p

)
,
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and since ap is coprime to p, the greatest common divisor of the two factors is a
divisor of 8. Thus, if this norm were a square or twice a square, each factor would
also be. But there is no integer b such that p = a2

p + b2 or p = a2
p + 2b2, because

p ≡ 7 mod 8. Therefore, K/K+ is ramified at an odd prime.
Let Sp be the minimal stratum of Cp and let Pp be the number of isomorphism

classes of principally polarized varieties in Sp. Since Rp is the minimal order of Cp,
it is convenient by Corollary 3.2. Since R+

p is the maximal order of K+ it has trivial
conductor, and since K/K+ is ramified at an odd prime, Corollary 4.4 tells us that
the norm map PicRp → Pic+ R+

p is surjective. Then from Corollary 1.2 we find that
Pp = h−Rp

, the minus class number of Rp.
As we noted at the beginning of the proof of Theorem 5.3, we have∣∣∣∆Rp

∣∣∣ =
∣∣∣NK/Q(π − π̄)

∣∣∣∆2
R+

p
.

Since |NK/Q(π− π̄)| = NK+/Q(α2− 4p), we find that |∆Rp | = (p− a2
p)(9p− a2

p)(4p)2

and ∣∣∣∆Rp/∆R+
p

∣∣∣ = 4p
(
p− a2

p

) (
9p− a2

p

)
.

If we write ap = √p− ε for a real number ε in the interval (1, 2), then∣∣∣∆Rp/∆R+
p

∣∣∣ = 4p
(
2ε√p− ε2

) (
8p+ 2ε√p− ε2

)
,

so we have
32p5/2 <

∣∣∣∆Rp/∆R+
p

∣∣∣ < 144p5/2

Thus, Theorem 5.2 says that as p→∞ we have Pp ∼∼∼ p5/4. �

Example 7.2. — For every prime p that is congruent to 7 modulo 8, we let fp be
the polynomial

fp = x4 + x3 + (2p− 1)x2 + px+ p2.

Again we claim that the polynomial fp is the Weil polynomial of a simple ordinary
isogeny class Cp over Fp, and since its middle coefficient is visibly coprime to p, all
we must show is that the algebra K = Q[x]/(fp) is a CM field. The algebra K is
certainly at least a field, because fp is irreducible modulo 2.
Let π be a root of fp in K, let π̄ = p/π, and let α = π + π̄. We calculate that

α2 + α− 1 = 0, so K contains the quadratic field K+ = Q(
√

5). We obtain K from
K+ by adjoining a root of y2 − αy + p, and since the discriminant α2 − 4p is totally
negative (because the images of α2 in the real numbers are both smaller than 3), K
is a CM field and our claim is verified.
The narrow class number of Q(

√
5) is 1, so every quadratic extension of K+ is

ramified at a finite prime. Since fp is irreducible modulo 2, the prime 2 is inert in
the extension K/Q and in particular the unique even prime of K+ is not ramified
in K/K+. This means that K/K+ is ramified at an odd prime.
Let Rp and Sp be the minimal ring and minimal stratum of Cp, and let Pp be

the number of isomorphism classes of principally polarized varieties in Sp. The
ring Rp is convenient by Corollary 3.2. The real order R+

p is maximal and so has
trivial conductor, and since K/K+ is ramified at an odd prime, we again find from
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Corollary 4.4 that the norm map PicRp → Pic+ R+
p is surjective. The ramification

of K/K+ at an odd prime, together with Corollary 1.2, tells us that Pp = h−Rp
.

We have ∣∣∣∆Rp

∣∣∣ =
∣∣∣NK/Q(π − π̄)

∣∣∣∆2
R+

p
=
(
16p2 − 12p+ 1

)
· 25

so that ∣∣∣∆Rp/∆R+
p

∣∣∣ = 5
(
16p2 − 12p+ 1

)
.

Theorem 5.2 then tells us that as p→∞ we have Pp ∼∼∼ p. �

Example 7.3. — For every prime p that is congruent to 7 modulo 8, let cp be the
largest integer less than 2√p− 1, and let fp be the polynomial

fp = x4 + (1− 2cp)x3 +
(
2p+ c2

p − cp − 1
)
x2 + p (1− 2cp)x+ p2.

Once more we claim that fp is the Weil polynomial of a simple ordinary isogeny class
Cp over Fp, and again we prove this by showing that the algebra K = Q[x]/(fp) is a
CM field and that the middle coefficient of fp is coprime to p.
Let π be the image of the polynomial variable x in K, let π̄ = p/π, and let

α = π + π̄. We check that
α2 − (2cp − 1)α +

(
c2
p − cp − 1

)
= 0,

so α = cp − ϕ, where ϕ ∈ K+ satisfies ϕ2 − ϕ − 1 = 0. Once again we see that
K contains the quadratic field K+ = Q(

√
5). The algebra K is obtained from K+

by adjoining a square root of α2 − 4p. This quantity is totally negative, so K is a
CM field.
For p < 100, explicit computation shows that the middle coefficient of fp is coprime

to p. For p > 100, we write cp = 2√p− ε for a real number ε in the interval (1, 2),
and we compute that the middle coefficient of fp is equal to

6p− (4ε+ 2)√p+ ε2 + ε− 1.
This lies strictly between 5p and 6p, so the middle coefficient is not a multiple of p
for these primes as well. Thus fp is the Weil polynomial of a simple ordinary isogeny
class Cp of abelian surfaces over Fp.
Let Rp be the minimal order of Cp. Arguing as in Example 7.2 we find that R+

p

is the maximal order of Q(
√

5) and that K/K+ is ramified at an odd prime. If we
let Pp denote the number of isomorphism classes of principally polarized varieties in
the minimal stratum of Cp, then once again we have that Pp = h−Rp

.
Writing cp = 2√p− ε for some ε ∈ (1, 2), we compute that∣∣∣NK/Q(π − π̄)

∣∣∣ = NK+/Q

(
α2 − 4p

)
= c4

p − 2c3
p − (8p+ 1)c2

p + (8p+ 2)cp +
(
16p2 − 12p+ 1

)
= ε4 −

(
8√p− 2

)
ε3 +

(
16p− 12√p− 1

)
ε2

+
(
16p+ 4√p− 2

)
ε−

(
16p− 4√p− 1

)
.
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If we view this expression as a function of ε, we find that the extreme values of the
function on the interval [1, 2] are attained at the endpoints, and it follows that

16p− 12√p+ 1 <
∣∣∣NK/Q(π − π̄)

∣∣∣ < 80p− 100√p+ 25.
Since |∆Rp/∆R+

p
| = |NK/Q(π − π̄)|∆R+

p
and ∆R+

p
= 5 and p > 7, we find that

58p <
∣∣∣∆Rp/∆R+

p

∣∣∣ < 400p,

so Theorem 5.2 says that as p→∞ we have Pp ∼∼∼ p1/2. �

Remark 7.4. — In Example 7.1, one of the two Frobenius angles of the isogeny
classes approaches 0, while the other remains near τ/4. In Example 7.2, the two
Frobenius angles both approach τ/4. And in Example 7.3, both Frobenius angles
approach 0.
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