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180 M. FAIRON

Résumé. — Les algèbres de (quasi-)Poisson doubles ont été introduites par Van den Bergh
comme des analogues non-commutatifs d’algèbres munies d’un crochet de (quasi-)Poisson.
Dans ce travail, nous produisons une étude des morphismes d’algèbres de (quasi-)Poisson
doubles, que nous relions aux structures H0-Poisson de Crawley–Boevey. Nous prouvons en
particulier que la structure d’algèbre de (quasi-)Poisson double définie par Van den Bergh
pour un carquois arbitraire dépend seulement du carquois vu comme un graphe non-dirigé,
à isomorphisme près. Nous dérivons de nos résultats une description issue de la théorie des
représentations de la dualité action-angle pour plusieurs systèmes intégrables classiques.
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1. Introduction

In the seminal paper [VdB08a], Van den Bergh laid the foundation of a noncom-
mutative theory of Poisson geometry based on double brackets. Starting with an
algebra A over a field of characteristic zero k, he introduced the concept of a double
bracket as an operation A×A→ A⊗A satisfying noncommutative rules of derivation
and antisymmetry; this is done in such a way that the corresponding affine scheme
of representations Rep(A, n) carries an antisymmetric biderivation for each n > 1.
An interesting class of those structures are double Poisson brackets, which satisfy a
version of Jacobi identity valued in A⊗3 so that Rep(A, n) is now endowed with a
Poisson bracket, in agreement with the “non-commutative principle” of Kontsevich
and Rosenberg [Kon93, KR00]. In fact, pushing this principle even further, Van den
Bergh pointed out that the existence of a distinguished element on A permits to
understand the process of Hamiltonian reduction of Rep(A, n) with respect to the
natural action of GLn(k) directly at the level of the algebra A. Due to this represen-
tation theoretic perspective, it seems interesting to examine the algebras endowed
with a double Poisson bracket, which are called double Poisson algebras. They have
been the object of several studies [Bie13, ORS13, ORS14, Pow16, PVdW08, VdW08],
and our aim is to explore morphisms between double Poisson algebras. Noting that
Van den Bergh also introduced the analogous notion of double quasi-Poisson brack-
ets [VdB08a, VdB08b], it is natural to extend our investigation to morphisms between
the corresponding algebras, called double quasi-Poisson algebras, which currently
attract attention [Art18, CF17, CF20, Fai19a, Fai19b, Fai21, FH21, MT14].
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Morphisms of double (quasi-)Poisson algebras and action-angle duality 181

A rich family of double (quasi-)Poisson algebras is associated with quivers [VdB08a]
and encodes the Poisson geometry of quiver varieties [Nak94] as well as their mul-
tiplicative analogues [CBS06]. These varieties possess ramifications in numerous
branches of mathematics (see e.g. [Gin12, Kir16, Sch08] for quiver varieties), in
particular in the field of integrable systems. Indeed, in the complex setting it is
known since 1998 and the work of Wilson [Wil98] that the phase space of the
Calogero–Moser system can be realised as a quiver variety. Moreover, similar con-
structions of phase spaces as quiver varieties have been obtained for other related
systems [BP11, CS17, Tac15], and they have been extended to Ruijsenaars–Schneider
systems using multiplicative quiver varieties [CF17, CF20, Fai19a, Fai19b]. Some of
these papers used the formalism of double brackets to grasp features of integrability
directly on the path algebra of the relevant quivers. Thus, it raises the question
of determining if additional properties of these integrable systems can be realised
at the level of the quivers. This issue constitutes the main motivation behind our
work, as we want to present a novel interpretation of action-angle duality, which we
explain now.
LetM andM ′ be two manifolds of dimension 2n endowed with non-degenerate Pois-

son brackets such that the n functions H,H ′ on M,M ′ define (Liouville) integrable
systems, i.e. H and H ′ form sets of n functionally independent Poisson-commuting
elements. Let us furthermore assume that on a dense open subset of each manifold,
there exist canonical Darboux coordinates (q, p) or (q′, p′), and that there exists a
Poisson diffeomorphism Ψ : M →M ′ such that (after restriction to dense subspaces)
H ′ ◦Ψ only depends on the coordinates q, while H ◦Ψ−1 only depends on the coor-
dinates q′. Due to the assumptions, we get action-angle variables(1) as follows. The
coordinates q′ become the action coordinates of H while the coordinates p′ become
the angle coordinates of H, and the same is true for q, p and H ′. We thus say that
the pairs (M,H) and (M ′, H ′) are action-angle duals. This construction has been
largely investigated for systems of Calogero–Moser and Ruijsenaars–Schneider type
following the pioneering work of Ruijsenaars [Rui88]. A widespread method used to
unearth action-angle duality is the existence of two different slices in a suitable orbit
space defined by Hamiltonian reduction, such that each slice provides one of the
two sets of Darboux coordinates. This approach is inspired by the work of Kazhdan,
Kostant and Sternberg [KKS78], and it has been considered both in the complex
and the real settings, see [FM19, FGNR00, Pus12, Res16] and references therein.
One of the aims of this work is to obtain a different point of view on duality where

representation theoretic considerations yield the action-angle map. Indeed, in view
of the previous paragraphs, many classical integrable systems for which action-angle
duality is known are defined on (multiplicative) quiver varieties. This leads us to the
following natural question(2) :

(1)By action-angle variables, we mean the existence of a set of 2n Darboux coordinates on a dense
subspace of the manifold such that the integrable system only depends on the first n coordinates,
the action variables. This ensures that the Hamiltonian flows are linearised with respect to the last
n coordinates, the angle variables.
(2)This formulation is close to the original question posed to the author by V. Rubtsov at the
conference Geometric aspects of momentum maps and integrability in Ascona, April 2018.
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182 M. FAIRON

Is it possible to understand action-angle duality in terms of relevant quivers?
We end this work by answering this question positively in Section 6, as we note

that action-angle duality can be realised at the level of quivers simply as a map
“reversing arrows”. This is, for example, the case for the well-known duality between
the hyperbolic Calogero–Moser system and the rational Ruijsenaars–Schneider sys-
tem (see § 6.2), or the self-duality of the hyperbolic Ruijsenaars–Schneider system
(see § 6.4). Note that this simple point of view also allows to derive new instances
of action-angle duality for a generalisation of the rational Calogero–Moser system
due to Chalykh and Silantyev [CS17] (see § 6.1), or a modification of the hyperbolic
Ruijsenaars–Schneider system obtained jointly with Chalykh in [CF17] (see § 6.3).
The main tool needed to provide a precise construction of the action-angle duality

maps is a study of morphisms of double (quasi-)Poisson algebras, which forms the
core of this text. We will deduce from this formalism the following important result.
Theorem 1.1 (See Theorems 3.12 and 4.12). — Up to isomorphism, the double

(quasi-)Poisson algebra associated with a quiver by Van den Bergh [VdB08a] only
depends on the underlying quiver seen as an undirected graph.
There exists a different notion of non-commutative Poisson structures due to

Crawley–Boevey [CB11], called H0-Poisson structure, and we will show that mor-
phisms of double (quasi-)Poisson algebras induce morphisms ofH0-Poisson structures.
If we work over an algebraically closed field of characteristic zero, we will note as part
of Proposition 5.9 that a morphism of H0-Poisson structures induces a Poisson mor-
phism between the rings of invariant functions on the corresponding moduli spaces
of representations. Using the latter result for the H0-Poisson structures induced by
the double Poisson algebra structures considered in Theorem 1.1, we obtain the
well-known statement that a quiver variety only depends on the quiver seen as an
undirected graph (for fixed dimension vector and parameter of the moment map).
Using the double quasi-Poisson algebra structures of Van den Bergh instead, we get
the same statement for multiplicative quiver varieties, which can be attributed to
Yamakawa [Yam08]. Therefore, such Poisson isomorphisms of (multiplicative) quiver
varieties have a non-commutative origin given by Theorem 1.1. This will be the key
observation that we shall need to construct explicitly the Poisson isomorphisms that
yield the action-angle duality maps that were mentioned earlier.
Let us finish by remarking a side result of the present work, which relates to the

study of noncommutative algebras in their own right. We will establish that all the
automorphisms of the first Weyl algebra A1 and the quantum torus Cc

1 (see § 5.2 for
definitions) are induced by isomorphisms of double (quasi-)Hamiltonian algebras.

Outline of the paper

In Section 2, we introduce double brackets [VdB08a] and their morphisms. We
also review the notion of fusion, which allows to identify idempotents in an algebra
and which preserves double brackets. In Section 3, we study morphisms of double
Poisson algebras, and their relation to fusion. This investigation ends up with Theo-
rem 3.12 where we obtain that Van den Bergh’s double Poisson algebras associated
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with quivers are independent of the orientation of the underlying quivers. The lat-
ter section sets the stage for Section 4 where we provide a non-trivial adaptation
of the previous results to the case of double quasi-Poisson algebras, and to a sub-
class of these algebras associated with quivers, see Theorem 4.12. In Section 5, we
introduce H0-Poisson structures following Crawley–Boevey [CB11], and we explain
how morphisms of double (quasi-)Poisson algebras yield morphisms of H0-Poisson
structures. We describe how they induce Poisson morphisms on moduli spaces of
representations. Finally, we deal with the action-angle duality of various integrable
systems in Section 6 using several results that are derived throughout the paper.
There are three appendices containing ancillary statements and proofs.

Acknowledgements

I thank V. Rubtsov for raising the question that motivated this work, and L. Fehér
for useful comments. I am grateful to the reviewers for their numerous suggestions
and questions which helped to improve the presentation of this paper.

2. Basic definitions

Throughout the paper, k is a field of characteristic 0, and we write ⊗ = ⊗k.
A k-algebra is always assumed to be associative, unital and finitely generated. We
use d = d′ ⊗ d′′ ∈ A⊗ A as a shorthand way for Sweedler’s notation d = ∑

i d
′
i ⊗ d′′i .

If A,B are k-algebras, we say that A is a B-algebra if there is a morphism of
k-algebras B → A. We only consider the following special case throughout the
text: if the unit in A admits a decomposition in terms of a finite set of orthogonal
idempotents (es)s∈ I , i.e.

(2.1) 1 =
∑
s∈ I

es , eset = δstes , |I| ∈ N× ,

we view A as a B-algebra for
(2.2) B = ⊕s∈ Ikes .

2.1. Double brackets

We closely follow the exposition [Fai21] of the work of Van den Bergh [VdB08a]. Let
A be a k-algebra. A double bracket on A is a k-bilinear map {{−,−}}: A×A→ A⊗A
satisfying
(2.3) {{a, b}} = −{{b, a}}◦ for all a, b ∈ A , (cyclic antisymmetry)
where (−)◦ denotes the permutation of factors in A⊗ A, together with
(2.4) {{a, bc}} = {{a, b}} c+ b {{a, c}} for all a, b, c ∈ A . (right derivation rule)
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184 M. FAIRON

Here, the multiplication refers to the outer A-bimodule structure on A⊗ A, that is
if d ∈ A⊗2, then we have a d b = (ad′) ⊗ (d′′b). Assuming that (2.3) holds, one can
easily check that (2.4) is equivalent to
(2.5) {{bc, a}} = {{b, a}} ∗ c+ b ∗ {{c, a}} for all a, b, c ∈ A , (left derivation rule)
where we use the inner A-bimodule structure on A⊗A, i.e. a ∗ d ∗ b = (d′b)⊗ (ad′′).
As a consequence of the derivation rules, it suffices to define double brackets on
generators of A.
Given a double bracket, we can define an operation A×3 → A⊗3 by setting

(2.6)

{{a, b, c}} =
{{
a, {{b, c}}′

}}
⊗ {{b, c}}′′

+ τ(123)
{{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

+ τ 2
(123)

{{
c, {{a, b}}′

}}
⊗ {{a, b}}′′ for all a, b, c ∈ A .

(Here, we define τ(123) : A⊗3 → A⊗3 by τ(123)(a1 ⊗ a2 ⊗ a3) = a3 ⊗ a1 ⊗ a2.) The
map (2.6) is an instance of triple bracket, that is a k-trilinear map, which satisfies a
generalisation of the cyclic antisymmetry (2.3)
(2.7) τ(123) ◦ {{−,−,−}} ◦ τ−1

(123) = {{−,−,−}} ,
and which is a derivation in its last argument for the outer A-bimodule structure
of A⊗3.
When we see A as a B-algebra for B given as in (2.2), it is convenient to work

in the relative setting. In such a case, we assume that the double bracket {{−,−}}
vanishes whenever one of its entries is taken in B. We then say that the double
bracket is B-linear. Equivalently, B-linearity can be stated as having a morphism
of B-bimodules {{a,−}} : A → A ⊗ A for any a ∈ A, where we use the outer B-
bimodule structure on A⊗ A. Note that if a = eraaesa ∈ A and b = erbbesb ∈ A for
ra, rb, sa, sb ∈ I, the derivation rules and B-linearity yield
(2.8) {{a, b}} ∈ erbAesa ⊗ eraAesb .

2.1.1. Morphisms of double brackets

Let A1,A2 be B-algebras endowed with B-linear double brackets {{−,−}}1,{{−,−}}2.
We say that φ : A1 → A2 is a morphism of double brackets if it is a B-algebra
homomorphism such that for any a, b ∈ A1

(2.9) {{φ(a), φ(b)}}2 = (φ⊗ φ) {{a, b}}1 .

We say that φ is an isomorphism (of double brackets) if it is also an isomorphism
of B-algebras. In that case, the inverse φ−1 : A2 → A1 is a morphism of double
brackets.

Example 2.1. — The algebra A = k〈x, y〉 can be endowed with two k-linear double
brackets, denoted {{−,−}}1 , {{−,−}}2, which are defined on generators by

{{x, x}}1 = 0 = {{x, x}}2 , {{y, y}}1 = 0 = {{y, y}}2 ,

{{x, y}}1 = 1⊗ 1, {{x, y}}2 = −1⊗ 1.
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The automorphism x 7→ y, y 7→ x defines an isomorphism of double brackets
(A, {{−,−}}1) → (A, {{−,−}}2). More generally, assume that A1 is equipped with a
B-linear double bracket {{−,−}}, and fix an isomorphism of B-algebras φ : A1 → A2.
Then we get a B-linear double bracket on A2 defined by

{{−,−}}2 = (φ⊗ φ) ◦ {{−,−}}1 ◦
(
φ−1 × φ−1

)
,

and φ naturally becomes an isomorphism of double brackets.

2.2. Morphisms and fusion

2.2.1. Fusion

Following Van den Bergh [VdB08a, § 2.5], we assume thatA is aB-algebra such that
there exist orthogonal idempotents e1, e2 ∈ B, and we construct the fusion algebra
Afe2→ e1 obtained by fusing e2 onto e1 as follows. (When the choice of idempotents is
clear from the context, we simply write Afe2→ e1 as Af .)
First, we extend the algebra A along the pair (e1, e2) by adjoining generators

e12, e21 satisfying the usual matrix relations. Namely,

(2.10) Ā = A ∗ke1⊕ ke2⊕ k ê (Mat2(k)⊕ kê) ,

where ê = 1 − e1 − e2, and Mat2(k) is seen as the k-algebra generated by e1 =
e11, e12, e21, e2 = e22 with esteuv = δtuesv. Applying the same construction to B, we
can introduce B̄ which is such that Ā = A ∗B B̄.
Second, we consider the algebra Af constructed from Ā by dismissing elements of

e2Ā + Āe2. We call Af the fusion algebra of A obtained by fusing e2 onto e1. It is
explicitly given by

(2.11) Af = εĀε , for ε = 1− e2 .

By construction, Af is a Bf -algebra for Bf = εB̄ε. Using the map

(2.12) A→ Af : a 7→ af := εaε+ e12ae21 + e12aε+ εae21 ,

we can get a convenient set of generators in Af , as observed in [VdB08a, § 5.3].

Lemma 2.2. — Generators of Af can be chosen to be of the following four types:

(first type) tf = t , t ∈ εAε ,(2.13a)
(second type) uf = e12u , u ∈ e2Aε ,(2.13b)

(third type) vf = ve21 , v ∈ εAe2 ,(2.13c)
(fourth type) wf = e12we21 , w ∈ e2Ae2 .(2.13d)
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186 M. FAIRON

2.2.2. Fusion and quivers

We fix some terminology related to quivers, i.e. directed graphs, which will be
used throughout the text. A quiver Q consists of a vertex set I and an arrow set
{a ∈ Q}. We define the head and tail maps h, t : Q → I which assign to any
arrow a its head (ending vertex) h(a) and its tail (starting vertex) t(a). In other
words, a : t(a) → h(a). The double Q̄ of Q is obtained by adding to Q the arrows
a∗ : h(a) → t(a) for each a ∈ Q. We then extend t, h to Q̄ and, if we extend the
map a→ a∗ defined on Q ⊂ Q̄ to Q̄ by setting (a∗)∗ = a for a∗ ∈ Q̄ \Q, we see that
h(a) = t(a∗) for each a ∈ Q̄. The path algebra kQ of a quiver Q is generated by
symbols es for s ∈ I, and a ∈ Q, subject to the relations eset = δstes, a = et(a)aeh(a)
(this implies that we read paths from left to right), where the multiplication is given
by concatenation of paths.
Let us now see what is the meaning of fusion on a quiver. Fix a quiver Q with

vertex set I = {1, . . . , k} for some k > 2. The path algebra kQ of Q is an algebra
over B = ⊕s∈ Ikes, where es denotes the idempotent attached to the sth vertex. We
can form the algebra (kQ)f as in § 2.2.1 obtained by fusing e2 onto e1. We can see
that (kQ)f is an algebra over Bf = ⊕s∈ I \ {2}kes generated by the following elements

a with a ∈ Q such that t(a), h(a) 6= 2 ,
e12a with a ∈ Q such that t(a) = 2, h(a) 6= 2 ,
ae21 with a ∈ Q such that t(a) 6= 2, h(a) = 2 ,
e12ae21 with a ∈ Q such that t(a), h(a) = 2 ,

which are images of the arrows in Q, of the four types given in Lemma 2.2. At the
same time, we can form the quiver Qf with vertex set If = I \{2} by fusing together
the vertices 1 and 2 in Q. The corresponding path algebra k(Qf ) is easily identified
with (kQ)f , so that the fusion operation is the analogue at the level of the path
algebras of identifying two vertices in a quiver.

Remark 2.3. — By repeatedly using the construction from § 2.2.1, we can obtain
an algebra from A by identification of several idempotents. Note that there is a direct
way to define this algebra using quivers (with relations), see [Brü01, § 2.1]. We will
not follow this more general approach due to technicalities arising when performing
fusion in double quasi-Poisson algebras, see Proposition 4.5.

2.2.3. Fusion and double brackets

We now assume that A is endowed with a B-linear double bracket. As noted
in [VdB08a, § 2.5], the double bracket uniquely extends from A to Ā by requiring it
to be B̄-linear, and it can then be restricted to Af . If af , bf ∈ Af are two generators
as in Lemma 2.2, there exists a, b ∈ A and ea, eb ∈ {ε, e12}, fa, fb ∈ {ε, e21}, such
that af = eaafa, bf = ebbfb. We can then define the double bracket induced by A
onto Af using the following identity

(2.14)
{{
af , bf

}}
= eb {{a, b}}′ fa ⊗ ea {{a, b}}′′ fb .
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In (2.14), the double bracket on the left-hand side is the one induced in Af , while
the double bracket on the right-hand side is the original one defined in A.
The next result shows that, up to isomorphism, the fusion algebra and its induced

double bracket only depend on the unordered choice of idempotents {e1, e2}.

Lemma 2.4. — Let A1 = Afe2→ e1 be the fusion algebra obtained by fusing e2 onto
e1, and let A2 = Afe1→ e2 be the fusion algebra obtained by fusing e1 onto e2. Then,
the identity map on A induces an isomorphism of double brackets A1 → A2.

Proof. — We let ê = 1 − e1 − e2 and note that A1 = (1 − e2)Ā(1 − e2) and
A2 = (1 − e1)Ā(1 − e1). We can define a map φ : A1 → A2 which is given on
generators of first type (2.13a) as

φ(t) = t, if t ∈ êAê ; φ(t) = e21t, if t ∈ e1Aê ;
φ(t) = te12, if t ∈ êAe1 ; φ(t) = e21te12, if t ∈ e1Ae1 ;

on generators of second type (2.13b) as

φ(e12u) = u, if u ∈ e2Aê ; φ (e12u) = ue12, if u ∈ e2Ae1 ;

on generators of third type (2.13c) as

φ(ve21) = v, if v ∈ êAe2 ; φ(ve21) = e21v, if v ∈ e1Ae2 ;

on generators of fourth type (2.13d) as

φ (e12we21) = w, if w ∈ e2Ae2.

The map φ is easily seen to be the image of the identity under the two projections
π1 : A→ A1, π2 : A→ A2 given by (2.12), i.e. φ ◦ π1 = π2 ◦ idA. Moreover, swapping
the labels 1, 2 provides the inverse of φ. Thus, we only need to check that it is a
morphism of double brackets.
We can decompose A as ⊕i, j= 0, 1, 2 e

′
iAe

′
j if we set e′0 = ê and e′i = ei for i = 1, 2.

Without loss of generality, take a, b ∈ A belonging to one of these subsets. Then,
there exists e1

a, e
1
b ∈ {e12, e1, ê}, f 1

a , f
1
b ∈ {e21, e1, ê}, such that under the projection

π1 the elements e1
aaf

1
a and e1

bbf
1
b are generators of A1, see Lemma 2.2.

In the same way, there exists e2
a, e

2
b ∈ {e21, e2, ê}, f 2

a , f
2
b ∈ {e12, e2, ê}, such that

the elements e2
aaf

2
a and e2

bbf
2
b obtained from the projection π2 are generators of A2.

In particular, φ ◦ π1 = π2 implies that

φ
(
e1
a

)
= e2

a, φ
(
e1
b

)
= e2

b , φ
(
f 1
a

)
= f 2

a , φ
(
f 1
b

)
= f 2

b .

Using the identity (2.14) for the double bracket {{−,−}}k induced by {{−,−}} in
Ak for k = 1, 2, we get{{

ekaaf
k
a , e

k
b bf

k
b

}}
k

= ekb {{a, b}}
′ fka ⊗ eka {{a, b}}

′′ fkb ,

where the double bracket on the right-hand side is taken in A. We can then directly
see that (2.9) is satisfied. �

Fusion also preserves morphisms of double brackets.
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Lemma 2.5. — Let φ : A1 → A2 be a morphism of double brackets over B.
Let Af1 = (A1)fe2→ e1 , A

f
2 = (A2)fe2→ e1 , be the fusion algebras with double brackets

obtained by fusing e2 onto e1. Then φ induces a morphism of double brackets φf :
Af1 → Af2 .

Proof. — Recall that Af1 is generated by elements af = eaafa for a ∈ A1 and
ea ∈ {ε, e12}, fa ∈ {ε, e21}. We can then set

(2.15) φf : Af1 → Af2 : af = eaafa 7→ φf
(
af
)

= eaφ(a)fa .

For k = 1, 2, let {{−,−}}k and {{−,−}}
f
k be respectively the double bracket on Ak and

its induced double bracket on Afk . We have for any two generators af = eaafa, b
f =

ebbfb ∈ Af1 as described above that{{
φf
(
af
)
, φf

(
bf
)}}f

2
= eb {{φ(a), φ(b)}}′2 fa ⊗ ea {{φ(a), φ(b)}}′′2 fb

= ebφ
(
{{a, b}}′1

)
fa ⊗ eaφ

(
{{a, b}}′′1

)
fb

=
(
φf ⊗ φf

)
eb {{a, b}}′1 fa ⊗ ea {{a, b}}

′′
1 fb

=
(
φf ⊗ φf

) {{
af , bf

}}
1
.

Here, we used formula (2.14) in Af2/Af1 for the first/last equality, the morphism
property (2.9) in the second equality, and the definition of φf for the remaining
equality. �

In Lemma 2.5, it is clear that if φ is an isomorphism, then so is φf . For the
remainder of this text, we omit to mention such an extension to the case of an
isomorphism in analogous results.

2.2.4. Identification of idempotents in different algebras

Let A1 and A2 be algebras endowed with double brackets respectively over B1 and
B2, and consider A1 ⊕ A2 as a (B1 ⊕B2)-algebra. It is easy to see that there exists
a unique (B1 ⊕B2)-linear double bracket {{−,−}}⊕ on A1 ⊕ A2 extending {{−,−}}1
and {{−,−}}2, while it is such that {{c1, c2}}⊕= 0 whenever c1 = (a1, 0), c2 = (0, a2),
with a1 ∈ A1, a2 ∈ A2.
For any idempotents e1 ∈ B1 and e2 ∈ B2, we can form the fusion algebra

(A1 ⊕ A2)fe2→ e1 by fusing e2 onto e1. This algebra inherits a (B1 ⊕ B2)fe2→ e1-linear
double bracket as noted in § 2.2.3.

Example 2.6 (Extension by a central element). — Let A be a k-algebra equipped
with a double bracket {{−,−}}. Let k〈y〉 be equipped with the trivial double bracket
{{y, y}} = 0. If we identify the units of these two algebras embedded as (1, 0), (0, 1)
inside A⊕ k〈y〉, the fusion algebra A+ := A ∗k k〈y〉 hence obtained is endowed with
the double bracket {{−,−}}+ given for any a, b ∈ A by {{a, b}}+= {{a, b}}, {{a, y}}+= 0
and {{y, y}}+= 0. (Note that if {{−,−}} is Poisson in the sense of Section 3, then
(A+, {{−,−}}+) is a double Poisson algebra.)
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3. Morphisms of double Poisson algebras

As in Section 2, all algebras are over B = ⊕
s∈ I kes. We will frequently identify I

with {1, . . . , |I|} ⊂ N.

3.1. Basic definitions and properties

3.1.1. Definitions

Following Van den Bergh [VdB08a], a double Poisson bracket {{−,−}} on A is a
double bracket for which the associated triple bracket {{−,−,−}} defined by (2.6)
identically vanishes. In such a case, we say that (A, {{−,−}}) (or simply A) is a
double Poisson algebra. An element µs ∈ esAes is said to satisfy the additive property
for es if, for any a ∈ A, we have
(3.1) {{µs, a}} = aes ⊗ es − es ⊗ esa .
Then, we define a moment map as an element µ = ∑

s∈ I µs with µs ∈ esAes such
that for all s ∈ I we have that µs satisfies the additive property for es (3.1). Note in
particular that esµet = δstµs for each s, t ∈ I. We call the triple (A, {{−,−}}, µ) (or
simply A if no confusion can arise) a Hamiltonian algebra.
Let A1, A2 be B-algebras with B-linear double brackets {{−,−}}1, {{−,−}}2. If

φ : A1 → A2 is a morphism of double brackets and A1, A2 are double Poisson
algebras, we say that φ is a morphism of double Poisson algebras. If furthermore
A1, A2 are Hamiltonian algebras with respective moment maps µ1, µ2 satisfying
φ(µ1) = µ2, we say that φ is a morphism of Hamiltonian algebras.
Example 3.1. — Consider the quiver Q with vertices {1, 2} and one arrow a : 1→

2. Let Q̄ be its double obtained by adding the arrow a∗ : 2→ 1. Put B = ke1 ⊕ ke2.
Following Van den Bergh [VdB08a, § 6.3], the path algebra kQ̄ is a Hamiltonian
algebra for the B-linear double bracket given on generators by
(3.2) {{a, a}}1 = 0 , {{a∗, a∗}}1 = 0 , {{a, a∗}}1 = e2⊗ e1 , {{a∗, a}}1 = −e1⊗ e2 ,

and the moment map µ = [a, a∗]. The moment map can be decomposed as µ1 = aa∗,
µ2 = −a∗a. (See § 2.2.2 for the conventions that we follow with respect to quivers.)
Similarly, consider the quiver Qop with vertices {1, 2} and one arrow b : 2 → 1,

and let Q̄op be its double with new arrow b∗ : 1 → 2. We can also consider Van
den Bergh’s Hamiltonian structure on kQ̄op which is given by the B-linear double
bracket
(3.3) {{b, b}}2 = 0 , {{b∗, b∗}}2 = 0 , {{b, b∗}}2 = e1 ⊗ e2 , {{b∗, b}}2 = −e2 ⊗ e1 ,

with moment map µ′ = [b, b∗]. We can see that φ : kQ̄ → kQ̄op given by φ(a) = b∗,
φ(a∗) = −b, is an isomorphism of B-algebras. One readily checks that

φ⊗2 {{a, a}}1 = 0 = {{b∗, b∗}}2 , φ⊗2 {{a∗, a∗}}1 = 0 = {{b, b}}2 ,

φ⊗2 {{a, a∗}}1 = e2 ⊗ e1 = {{b∗,−b}}2 ,

and φ(µ) = µ′. Hence, φ is an isomorphism of Hamiltonian algebras.
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3.1.2. First properties

The next result shows how injectivity or surjectivity of a morphism of double
brackets can guarantee that it is a morphism of double Poisson (resp. Hamiltonian)
algebras.
Lemma 3.2. — Let φ : A1 → A2 be a morphism of double brackets.
(1) Assume that φ is surjective as a B-algebra homomorphism.

(a) If A1 is a double Poisson algebra, then A2 is a double Poisson algebra.
(b) If A1 is a Hamiltonian algebra, then A2 admits a structure of Hamiltonian

algebra such that φ is a morphism of Hamiltonian algebras.
(2) Assume that φ is injective as a B-algebra homomorphism.

(a) If A2 is a double Poisson algebra, then A1 is a double Poisson algebra.
(b) If A2 is a Hamiltonian algebra with moment map µ′ such that µ′ ∈ Im(φ),

then A1 admits a structure of Hamiltonian algebra such that φ is a
morphism of Hamiltonian algebras.

(3) All the structures obtained in (1)–(2) are unique.
Proof. — First, let us consider for 1 6 i 6 3 the element a1, i ∈ A1, with image

a2, i := φ(a1, i) ∈ A2. If we denote by σ the permutation (123), we get by (2.6)
and (2.9)

{{a2, 1, a2, 2, a2, 3}}2

=
∑
i∈Z3

τ iσ

{{
φ
(
a1, σi(1)

)
,
{{
φ
(
a1, σi(2)

)
,φ
(
a1, σi(3)

)}}′
2

}}
2
⊗
{{
φ
(
a1, σi(2)

)
, φ
(
a1, σi(3)

)}}′′
2

=
∑
i∈Z3

τ iσ (φ⊗ φ⊗ φ)
{{
a1, σi(1),

{{
a1, σi(2), a1, σi(3)

}}′
1

}}
1
⊗
{{
a1, σi(2), a1, σi(3)

}}′′
1

= (φ⊗ φ⊗ φ) {{a1, 1, a1, 2, a1, 3}}1 .

This yields in particular the identity of associated triple brackets
(3.4) (φ⊗ φ⊗ φ) ◦ {{−,−,−}}= {{−,−,−}}◦(φ× φ× φ) .
(1.a) If {{−,−}} is Poisson, {{−,−,−}} vanishes and (3.4) yields that {{−,−}} is

Poisson.
(1.b) Since A1 has a moment map µ = ∑

s µs, the element φ(µ) = ∑
s φ(µs) is a

moment map. Indeed, for any s ∈ I
{{φ(µs), a2, 1}}2 =(φ⊗ φ) {{µs, a1, 1}}1

=(φ⊗ φ) (a1, 1es ⊗ es − es ⊗ esa1, 1) = a2, 1es ⊗ es − es ⊗ esa2, 1 ,

where we have used that µs satisfies the additive property for es with respect
to {{−,−}}.

(2.a-b) This is similar, and we need the fact that φ⊗2, φ⊗3 are injective.
(3) The uniqueness of the structures is a consequence of the constructions. �

Given a double Poisson algebra (A, {{−,−}}), we introduce the set of Casimir
elements of A by
(3.5) Cas(A) = {a ∈ A|{{a, b}} = 0 for all b ∈ A } .
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In the case of a B-linear double bracket, we have that B ⊂ Cas(A).

Lemma 3.3. — Let φ : A1 → A2 be an isomorphism of double Poisson algebras.
If A1, A2 are Hamiltonian algebras with moment maps µ1, µ2, then µ2 − φ(µ1) ∈ B
and Cas(A1) = Cas(A2) = B. In particular, a moment map is unique up to the
addition of an element of B.

Proof. — Let us decompose µ1 ∈ A1 with the idempotents as ∑s∈ I µ1, s and do
the same for µ2 ∈ A2. We first note that for any s ∈ I, due to the additive property
for es (3.1), we have for any a ∈ A2 that

{{µ2, s − φ (µ1, s) , a}}2 = {{µ2, s, a}}2 − φ
⊗2
{{
µ1, s, φ

−1(a)
}}

1
= 0 .

Thus, µ2, s − φ(µ1, s) ∈ Cas(A2) by definition.
Let us now show that Cas(A1) ⊂ B, since we already know the opposite inclusion

(the case of A2 is obtained in the same way). If c ∈ Cas(A1), we have for any s ∈ I
that

0 = {{µ1,s, c}} = ces ⊗ es − es ⊗ ces ,
where we used in the first equality that {{−, c}}1= 0 because c is a Casimir element,
while in the second we use the property (3.1) of the moment map. This equality
implies that ces = λses = esc for some λs ∈ k, thus c = ∑

s∈ I λses ∈ B.
For the second part of the statement, it suffices to consider φ = idA1 : A1 → A1. �
Note that, in general B ( Cas(A). For example, any B-algebra A can be endowed

with the zero double bracket, which is Poisson and such that Cas(A) = A. This does
not contradict Lemma 3.3 since the zero double Poisson bracket does not admit a
moment map (except if A = B).

3.1.3. Sum of double Poisson algebras

Recall that we considered the sum of two double brackets in § 2.2.4. The following
result holds in the presence of double Poisson brackets.

Lemma 3.4 ([VdB08a]). — If A1 and A2 are endowed with double Poisson brack-
ets, then the double bracket {{−,−}}⊕ on A1 ⊕A2 defined in § 2.2.4 is Poisson. If µ1
and µ2 are moment maps in A1 and A2, then A1 ⊕ A2 is Hamiltonian with (µ1, µ2)
as moment map.

3.2. Double Poisson brackets and fusion

We assume that the index set I of B is such that |I| > 1.

3.2.1. Fusion in an algebra

Recall the fusion algebra Af = Afe2→ e1 defined in § 2.2.1. We noted in § 2.2.3 that
if A is endowed with a double bracket, then Af has an induced double bracket.
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Proposition 3.5 ([VdB08a, Corollary 2.5.6, Proposition 2.6.6]). — If A is a
double Poisson algebra over B, then Af equipped with the induced double bracket
is a double Poisson algebra over Bf = ⊕

s∈ I\{2} kes. Furthermore, if µ is a moment
map for A, then its projection µf under the map (2.12) is a moment map for Af .

Example 3.6. — Consider the path algebra A = kQ̄ analysed in Example 3.1 with
its Hamiltonian algebra structure. Fusing e2 onto e1, we get a Hamiltonian algebra
structure on Af which can be identified with the free algebra k〈a, a∗〉. The induced
double bracket is determined by the first two identities of (3.2) and {{a, a∗}}= 1⊗ 1.
The moment map is µ = [a, a∗]. The algebra is the path algebra of the double of the
one-loop quiver, and the Hamiltonian structure obtained by fusion is just the one
defined by Van den Bergh [VdB08a, § 6.3].

Lemma 3.7. — Let A be a double Poisson algebra over B. Consider the algebra
A1 = Afe2→ e1 obtained by fusing e2 onto e1, and the algebra A2 = Afe1→ e2 obtained
by fusing e1 onto e2. Then, the identity map on A induces an isomorphism of double
Poisson algebras φ : A1 → A2. If A is a Hamiltonian algebra, then φ is an isomorphism
of Hamiltonian algebras.

Proof. — The first part directly follows from Lemma 2.4 and Proposition 3.5. In
the Hamiltonian case, the morphism φ constructed in the proof of Lemma 2.4 satisfies

φ
(
µ(1)

)
= µ(2) , for µ(1) = µ1 + e12µ2e21 +

∑
s 6= 1, 2

µs,

µ(2) = e21µ1e12 + µ2 +
∑

s 6= 1, 2
µs .

But µ(1), µ(2) are the moment maps of A1 and A2 by Proposition 3.5. �

In Lemma 3.7, the map φ : A1 → A2 hence obtained is a morphism of B′-algebras,
where B′ = kẽ⊕⊕s∈ I \{1, 2} kes. Here, the base maps satisfy ẽ 7→ e1 ∈ A1, ẽ 7→ e2 ∈
A2 and are given in an obvious way on the other idempotents es, s ∈ I \ {1, 2}.

3.2.2. Fusion of several idempotents

Lemma 3.8. — Let A be a double Poisson algebra over B, and let e1, e2, e3 ∈ B
be orthogonal idempotents. Let A1 := (Afe3→ e2)fe2→ e1 (resp. A2 := (Afe2→ e1)fe3→ e1)
be the algebra obtained by fusing e3 onto e1, then e2 onto e1 (resp. e2 onto e1, then
e3 onto e1). Then the identity map on A induces an isomorphism of double Poisson
algebras ψ : A1 → A2 over B′ = ⊕

s∈ I \ {2, 3} kes. Furthermore, if A is a Hamiltonian
algebra, then ψ is an isomorphism of Hamiltonian algebras.

Proof. — Using Lemma 2.2 twice, we can write generators of A1 and A2 as
eaafa , for a ∈ A, ea ∈ {1− e3 − e2, e12, e12e23},

fa ∈ {1− e3 − e2, e21, e32e21}, (in A1) ;
e′aaf

′
a , for a ∈ A, e′a ∈ {1− e3 − e2, e12, e13},

f ′a ∈ {1− e3 − e2, e21, e31}, (in A2) .
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We can then define φ : A1 → A2 on generators as φ(eaafa) = e′aaf
′
a with e′a = ea

if ea 6= e12e23 or e′a = e13 if ea = e12e23, while f ′a = fa if fa 6= e32e21 or f ′a = e31
if fa = e32e21. This is easily seen to be an isomorphism and, using (2.14) twice to
induce the double bracket from A to A1 or A2, we remark that it is also a morphism
of double brackets. Hence, we have an isomorphism of double Poisson algebras.
In the Hamiltonian case, Proposition 3.5 yields that the moment maps are given by

µ(1) = e12µ2e21 + e12e23µ3e32e21 +
∑

s 6= 2, 3
µs ∈ A1 ,

µ(2) = e12µ2e21 + e13µ3e31 +
∑

s 6= 2, 3
µs ∈ A2 ,

so that φ(µ(1)) = µ(2). �
Let us note the following interesting result. By gathering Lemmas 3.7 and 3.8, the

double Poisson algebra structure obtained by fusion of three orthogonal idempotents
does not depend on the order with respect to which we perform fusion, up to
isomorphism. For example,(

Afe2→ e1

)f
e3→ e1

∼→
(
Afe3→ e2

)f
e2→ e1

∼→
(
Afe3→ e2

)f
e1→ e2

∼→
(
Afe3→ e1

)f
e1→ e2

∼→
(
Afe3→ e1

)f
e2→ e1

.

Next, we establish that the order in which we perform fusion is not important if
the idempotents are not related.
Lemma 3.9. — Let A be a double Poisson algebra over B, and let e1, e2, e3, e4 ∈ B

be orthogonal idempotents. Let A1 := (Afe4→ e3)fe2→ e1 (resp. A2 := (Afe2→ e1)fe4→ e3)
be the algebra obtained by fusing e4 onto e3, then e2 onto e1 (resp. e2 onto e1, then
e4 onto e3). Then the identity map on A induces an isomorphism of double Poisson
algebras ψ : A1 → A2 over B′ = ⊕

s∈ I\{2, 4} kes. Furthermore, if A is a Hamiltonian
algebra, then ψ is an isomorphism of Hamiltonian algebras.
Proof. — Using Lemma 2.2 twice, we can write both generators of A1 and A2 as
eaafa , for a ∈ A, ea ∈ {1− e4 − e2, e12, e34} , fa ∈ {1− e4 − e2, e21, e43} .

In terms of these generators, the identity map provides the desired morphism. �
By gathering these results, we obtain that the double Poisson (or Hamiltonian)

algebra structure of an algebra obtained by successive fusions is independent of the
precise order in which we identify idempotents. To state the result, fix a double
Poisson algebra A over B = ⊕

s∈ I kes, and consider a partition I = tj ∈ JIj. We say
that A1 is a fusion algebra respecting the partition tj ∈ JIj if A1 is obtained by a
finite number of fusions starting from A, so that all the idempotents (es)s∈ Ij end up
being identified together for each j ∈ J . Equivalently, there exists sj ∈ Ij for each
j ∈ J and a map π1 : A→ A1 obtained by composing the morphisms (2.12) induced
by a finite number of fusions such that
(3.6) π1(es) = esj for each s ∈ Ij and j ∈ J .
Note that if A is a double Poisson algebra, then so too is A1 by repeated use of
Proposition 3.5.
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Theorem 3.10. — Let A be a double Poisson algebra over B = ⊕
s∈ I kes. As-

sume that A1, A2 are fusion algebras respecting a partition I = tj ∈ JIj. Then, there
is a double Poisson algebra isomorphism φ : A1 → A2. If A is Hamiltonian, φ is an
isomorphism of Hamiltonian algebras.

Proof. — We prove the result by induction on |J |. The base case corresponds to
the partition
(3.7) |J | = 1 , I1 = I ,

which amounts to define A1 and A2 by fusing all the idempotents of B together. In
that case, the result follows from Lemmas 3.7, 3.8 and 3.9 (see also the observation
made right after Lemma 3.8).
Next, we prove that there exists an isomorphism between A1 and a fusion algebra

Â1 respecting the partition, such that Â1 is defined by first performing fusion of all
the elements in I|J |. If |I|J || = 1 there is nothing to prove. Assuming |I|J || > 1, we
have that A1 is obtained from A by a chain of fusions
(3.8) er1 → et1 , then er2 → et2 , then . . . , erκ → etκ , κ := |I| − |J | .
(Here erk → etk means that we fuse erk onto etk .) Note that r1, . . . , rκ are distinct,
and there exists k such that rk ∈ I|J | (or equivalently tk ∈ I|J |) by assumption. Let
k1 ∈ {1, . . . , κ} be the smallest such integer for which rk1 ∈ I|J |. This means that all
the fusions that are performed before are done by fusing idempotents corresponding
to subsets distinct from I|J |. we can thus use Lemma 3.9 to get that A1 is isomorphic
as a double Poisson algebra to the algebra which is obtained by the chain of fusions

erk1
→ etk1

, then er1 → et1 , . . . , erk1−1 → etk1−1 ,

then erk1+1 → etk1+1 , . . . , erκ → etκ .

We then run this argument again on the last κ−1 fusions of this chain. By a repeated
use of this argument involving Lemma 3.9 only, we have that A1 is isomorphic as a
double Poisson algebra to Â1 obtained by a chain of fusion as (3.8), where this time
r1, . . . , r|I|J|| ∈ I|J |. In particular, rk /∈ I|J | for k > |I|J ||.
We now do the same with A2 to get an isomorphism of double Poisson algebras

with some Â2, where the latter is obtained by a chain of fusion as (3.8), where
r1, . . . , r|I|J|| ∈ I|J |. In particular, up to using the argument for |J | = 1, we can
assume that the first |I|J || fusions performed in Â1 and Â2 are precisely the same.
Since Â1, Â2 only differ by fusions of the idempotents corresponding to the partition
I \ I|J | = I1t . . . t I|J |−1, we have by induction that Â1 and Â2 are isomorphic. Thus
A1 and A2 are also isomorphic as double Poisson algebras.
We can conclude since the isomorphisms involved are isomorphisms of Hamiltonian

algebras if A admits a moment map. �

3.2.3. Fusion of morphisms

Lemma 3.11. — Let φ : A1 → A2 be a morphism of double Poisson algebras
over B. Let Af1 = (A1)fe2→ e1 , A

f
2 = (A2)fe2→ e1 , be the fusion algebras with double

brackets obtained by fusion of e2 onto e1. Then φ induces a morphism of double
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Poisson algebras φf : Af1 → Af2 . Furthermore if φ is a morphism of Hamiltonian
algebras, then so is φf .

Proof. — The map φf given by (2.15) is a morphism of double Poisson algebras
by Lemma 2.5 and Lemma 3.2. In the Hamiltonian case, we can check from (2.15)
that φf maps the moment map of Af1 to that of Af2 . Hence, it is a morphism of
Hamiltonian algebras. �

3.3. Application: Van den Bergh’s Hamiltonian structure for quivers

Following Van den Bergh [VdB08a, § 6.3], we can endow the path algebras of
quivers with a Hamiltonian algebra structure. More precisely, given a quiver Q, we
define on kQ̄ the double Poisson bracket given by
(3.9) {{a, a∗}} = eh(a)⊗et(a) for a ∈ Q , {{a, a∗}} = −eh(a)⊗et(a) for a ∈ Q̄\Q ,

and such that {{a, b}} = 0 if a ∈ Q̄ and b ∈ Q̄ \ {a, a∗}. The algebra admits the
moment map
(3.10) µ =

∑
a∈Q

(aa∗ − a∗a) or µ =
∑
s∈ I

µs, for µs =
∑
a∈Q
t(a)=s

aa∗ −
∑
a∈Q
h(a)=s

a∗a .

This was considered in a simple case in Example 3.1.

Theorem 3.12. — The Hamiltonian algebra (kQ̄, {{−,−}} , µ) only depends on
Q seen as an undirected graph, up to isomorphism.

Proof. — As in the proof of [VdB08a, Theorem 6.7.1], we begin with the “separated”
quiver Qsep which has vertex and arrow sets given by
(3.11) Isep = {vb, vb∗ |b ∈ Q} , Qsep = {b : vb → vb∗|b ∈ Q} .
We form the double Q̄sep of Qsep, which amounts to add the arrows {b∗ : vb∗ →
vb | b ∈ Q}. We define on it the involution ∗ given by b 7→ b∗ and b∗ 7→ b. By
combining Example 3.1 (with a = b for each b ∈ Qsep) and Lemma 3.4, Asep = kQ̄sep

is Hamiltonian for the double Poisson bracket given by
(3.12) {{b, b∗}} = evb∗ ⊗ evb ,
for all b ∈ Qsep and which is zero on each other pair of generators, while the moment
map is defined as

(3.13)
µ =

∑
b∈ Q̄sep

µvb , µvb = bb∗ if b ∈ Qsep,

or µvb = −bb∗ if b ∈ Q̄sep \Qsep .

To get a Hamiltonian structure on kQ̄, it remains to fuse all these disjoint quivers of
Q̄sep to form Q̄. We can easily see that the Hamiltonian algebra structure induced by
fusion coincides with (3.9)–(3.10). The independence of order in which we identify
the vertices is obvious from the notations, and in fact it follows from Theorem 3.10.
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It remains to see that this structure is independent of the directions of the arrows
in Q, up to isomorphism. To do so, we first use the isomorphism from Example 3.1
to get that we can reverse the direction of any arrow b ∈ Qsep and obtain a Hamil-
tonian algebra isomorphic to Asep. But Lemma 3.11 guarantees that fusion preserves
isomorphisms of Hamiltonian algebras, so we are done. �

4. Morphisms of double quasi-Poisson algebras

As in Section 2, all algebras are over B = ⊕
s∈ I kes. With the exception of

Remark 4.13, all the statements from this section have a counterpart in Section 3.

4.1. Basic definitions and properties

4.1.1. Definitions

Following Van den Bergh [VdB08a], we say that a double quasi-Poisson bracket
{{−,−}} on A is a double bracket for which the associated triple bracket {−,−,−}
defined by (2.6) satisfies

(4.1) {{a, b, c}} =
1
4
∑
s∈ I

(
cesa⊗ esb⊗ es − cesa⊗ es ⊗ bes − ces ⊗ aesb⊗ es + ces ⊗ aes ⊗ bes

− esa⊗ esb⊗ esc+ esa⊗ es ⊗ besc+ es ⊗ aesb⊗ esc− es ⊗ aes ⊗ besc
)
,

on any a, b, c ∈ A. In such a case, we say that (A, {{−,−}}) (or simply A) is a double
quasi-Poisson algebra. An element Φs ∈ esAes is said to satisfy the multiplicative
property for es if, for any a ∈ A, we have

(4.2) {{Φs, a}} = 1
2 (aes ⊗ Φs − es ⊗ Φsa+ aΦs ⊗ es − Φs ⊗ esa) .

Then, we define a multiplicative moment map as an invertible element Φ = ∑
s∈ I Φs

for Φs ∈ esAes which is such that for all s ∈ I, Φs satisfies the multiplicative
property for es (4.2). The decomposition of Φ yields esΦet = δstΦs for each s, t ∈ I,
hence the invertibility condition implies that Φ−1

s := esΦ−1es is an inverse for Φs in
esAes. We call the triple (A, {{−,−}} ,Φ) (or simply A if no confusion can arise) a
quasi-Hamiltonian algebra.
Let A1, A2 be B-algebras with B-linear double brackets {{−,−}}1 , {{−,−}}2. If

ψ : A1 → A2 is a morphism of double brackets and A1, A2 are double quasi-Poisson
algebras, we say that ψ is amorphism of double quasi-Poisson algebras. If furthermore
A1, A2 are quasi-Hamiltonian algebras with respective multiplicative moment maps
Φ1,Φ2 satisfying ψ(Φ1) = Φ2, we say that ψ is a morphism of quasi-Hamiltonian
algebras.
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Example 4.1. — Consider the quiver Q with vertices {1, 2} and one arrow a : 1→
2. Let Q̄ be its double obtained by adding the arrow a∗ : 2→ 1. Put B = ke1 ⊕ ke2.
Following Van den Bergh [VdB08a, § 6.5], the path algebra kQ̄ is a double quasi-
Poisson algebra for the B-linear double bracket given on generators by

(4.3)
{{a, a}}1 = 0 , {{a∗, a∗}}1 = 0 ,

{{a, a∗}}1 = e2 ⊗ e1 + 1
2 (a∗a⊗ e1 + e2 ⊗ aa∗) .

(We get {{a∗, a}}1 by cyclic antisymmetry (2.3).) To have a quasi-Hamiltonian algebra
structure, we work in the localised algebra A1 = (kQ̄)S1 for S1 = {1 + aa∗, 1 + a∗a},
where we introduce the multiplicative moment map Φ = (1+aa∗)(1+a∗a)−1. It can be
decomposed as Φ = Φ1+Φ2 for Φ1 = e1+aa∗ and Φ2 = (e2+a∗a)−1 := e2(1+a∗a)−1e2.
Similarly, consider the quiver Qop with vertices {1, 2} and one arrow b : 2→ 1, and

let Q̄op be its double with new arrow b∗ : 1→ 2. We can also use Van den Bergh’s
quasi-Hamiltonian structure on A2 = (kQ̄op)S2 , S2 = {1+bb∗, 1+b∗b}, which is given
by the B-linear double bracket

(4.4)
{{b, b}}2 = 0 , {{b∗, b∗}}2 = 0 ,

{{b, b∗}}2 = e1 ⊗ e2 + 1
2 (b∗b⊗ e2 + e1 ⊗ bb∗) .

The multiplicative moment map Φ′ = (1 + bb∗)(1 + b∗b)−1 can be decomposed as
Φ′ = (e1 + b∗b)−1 + (e2 + bb∗) as above.
Following Crawley–Boevey and Shaw [CBS06, Section 2], we introduce the isomor-

phism of B-algebras ψ : A1 → A2 given by

(4.5) ψ(a) = b∗ , ψ(a∗) = −(1 + bb∗)−1b .

It is indeed a morphism since

(4.6)
ψ(1 + a∗a) =1− (1 + bb∗)−1bb∗ = (1 + bb∗)−1 ,

ψ(1 + aa∗) =1− b∗(1 + bb∗)−1b = (1 + b∗b)−1 ,

are both invertible. It is an isomorphism since the map θ : A2 → A1 given by

θ(b) = −a∗(1 + aa∗)−1 , θ(b∗) = a ,

is its inverse. We have, in fact, that ψ : A1 → A2 is an isomorphism of quasi-
Hamiltonian algebras. Using (4.6), we easily see that ψ(Φ1) = Φ′1 and ψ(Φ2) = Φ′2,
so that we only need to show that ψ is a morphism of double brackets. By (2.9), this
would follow from the identities

(4.7)

ψ⊗2 {{a, a}}1 = {{b∗, b∗}}2 ,

ψ⊗2 {{a∗, a∗}}1 =
{{

(e2 + bb∗)−1 b, (e2 + bb∗)−1 b
}}

2
,

ψ⊗2 {{a, a∗}}1 = −
{{
b∗, (e2 + bb∗)−1 b

}}
2
.

The first equality in (4.7) is trivial as both sides vanish. We leave the proof of the
second identity in (4.7) to the reader since it is similar to the third one which we
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check now. Combining (4.3) and the definition of ψ (4.5), we have that

ψ⊗2 {{a, a∗}}1 = e2 ⊗ e1 −
1
2 (e2 + bb∗)−1 bb∗ ⊗ e1 −

1
2e2 ⊗ b∗ (1 + bb∗)−1 b

= (e2 + bb∗)−1 ⊗ e1 + 1
2 (e2 + bb∗)−1 bb∗ ⊗ e1 −

1
2e2 ⊗ b∗ (e2 + bb∗)−1 b .

Since Φ′ is a multiplicative moment map, we have from the multiplicative prop-
erty (4.2) for e2 that{{
b∗, (e2 + bb∗‘)−1

}}
2
= − (Φ′2)−1 {{b∗,Φ′2}} (Φ′2)−1 = + (Φ′2)−1 ({{Φ′2, b∗}})

◦ (Φ′2)−1

= 1
2 (Φ′2)−1(Φ′2 ⊗ b∗e2−Φ′2b∗ ⊗ e2+e2 ⊗ b∗Φ′2−e2b

∗ ⊗ Φ′2) (Φ′2)−1

= 1
2
(
e2 ⊗ b∗(Φ′2)−1 + (Φ′2)−1 ⊗ b∗

)
,

where (Φ′2)−1 := e2(Φ′)−1e2 = (e2 + bb∗)−1 and we used that b∗ ∈ e1A2e2. We thus
get

−
{{
b∗, (e2 + bb∗)−1 b

}}
2

=− (Φ′2)−1 {{b∗, b}}′ −
{{
b∗, (Φ′2)−1}}′

b

= (Φ′2)−1 ⊗ e1 + 1
2 (Φ′2)−1

bb∗ ⊗ e1 −
1
2e2 ⊗ b∗ (Φ′2)−1

b ,

which coincides with ψ⊗2 {{a, a∗}}1.

4.1.2. First properties

The following result can be proved in the same way as Lemma 3.2.

Lemma 4.2. — Let ψ : A1 → A2 be a morphism of double brackets.
(1) Assume that ψ is surjective as a B-algebra homomorphism.

(a) If A1 is a double quasi-Poisson algebra, then A2 is a double quasi-Poisson
algebra.

(b) If A1 is a quasi-Hamiltonian algebra, then A2 admits a structure of quasi-
Hamiltonian algebra such that ψ is a morphism of quasi-Hamiltonian
algebras.

(2) Assume that ψ is injective as a B-algebra homomorphism.
(a) If A2 is a double quasi-Poisson algebra, then A1 is a double quasi-Poisson

algebra.
(b) If A2 is a quasi-Hamiltonian algebra with multiplicative moment map

Φ′ such that Φ′, (Φ′)−1 ∈ Im(ψ), then A1 admits a structure of quasi-
Hamiltonian algebra such that ψ is a morphism of quasi-Hamiltonian
algebras.

(3) All the structures obtained in (1)–(2) are unique.

In analogy with the Hamiltonian case, a morphism of double brackets between
two quasi-Hamiltonian algebras may fail to be a morphism of quasi-Hamiltonian
algebras: we can rescale multiplicative moment maps. In fact, such a rescaling always
exists if the morphism of double brackets is an isomorphism.
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Lemma 4.3. — Let ψ : A1 → A2 be an isomorphism of double quasi-Poisson
algebras. If A1, A2 are quasi-Hamiltonian algebras with multiplicative moment maps
Φ1,Φ2, then Φ2 = ν ψ(Φ1) for some ν ∈ B×. In particular, a multiplicative moment
map is unique up to multiplication by an element of B×.
Proof. — Let us decompose Φ1 ∈ A1 with the idempotents as ∑s∈ I Φ1, s and do

the same for Φ2 ∈ A2. We first note that, for any λs ∈ k, the element Φ2, s−λsψ(Φ1, s)
satisfies the multiplicative property for es (4.2) because for any a ∈ A2,

{{Φ2, s − λsψ (Φ1, s) , a}}2 = {{Φ2, s, a}}2 − λsψ
⊗2
{{

Φ1, s, ψ
−1(a)

}}
1
,

and we can use (4.2) for the two double brackets on the right-hand side since Φ1,Φ2
are multiplicative moment maps. For any λ = ∑

s λses ∈ B, introduce the element
Φ(λ) := Φ2 − λΦ1. Thus, for any λ, κ ∈ B, we get

(4.8)
{{

Φ(λ),Φ(κ)
}}

2

=1
2
∑
s∈ I

(
Φ(κ)
s ⊗ Φ(λ)

s − es ⊗ Φ(λ)
s Φ(κ)

s + Φ(κ)
s Φ(λ)

s ⊗ es − Φ(λ)
s ⊗ Φ(κ)

s

)
=1

2
∑
s∈ I

(
−Φ(κ)

s ⊗ Φ(λ)
s + Φ(κ)

s Φ(λ)
s ⊗ es − es ⊗ Φ(λ)

s Φ(κ)
s + Φ(λ)

s ⊗ Φ(κ)
s

)
,

where we used for the first (resp. second) equality that Φ(λ)
s (resp. Φ(κ)

s ) satisfies the
multiplicative property for es (4.2). By decomposing (4.8) in terms of idempotents,
we get that Φ(κ)

s ⊗ Φ(λ)
s = Φ(λ)

s ⊗ Φ(κ)
s for all s ∈ I, which by definition of these

elements is equivalent to
(λs − κs)

(
ψ(Φ1, s)⊗ Φ2, s − Φ2, s ⊗ ψ(Φ1, s)

)
= 0 .

Multiplying on both side with Φ−1
2,s := esΦ−1

2 es, this is equivalent when λ− κ ∈ B×
to

Φ−1
2, sψ(Φ1, s)⊗ es = es ⊗ ψ(Φ1, s)Φ−1

2, s ∈ esA2es ⊗ esA2es .

Thus, Φ2, s = νsψ(Φ1, s) for some νs ∈ k×.
For the second part of the statement, it suffices to consider ψ = idA1 : A1 → A1. �

4.1.3. Sum of double quasi-Poisson algebras

Lemma 4.4 ([VdB08a]). — If A1 and A2 are endowed with double quasi-Poisson
brackets, then the double bracket {{−,−}}⊕ on A1 ⊕ A2 defined in § 2.2.4 is quasi-
Poisson. If Φ1,Φ2 are multiplicative moment maps in A1 and A2, then A1 ⊕ A2 is
quasi-Hamiltonian with (Φ1,Φ2) as multiplicative moment map.

4.2. Double quasi-Poisson brackets and fusion

We assume that the index set I of B is such that |I| > 1. Our aim is to adapt the
results from § 3.2 to the quasi-Hamiltonian setting. The main difficulty that we will
encounter is that the double bracket given by (2.14) obtained by fusion from a double
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quasi-Poisson algebra is not a double quasi-Poisson bracket in general, because the
associated triple bracket does not satisfy (4.1). To overcome this issue, one needs to
add a corrective term to the double bracket after fusion, see Proposition 4.5.

4.2.1. Fusion in an algebra

Recall the fusion algebra Af = Afe2→ e1 defined in § 2.2.1. The following Proposi-
tion was first observed by Van den Bergh under mild assumptions [VdB08a, Theo-
rems 5.3.1, 5.3.2] and is proved in full generalities in [Fai21, Theorems 2.14, 2.15].

Proposition 4.5. — If A is a double quasi-Poisson algebra over B, then Af is
a double quasi-Poisson algebra over Bf = ⊕

s∈ I \{2} kes. The double quasi-Poisson
bracket in Af is given by
(4.9) {{−,−}}f := {{−,−}}ind + {{−,−}}fus ,

where the first double bracket on the right-hand side is induced in Af by the one of
A (see (2.14)), and the second double bracket {{−,−}}fus is defined in Appendix A.
Furthermore, if Φ is a multiplicative moment map for A and Φf

s denotes the projection
of the element Φs = esΦes under the map (2.12) for each s ∈ I, then Φff =
Φf

1Φf
2 +∑

s 6= 1, 2 Φf
s is a multiplicative moment map for Af .

For the remainder of this section, if A is a double quasi-Poisson algebra and Ã is
an algebra obtained from A by performing a finite number of fusions, we will see Ã
as a double quasi-Poisson algebra using this last result. More precisely, if we define
Ã using the following chain of algebras obtained by fusion

(4.10)
A(0) −→ A(1) −→ . . . −→ A(k) −→ . . . −→ A(n) , where

A(0) = A, A(n) = Ã, A(k) =
(
A(k−1)

)f
ejk→ eik

for k = 1, . . . , n ,

each algebra A(k) in the chain (4.10) is a double quasi-Poisson algebra whose double
quasi-Poisson bracket is obtained from A(k−1) by using Proposition 4.5. If A is a
quasi-Hamiltonian algebra, we see Ã as a quasi-Hamiltonian algebra using the same
argument.

Example 4.6. — Consider the localised path algebra A = kQ̄S considered in
Example 4.1 with its quasi-Hamiltonian algebra structure. Fusing e2 onto e1, we
get a quasi-Hamiltonian algebra structure on Af which can be identified with the
localised free algebra k〈a, a∗〉S, S = {1 + aa∗, 1 + a∗a}. The double bracket is
determined by
(4.11)
{{a, a}}f = 1

2
(
a2 ⊗ 1− 1⊗ a2

)
, {{a∗, a∗}}f = −1

2
(
(a∗)2 ⊗ 1− 1⊗ (a∗)2

)
,

{{a, a∗}}f = e2 ⊗ e1 + 1
2 (a∗a⊗ e1 + e2 ⊗ aa∗ + a∗ ⊗ a− a⊗ a∗) ,

while the multiplicative moment map is Φ = (1 + aa∗)(1 + a∗a)−1. Indeed, to get
the double brackets (4.11) we add to (4.3) the terms given by {{−,−}}fus, so we
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add (A.3c) to {{a, a}}, (A.2b) to {{a∗, a∗}}, and (A.3b) to {{a, a∗}}. The algebra Af
is the localised path algebra of the double of the one-loop quiver, and the quasi-
Hamiltonian structure obtained by fusion is the one of Van den Bergh [VdB08a,
§ 6.5].

Lemma 4.7. — Let (A, {{−,−}}) be a double quasi-Poisson algebra over B. Con-
sider the algebra A1 = Afe2→ e1 obtained by fusing e2 onto e1 and the algebra
A2 = Afe1→ e2 obtained by fusing e1 onto e2, which are endowed with a double
quasi-Poisson bracket by Proposition 4.5.
Assume that there exists an element Φ2 ∈ e2Ae2 invertible in e2Ae2 which satisfies

the multiplicative property (4.2) for e2. Then there exists an isomorphism of double
quasi-Poisson algebras A1 → A2. If furthermore A is quasi-Hamiltonian, then the
isomorphism A1 → A2 is an isomorphism of quasi-Hamiltonian algebras.

The last part of this statement was announced in [Fai21, Proposition 3.8] as a
non-commutative version of [AKSM02, Proposition 5.7].
Proof of Lemma 4.7. We first define an isomorphism ψ : A1 → A2. (This is

a morphism over the common base B′ = kẽ ⊕⊕s∈ I \{1,2} kes, see the remark after
Lemma 3.7.) As in Lemma 2.4, we define ψ on a specialisation of the set of generators
of A1, i.e. on a suitably chosen subset of the generators given in Lemma 2.2. For
ê = 1− e1 − e2, ψ is given on generators of first type (2.13a) as

ψ(t) = t, if t ∈ êAê; ψ(t) = Φ2e21t, if t ∈ e1Aê;
ψ(t) = te12Φ−1

2 , if t ∈ êAe1; ψ(t) = Φ2e21te12Φ−1
2 , if t ∈ e1Ae1;

on generators of second type (2.13b) as
ψ(e12u) = u, if u ∈ e2Aê; ψ(e12u) = ue12Φ−1

2 , if u ∈ e2Ae1;
on generators of third type (2.13c) as

ψ(ve21) = v, if v ∈ êAe2; ψ(ve21) = Φ2e21v, if v ∈ e1Ae2;
on generators of fourth type (2.13d) as

ψ(e12we21) = w, if w ∈ e2Ae2.

Similarly, we define a morphism θ : A2 → A1 on a specialisation of the set of
generators of A2, which is given on generators of first type (2.13a) as

θ(t′) = t′, if t′ ∈ êAê; θ(t′) = e12t
′, if t′ ∈ e2Aê;

θ(t′) = t′e21, if t′ ∈ êAe2; θ(t′) = e12t
′e21, if t′ ∈ e2Ae2;

on generators of second type (2.13b) as
θ(e21u

′) = e12Φ−1
2 e21u

′, if u′ ∈ e1Aê;
θ(e21u

′) = e12Φ−1
2 e21u

′e21, if u′ ∈ e1Ae2;
on generators of third type (2.13c) as

θ(v′e12) = v′e12Φ2e21, if v′ ∈ êAe1;
θ(v′e12) = e12v

′e12Φ2e21, if v′ ∈ e2Ae1;
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on generators of fourth type (2.13d) as
θ(e21w

′e12) = e12Φ−1
2 e21w

′e12Φ2e21, if w′ ∈ e1Ae1.

It is then a straightforward exercise to show that ψ ◦ θ = IdA2 and θ ◦ ψ = IdA1 . For
example, if w′ ∈ e1Ae1,

ψ ◦ θ (e21w
′e12) = ψ

(
e12Φ−1

2 e21
)
ψ(w′)ψ (e12Φ2e21)

= Φ−1
2

(
Φ2e21w

′e12Φ−1
2

)
Φ2 =e21w

′e12.

We easily see that in the quasi-Hamiltonian case we get ψ(Φ1e12Φ2e21) = Φ2e21Φ1e12,
so the only property that remains to be shown is that ψ : A1 → A2 is a morphism
of double quasi-Poisson algebras.
We note from Proposition 4.5 that the double quasi-Poisson bracket on A1 is

given by
(4.12) {{−,−}}1 := {{−,−}}2→ 1

ind + {{−,−}}2→ 1
fus ,

where {{−,−}}2→ 1
ind is induced by the double bracket {{−,−}} in A1 using (2.14), while

{{−,−}}2→ 1
fus is the double bracket defined in Appendix A for i = 1, j = 2; the double

quasi-Poisson bracket on A2 is given by
(4.13) {{−,−}}2 := {{−,−}}1→ 2

ind + {{−,−}}1→ 2
fus ,

where {{−,−}}1→ 2
ind is induced by the double bracket {{−,−}} in A2 using (2.14), while

{{−,−}}1→ 2
fus is the double bracket defined in Appendix A for i = 2, j = 1. Hence, we

need to check that
(4.14) (ψ ⊗ ψ) {{c, d}}1 = {{ψ(c), ψ(d)}}2 ,

on each pair (c, d) of specialisations of generators of A1 described above. There
are 9 such specialisations, so making use of the cyclic antisymmetry we need to
check (4.14) in 45 cases. Let us explain how to carry out the computations in
one case; the remaining cases are treated in a similar way, and the corresponding
double brackets that must be computed are gathered in Appendix B for the reader’s
convenience.
Consider c = a, d = b, where a, b ∈ e1Aê. We have that c, d are generators of first

type (2.13a) in A1, so that {{c, d}}2→ 1
fus = 0 by (A.1a) (for i = 1, j = 2). Also, we have

by (2.14) that
{{c, d}}2→ 1

ind = e1 ∗ e1 {{a, b}} ê ∗ ê = {{a, b}} ,
since {{a, b}}′ = e1 {{a, b}}′ ê and the same holds for {{a, b}}′′. Hence, by definition
of (4.12) we can simply write the left-hand side of (4.14) as ψ⊗2 {{a, b}}. Meanwhile,
we have that ψ(c) = Φ2e21a and ψ(d) = Φ2e21b. Therefore, we get

(4.15)
{{ψ(c), ψ(d)}}1→ 2

fus = + {{Φ2,Φ2}}1→ 2
fus e21b ∗ e21a+ Φ2 ∗ {{e21a,Φ2}}1→ 2

fus e21b

+ Φ2 {{Φ2, e21b}}1→ 2
fus ∗ e21a+ Φ2 ∗ Φ2 {{e21a, e21b}}1→ 2

fus ,

using the derivation rules of the double bracket {{−,−}}1→ 2
fus . We now use the explicit

form of this double bracket given in Appendix A (for i = 2, j = 1). To do so, note
that in A2, Φ2 is a generator of first type (2.13a) while e21a, e21b are generators of
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second type (2.13b). Hence the double bracket appearing in the first term of (4.15)
is given by (A.1a), the one in the second term by (A.2a), the one in the third term
by (A.1b), and the one in the fourth term by (A.2b). Therefore,

(4.16)

{{ψ(c), ψ(d)}}1→ 2
fus = + 1

2Φ2 ∗ (e21a⊗ Φ2 − Φ2e21a⊗ e2) e21b

+ 1
2Φ2 (e2 ⊗ Φ2e21b− Φ2 ⊗ e21b) ∗ e21a

+ 1
2Φ2 ∗ Φ2 (e2 ⊗ e21ae21b− e21be21a⊗ e2) .

Noting that ae2 = 0 = be2, we get that the last two terms of (4.16) vanish, and since
the second and third terms cancel out this yields

(4.17) {{ψ(c), ψ(d)}}1→ 2
fus = 1

2
(
e21a⊗ Φ2

2e21b− Φ2
2e21a⊗ e21b

)
.

Finally, we compute that

(4.18)

{{ψ(c), ψ(d)}}1→ 2
ind = + {{Φ2,Φ2}}1→ 2

ind e21b ∗ e21a+ Φ2 ∗ {{e21a,Φ2}}1→ 2
ind e21b

+ Φ2 {{Φ2, e21b}}1→ 2
ind ∗ e21a+ Φ2 ∗ Φ2 {{e21a, e21b}}1→ 2

ind

= + {{Φ2,Φ2}} e21b ∗ e21a+ Φ2e21 ∗ {{a,Φ2}} e21b

+ Φ2e21 {{Φ2, b}} ∗ e21a+ Φ2e21 ∗ Φ2e21 {{a, b}} ,

where we have used the derivation rules of the double bracket {{−,−}}1→ 2
ind for the

first equality, and its definition (2.14) using {{−,−}} for the second equality. By
assumption, Φ2 satisfies the multiplicative property (4.2) for e2 in A, hence we can
compute the double brackets in the first three terms of (4.18). We get that (since
e2a = 0 = ae2 and the same holds for b, {{a,Φ2}} = 0 = {{Φ2, b}} in this case)

(4.19) {{ψ(c), ψ(d)}}1→ 2
ind

= 1
2
(
Φ2

2e21a⊗ e21b− e21a⊗ Φ2
2e21b

)
+ Φ2e21 {{a, b}}′ ⊗ Φ2e21 {{a, b}}′′ .

Combining (4.17) and (4.19), we get that

(4.20) {{ψ(c), ψ(d)}}2 = Φ2e21 {{a, b}}′ ⊗ Φ2e21 {{a, b}}′′ = ψ⊗2 {{a, b}} ,

by definition of ψ, so this is precisely ψ⊗2 {{c, d}}1. �

4.2.2. Fusion of several idempotents

Lemma 4.8. — Let A be a double quasi-Poisson algebra over B, and let e1, e2, e3 ∈
B be orthogonal idempotents. Let A1 := (Afe3→ e2)fe2→ e1 (resp. A2 := (Afe2→ e1)fe3→ e1)
be the algebra obtained by fusing e3 onto e1, then e2 onto e1 (resp. e2 onto e1,
then e3 onto e1). Then the identity map on A induces an isomorphism of double
quasi-Poisson algebras ψ : A1 → A2 over B′ = ⊕

s∈ I\{2, 3} kes. If furthermore A is
quasi-Hamiltonian, then ψ is an isomorphism of quasi-Hamiltonian algebras.
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Proof. — The map ψ : A1 → A2 induced by the identity is explicitly spelled out
in the proof of Lemma 3.8. In particular, if {{−,−}}k, ind denotes the double bracket
from A induced in Ak, k = 1, 2, the above-mentioned proof also implies that
(4.21) {{ψ(c), ψ(d)}}2, ind = (ψ ⊗ ψ) {{c, d}}1, ind , for all c, d ∈ A1 .

By construction A1 and A2 are obtained by the following composition of fusions

(4.22) A
e3→ e2−→ Afe3→ e2

e2→ e1−→ A1 , A
e2→ e1−→ Afe2→ e1

e3→ e1−→ A2 .

Thus, using Proposition 4.5 twice, the double quasi-Poisson bracket on A1 is given by
(4.23) {{−,−}}1 := {{−,−}}1, ind + {{−,−}}3→ 2

1, fus + {{−,−}}2→ 1
1, fus .

Here, {{−,−}}3→ 2
1, fus denotes the double bracket from Appendix A which is added after

the fusion e3 → e2 to get a double quasi-Poisson bracket on Afe3→ e2 and is then
induced in A1; {{−,−}}2→ 1

1, fus denotes the double bracket from Appendix A which is
added after the fusion e2 → e1 to get a double quasi-Poisson bracket on A1. In the
same way, the double quasi-Poisson bracket on A2 is given by
(4.24) {{−,−}}2 := {{−,−}}2, ind + {{−,−}}2→ 1

2, fus + {{−,−}}3→ 1
2, fus ,

where the double brackets are defined in analogy to the case of A1. In particular, we
get from (4.21) that the map ψ : A1 → A2 is an isomorphism of double quasi-Poisson
algebras provided that for all c, d ∈ A1,

(4.25) {{ψ(c), ψ(d)}}2→ 1
2, fus + {{ψ(c), ψ(d)}}3→ 1

2, fus

= (ψ ⊗ ψ) {{c, d}}3→ 2
1, fus + (ψ ⊗ ψ) {{c, d}}2→ 1

1, fus .

This is proved in Appendix C. If A is quasi-Hamiltonian with multiplicative moment
map Φ = ∑

s Φs where Φs = esΦses, then using Proposition 4.5 the multiplicative
moment map transforms under the morphisms (4.22) as∑

s

Φs 7→ e2Φ2e23Φ3e32 +
∑

s 6= 2, 3
Φs 7→ e1Φ1e12Φ2e23Φ3e32e21 +

∑
s 6= 1, 2, 3

Φs ∈ A1 ,∑
s

Φs 7→ e1Φ1e12Φ2e21 +
∑

s 6= 1, 2
Φs 7→ e1Φ1e12Φ2e21e13Φ3e31 +

∑
s 6= 1, 2, 3

Φs ∈ A2 .

We can see that ψ sends the multiplicative moment map of A1 to the one of A2. �

Lemma 4.9. — Let A be a double Poisson algebra over B, and let e1, e2, e3, e4 ∈ B
be orthogonal idempotents. Let A1 := (Afe4→ e3)fe2→ e1 (resp. A2 := (Afe2→ e1)fe4→ e3)
be the algebra obtained by fusing e4 onto e3, then e2 onto e1 (resp. e2 onto e1,
then e4 onto e3). Then the identity map on A induces an isomorphism of double
quasi-Poisson algebras ψ : A1 → A2 over B′ = ⊕

s∈ I\{2, 4} kes. If furthermore A is
quasi-Hamiltonian, then ψ is an isomorphism of quasi-Hamiltonian algebras.

Proof. — As in Lemma 3.9, we note that we can write generators of A1 and A2 in
the form

(4.26)
eaafa , for a ∈ A, ea ∈ {1− e4 − e2, e12, e34} ,

fa ∈ {1− e4 − e2, e21, e43} .
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Let us prove that the morphism ψ : A1 → A2 that we seek is simply the identity
when written in terms of these elements. Using Proposition 4.5 twice, the double
quasi-Poisson bracket on A1 is given by
(4.27) {{−,−}}1 := {{−,−}}1, ind + {{−,−}}4→3

1, fus + {{−,−}}2→1
1, fus .

Here, {{−,−}}1, ind denotes the double bracket from A induced in A1; {{−,−}}4→ 3
1, fus

denotes the double bracket from Appendix A which is added after the fusion e4 →
e3 to get a double quasi-Poisson bracket on Afe4→ e3 and is then induced in A1;
{{−,−}}2→ 1

1, fus denotes the double bracket from Appendix A which is added after the
fusion e2 → e1 to get a double quasi-Poisson bracket on A1. In the same way, we can
write
(4.28) {{−,−}}2 := {{−,−}}2,ind + {{−,−}}2→ 1

2, fus + {{−,−}}4→ 3
2, fus .

By Lemma 3.9, we directly have that
(4.29) {{ψ(c), ψ(d)}}2, ind = (ψ ⊗ ψ) {{c, d}}1, ind , for all c, d ∈ A1 ,

and we note that if we can show for all c, d ∈ A1

(4.30)
{{ψ(c), ψ(d)}}4→ 3

2, fus =(ψ ⊗ ψ) {{c, d}}4→ 3
1, fus , and

{{ψ(c), ψ(d)}}2→ 1
2, fus =(ψ ⊗ ψ) {{c, d}}2→ 1

1, fus ,

then ψ : A1 → A2 will be a morphism of double quasi-Poisson algebras. It suffices
to prove one of the two equalities in (4.30) since the other follows by symmetry.
Checking that such an equality holds is easy on generators of the form (4.26). For
example, if we take c = e34aê and d = e12be43 where ê = 1− e2 − e4, we have in A1
that

{{c, d}}2→ 1
1, fus = {{(e34a) , e12 (be43)}}2→ 1

1, fus

= 1
2
(
e1 ⊗ (e34a) e12 (be43)− e1 (e34a)⊗ e12 (be43)

)
= 1

2 e1 ⊗ cd ,

after using (A.1b) since e34aê ∈ A1 is a generator of first type, while e12(be43) ∈ A1
is a generator of second type. Meanwhile, we have in A2 that
{{ψ(c), ψ(d)}}2→ 1

2, fus = e34 ∗ {{a, e12b}}2→ 1
2, fus e43

= 1
2e34 ∗ (e1 ⊗ ae12b− e1a⊗ e12b) e43 = 1

2 e1 ⊗ ψ(c)ψ(d) ,

where we used that the double bracket {{−,−}}2→ 1
2, fus is induced in A2 from the double

bracket in (Ae2→ e1)f given in Appendix A with j = 2, i = 1.
If A is quasi-Hamiltonian, the multiplicative moment map in A1 and A2 can be

written as
Φ = Φ1e12Φ2e21 + Φ3e34Φ4e43 +

∑
s 6= 1, 2, 3, 4

Φs ,

so ψ is obviously a morphism of quasi-Hamiltonian algebras. �

We can now derive the quasi-Poisson version of Theorem 3.10 by reproducing its
proof with Lemmas 3.7, 3.8 and 3.9 replaced by Lemmas 4.7, 4.8 and 4.9 respec-
tively. We use the notion of fusion algebra respecting a partition defined before
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Theorem 3.10. Such an algebra inherits a double quasi-Poisson bracket by repeated
use of Proposition 4.5.

Theorem 4.10. — Let A be a double quasi-Poisson algebra over B = ⊕
s∈ I kes.

Assume that A1, A2 are fusion algebras respecting a partition I = tj ∈ JIj.
Let J ′ = {j ∈ J | |Ij| > 1}, and assume that for each j′ ∈ J ′ and k ∈ Ij′ there

exists Φk ∈ ekAek invertible in ekAek which satisfies the multiplicative property (4.2)
for ek. Then, there is a double quasi-Poisson algebra isomorphism ψ : A1 → A2.
If furthermore A is quasi-Hamiltonian, then the morphism ψ : A1 → A2 is an
isomorphism of quasi-Hamiltonian algebras.

In the statement, the set J ′ corresponds to the idempotents in B ⊂ A which
are involved in the fusions defining A1 and A2. The extra assumption requiring the
existence of Φk, k ∈ J ′, is then sufficient to use Lemma 4.7. In particular, given
specific A1 and A2, it is possible to construct the isomorphism with the existence of
such elements Φk in a proper subset of J ′, which can be empty as is easily seen from
the case of Lemma 4.8.

4.2.3. Fusion of morphisms

Lemma 4.11. — Let ψ : A1 → A2 be a morphism of double quasi-Poisson algebras
over B. Let Af1 = (A1)fe2→ e1 , A

f
2 = (A2)fe2→ e1 , be the fusion algebras with double

brackets obtained by fusion of e2 onto e1. Then ψ induces a morphism of double quasi-
Poisson algebras ψf : Af1 → Af2 . If furthermore ψ is a morphism of quasi-Hamiltonian
algebras, then so is ψf .

Proof. — By Proposition 4.5, the algebra Afk with k = 1, 2 has a double quasi-
Poisson bracket given by

(4.31) {{−,−}}fk := {{−,−}}k, ind + {{−,−}}k, fus .

We claim that the map ψf : Af1 → Af2 obtained from ψ by (2.15) is the morphism
that we seek. By Lemma 2.5, we have that(

ψf ⊗ ψf
)
{{c, d}}1, ind =

{{
ψf (c), ψf (d)

}}
2, ind

, for all c, d ∈ Af1 .

Moreover, ψf preserves the type of generators in Af1 , Af2 as defined in Lemma 2.2, and
the double brackets {{−,−}}k, fus are defined in terms of these types of generators.
Therefore(

ψf ⊗ ψf
)
{{c, d}}1, fus =

{{
ψf (c), ψf (d)

}}
2, fus

, for all c, d ∈ Af1 .

Thus ψf : Af1 → Af2 is a morphism of double quasi-Poisson algebras.
In the quasi-Hamiltonian case, we can check that ψf maps the multiplicative

moment map of Af1 to that of Af2 . Hence, it is a morphism of quasi-Hamiltonian
algebras. �
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4.3. Application: Van den Bergh’s quasi-Hamiltonian structure for
quivers

We can endow specific localisations of the path algebras of quivers with a quasi-
Hamiltonian algebra structure defined by Van den Bergh [VdB08a, § 6.7]. The
double bracket was explicitly spelled out first in [CF17, Proposition 2.6], then in full
generalities in [Fai21, Theorem 3.3]. To define this structure, we fix a quiver Q, and
consider the path algebra of its double kQ̄ following the conventions given in § 2.2.2.
We consider the algebra AQ obtained by universal localisation of kQ̄ from the set
S = {1 + aa∗ | a ∈ Q̄}. This localisation can be understood as adding local inverses
et(a) + aa∗ ∈ et(a)AQet(a).
For each vertex s ∈ I, consider a total ordering <s on the set Ts = {a ∈ Q̄ | t(a)

= s}. This induces an ordering function at the vertex s

os(−,−) : Q̄× Q̄→ {−1, 0, 1} ,

which is defined on arrows a, b ∈ Q̄ by os(a, b) = +1 if a <s b, os(a, b) = −1 if b <s a,
while it is zero otherwise, i.e. if a = b ∈ Ts, if a /∈ Ts or if b /∈ Ts. The algebra AQ
has a double quasi-Poisson bracket defined by

{{a, a}} = 1
2ot(a) (a, a∗)

(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
, for a ∈ Q̄ ,(4.32a)

{{a, a∗}} = eh(a) ⊗ et(a) + 1
2a
∗a⊗ et(a) + 1

2eh(a) ⊗ aa∗

+ 1
2ot(a) (a, a∗) (a∗ ⊗ a− a⊗ a∗) , for a ∈ Q ,(4.32b)

and for b, c ∈ Q̄ such that c 6= b, b∗

(4.33)
{{b, c}} = − 1

2ot(b)(b, c) (b⊗ c)− 1
2oh(b) (b∗, c∗) (c⊗ b)

+ 1
2ot(b) (b, c∗) cb⊗ et(b) + 1

2oh(b) (b∗, c) eh(b) ⊗ bc .

Moreover, AQ is quasi-Hamiltonian for the multiplicative moment map

(4.34) Φ =
∑
s∈ I

Φs , Φs =
−→∏
a∈Ts

(es + aa∗)ε(a) .

Theorem 4.12. — The quasi-Hamiltonian algebra (AQ, {{−,−}} ,Φ) only de-
pends on Q seen as an undirected graph, up to isomorphism.

Proof. — We first prove that the structure is independent of the direction of the
arrow in a one-arrow quiver. If Q is the quiver 1→ 2, the quasi-Hamiltonian algebra
structure on AQ defined above is nothing else than the structure defined on A1
in Example 4.1. The same is true for the opposite quiver: the quasi-Hamiltonian
structure on AQop for Qop given by 2→ 1 is the structure on A2 given in Example 4.1.
In that same example, it was proved that there exists an isomorphism ψ : A1 → A2
of quasi-Hamiltonian algebras, thus the structures on AQ and AQop are isomorphic,
as claimed.
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Consider now an arbitrary quiver Q. As in the proof of Theorem 3.12, we note
that Q̄ can be obtained by identifying vertices in the double Q̄sep of the separated
quiver Qsep. The algebra AQsep is quasi-Hamiltonian by combining Lemma 4.4 and
the case of a one-arrow quiver described at the beginning of this proof. In particular,
the double quasi-Poisson bracket is given by

(4.35) {{b, b∗}} = evb∗ ⊗ evb + 1
2 (bb∗ ⊗ evb + evb∗ ⊗ b

∗b) ,

for all b ∈ Qsep and it is zero on every other pair of generators. The multiplicative
moment map is defined as

(4.36)
Φ =

∑
b∈ Q̄sep

Φvb ,Φvb = evb + bb∗ if b ∈ Qsep,

or Φvb = (evb + bb∗)−1 if b ∈ Q̄sep \Qsep .

Fusing idempotents in AQsep according to the identification of vertices from Qsep

to Q gives us AQ. It is proved in [Fai21, Theorem 3.3] that the quasi-Hamiltonian
algebra structure obtained on AQ by fusion using Proposition 4.5 is precisely the
one given above. In particular, it does not depend on the order in which we fuse the
idempotents by Theorem 4.10.
It remains to see that this structure is independent of the directions of the arrows

in Q, up to isomorphism. This follows from Lemma 4.11 and the isomorphism that
exists for a one-arrow quiver which was given at the beginning of the proof. �

Remark 4.13. — In [Fai21, § 3.2], modifications of the algebra AQ and its quasi-
Hamiltonian algebra structure were considered. Namely, fixing a choice of coefficients
γa ∈ k, a ∈ Q̄, satisfying γa = γa∗ , introduce the algebra AQ,γ obtained by universal
localisation of kQ̄ from the set Sγ = {1 + (γa − 1)et(a) + aa∗ | a ∈ Q̄}. The double
quasi-Poisson bracket is given by (4.32a), (4.33), while we consider (4.32b) with its
first term multiplied by γa. The multiplicative moment map Φ = ∑

s∈ I Φs is such
that

Φs =
−→∏
a∈Ts

(γaes + aa∗)ε(a) .

The proof of Theorem 4.12 can then be adapted to AQ, γ . If γa 6= 0 for all a ∈ Q̄, we
have furthermore an isomorphism of double quasi-Poisson algebras ψ : AQ → AQ,γ
given on generators by

(4.37) ψ(a) = γ−1
a a, ψ(a∗) = a∗, for all a ∈ Q .

Since ψ((et(a) + aa∗)ε(a)) = γ−ε(a)
a (γaet(a) + aa∗)ε(a) for all a ∈ Q̄ due to the condition

γa = γa∗ , ψ is in fact an isomorphism of quasi-Hamiltonian algebras if a is a loop
whenever γa 6= 1.
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5. H0-Poisson structures

5.1. Definition and general results

Let A be a k-algebra. Let [A,A] be the vector space spanned by commutators in
A, from which we can define H0(A) := A/[A,A], the zeroth Hochschild homology
of A. Denote by a 7→ ā the map which sends an element of A to its image in
A/[A,A]. Remark that any derivation ∂ ∈ Der(A) induces a linear map on H0(A)
since ∂([a, b]) ∈ [A,A] for any a, b ∈ A. Following Crawley–Boevey [CB11], we say
that a k-bilinear map 〈−,−〉 : H0(A)×H0(A) → H0(A) is a H0-Poisson structure
on A if it is a Lie bracket, i.e.

(5.1)
〈
ā, b̄

〉
= −

〈
b̄, ā

〉
,

〈
ā,
〈
b̄, c̄
〉〉

+
〈
b̄, 〈c̄, ā〉

〉
+
〈
c̄,
〈
ā, b̄

〉〉
= 0 ,

and each linear map 〈ā,−〉 : H0(A)→ H0(A) is induced by a derivation ∂a ∈ Der(A).
We will write (A, 〈−,−〉) when we want to emphasise the H0-Poisson structure on A.
In the relative setting where A is aB-algebra (following the convention of Section 2),

we require that the map 〈ē,−〉 is induced by the trivial derivation ∂e = 0A for each
e ∈ B. In that case, we say that the H0-Poisson structure 〈−,−〉 is B-linear.
Let (A1, 〈−,−〉1) and (A2, 〈−,−〉2) be two B-algebras with H0-Poisson structures.

Note that if φ : A1 → A2 is a morphism of B-algebras, then φ([a, b]) = [φ(a), φ(b)]
for any a, b ∈ A so φ induces a morphism φ̄ : H0(A1) → H0(A2). We say that
φ : A1 → A2 is a H0-Poisson morphism if it is a morphism of B-algebras such that
the induced map φ̄ : H0(A1) → H0(A2) is a morphism of Lie algebras, i.e. for any
ā, b̄ ∈ H0(A1),

(5.2)
〈
φ̄(ā), φ̄(b̄)

〉
= φ̄

(〈
ā, b̄

〉)
.

We say that it is an H0-Poisson isomorphism if it is an isomorphism of B-algebras
(hence φ̄ is an isomorphism of Lie algebras).
Let A be a B-algebra with double bracket {{−,−}}. Consider the bilinear map

(5.3) {−,−} = m ◦ {{−,−}} : A× A→ A ,

obtained by composing the double bracket with the multiplication m of A. It inherits
the B-linearity of {{−,−}} in the following form: for any e ∈ B, {e,−} and {−, e}
are identically zero. Then, as noticed in [VdB08a, Lemma 2.4.1], we have that the
operation (5.3) induces well-defined maps

(5.4) {−,−} : H0(A)× A→ A , {−,−} : H0(A)×H0(A)→ H0(A) .

The first operation is such that for any ā ∈ H0(A) we have {ā,−} ∈ Der(A), while
the second operation is antisymmetric. By construction, this second linear map is
given by

(5.5) {ā, b̄} = {ā, b} = {a, b} ,

for any ā, b̄ ∈ H0(A) and lifts a, b ∈ A. We have a B-linear H0-Poisson structure on
A provided that the operation {−,−} on H0(A) satisfies Jacobi identity.
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Lemma 5.1 ([VdB08a, Lemma 2.6.2]). — Let A be a B-algebra with double
bracket {{−,−}}, and write {−,−,−}3 = m ◦ {{−,−,−}} for the map obtained
by composing the triple bracket {{−,−,−}} given by (2.6) with the multiplication
m : A×3 → A. Then the induced map {−,−} : H0(A) × H0(A) → H0(A) is a
H0-Poisson structure if {−,−,−}3 vanishes identically.
In particular, we get a H0-Poisson structure if {{−,−}} is a double (quasi-)Poisson

bracket.

Proof. — From [VdB08a, Corollary 2.4.4], we have the following identity in A
(5.6) {a, {b, c}} − {b, {a, c}} − {{a, b}, c} = {a, b, c}3 − {b, a, c}3 .

Hence if the right-hand side vanishes, this equality induced in H0(A) is just Jacobi
identity.
The second part of the statement is obvious for a double Poisson bracket, since
{{−,−,−}} = 0 identically. For a double quasi-Poisson bracket, {−,−,−}3 = 0
because applying the multiplication map to (4.1) gives zero. �

5.1.1. Structures induced by Hamiltonian algebras

We assume that (A, {{−,−}} , µ) is a Hamiltonian algebra over B = ⊕
s∈ I kes. Fix

(λs) ∈ kI or equivalently λ := ∑
s∈ I λses ∈ B, and note that by definition of the

moment map, (3.1) implies that for any a ∈ A

{{a, µ− λ}} =
∑
s

(esa⊗ es − es ⊗ aes) .

In particular, {a, µ−λ} = 0 after multiplication. This yields that, if (µ− λ) denotes
the vector subspace of H0(A) spanned by the image of the ideal (µ − λ) under
the map A → A/[A,A], we have {ā, (µ− λ)} ∈ (µ− λ) for any ā ∈ H0(A). In
particular, the H0-Poisson structure descends from H0(A) to a Lie bracket {−,−}λ
on H0(A)λ := H0(A)/(µ− λ) given by

(5.7)
{
ā+ (µ− λ), b̄+ (µ− λ)

}λ
= ({a, b}+ [A,A])+(µ− λ) , for any a, b ∈ A .

Set Aλ = A/(µ − λ), and remark that we can identify H0(A)λ with H0(Aλ)
:= Aλ/[Aλ, Aλ]. Under this identification, the Lie bracket {−,−}λ is given by{

ā+ (µ− λ), b̄+ (µ− λ)
}λ

= {a, b}+ (µ− λ) .

(Here, the bar in the right-hand side denotes the map Aλ → H0(Aλ).) We get that
Aλ is endowed with a H0-Poisson structure since the linear map {ā+ (µ− λ),−} on
H0(Aλ) is induced by ∂a ∈ Der(Aλ) given by

∂a(b+ (µ− λ)) = {a, b}+ (µ− λ) ,
for any lifts a, b ∈ A. Note that the induced linear map on H0(Aλ) is independent of
the lift, though ∂a, ∂a+µ−λ ∈ Der(Aλ) are not the same in general. Indeed {µ−λ, b} =∑
s(bes− esb) may be nonzero, but it vanishes modulo commutators. Combining this

discussion with Lemma 5.1, we have obtained the following result.
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Proposition 5.2 ([VdB08a, Proposition 2.6.5]). — Let (A, {{−,−}} , µ) be a
Hamiltonian algebra. Then for any λ ∈ B, the H0-Poisson structure {−,−} on
A descends to a H0-Poisson structure {−,−}λ on Aλ.
Proposition 5.3. — Let φ : (A1, {{−,−}}1)→ (A2, {{−,−}}2) be a morphism of

double Poisson algebras. Then φ : (A1, {−,−}1) → (A2, {−,−}2) is a H0-Poisson
morphism.
If φ is a morphism of Hamiltonian algebras, then for any λ ∈ B, φ induces a

H0-Poisson morphism φλ : (A1/(µ1 − λ), {−,−}λ1)→ (A2/(µ2 − λ), {−,−}λ2).
Proof. — In the first case, we just have to show that φ̄ is a morphism of Lie

algebras. For any a, b ∈ A1, (2.9) yields φ({a, b}1) = {φ(a), φ(b)}2. Hence, we get
from (5.5) that for any ā, b̄ ∈ H0(A1) with arbitrary lifts a, b ∈ A1,{

φ̄(ā), φ̄(b̄)
}

2
=
{
φ(a), φ(b)

}
2

= {φ(a), φ(b)}2

= φ({a, b}1) = φ̄
(
{a, b}1

)
= φ̄

(
{ā, b̄}1

)
.

In the second case, note that φ((µ1 − λ)) ⊂ (µ2 − λ) so φ induces a morphism
φλ : Aλ1 → Aλ2 hence a morphism φλ : H0(Aλ1)→ H0(Aλ2) where Aλi = A/(µi − λ). In
the same way, since φ̄((µ1 − λ)) ⊂ (µ2 − λ), we have that φ̄ induces a map

φ̄λ : H0
(
Aλ1
)
' H0(A1)/(µ1 − λ) −→ H0(A2)/(µ2 − λ) ' H0

(
Aλ2
)
,

which coincides with the map φλ induced by φλ. We can thus use (5.7) to conclude.
�

Example 5.4. — Consider the Hamiltonian algebra structure on the path algebra
of a double quiver Q̄ given in § 3.3. By Lemma 5.1, we get a H0-Poisson structure on
kQ̄, and its associated Lie bracket on H0(kQ̄) is the necklace Lie bracket [BLB02,
Gin01]. By Proposition 5.2, the double bracket on kQ̄ descends to a H0-Poisson
structure on Πλ(Q) := kQ̄/(µ − λ) [CB11, VdB08a]. The algebra Πλ(Q) is called
a deformed preprojective algebra [CBH98, Section 2]. It was proved by Crawley–
Boevey and Holland in [CBH98, Lemma 2.2] that deformed preprojective algebras
are independent of the orientation chosen on Q. Using Theorem 3.12, we obtain that
the H0-Poisson structure hence defined is independent of the orientation chosen on
Q up to isomorphism, and we can easily check that these isomorphisms are realised
by the maps considered by Crawley–Boevey and Holland.

5.1.2. Structures induced by quasi-Hamiltonian algebras

We assume that (A, {{−,−}} ,Φ) is a quasi-Hamiltonian algebra over B = ⊕
s∈ I kes.

Fix (cs) ∈ (k×)I or equivalently c := ∑
s∈ I cses ∈ B×. By definition of the multi-

plicative moment map, for any a ∈ A we have

{{a,Φ− c}} = −1
2
∑
s∈ I

(Φs ⊗ aes − Φsa⊗ es + es ⊗ aΦs − esa⊗ Φs) ,

so that {a,Φ − c} = 0 after multiplication. We can thus adapt the discussion
from § 5.1.1 to the quasi-Hamiltonian setting with Ac = A/(Φ − c) and get the
following results.
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Proposition 5.5 ([VdB08a, Proposition 5.1.5]). — Let (A, {{−,−}} ,Φ) be a
quasi-Hamiltonian algebra. Then for any c ∈ B×, the H0-Poisson structure {−,−}
on A descends to a H0-Poisson structure {−,−}c on Ac.

Proposition 5.6. — Let φ : (A1, {{−,−}}1) → (A2, {{−,−}}2) be a morphism
of double quasi-Poisson algebras. Then φ : (A1, {−,−}1) → (A2, {−,−}2) is a H0-
Poisson morphism.
If φ is a morphism of quasi-Hamiltonian algebras, then for any c ∈ B×, φ induces

a H0-Poisson morphism φc : (A1/(Φ1 − c), {−,−}c
1)→ (A2/(Φ2 − c), {−,−}c

2).

Example 5.7. — Consider the quasi-Hamiltonian algebra structure on the local-
isation AQ of the path algebra of a double quiver Q̄ given in § 4.3, which depends
on an ordering of the arrows. The algebra Λc(Q) := AQ/(Φ − c) is called a mul-
tiplicative preprojective algebra [CBS06]. As noticed by Van den Bergh [VdB08a,
Proposition 6.8.1], the double bracket on AQ descends to a H0-Poisson structure on
Λc(Q), see Proposition 5.5. It was proved by Crawley–Boevey and Shaw [CBH98,
Theorem 1.4] that multiplicative preprojective algebras are independent of the ori-
entation chosen on Q, and of the ordering of the arrows. Using Theorem 4.12, we
obtain that the H0-Poisson structure on a multiplicative preprojective algebra is in-
dependent of the orientation and the ordering of the arrows up to isomorphism, and
we can check that such isomorphisms are precisely realised by the maps considered
by Crawley–Boevey and Shaw.

5.1.3. Relation to the affine moduli space of representations

We assume that the base field k is an algebraically closed field of characteristic
zero. Consider an algebra A over B = ⊕

s∈ I kes. We denote the affine representation
space (relative to B) of A with dimension vector α ∈ NI by Rep(A,α). Explicitly,
Rep(A,α) parametrises representations ρ of A on kN , N = ∑

s αs, such that the
idempotent matrix ρ(es) is given by diag(0α1 , . . . , 0αs−1 , Idαs , 0αs+1 , . . . , 0α|I|) after
identification of I with {1, . . . , |I|}. In other words, under the decomposition

(5.8) kN = kα1 ⊕ kα2 ⊕ . . . ⊕ kα|I| ,

ρ(es) projects an element (v1, . . . , v|I|) onto (0, . . . , 0, vs, 0, . . . , 0), where for all
r ∈ I we have vr ∈ kαr .
There is a natural action of GLα := ∏

s GLαs(k) by change of basis with respect
to the decomposition (5.8). For any a ∈ A, we denote by X (a) the function on
Rep(A,α) which returns the matrix representing a at each point, i.e. X (a)(ρ) = ρ(a).
Following [CB11, VdB08a], we note that the map

(5.9) tr : A→ k [Rep(A,α)] , tr(a) =
∑

16 i6N
X (a)ii ,

has its image which generates k[Rep(A,α)]GLα . Furthermore, given ā ∈ H0(A) and
two lifts a1, a2 ∈ A, we note that tr(a1) = tr(a2) since the trace vanishes on commu-
tators of matrices.
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Theorem 5.8 ([CB11, Theorem 4.5]). — Let 〈−,−〉 be a H0-Poisson structure
on A. Then, for any dimension vector α, there is a unique Poisson bracket {−,−}
on O[Rep(A,α)]GLα such that for any a, b ∈ A

(5.10) {tr(a), tr(b)} = tr
(〈
ā, b̄

〉l)
,

where 〈ā, b̄〉l ∈ A is an arbitrary lift of 〈ā, b̄〉 ∈ H0(A).

Proposition 5.9. — If φ : (A1, 〈−,−〉1) → (A2, 〈−,−〉2) is a H0-Poisson mor-
phism, then the morphism φ̄α : O[Rep(A1, α)]GLα → O[Rep(A2, α)]GLα , uniquely
defined by φ̄α(tr(a)) = tr(φ(a)) for any a ∈ A1, is a Poisson morphism.

Proof. — Denote by {−,−}k the Poisson bracket on O[Rep(Ak, α)]GLα induced by
Theorem 5.8 for k = 1, 2. Then, on generators tr(a), tr(b) of O[Rep(A1, α)]GLα , we
have that

{
φ̄α(tr(a)), φ̄α(tr(b))

}
2

=
{

tr(φ(a)), tr(φ(b))
}

2
(5.11a)

= tr
(
〈φ(a), φ(b)〉l2

)
= tr

({
φ̄(ā), φ̄(b̄)

}l
2

)
,

φ̄α
(
{tr(a), tr(b)}1

)
= φ̄α

(
tr
(〈
ā, b̄

〉l
1

) )
= tr

(
φ
(〈
ā, b̄

〉l
1

) )
(5.11b)

= tr
( (
φ̄
〈
ā, b̄

〉
1

)l )
.

For (5.11a), we used the definition of φ̄α in the first equality, the definition (5.10) of
the Poisson bracket in the second, the fact that φ̄ : H0(A1)→ H0(A2) is induced by
φ in the third; we used these results similarly in (5.11b). As the final terms in (5.11a)
and (5.11b) are equal due to (5.2) since φ is a H0-Poisson morphism, we get that φ̄α
is a Poisson morphism. If φ is an isomorphism with inverse φ−1 : A2 → A1, then the
inverse of φ̄α is given by tr(a) 7→ tr(φ−1(a)) for any a ∈ A2. �

5.2. Some applications

We have obtained in § 5.1 that morphisms of double (quasi-)Poisson algebras induce
morphisms of quotients of these algebras obtained by fixing the (multiplicative)
moment maps to a linear combination of idempotents. In particular, the induced
morphisms define morphisms of coordinate rings of moduli spaces of representations.
We investigate these constructions in the rest of this section. We will study several
basic examples and their relation to the first Weyl algebra and quantum tori, as well
as the morphisms that they induce on (q-)Calogero–Moser spaces which will appear
in Section 6.
In this subsection, all algebras are B-algebras for the convention of Section 2. In

that case, a B-linear morphism is a morphism satisfying φ(e) = e for all e ∈ B.
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5.2.1. Using Hamiltonian algebras

Given a Hamiltonian algebra (A, {{−,−}} , µ) over B, let us denote by Aut(A) :=
AutB(A) its group of B-linear automorphisms, and HAut(A) the subgroup of auto-
morphisms which are morphisms of Hamiltonian algebras. Following [BP11], let us
also introduce Aut(A;µ) as the subgroup of automorphisms of A preserving µ. It is
clear that we have the inclusions
(5.12) HAut(A) ⊂ Aut(A;µ) ⊂ Aut(A) .

Remark 5.10. — The inclusions in (5.12) are not necessarily equalities. Consider
A = k〈x, y, z〉 with double Poisson bracket given on generators by

{{x, y}} = 1⊗ 1, {{z, z}} = z ⊗ 1− 1⊗ z, {{x, z}} = 0 = {{y, z}} ,
and moment map µ = [x, y] + z. Consider the automorphisms φ, ψ : A→ A defined
on generators by

φ(x) = 1
2x, φ(y) = y, φ(z) = z + 1

2[x, y], ψ(x) = −x, ψ(y) = y, ψ(z) = z .

Then φ preserves µ but it is not a morphism of double brackets, while ψ does not
preserve µ.

The first inclusion from (5.12) descends to an inclusion HAut(A) ⊂ Aut(A;µ)
in the quotient Aλ = A/(µ − λ) for any λ ∈ B. Moreover, the automorphisms in
HAut(A) preserve the induced H0-Poisson structure by Proposition 5.3.

Example 5.11. — Consider the Jordan quiver Q◦ consisting of the vertex set
I = {0} and a single arrow which is a loop a : 0 → 0. Its double Q̄◦ contains an
additional arrow a∗ : 0 → 0. The path algebra of Q̄◦ has a Hamiltonian algebra
structure constructed in § 3.3. Under a 7→ x, a∗ 7→ y we can induce the Hamiltonian
algebra structure on the free algebra F2 = k〈x, y〉 by taking the double Poisson
bracket
(5.13) {{x, y}} = 1⊗ 1 , {{x, x}} = 0 = {{y, y}} ,
with the moment map µ = [x, y]. Meanwhile, we can start with the opposite quiver
Qop
◦ given by b : 0 → 0, and the isomorphism b 7→ x, b∗ 7→ y induces the same

Hamiltonian algebra structure on F2 ' kQ̄op
◦ . By Theorem 3.12, we have isomorphic

Hamiltonian algebras if we start with Q◦ or Qop
◦ , and the isomorphism can be

computed from Example 3.1 to be
(5.14) ψ : kQ̄◦ → kQ̄op

◦ , ψ(a) = b∗, ψ(a∗) = −b .
Under the identifications with F2, ψ induces an isomorphism of Hamiltonian algebras
given by
(5.15) F : F2 → F2 , F(x) = y, F(y) = −x .
The automorphism F satisfies F4 = id and is sometimes called the formal Fourier
transform. We can also easily check that for all γ ∈ k and k > 0 the automorphism
(5.16) φk, γ : F2 → F2 , φk, γ(x) = x+ γyk, φk, γ(y) = y ,
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defines an isomorphism of Hamiltonian algebras as it preserves (5.13) and the moment
map. Hence, we also get the isomorphism of Hamiltonian algebras
(5.17) φ′k, γ = F−1 ◦ φk,−γ ◦ F : F2 → F2 , φ′k, γ(x) = x, φ′k, γ(y) = y + γxk .

Imposing the relation µ = 1, the automorphisms (5.16) and (5.17) descend to
automorphisms of the first Weyl algebra A1 = k〈x, y〉/(xy − yx− 1).

It is a result of Dixmier [Dix68, Théorème 8.10] that the images in A1 of the
automorphisms (5.16) and (5.17) generate the whole group of automorphisms.

Corollary 5.12. — Let F2 be the free algebra on two generators and A1 be the
first Weyl algebra. Then HAut(F2) surjects onto Aut(A1).

Remark 5.13. — Using Proposition 5.3, any automorphism of the first Weyl
algebra preserves the H0-Poisson structure induced by (5.13). However, this result
is not interesting as H0(A1) is trivial. If we set instead the moment map µ to 0 in
Example 5.11, we get that the H0-Poisson structure induced by (5.13) on k[x, y] is
the canonical Poisson bracket defined by {x, y} = 1 and {x, x} = 0 = {y, y}.

Let us now assume that k is of characteristic zero and algebraically closed. The
elements of H0(Aλ) induce generators of representation spaces using the trace map
as in § 5.1.3, and we can obtain the following diagram for any dimension vector
α ∈ NI

HAut(A) Aut(A;µ) Aut(A)

HAut(A) Aut(A;µ) Aut(Aλ)

HAut(A)α Aut(A;µ)α Aut(Aλα)

where Aλα = O[Rep(Aλ, α)]GLα denotes the coordinate ring of X (µ)−1(λ Idα)//GLα
for λ Idα = (λs Idαs)s. The automorphisms in HAut(A)α are Poisson by Proposi-
tion 5.9.
For a quiver Q, consider the Hamiltonian algebra structure on kQ̄ given in § 3.3.

We get that HAut(kQ̄) induces Poisson automorphisms on the corresponding quiver
varieties by the above argument. It is an interesting question to understand what
are the properties of these morphisms.

Example 5.14. — We work over k = C. Consider the quiver Q1 formed by the
vertices I = {0,∞} and arrows x : 0→ 0, v = 0→∞. The Hamiltonian automor-
phisms on C〈x, y〉 from Example 5.11 can be extended to CQ̄1 using x 7→ x, y 7→ x∗

and acting as the identity on v, v∗. Fix n ∈ N×. If we take (λ0, λ∞) = (1,−n) and
(α0, α∞) = (n, 1) and denote the corresponding quiver variety as Cn, the elements
of HAut(CQ̄1) descend to Poisson automorphisms on Cn. As the group of auto-
morphisms generated by the images of φk, γ, φ′k, γ acts transitively on Cn by [BW00,
Theorems 1.2,1.3], the same result holds for the image of HAut(CQ̄1). The variety
Cn is the nth Calogero–Moser space [Wil98], see § 6.1.
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If Q2 is the quiver obtained from Q1 by adding an arrow∞→ 0, we can reproduce
the same construction with the same parameters to get a quiver variety Cn, 2. It is
proved in [BP11] that a subgroup of Aut(CQ̄2;µ) acts transitively on Cn, 2 when
induced onto this space, see also [MT13]. It is not known if the subgroup of Poisson
automorphisms induced by HAut(CQ̄2) also acts transitively.

5.2.2. Using quasi-Hamiltonian algebras

Given a quasi-Hamiltonian algebra (A, {{−,−}} ,Φ) over B, we can reproduce the
construction from § 5.2.1. Namely, we can define the group of B-linear automorphisms
Aut(A), the subgroup of quasi-Hamiltonian automorphisms qHAut(A), and the
subgroup Aut(A; Φ) of automorphisms of A preserving Φ. We get the inclusions
(5.18) qHAut(A) ⊂ Aut(A; Φ) ⊂ Aut(A) .
The first inclusion descends to an inclusion of automorphisms of the quotient Ac =
A/(Φ − c) for any c ∈ B× such that the image of qHAut(A) preserves the H0-
Poisson structure obtained from Proposition 5.6. If k is of characteristic zero and
algebraically closed, they furthermore descend to automorphisms of affine moduli
spaces of representations, for which the elements in the image of qHAut(A) are
Poisson isomorphisms by Proposition 5.9.
Example 5.15. — Consider the Jordan quiver Q◦ as in Example 5.11. The local-

isation AQ◦ of the path algebra of Q̄◦ has a quasi-Hamiltonian algebra structure
constructed in § 4.3. Let F2, S = k〈x, y〉S be the universal localisation of k〈x, y〉
with respect to the set S = {1 + xy, 1 + yx}. Under a 7→ y, a∗ 7→ x we can induce
the quasi-Hamiltonian algebra structure on F2, S ' AQ◦ with double quasi-Poisson
bracket

(5.19)
{{x, x}}1 = −1

2
(
x2 ⊗ 1− 1⊗ x2

)
, {{y, y}}1 = +1

2
(
y2 ⊗ 1− 1⊗ y2

)
,

{{y, x}}1 = 1⊗ 1 + 1
2 (xy ⊗ 1 + 1⊗ yx+ x⊗ y − y ⊗ x) ,

and the multiplicative moment map Φ = (1 + yx)(1 + xy)−1. This corresponds to
taking the ordering a < a∗. If we consider the other ordering a∗ < a, we get the
double quasi-Poisson bracket

(5.20)
{{x, x}}2 = +1

2
(
x2 ⊗ 1− 1⊗ x2

)
, {{y, y}}2 = −1

2
(
y2 ⊗ 1− 1⊗ y2

)
,

{{y, x}}2 = 1⊗ 1 + 1
2 (xy ⊗ 1 + 1⊗ yx− x⊗ y + y ⊗ x) ,

and the multiplicative moment map Φ′ = (1 + xy)−1(1 + yx). We can read from
the proof of Lemma 4.7 that the isomorphism of quasi-Hamiltonian algebras from
(F2, S, {{−,−}}1 ,Φ) to (F2, S, {{−,−}}2 ,Φ′) is given by
(5.21) ψ : F2, S → F2, S , ψ(x) = x(1 + xy), ψ(y) = (1 + xy)−1y .

As in Example 5.11, we can start with the opposite quiver Qop
◦ given by b : 0 → 0,

and considering the ordering b∗ < b we get a quasi-Hamiltonian algebra structure
on AQop◦ . Under the identification F2, S ' AQop◦ given by b 7→ y, b∗ 7→ x, we again get
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a quasi-Hamiltonian algebra structure on F2, S, which is given by {{−,−}}2 and Φ2
defined above. By Theorem 4.12, we have isomorphic quasi-Hamiltonian algebras if
we start with Q◦ or Qop

◦ , and the isomorphism(3) can be computed from Example 4.1
to be

a 7→ b∗ , a∗ 7→ − (1 + bb∗)−1 b .

Hence it gives an isomorphism of quasi-Hamiltonian algebras from (F2, S, {{−,−}}1 ,Φ)
to (F2, S, {{−,−}}2 ,Φ′) as
(5.22) ξ : F2, S → F2, S , ξ(x) = −(1 + yx)−1y, ξ(y) = x .

Note that ξ◦ψ−1 ∈ qHAut(F2, S) when F2, S is endowed with {{−,−}}2 and Φ′. Finally,
we note that the automorphism
(5.23) φβ : F2, S → F2, S , φβ(x) = β−1x, φβ(y) = βy , β ∈ k× ,
is such that φβ ∈ qHAut(F2, S) for both quasi-Hamiltonian algebra structures. After
imposing the relations Φ = c−1, Φ′ = c−1 for c ∈ k×, the automorphisms ψ, ξ, φβ
descend to automorphisms ψ̄, ξ̄, φ̄β of the localised first quantised Weyl algebra Bc

1
defined as
(5.24) Bc

1 = (Ac
1)1+xy , Ac

1 := k〈x, y〉/
(
1 + xy − c(1 + yx)

)
.

They can be used to define the following elements of Aut(Bc
1),

(5.25)
(x, y) 7→

(
(1 + yx)x, y(1 + yx)−1

)
, (x, y) 7→

(
−(1 + yx)−1y, x

)
,

(x, y) 7→
(
β−1x, βy

)
, β ∈ k× .

Alev and Dumas classified the automorphisms of Bc
1 in [AD96, Théorème 1.7],

and they obtained that for c 6= ±1, Aut(Bc
1) is generated by the three automor-

phisms (5.25).
Corollary 5.16. — Fix c ∈ k\{0,±1}. Let F2, S = k〈x, y〉S for S = {1+xy, 1+

yx} and Bc
1 be the localisation of the first quantised Weyl algebra defined by (5.24).

Then, the automorphisms of Bc
1 are all induced by isomorphisms of quasi-Hamiltonian

algebras on F2, S (possibly for different structures).
Contrary to the case of the first Weyl algebra obtained in Corollary 5.12, we do

not have a surjection qHAut(F2, S)→ Aut(Bc
1) since ψ : F2, S → F2, S given by (5.21)

does not preserve the double bracket (5.19) or its multiplicative moment map Φ.
This illustrates the key difference between Lemma 3.7 and Lemma 4.7 : in the quasi-
Hamiltonian setting, performing fusion in the opposite order induces a non-trivial
isomorphism.
Example 5.17. — Let L2 = k〈x±1, y±1〉 denote the (non-commutative) algebra of

Laurent polynomials in two variables. There is a quasi-Hamiltonian algebra structure
on L2 with double quasi-Poisson bracket

(5.26)
{{x, x}} = +1

2
(
x2 ⊗ 1− 1⊗ x2

)
, {{y, y}} = −1

2
(
y2 ⊗ 1− 1⊗ y2

)
,

{{x, y}} = 1
2 (yx⊗ 1 + 1⊗ xy − x⊗ y + y ⊗ x) ,

(3)We take a < a∗ and b∗ < b to define the quasi-Hamiltonian structures.
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and multiplicative moment map Φ = xyx−1y−1. This quasi-Hamiltonian algebra
was considered in [CF17] after localisation of AQ◦ . It can also be obtained from an
intersection pairing on the fundamental group π of a punctured torus as we have

L2 ' k
〈
x±1, y±1,Φ±1

〉
/
(
Φ− xyx−1y−1

)
=: π ,

see the work of Massuyeau–Turaev [MT14]. Elements of Aut(π) which are not acting
by conjugation can be found in [Gol03, Appendix], and they include the Dehn twists

(5.27)
τ : L2 → L2 , τ(x) = xy, τ(y) = y ,

τ̃ : L2 → L2 , τ̃(x) = x, τ̃(y) = yx .

We have τ, τ̃ ∈ Aut(L2,Φ), and we can prove that both automorphisms preserve the
double bracket (5.26), hence these elements belong to qHAut(L2). We also get that
(5.28) σ : L2 → L2 , σ(x) = y−1, σ(y) = yxy−1 ,

belongs to qHAut(L2) in view of σ = τ−1 ◦ τ̃ ◦ τ−1. Finally, we note that the
automorphism
(5.29) φα, β : L2 → L2 , φα, β(x) = αx, φα, β(y) = βy , α, β ∈ k× ,
is such that φα, β ∈ qHAut(L2). Imposing the relation Φ = c for c ∈ k×, all these
automorphisms descend to automorphisms of the quantum torus

(5.30) Cc
1 = k

〈
x±1, y±1

〉
/(xy − cyx) .

They can be used to define the following elements of Aut(Cc
1),

(5.31) (x, y) 7→ (xy, y), (x, y) 7→
(
y−1, x

)
, (x, y) 7→ (αx, βy) , α, β ∈ k× .

We get from [KPS94, Theorem 1.5] or [AD96, Proposition 1.6] that for c 6= ±1,
the automorphisms (5.31) generate Aut(Cc

1). The first two automorphisms in (5.31)
generate a subgroup isomorphic to SL2(Z), and we have in particular Aut(Cc

1)
' SL2(Z) n (k×)2.

Corollary 5.18. — Fix c ∈ k \ {0,±1}. Let L2 = k〈x±1, y±1〉 and Cc
1 be the

quantum torus defined by (5.30). Then qHAut(L2) surjects onto Aut(Cc
1).

Remark 5.19. — Similarly to the case of the first Weyl algebra discussed in
Remark 5.13, the H0-Poisson structure on Cc

1 is trivial for c 6= +1. For c = +1, we
get that the H0-Poisson structure induced by (5.26) on k[x±1, y±1] is the Poisson
bracket defined by {x, y} = xy and {x, x} = 0 = {y, y}.

Example 5.20. — We work over k = C. Consider the quasi-Hamiltonian algebras
L2 from Example 5.17 and AQ from § 4.3, where Q consists of a unique arrow
v : 0 → ∞. After fusion of the idempotent e0 ∈ AQ onto the unit of L2, we get
an algebra A′ which is quasi-Hamiltonian by Proposition 4.5. Fix n ∈ N× and
q ∈ C× not a root of unity. Taking (c0, c∞) = (q, q−n) and (α0, α∞) = (n, 1), the
corresponding affine moduli space of representations Cqn is the q-Calogero–Moser
space [CF17, Obl04]. Since qHAut(L2) ⊂ qHAut(A′) descends to an algebra acting
by Poisson automorphisms on representation spaces, we get an action of SL2(Z) by
Poisson automorphisms on Cqn.
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6. Dual integrable systems from quivers

We have seen as part of Theorems 3.12 and 4.12 that the (quasi-)Hamiltonian
algebra associated with a quiver only depends on the underlying undirected graph,
up to isomorphism. In particular, we obtain from Proposition 5.9 an isomorphism of
Poisson varieties after considering the orbit spaces obtained by (quasi-)Hamiltonian
reduction of the representation spaces of these algebras. We will investigate this
observation using a family of quivers denoted Qm, and their opposites Qop

m obtained
by reversing all the arrows in each quiver Qm. The motivation underlying this inves-
tigation is that the quiver should also dictate a particular choice of local coordinates
on a subset of the associated Poisson variety, such that the isomorphism described
above will lead us to dual integrable systems. When the quiver is a cyclic quiver
extended by one arrow, the choice of local coordinates that we consider on the
associated space will satisfy the principle (P) stated as follows

• the matrices representing the arrows in the cyclic quiver are diagonal matrices,
which are either equal or related through the moment map equations;
• the matrix representing the additional arrow is a (co)vector with all entries
equal to +1.

These two rules will serve us to fix the choice of representatives, up to a residual finite
action. Furthermore, we will see that this choice naturally ensures that we obtain
Lax matrices for integrable systems in the Calogero–Moser (CM) and Ruijsenaars–
Schneider (RS) families [Cal71, Mos75, RS86, Sut71]. By following this general idea,
we will see that the reversing of arrows Qm  Qop

m yields
(1) self-duality of the generalised rational CM systems from [CS17] in § 6.1;
(2) the standard duality of the hyperbolic CM and rational RS systems in § 6.2;
(3) the new dual integrable system of a modified hyperbolic RS system in § 6.3;
(4) the standard self-duality of the hyperbolic RS system in § 6.4.

For the interested reader which has only a limited background on integrable systems,
we recommend to consult [Eti07, Lectures 1-2] for an introduction to the subject of
CM systems using the perspective of Hamiltonian reduction.
Remark 6.1. — Below, we work over k = C, we fix m > 1 and we let I = Z/mZ.

All the computations provided are given under the assumption thatm > 2 to simplify
the presentation. The statements regarding the local coordinates and their Poisson
brackets also hold in the case m = 1, and the computations in that case can be easily
adapted by the reader.

6.1. Self-duality of rational CM systems

We consider the quiver Qm with vertex set Ĩ = I ∪ {∞}, and m+ 1 arrows given
by xs : s→ s + 1 for each s ∈ I, and v :∞→ 0. In the double Q̄m, we denote the
opposite arrows by x∗s : s + 1 → s, v∗ : 0 → ∞. We also consider the quiver Qop

m

with the same vertex set but with arrows ys : s + 1 → s, w : 0 → ∞. The double
Q̄op
m has additional arrows y∗s : s→ s+ 1, w∗ :∞→ 0. These quivers are depicted in

Figure 6.1.
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∞ ∞0

m−1

1

0

m−1

1Q̄m Q̄op
m

v

v∗

w∗

w

x0 x∗0

xm−1 x∗m−1

y∗0 y0

y∗m−1
ym−1

Figure 6.1. On the left : the double quiver Q̄m whose continuous arrows belong
to the original quiver Qm. On the right : the double quiver Q̄op

m whose continuous
arrows belong to the original quiver Qop

m .

Using § 3.3, the path algebra of each quiver has a Hamiltonian algebra structure,
and by Theorem 3.12 and Example 3.1 we have an isomorphism of Hamiltonian
algebras given by
(6.1) ψ : CQ̄m → CQ̄op

m , ψ(xs) = y∗s , ψ(x∗s) = −ys, ψ(v) = w∗, ψ(v∗) = −w .
Denote the moment maps by µ and µop. In view of Proposition 5.9, the map ψ
induces a Poisson isomorphism

(6.2) Ψ : Rep
(
CQ̄m/

(
µ− λ̃

)
, α
)
//GLα → Rep

(
CQ̄op

m/
(
µop − λ̃

)
, α
)
//GLα ,

for any α ∈ Nm+1 and λ̃ = ∑
s∈ I λses +λ∞e∞ with λs, λ∞ ∈ C. We will consider the

cases where the dimension vector α is such that for some n > 1 we put αs = n for
each s ∈ I and α∞ = 1, while the parameters defining λ̃ are subject to λ∞ = −n|λ|
for |λ| := ∑

s λs. Moreover the (λs) are assumed to satisfy the following regularity
conditions
(6.3)

∑
s∈ I

λs 6= 0 , k
∑
s∈ I

λs 6= λr + . . .+ λr′ ,

for all k ∈ Z and 1 6 r 6 r′ < m− 1. Under these conditions, the spaces appearing
in (6.2) are smooth and irreducible of dimension 2n [CS17].

6.1.1. Space associated with Qm

Denote the reduced space Rep(CQ̄m/(µ− λ̃), α)//GLα by Cn. By construction it
can be described as the set of matrices
(6.4) Xs, X

∗
s ∈ Matn×n(C) , V ∈ Mat1×n(C), V ∗ ∈ Matn×1(C) ,

satisfying the m relations
(6.5) XsX

∗
s −X∗s−1Xs−1 − δs0V ∗V = λs Idn ,

where we identify the elements in the same orbit of the action

(6.6)
g · (Xs, X

∗
s , V, V

∗) =
(
gsXsg

−1
s+1, gs+1X

∗
s g
−1
s , V g−1

0 , g0V
∗
)
,

g = (gs) ∈ GLn(C)m .
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In view of the principle (P), we consider the subspace C ′n ⊂ Cn where there exists a
representative with

(6.7) Xs = diag (q1, . . . , qn) , s ∈ I, V = (1, . . . , 1) ,

where qi 6= 0 and qmi 6= qmj for all i 6= j. Solving the constraint (6.5), we see that we
can take

(6.8)
(X∗s )ij = δijpj + δij

1
qj

(λ1 + . . .+ λs)− δ(i 6= j)|λ|
qm−s−1
i qsj
qmi − qmj

, s ∈ I,

V ∗ = −|λ|(1, . . . , 1)T ,

where the (pi) ∈ Cn are free, and we recall |λ| = ∑
s λs. This choice is unique up to

the action by the generalised symmetric group ZmoSn, where Sn acts by simultaneous
permutation of the (qi, pi), while (ki) ∈ Znm acts by (qi, pi) 7→ (qiµkim, pi) where µm is
a fixed primitive mth root of unity.

Lemma 6.2. — The reduced Poisson bracket is such that {qi, qj} = 0 = {pi, pj}
and {qi, pj} = 1

m
δij.

Proof. — By construction, the double bracket on CQ̄m is such that {{xr, x∗s}} =
δrser+1 ⊗ er, {{xr, xs}} = 0 and {{x∗r, x∗s}} = 0. Denote by {−,−}λ the H0-Poisson
structure on Aλ := CQ̄m/(µ− λ̃) and ā ∈ H0(Aλ) the image of an element a ∈ Aλ.
We can compute from these results that for x := x0 . . . xm−1 and any k, l ∈ N,{

xk, xl
}λ

= 0,
{
xk, x∗m−1xm−1xl

}λ
= k xk+l ,{

x∗m−1xm−1xk, x∗m−1xm−1xl
}λ

= (k − l)x∗m−1xm−1xk+l .

Hence by Theorem 5.8, if we let Xcyc = X0 . . . Xm−1 we get on Cn

(6.9)

{
trXk

cyc, trX l
cyc

}
= 0,

{
trXk

cyc, trX∗m−1Xm−1X
l
cyc

}
= k trXk+l

cyc ,{
trX∗m−1Xm−1X

k
cyc, trX∗m−1Xm−1X

l
cyc

}
= (k − l) trX∗m−1Xm−1X

k+l
cyc .

It remains to use these identities and the local coordinates as in the proof of [Eti07,
Proposition 2.7]. �

The above description of Cn was essentially given by Chalykh and Silantyev [CS17,
Section V].

6.1.2. Space associated with Qop
m

Denote the reduced space Rep(CQ̄op
m/(µop− λ̃), α)//GLα by Copn . As in the previous

case, it can be described as the set of matrices

(6.10) Ys, Y
∗
s ∈ Matn×n(C) , W ∗ ∈ Mat1×n(C), W ∈ Matn×1(C) ,

satisfying

(6.11) Ys−1Y
∗
s−1 − Y ∗s Ys + δs0WW ∗ = λs Idn ,
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under identifications of the elements of each orbit for the action

(6.12)
g · (Ys, Y ∗s ,W,W ∗) =

(
gs+1Ysg

−1
s , gsY

∗
s g
−1
s+1, g0W, ,W

∗g−1
0

)
,

g = (gs) ∈ GLn(C)m .

Following the principle (P), we consider the subspace (Copn )′ ⊂ Copn where there exists
a representative with

(6.13) Ys = diag (q̊1, . . . , q̊n) , s ∈ I, W = (1, . . . , 1)T ,

where q̊i 6= 0 and q̊mi 6= q̊mj for all i 6= j. We can then take

(6.14)
(Y ∗s )ij = δij p̊j − δij

1
q̊j

(λ1 + . . .+ λs)− δ(i 6=j)|λ|
q̊si q̊

m−s−1
j

q̊mi − q̊mj
, s ∈ I,

W ∗ = |λ|(1, . . . , 1) .

This choice is unique up to the action of Zm oSn.

Lemma 6.3. — The reduced Poisson bracket is such that {q̊i, q̊j} = 0 = {p̊i, p̊j}
and {q̊i, p̊j} = 1

m
δij.

Proof. — By construction, the double bracket on CQ̄op
m is such that {{yr, y∗s}} =

δrser ⊗ er+1, {{yr, ys}} = 0 and {{y∗r , y∗s}} = 0. It then suffices to adapt the proof of
Lemma 6.2. �

6.1.3. Duality

After rescaling the Poisson brackets on Cn, Copn by a factor m, we have a set of
Darboux coordinates on a dense subset of each space. Let Xcyc = X0 . . . Xm−1,
X∗cyc = X∗m−1 . . . X

∗
0 , and Ycyc = Ym−1 . . . Y0, Y ∗cyc = Y ∗0 . . . Y ∗m−1. It is clear that

the Poisson isomorphism (6.2) is such that

trY k
cyc ◦Ψ = (−1)km tr

(
X∗cyc

)k
, trXk

cyc ◦Ψ−1 = tr
(
Y ∗cyc

)k
.

In particular, these identities expressed in terms of Darboux coordinates yield that
(tr(Y ∗cyc)k)nk=1 form an integrable system on Copn , and the same holds for (tr(X∗cyc)k)nk=1
on Cn. Moreover, they are action-angle dual by definition. In the coordinates (qi, pi),
the functions (tr(X∗cyc)k)nk=1 define a generalisation of the CM system which was
introduced by Chalykh and Silantyev [CS17]. The same holds for the functions
(tr(Y ∗cyc)k)nk=1 in the coordinates (q̊i, p̊i), so that we get self-duality for CM systems
having Zm oSn symmetry.

Remark 6.4. — In the case m = 1, we recover the well-known duality of the CM
system of type An−1 [KKS78, Rui88, Wil98]. For m = 2 we get the duality of type
Bn in view of [CS17, Example 5.6].
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0
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m−1
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zm−1
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Figure 6.2. Representation as quivers with relations of the algebras obtained
from CQ̄m and CQ̄op

m by localisation.

6.2. Duality of hyperbolic CM - rational RS systems

We modify § 6.1 as follows. Consider the algebra R̃m obtained by adding to CQ̄m

local inverses x−1
s = es+1x

−1
s es satisfying

(6.15) xsx
−1
s = es, x−1

s xs = es+1, for all s ∈ I .

Introducing x̃s = xsx
∗
s and ṽ = v∗, R̃m is the path algebra of the quiver Q̃m with

relations (6.15) depicted on the left of Figure 6.2. The double bracket on CQ̄m

uniquely extend to R̃m by the derivation rule [VdB08a, Proposition 2.5.3], hence R̃m

is a Hamiltonian algebra.
Reproducing this construction, we can form the algebra R̃op

m by adding local inverses
(y∗s)−1 = es+1(y∗s)−1es to the path algebra CQ̄op

m of the double of the quiver Qop
m . (Note

that the superscript op indicates that we work with the opposite quiver, not that we
take the opposite multiplication in R̃m.) Taking zs = y∗sys, z̃s = y∗s , and w̃ = w∗, R̃op

m

is the path algebra of the quiver Q̃op
m with relation depicted on the right of Figure 6.2.

We also obtain a Hamiltonian algebra structure on R̃op
m such that the map ψ (6.1)

extends to an isomorphism of Hamiltonian algebras

(6.16) ψ̃ : R̃m → R̃op
m , ψ̃(xs) = z̃s, ψ̃(x̃s) = −zs, ψ̃(v) = w̃, ψ̃(ṽ) = −w .

The map ψ̃ induces a Poisson isomorphism Ψ̃ on associated Poisson varieties as
in § 6.1. We consider the same dimension vector α and regular parameter λ̃ as
in § 6.1 for the rest of this subsection.

6.2.1. Space associated with Q̃m

Denote the reduced space Rep(R̃m/(µ− λ̃), α)//GLα by C̃n. It is the subset of Cn
where each Xs is invertible, and where we use the elements X̃s = XsX

∗
s , Ṽ = V ∗. To
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follow the principle (P) with the matrices (Xs, V ), we consider again the subspace
C ′n ⊂ C̃n ⊂ Cn where there exists a representative with

(6.17) Xs = diag(x1, . . . , xn), s ∈ I, V = (1, . . . , 1) ,

where xi 6= 0 and xmi 6= xmj for all i 6= j, and where we take

(6.18)
(X̃s)ij = δijpj + δij(λ1 + . . .+ λs)− δ(i 6=j)|λ|

xm−si xsj
xmi − xmj

, s ∈ I,

Ṽ = −|λ|(1, . . . , 1)T ,

for free parameters (pi) ∈ Cn. This choice is unique up to the action by ZmoSn. The
variables (x, p) correspond to (q, qp) in the choice associated with Qm in § 6.1, so
that we get the following result from Lemma 6.2.

Lemma 6.5. — The reduced Poisson bracket is such that {xi, xj} = 0 = {pi, pj}
and {xi, pj} = 1

m
xiδij.

In particular, on a dense subspace of C ′n we have Darboux coordinates (qi, pi) for
xi = e

1
m
qi .

6.2.2. Space associated with Q̃op
m

Denote the reduced space Rep(R̃op
m/(µop−λ̃), α)//GLα by C̃opn . The space C̃opn ⊂ Copn

can be described as the set of matrices

(6.19) Zs ∈ Matn×n(C), Z̃s ∈ GLn(C), W̃ ∈ Mat1×n(C), W ∈ Matn×1(C) ,

satisfying

(6.20) Z̃−1
s−1Zs−1Z̃s−1 − Zs + δs0WW̃ = λs Idn ,

under identification of the elements in each orbit for the action

(6.21)
g ·
(
Zs, Z̃s,W, W̃

)
=
(
gsZsg

−1
s , gsZ̃sg

−1
s+1, g0W, , W̃g−1

0

)
,

g = (gs) ∈ GLn(C)m .

To apply the principle (P) to the matrices (Zs,W ) representing the continuous
arrows of Q̃op

m , we need the Zs to be related diagonal matrices. In view of (6.20) with
s 6= 0, Zs−1 and Zs + λs Idn share the same spectrum. So we consider the subspace
(C̃opn )′ ⊂ C̃opn where there exists a representative with

(6.22) Zs = diag (q̃1, . . . , q̃n)− (λ1 + . . .+ λs) Idn, s ∈ I, W = (1, . . . , 1)T ,

and we assume that

(6.23) q̃i 6= 0, q̃i 6= q̃j, q̃i 6= q̃j ± |λ|, for all i 6= j .
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Lemma 6.6. — The subspace (C̃opn )′ can be parametrised by (q̃i) ∈ Cn satisfy-
ing (6.23) and (ωi) ∈ (C×)n where the matrices (Zs,W ) are given by (6.22), together
with

Z̃s = Idn, s 6= m− 1, (Z̃m−1)ij = −|λ| ωi
q̃i − q̃j − |λ|

∏
k 6=j

q̃k − q̃j − |λ|
q̃k − q̃j

,

W̃ j =|λ|
∏
k 6=j

q̃k − q̃j − |λ|
q̃k − q̃j

.

Moreover, this choice is unique up to Sn action by simultaneous permutation of
entries.

Proof. — Let us start with a representative such that (6.22) holds. By assumption
on (q̃i) and using (6.20) with s 6= 0, Z̃s is diagonal, and we can fix the gauge (up to
a residual permutation action) so that Z̃s = Idn. If we set ωi = (Z̃m−1W )i, we get
from (6.20) with s = 0 that

(6.24) (Z̃m−1)ij = − ωi
q̃i − q̃j − |λ|

W̃ j .

Using again the same equation in the form Z̃−1
m−1Zm−1Z̃m−1 = Z0 +λ0 Idn−WW̃ , we

get that Zm−1 has the same spectrum as the right-hand side. Since the eigenvalues
of Zm−1 are distinct, we must have the equality of characteristic polynomials in η

(6.25)

n∏
k=1

(q̃k − λ1 − . . .− λm−1 − η) = det (Zm−1 − η Idn)

= det
(
Z0 + (λ0 − η) Idn−WW̃

)
.

The right-hand side of (6.25) is a rank one deformation of a generically invertible
matrix, so

det
(
Z0 + (λ0 − η) Idn−WW̃

)
= det (Z0 + (λ0 − η) Idn)

[
1− W̃ (Z0 + (λ0 − η) Idn)−1W

]
=

n∏
k=1

(q̃k + λ0 − η)−
n∑
l=1

W̃ l

∏
k 6=l

(q̃k + λ0 − η) .

Using this expression and evaluating (6.25) at η = q̃l +λ0, we get the claimed entries
for W̃ , hence for Z̃m−1. It is then easy to check that ωi = (Z̃m−1W )i. By invertibility
of Z̃m−1 we get ωi 6= 0 for all i. �

Lemma 6.7. — The reduced Poisson bracket is such that {q̃i, q̃j} = 0 = {ωi, ωj}
and {q̃i, ωj} = δijωj.

Proof. — The double bracket on R̃op
m is obtained by extending the one on CQ̄op

m as
explained at the beginning of this subsection. We can obtain in that way

{{z̃r, z̃s}} = 0 , {{z0, z̃s}} = δs0e0 ⊗ z̃0 , {{z0, z0}} = e0 ⊗ z0 − z0 ⊗ e0 .
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Denote by {−,−}λ the H0-Poisson structure on Aλ := R̃op
m/(µ− λ̃) and ā ∈ H0(Aλ)

the image of an element a ∈ Aλ. We can compute from the above double brackets
that for z̃ := z̃0 . . . z̃m−1 and any k, l ∈ N,
{
zk0 , z

l
0

}λ
= 0,

{
zk0 , z̃z

l
0

}λ
= k z̃zk+l−1

0 ,
{
z̃zk0 , z̃z

l
0

}λ
=
[
k−1∑
r=1
−

l−1∑
r=1

]
z̃zk+l−r−1

0 z̃zr0 .

Hence by Theorem 5.8, if we let Z̃cyc = Z̃0 . . . Z̃m−1 we get on C̃opn

(6.26)

{
trZk

0 , trZ l
0

}
= 0,

{
trZk

0 , tr Z̃cycZ
l
0

}
= k tr Z̃Zk+l−1

0 ,{
tr Z̃cycZ

k
0 , tr Z̃cycZ

l
0

}
=
[
k−1∑
r=1
−

l−1∑
r=1

]
tr
(
Z̃cycZ

k+l−r−1
0 Z̃cycZ

r
0

)
.

It remains to use these identities and the local coordinates to get the reduced Poisson
structure. �

As a corollary, on a dense subspace of C̃opn we have Darboux coordinates (q̃i, p̃i) for
ωi = ep̃i .

6.2.3. Duality

So far, we have obtained Darboux coordinates on dense subsets of C̃n, C̃opn . Denoting
Xcyc = X0 . . . Xm−1 and Z̃cyc = Z̃0 . . . Z̃m−1, we can use the Poisson diffeomorphism
Ψ̃ : C̃n → C̃opn to obtain that

trZk
0 ◦ Ψ̃ = (−1)k tr X̃k

0 , trXk
cyc ◦ Ψ̃−1 = tr(Z̃cyc)k .

Hence, we can conclude that (tr X̃k
0)nk=1 and (tr(Z̃cyc)k)nk=1 form integrable systems

on C̃n and C̃opn respectively, which are in action-angle duality. In the coordinates
(qi, pi) we can write the functions (tr X̃k

0)nk=1 as hyperbolic CM Hamiltonians of type
An−1 of order km in the momenta (pi). In the coordinates (q̃i, p̃i), the functions
tr(Z̃cyc)k are all defining Hamiltonians of the rational RS system of type An−1. The
dependence on m of this second family is only visible in the coupling λ∞.
The construction of this subsection using two quivers and their representation

spaces is similar to the choice of two slices inside one phase space outlined by Gorsky
and Rubtsov [GR01, § 4.5].

Remark 6.8. — The duality of the hyperbolic CM system and rational RS system
in the real case goes back to Ruijsenaars [Rui88]. Since we work over C, we do not
distinguish the hyperbolic and trigonometric CM systems which are equivalent up
to making the change of coordinates qi 7→

√
−1qi. Another consequence of the fact

that we work in the complex setting is that the second integrable system is written
in the coordinates (q̃i, p̃i) as rational RS Hamiltonians in MacDonald form. In that
case, the Lax matrix and the Hamiltonians do not involve square roots contrary to
the original real case [RS86]. We also use the MacDonald form for the hyperbolic
RS system and its variants presented in the next subsections.
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6.3. Modified hyperbolic RS systems and their duals

We consider the quivers Qm and Qop
m as in § 6.1. We construct the path algebras over

C of their doubles, depicted in Figure 6.1, then we define the algebras Am := AQm ,
Aopm := AQopm by universal localisation as in § 4.3. To avoid confusion with the results
in § 6.1, we will denote the elements of the double with a hat instead of a star, e.g.
x∗s will be denoted x̂s. We fix the following ordering <s on the elements a of the
doubles such that t(a) = s,

(6.27)
xs <s x̂s−1, s ∈ I \ {0}, and x0 <0 x̂m−1 <0 v̂ ;
ŷs <s ys−1, s ∈ I \ {0}, and ŷ0 <0 ym−1 <0 w .

(For m = 1, we only have x0 <0 x̂0 <0 v̂ or ŷ0 <0 y0 <0 w.) By § 4.3, this
defines a quasi-Hamiltonian algebra structure on Am and Aopm . Using Theorem 4.12
and Example 4.1, the choice of orderings gives the following isomorphism of quasi-
Hamiltonian algebras

(6.28)
ψ̂ : Am → Aopm , ψ̂(xs) = ŷs, ψ̂(x̂s) = − (es+1 + ysŷs)−1 ys,

ψ̂(v) = ŵ, ψ̂(v̂) = − (e0 + wŵ)−1w .

Denote the multiplicative moment maps by Φ and Φop. In view of Proposition 5.9,
the map ψ̂ induces a Poisson isomorphism
(6.29) Ψ̂ : Rep (Am/ (Φ− c̃) , α) //GLα → Rep (Aopm/ (Φop − c̃) , α) //GLα ,
for any α ∈ Nm+1 and c̃ = ∑

s∈ I cses + c∞e∞ with cs, c∞ ∈ C×. We will consider the
cases where αs = n for each s ∈ I with n > 1, α∞ = 1, while c∞ = (∏s cs)−n and
the (cs) are subject to the regularity conditions

(6.30)
∏
s∈ I

cs 6= 1 ,
∏
s∈ I

cks 6=
∏

r6 ρ6 r′
cρ ,

for all k ∈ Z and 1 6 r 6 r′ < m− 1. Under these conditions, the spaces appearing
in (6.29) are smooth and irreducible of dimension 2n [BEF20, CF17].

6.3.1. Space associated with Qm

Denote the reduced space Rep(Am/(Φ− c̃), α)//GLα by Ĉn. By construction it can
be described as the set of matrices
(6.31) Xs, X̂s ∈ Matn×n(C) , V ∈ Mat1×n(C), V̂ ∈ Matn×1(C) ,
satisfying the m relations

(6.32)
(
Idn +XsX̂s

) (
Idn +X̂s−1Xs−1

)−1 (
Idn +δs0V̂ V

)−1
= cs Idn ,

where all the factors appearing in (6.32) are invertible, and we identify the elements
in the same orbit of the action

(6.33)
g ·
(
Xs, X̂s, V, V̂

)
=
(
gsXsg

−1
s+1, gs+1X̂sg

−1
s , V g−1

0 , g0V̂
)
,

g = (gs) ∈ GLn(C)m .
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In view of the principle (P), we consider the subspace Ĉ ′n ⊂ Ĉn where there exists a
representative with
(6.34) Xs = diag(x1, . . . , xn), s ∈ I, V = (1, . . . , 1) ,
where the (xi) ∈ Cn satisfy the following conditions with t := ∏

s∈ I cs,
(6.35) xi 6= 0, xmi 6= xmj , xmi 6= txmj , for all i 6= j .

Lemma 6.9. — The subspace Ĉ ′n can be parametrised by (xi) ∈ Cn satisfy-
ing (6.35) and (ρi) ∈ (C×)n where the matrices (Xs, V ) are given by (6.34), together
with(4)

X̂s =− δij
1
xi

+ c1 . . . cs
(
1− t−1

)
ρj

xm−s−1
i xsj

xmj − t−1xmi

∏
l 6= i

xml − t−1xmi
xml − xmi

,

V̂ i =−
(
1− t−1

) ∏
l 6= i

xml − t−1xmi
xml − xmi

.

Moreover, this choice is unique up to Zm oSn action by simultaneous permutation of
entries for Sn, and rescaling xi 7→ µkimxi for (ki) ∈ Znm with µm a fixed primitive mth

root of unity.

Proof. — In Ĉ ′n, we can rewrite the moment map conditions (6.32) as

(6.36) Xs

(
X̂s +X−1

s

)
X−1
s−1

(
X̂s−1 +X−1

s−1

)−1 (
Idn +δs0V̂ V

)−1
= cs Idn .

Taking a representative such that (6.34) holds, we can use these identities to get(
X̂s +X−1

s

)
ij

= c1 . . . cs x−si xsj
(
X̂0 +X−1

0

)
ij
,

(
X̂0 +X−1

0

)
ij

= t
x−1
i V̂ iρj

1− tx−mi xmj
,

where we have set
(6.37) ρi =

(
V D−m+1

(
X̂0 +X−1

0

)
Dm

)
i
, for D = diag(x1, . . . , xn) .

From this, we obtain that if V̂ has the form claimed in the statement, then it will
follow that it is true also for the matrices X̂s. In particular, it can then be checked
that (6.37) is satisfied for these particular matrices.
To determine the entries of V̂ for a representative with (6.34), we note that the

moment map condition implies

(6.38) t−1
(
X̂0 +X−1

0

)
D−m

(
X̂0 +X−1

0

)−1
= D−m +D−1V̂ V D−m+1 .

The matrices on both sides of this equality share the same spectrum hence, as in the
proof of Lemma 6.6, equality of their characteristic polynomials in η yields

(6.39)
n∏
k=1

(
t−1x−mk − η

)
=

n∏
k=1

(
x−mk − η

)
+
∑
l

V̂ lx
−m
l

∏
k 6= l

(
x−mk − η

)
.

Evaluating this identity at η = x−mi , we get the desired V̂ i.

(4) In the local form of X̂s, we consider that c1 . . . cs for s = 0 is the empty product equal to +1.
Hereafter, we follow this convention.
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Finally, we note that ρi 6= 0 because the matrices X̂s + X−1
s are invertible. The

uniqueness of the representative up to Zm oSn action is easily obtained. �

Lemma 6.10. — The reduced Poisson bracket is such that {xi, xj} = 0 = {ρi, ρj}
and {xi, ρj} = 1

m
δijxiρj.

Proof. — Due to the choice of ordering, we get from § 4.3 that the double bracket
on Am satisfies

{{xs, xr}} = 1
2δs, r+1 xrxr+1 ⊗ er+1 −

1
2δs, r−1 er ⊗ xr−1xr , {{x̂0, x̂0}} = 0 ,

{{xs, x̂0}} = δs, 0

[
e1 ⊗ e0 + 1

2 x̂0x0 ⊗ e0 + 1
2e1 ⊗ x0x̂0

]
− 1

2δs, 1 x1 ⊗ x̂0 + 1
2δs,m−1 x̂0 ⊗ xm−1.

Introducing x := x0 . . . xm−1 and x̌0 := e0 + x0x̂0, we can then get

(6.40)
{{x, x}} =1

2
(
x2 ⊗ e0 − e0 ⊗ x2

)
, {{x̌0, x̌0}} = 1

2
(
x̌2

0 ⊗ e0 − e0 ⊗ x̌2
0

)
,

{{x, x̌0}} =1
2 (x⊗ x̌0 + x̌0 ⊗ x+ x̌0x⊗ e0 − e0 ⊗ xx̌0) .

Denote by {−,−}c theH0-Poisson structure on Ac := Am/(Φ−c̃) and ā ∈ H0(Ac) the
image of an element a ∈ Ac. In a way similar to the proof of [CF17, Proposition 4.4],
we can compute from (6.40) that for any k, l ∈ N,{

xk, xl
}c

= 0,
{
xk, x̌0xl

}c
= k x̌0xk+l ,{

x̌0xk, x̌0xl
}c

=
[
k∑
r=1
−

l∑
r=1

]
x̌0xk+l−r−x̌0xr.

Hence by Theorem 5.8, if we let Xcyc := X0 . . . Xm−1 and X̌0 := Idn +X0X̂0, we get
on Ĉn

(6.41)

{
trXk

cyc, trX l
cyc

}
= 0,

{
trXk

cyc, tr X̌0X
l
cyc

}
= k tr X̌0X

k+l
cyc ,{

tr X̌0X
k
cyc, tr X̌0X

l
cyc

}
=
[
k∑
r=1
−

l∑
r=1

]
tr
(
X̌0X

k+l−r
cyc X̌0X

r
cyc

)
.

We can then derive the reduced Poisson structure by writing these identities in local
coordinates, which can be done e.g. by adapting [CF17, § 3.1]. �

As an application of this lemma, we can get Darboux coordinates (qi, pi) on a
dense subset of Ĉn by considering xi = e

1
m
qi and ρi = epi .

Remark 6.11. — As part of the local computations needed to prove Lemma 6.10,
we can get that
(6.42)

{νi, νj} = νiνj
xmi + xmj
xmi − xmj

(t−1 − 1)2
xmi x

m
j(

xmi − t−1xmj
) (
xmj − t−1xmi

) , νi := ρi
∏
l 6= i

xml − t−1xmi
xml − xmi

.

The Poisson bracket of the elements (xi, νi) was first obtained in this form by Fock and
Rosly [FR99], see also [Obl04, § 2.4]. Note that the Poisson bracket (6.42) is invariant
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under replacing t−1 by t. This explains the difference between our parametrisation in
Lemma 6.9 and the one in [CF17, Sections 3,4]. There are another two ways to obtain
Darboux coordinates, namely using the Ruijsenaars form as in [FR99, Appendix], or
a form related to the qKP hierarchy [Ili00, Section 6]. We refer to [Fai19a, § 4.2.1] for
a review of these different possibilities in the case m = 1, which are easily adapted
to any m > 1.

6.3.2. Space associated with Qop
m

Denote the reduced space Rep(Aopm/(Φop − c̃), α)//GLα by Ĉopn . It can be given as
the set of matrices
(6.43) Ys, Ŷ s ∈ Matn×n(C) , Ŵ ∈ Mat1×n(C), W ∈ Matn×1(C) ,
satisfying the m relations

(6.44)
(
Idn +Ŷ sYs

)−1 (
Idn +Ys−1Ŷ s−1

) (
Idn +δs0WŴ

)
= cs Idn ,

where all the factors appearing in (6.44) are invertible, and we identify the elements
in the same orbit for the action

(6.45)
g ·
(
Ys, Ŷ s,W, Ŵ

)
=
(
gs+1Ysg

−1
s , gsŶ sg

−1
s+1, g0W, Ŵg−1

0

)
,

g = (gs) ∈ GLn(C)m .

In analogy with the space associated with Qm, we consider the subspace (Ĉopn )′ ⊂ Ĉopn
where there exists a representative with
(6.46) Ys = diag(y1, . . . , yn), s ∈ I, W = (1, . . . , 1)T ,
where the (yi) ∈ Cn satisfy the conditions (6.35), and we set again t := ∏

s∈ I cs.

Lemma 6.12. — The subspace (Ĉopn )′ can be parametrised by (yi) ∈ Cn satisfy-
ing (6.35) and (τi) ∈ (C×)n where the matrices (Ys,W ) are given by (6.46), together
with

Ŷ s = −δij
1
yi

+ c−1
1 . . . c−1

s (1− t)τi
ysi y

m−s−1
j

ymi − tymj

∏
k 6=j

ymk − tymj
ymk − ymj

,

Ŵ j = −(1− t)
∏
k 6=j

ymk − tymj
ymk − ymj

.

Moreover, this choice is unique up to Zm oSn action.

Proof. — The result can be derived in the same way as Lemma 6.9. To obtain the
form of Ŵ , we remark that the moment map (6.44) implies the following identity :

(6.47)
(
Y0 + Ŷ 0

)−1
D−m

(
Y0 + Ŷ 0

)
= t−1D−m + t−1D1−mWŴD−1 , D

= diag(y1, . . . , yn) .

It then suffices to equal both characteristic polynomials to determine Ŵ . �

Lemma 6.13. — The reduced Poisson bracket is such that {yi, yj} = 0 = {τi, τj}
and {yi, τj} = 1

m
δijyiτj.
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Proof. — Due to the choice of ordering, the double bracket on Aopm is such that

{{ys, yr}} =1
2δs, r+1 er+1 ⊗ yr+1yr −

1
2δs, r−1 yryr−1 ⊗ er , {{ŷ0, ŷ0}} = 0 ,

{{ys, ŷ0}} =δs, 0
[
e0 ⊗ e1 + 1

2 ŷ0y0 ⊗ e1 + 1
2e0 ⊗ y0ŷ0

]
− 1

2δs, 1 ŷ0 ⊗ y1 + 1
2δs,m−1 ym−1 ⊗ ŷ0 .

Introducing y := ym−1 . . . y0 and y̌0 := e0 + ŷ0y0, we can then get

{{y, y}} =1
2
(
e0 ⊗ y2 − y2 ⊗ e0

)
, {{y̌0, y̌0}} = 1

2
(
e0 ⊗ y̌2

0 − y̌2
0 ⊗ e0

)
,

{{y, y̌0}} =1
2 (y ⊗ y̌0 + y̌0 ⊗ y + e0 ⊗ yy̌0 − y̌0y ⊗ e0) .

If we let Ycyc := Ym−1 . . . Y0 and Y̌0 := Idn +Ŷ 0Y0, we get on Ĉopn the following
identities

(6.48)

{
trY k

cyc, trY l
cyc

}
= 0,

{
trY k

cyc, tr Y̌0Y
l
cyc

}
= k tr Y̌0Y

k+l
cyc ,{

tr Y̌0Y
k
cyc, tr Y̌0Y

l
cyc

}
=
[
k∑
r=1
−

l∑
r=1

]
tr
(
Y̌0Y

k+l−r
cyc Y̌0Y

r
cyc

)
,

which can be derived as in Lemma 6.10. Notice that (6.41) and (6.48) are the
same equations if we replace Xcyc, X̌0 by Ycyc, Y̌0, or vice-versa. If we also remark
that the functions trXk

cyc, tr X̌0X
l
cyc written in coordinates in Ĉ ′n, and the functions

trY k
cyc, tr Y̌0Y

l
cyc written in coordinates in (Ĉopn )′ are exactly the same when we replace

(xj, ρj, t) by (yj, τj, t−1), the statement follows from Lemma 6.10. �

As a corollary, we can get Darboux coordinates (q̂i, p̂i) on a dense subset of Ĉopn by
considering yi = e

1
m
q̂i and τi = ep̂i .

6.3.3. Duality

We have obtained Darboux coordinates on dense subsets of Ĉn, Ĉopn , which we
now use to get integrable systems in action-angle duality. Introducing Xcyc =
X0 . . . Xm−1, Ycyc = Ym−1 . . . Y0, Ŷ cyc = Ŷ 0 . . . Ŷ m−1 and Lcyc = Lm−1 . . . L0 for
Ls = (Idn +X̂sXs)−1X̂s, we can use the Poisson diffeomorphism Ψ̂ : Ĉn → Ĉopn to
obtain that

tr Ŷ k
cyc ◦ Ψ̂ = trXk , trLkcyc ◦ Ψ̂−1 = (−1)km trY k

cyc .

Hence, we can conclude that(
trLkcyc

)n
k=1

and
(
tr Ŷ k

cyc

)n
k=1

form integrable systems on Ĉn and Ĉopn respectively, which are in action-angle duality.
In the coordinates (q̂i, p̂i) we can write the functions (tr Ŷ k

cyc)nk=1 as deformations of
the hyperbolic (or trigonometric, see Remark 6.8) RS Hamiltonians of type An−1.
They are written explicitly as the family (trY j) for m = 1, and the family (Hm, j)
for m > 2 in [CF17], and their relation to other integrable systems is discussed.
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In order to write the functions (trLkcyc)nk=1 in the coordinates (qi, pi), we note that
on Ĉ ′n
(6.49) Idn +X̂sXs = c1 . . . cs (1− t)TLs CTRs ,where(

TLs
)
ij

= δijx
m−s−1
i

∏
k 6=i

xmk − t−1xmi
xmk − xmi

,
(
TRs
)
ij

= δijρjx
s+1
j , Cij = 1

xmi − txmj
.

As C is a Cauchy matrix, its inverse can be computed to be

(6.50) C−1
ij = (1− t)

(
1− t−1

) xmi x
m
j

xmi − t−1xmj

∏
k 6=j

xmk − t−1xmj
xmk − xmj

∏
l 6=i

xml − txmi
xml − xmi

.

Therefore, the entries of Ls = (Idn +X̂sXs)−1X̂s are given by

(6.51) (Ls)ij = − 1− t−1

c1 . . . cs
ρ−1
i

xm−s−1
i xsj

xmi − t−1xmj

∏
l 6=i

xml − txmi
xml − xmi

+ (1− t)
(
1− t−1

)∑
k

xm−s−1
i xmk x

s
j

(xmi − t−1xmk )
(
xmk − txmj

) ρj
ρi

∏
l 6=i

xml − txmi
xml − xmi

∏
a6=k

xma − t−1xmk
xma − xmk

.

In the simplest case m = 1, the first element in the family (trLkcyc)nk=1 can be written
as

(6.52) trL0 =

−
∑
i

ρ−1
i

∏
l 6=i

xl − txi
xl − xi

+
(
1− t−1

)2∑
i, k

xk

(xi − t−1xk)2
∏
l 6=i

xl − txi
xl − xi

∏
a6=k

xa − t−1xk
xa − xk

.

In terms of the Darboux coordinates (qi, pi) and t = e2γ, γ ∈ C×, this can be
transformed into

(6.53) trL0 = −
∑
i

e−pi
∏
l 6=i

sinh
(
ql−qi

2 − γ
)

sinh
(
ql−qi

2

)
+
∑
i, k

sinh2 (γ) e−qi

sinh2
(
qi−qk

2 + γ
) ∏

l 6=i

sinh
(
ql−qi

2 − γ
)

sinh
(
ql−qi

2

) ∏
a6=k

sinh
(
qa−qk

2 + γ
)

sinh
(
qa−qk

2

) .

The duality between the families (trLkcyc)nk=1 and (tr Ŷ k
cyc)nk=1 seem to be new.

6.4. Self-duality of hyperbolic RS systems

We modify § 6.3 as follows. Consider the algebra Ǎm obtained by adding to Am
local inverses x−1

s = es+1x
−1
s es, i.e. these elements satisfy (6.15). We let x̌s = es+xsx̂s

and v̌ = v̂. Note that xs, v, x̌s, v̌, the idempotents and the inverses x−1
s , x̌−1

s , (e∞ +
vv̌)−1, (e0 + v̌v)−1 generate Ǎm. Moreover, Ǎm is a quasi-Hamiltonian algebra if we
extend the double bracket from AQm described in § 6.3 by localisation.
In the same way, we introduce the algebra Ǎopm obtained by adding to Aopm defined

in § 6.3 local inverses y−1
s = esy

−1
s es+1. We use zs = es + ŷsys, žs = ŷs, w̌ = ŵ and
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w together with the idempotents and the inverses belonging to Ǎopm as generators of
this algebra. It is also a quasi-Hamiltonian algebra by localisation. By construction,
the map ψ̂ (6.28) extends to an isomorphism of quasi-Hamiltonian algebras which
can be written as

(6.54)
ψ̌ : Ǎm → Ǎopm , ψ̌(xs) = žs, ψ̌(x̌s) = z−1

s ,

ψ̌(v) = w̌, ψ̌(v̌) = −(e0 + ww̌)−1w .

The map ψ̌ induces a Poisson isomorphism Ψ̌ on associated Poisson varieties as
in § 6.3. We consider the same dimension vector α and regular parameter c̃ as in § 6.3
for the rest of this subsection.
To use the principle (P) in order to find dual integrable systems, we will see

Ǎm and Ǎopm as algebras attached to the quivers with relations Q̃m, Q̃
op
m depicted in

Figure 6.2. (We use x̌s instead of x̃s and do the same for v̌, žs, w̌ to avoid confusion
with the cases considered in § 6.2.)

6.4.1. Space associated with Q̃m

Denote the reduced space Rep(Ǎm/(Φ − c̃), α)//GLα by Čn. It is the subset of
Ĉn described in § 6.3 where each Xs is invertible, and where we use the elements
X̌s = Idn +XsX̂s, V̌ = V̂ . To follow the principle (P) with the matrices (Xs, V ), we
consider again the subspace Ĉ ′n ⊂ Čn ⊂ Ĉn where there exists a representative with
Xs, V satisfying (6.34). The diagonal entries (xi) of the Xs satisfy (6.35), and we
have

(6.55)
X̌s = c1 . . . cs

(
1− t−1

)
ρj

xm−si xsj
xmj − t−1xmi

∏
l 6=i

xml − t−1xmi
xml − xmi

,

V̌i = −
(
1− t−1

)∏
l 6=i

xml − t−1xmi
xml − xmi

.

for t := ∏
s cs. The (ρi) ∈ (C×)n are free, and this choice is unique up to the action

by Zm oSn. The Poisson bracket between the variables (x, ρ) is given in Lemma 6.10.
In particular, on a dense subspace of Čn we have Darboux coordinates (qi, pi) for
xi = e

1
m
qi and ρi = epi .

6.4.2. Space associated with Q̃op
m

Denote the reduced space Rep(Ǎopm/(Φ − c̃), α)//GLα by Čopn . It can be given as
the set of matrices

(6.56) Zs, Žs ∈ GLn(C) , W̌ ∈ Mat1×n(C), W ∈ Matn×1(C) ,

satisfying the m relations

(6.57) Z−1
s Ž−1

s−1Zs−1Žs−1
(
Idn +δs0WW̌

)
= cs Idn ,
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where all the factors appearing in (6.57) are invertible, and we identify the elements
in the same orbit of the action

(6.58)
g ·
(
Zs, Žs,W, W̌

)
=
(
gsZsg

−1
s , gsŽsg

−1
s+1, g0W, Ŵg−1

0

)
,

g = (gs) ∈ GLn(C)m .
To apply the principle (P) to the matrices (Zs,W ) representing the continuous
arrows of Q̃op

m , we need the Zs to be related diagonal matrices. In view of (6.57)
with s 6= 0, Zs−1 and csZs share the same spectrum. So we consider the subspace
(Čopn )′ ⊂ Čopn where there exists a representative with
(6.59) Zs = c−1

1 . . . c−1
s diag (z1, . . . , zn) , s ∈ I, W = (1, . . . , 1)T ,

and we assume that for t := ∏
s∈ I cs,

(6.60) zi 6= 0, zi 6= zj, zi 6= tzj, for all i 6= j .

Lemma 6.14. — The subspace (Čopn )′ can be parametrised by (zi) ∈ Cn satisfy-
ing (6.60) and (σi) ∈ (C×)n where the matrices (Zs,W ) are given by (6.59), together
with

Žs = Idn, s 6= m− 1,
(
Žm−1

)
ij

= (1− t)σi
zi

zi − tzj
∏
k 6=j

zk − tzj
zk − zj

,

W̌j =− (1− t)
∏
k 6=j

zk − tzj
zk − zj

.

Moreover, this choice is unique up to Sn action by simultaneous permutation of
entries.

Proof. — Let us start with a representative such that (6.59) holds. By assumption
on (zi) and using (6.57) with s 6= 0, Žs is diagonal, and we can fix the gauge (up to
a finite action) so that Žs = Idn. Using the case s = 0 in (6.57), we get that

(6.61)
(
Žm−1

)
ij

= − σiW̌j

1− tz−1
i zj

,

where we have set σi = (Žm−1W )i. The equation that we have just used can also be
written as
(6.62) tŽ−1

m−1D
−1Žm−1 = D−1 +W

(
W̌D−1

)
, D = diag(z1, . . . , zn) .

Using that the two sides of (6.62) share the same spectrum, we get as in the proof
of Lemma 6.6 the following equality of characteristic polynomials in η

(6.63)
n∏
k=1

(
tz−1
k − η

)
=

n∏
k=1

(
z−1
k − η

)
+
∑
l

W̌lz
−1
l

∏
k 6=l

(
z−1
k − η

)
.

Evaluating this identity at η = z−1
j , we get the desired W̌j.

Finally, we can check that σi = (Žm−1W )i holds, and we note that σi 6= 0 because
the matrix Žm−1 is invertible. The residual Sn action is clear. �

Lemma 6.15. — The reduced Poisson bracket is such that {zi, zj} = 0 = {σi, σj}
and {zi, σj} = δijziσj.
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Proof. — We first work in Aopm as in Lemma 6.13. Due to the choice of ordering,
we have
{{ŷs, ŷr}} =1

2δs, r+1 ŷrŷr+1 ⊗ er+1 −
1
2δs, r−1 er ⊗ ŷr−1ŷr , {{y0, y0}} = 0 ,

{{y0, ŷs}} =δs, 0
[
e0 ⊗ e1 + 1

2 ŷ0y0 ⊗ e1 + 1
2e0 ⊗ y0ŷ0

]
− 1

2δs,m−1 ŷm−1 ⊗ y0 + 1
2δs, 1 y0 ⊗ ŷ1.

By localisation, these relations hold in Ǎopm , where we can determine the double
brackets between the generators z0 = e0 + ŷ0y0 and žs = ŷs. Introducing ž :=
ž0 . . . žm−1, we can then get

{{ž, ž}} =1
2
(
ž2 ⊗ e0 − e0 ⊗ ž2

)
, {{z0, z0}} = 1

2
(
e0 ⊗ z2

0 − z2
0 ⊗ e0

)
,

{{ž, z0}} =− 1
2 (e0 ⊗ žz0 + z0ž ⊗ e0 + ž ⊗ z0 − z0 ⊗ ž) .

If we let Žcyc := Ž0 . . . Žm−1, we get from these double brackets the following
identities on Ĉopn

(6.64)

{
trZk

0 , trZ l
0

}
= 0,

{
trZk

0 , tr ŽcycZ l
0

}
= k tr

(
ŽcycZ

k+l
0

)
,{

tr ŽcycZk
0 , tr ŽcycZ l

0

}
=
[
k∑
r=1
−

l∑
r=1

]
tr
(
ŽcycZ

k+l−r
0 ŽcycZ

r
0

)
,

which can be derived as in Lemma 6.10. Notice that (6.41) and (6.64) are the same
equations if we replace Xcyc, X̌0 by Z0, Žcyc (in that order), or vice-versa. If we also
remark that the functions trXk

cyc, tr X̌0X
l
cyc written in coordinates in Ĉ ′n, and the

functions trZk
0 , tr ŽcycZ l

0 written in coordinates in (Čopn )′ are exactly the same upon
replacing (xmj , ρj, t) by (zj, σj, t−1), then the statement follows from Lemma 6.10. �
As a corollary, we can get Darboux coordinates (q̌i, p̌i) on a dense subset of Čopn by

considering zi = eq̌i and σi = ep̌i .

6.4.3. Duality

So far, we have obtained Darboux coordinates on dense subsets of Čn, Čopn . Denoting
Xcyc = X0 . . . Xm−1 and Žcyc = Ž0 . . . Žm−1, we can use the Poisson diffeomorphism
Ψ̌ : Čn → Čopn to obtain that

trZ−k0 ◦ Ψ̌ = tr X̌k
0 , trXk

cyc ◦ Ψ̌−1 = tr
(
Žcyc

)k
.

Hence, we conclude that we have action-angle duality between the integrable systems
(tr X̌k

0 )nk=1 and (tr(Žcyc)k)nk=1 defined on Čn and Čopn respectively. In the coordinates
(qi, pi) we can write the functions (tr X̌k

0 )nk=1 as hyperbolic (or trigonometric, see
Remark 6.8) RS Hamiltonians of type An−1, which are exponential of order km in the
momenta (pi). In the coordinates (q̌i, p̌i), the functions tr(Žcyc)k are also Hamiltonians
of the hyperbolic RS system of type An−1, but they are simply exponential of order
k in the momenta. The dependence on m of this second family is hidden in the
coupling t = ∏

s∈ I cs.
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Remark 6.16. — Fix m = 1. In that case, the duality map hence obtained is
close to the one considered in [CF17, Proposition 3.8], though the duality map used
in that paper relates the spaces with inverse parameters t and t−1. Note also that,
upon identifying the generators (x, y) from Example 5.17 with (x0, x

−1
0 x̌0), the quasi-

Hamiltonian isomorphisms (5.31) induce Poisson automorphisms on Čn which act as
the identity on V and V̌ while X0, X̌0 transform as

(6.65)

(
X0, X̌0

)
7→
(
X̌0, X̌0X

−1
0 X̌0

)
,(

X0, X̌0
)
7→
(
X̌−1

0 X0, X0
)
,(

X0, X̌0
)
7→
(
αX0, αβX̌0

)
,

with α, β ∈ C×. As noted in Example 5.20, we get in particular that SL2(Z) acts on
Čn by Poisson automorphism. This SL2(Z) action was related to the self-duality of
the hyperbolic RS system in [GR01, § 2.2]. The analogue of this result in the real
setting can be found in [FK12, FK13]. The original discovery of self-duality of the
hyperbolic RS system in the real case is due to Ruijsenaars [Rui88].

6.5. Additional remarks and further directions

6.5.1.

The flows of the Hamiltonian vector fields associated with the two integrable sys-
tems presented in § 6.1 can be computed explicitly by adapting [CS17]. In particular,
they are complete in Cn and Copn . Similarly, the flows associated with the different
integrable systems found in the other subsections can also be computed explicitly
(see [CF17] to get the flows of (tr Ŷ k

cyc) from § 6.3 and the systems in § 6.4), and they
are complete in the phase spaces that support them.

6.5.2.

The different integrable systems defined in the previous subsections admit spin
extensions [GH84, KZ95], which can be described as adding internal degrees of
freedom to the different particles. The phase space of such spin extensions can be
obtained by adding multiple framing arrows from the vertex ∞ to the different
vertices in the cyclic quiver, see e.g. [CF20, CS17, Fai19b, Sil18]. Motivated by the
work of Reshetikhin on the duality of spin systems in the CM-RS family [Res03,
Res16], it would be interesting to understand if the duality map can be realised at
the level of quivers for systems with spins.
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Appendix A. The fusion double bracket

Let A be an algebra over B = ⊕s∈ Ikes. Fix i, j ∈ I, i 6= j, and consider the fusion
algebra Af = Afej→ ei

obtained by fusing ej onto ei as in § 2.2.1. The fusion algebra
Af always admits a particular double bracket, denoted {{−,−}}fus, which we define
now. For ε = 1− ej, recall from Lemma 2.2 that the generators of Af are of the form
εtε for t ∈ εAε, eijuε for u ∈ ejAε, εveji for v ∈ εAej, and eijweji for w ∈ ejAej. The
double bracket {{−,−}}fus is given on generators as follows:

{{
εtε, εt̃ε

}}
fus

= 0 ,(A.1a)

{{εtε, eijuε}}fus = 1
2 (ei ⊗ teiju− eit⊗ eiju) ,(A.1b)

{{εtε, εveji}}fus = 1
2 (vejit⊗ ei − veji ⊗ tei) ,(A.1c)

{{εtε, eijweji}}fus = 1
2
(
eijwejit⊗ ei + ei ⊗ teijweji(A.1d)

− eijweji ⊗ tei − eit⊗ eijweji
)
,

when the first component εtε is a generator of the first type (2.13a);

{{eijuε, εtε}}fus = 1
2 (eiju⊗ eit− teiju⊗ ei) ,(A.2a)

{{eijuε, eijũε}}fus = 1
2 (ei ⊗ eijueijũ− eijũeiju⊗ ei) ,(A.2b)

{{eijuε, εveji}}fus = 1
2 (eiju⊗ eiveji − veji ⊗ eijuei) ,(A.2c)

{{eijuε, eijweji}}fus = 1
2 (ei ⊗ eijueijweji − eijweji ⊗ eijuei) ,(A.2d)

when the first component eijuε is a generator of the second type (2.13b);

{{εveji, εtε}}fus = 1
2 (tei ⊗ veji − ei ⊗ vejit) ,(A.3a)

{{εveji, eijuε}}fus = 1
2 (eijuei ⊗ veji − eiveji ⊗ eiju) ,(A.3b)

{{εveji, εṽeji}}fus = 1
2 (ṽejiveji ⊗ ei − ei ⊗ vejiṽeji) ,(A.3c)

{{εveji, eijweji}}fus = 1
2 (eijwejiveji ⊗ ei − eiveji ⊗ eijweji) ,(A.3d)

when the first component εveji is a generator of the third type (2.13c);
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{{eijweji, εtε}}fus = 1
2
(
tei ⊗ eijweji + eijweji ⊗ eit(A.4a)

− teijweji ⊗ ei − ei ⊗ eijwejit
)
,

{{eijweji, eijuε}}fus = 1
2 (eijuei ⊗ eijweji − eijueijweji ⊗ ei) ,(A.4b)

{{eijweji, εveji}}fus = 1
2 (eijweji ⊗ eiveji − ei ⊗ eijwejiveji) ,(A.4c)

{{eijweji, eijw̃eji}}fus = 0 ,(A.4d)
when the first component eijweji is a generator of the fourth type (2.13d). The
case corresponding to i = 1, j = 2 gives the double bracket considered in Proposi-
tion 4.5 on Afe2→ e1 . The double bracket {{−,−}}fus was first introduced by Van den
Bergh in [VdB08a, Theorem 5.3.1], and the explicit form given above was computed
in [Fai21, Lemma 2.19].

Appendix B. Identities for the proof of Lemma 4.7

In this section, we collect the values of all the elements in A2 ⊗ A2 given by
{{c, d}}2→ 1

ind , {{c, d}}2→ 1
fus , {{ψ(c), ψ(d)}}1→ 2

ind , {{ψ(c), ψ(d)}}1→ 2
fus ,

for all the needed specialisations of the generators c, d ∈ A1. It is then easy to check
that (4.14) is satisfied in all such cases, i.e.

ψ⊗2 {{c, d}}2→ 1
ind + ψ⊗2 {{c, d}}2→ 1

fus = {{ψ(c), ψ(d)}}1→ 2
ind + {{ψ(c), ψ(d)}}1→ 2

fus .

As a result, the proof of Lemma 4.7 is completed.

Remark B.1. — In each case, we write {{c, d}}2→ 1
ind as an element of eAf ⊗ e′Af ′

for some e, e′ ∈ {ê, e1, e12} and f, f ′ ∈ {ê, e1, e21}. In particular, this completely
characterises how ψ⊗2 acts on {{c, d}}2→ 1

ind .

B.1

We consider the first specialisation of a generator of first type, that is c = a for
a ∈ êAê.

Case 1.1: d = b, b ∈ êAê.

(B.1)
{{c, d}}2→ 1

ind = ê {{a, b}}′ ê⊗ ê {{a, b}}′′ ê, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 1.2: d = b, b ∈ e1Aê.

(B.2)
{{c, d}}2→ 1

ind = e1 {{a, b}}′ ê⊗ ê {{a, b}}′′ ê, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .
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Case 1.3: d = b, b ∈ êAe1.

(B.3)
{{c, d}}2→ 1

ind = ê {{a, b}}′ ê⊗ ê {{a, b}}′′ e1, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} e12Φ−1

2 , {{ψ(c), ψ(d)}}1→ 2
fus = 0 .

Case 1.4: d = b, b ∈ e1Ae1.

(B.4)
{{c, d}}2→ 1

ind = e1 {{a, b}}′ ê⊗ ê {{a, b}}′′ e1, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} e12Φ−1

2 , {{ψ(c), ψ(d)}}1→ 2
fus = 0 .

Case 1.5: d = e12b, b ∈ e2Aê.

(B.5)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ ê {{a, b}}′′ ê, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 1.6: d = e12b, b ∈ e2Ae1.

(B.6)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ ê {{a, b}}′′ e1, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} e12Φ−1

2 , {{ψ(c), ψ(d)}}1→ 2
fus = 0 .

Case 1.7: d = be21, b ∈ êAe2.

(B.7)
{{c, d}}2→ 1

ind = ê {{a, b}}′ ê⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 1.8: d = be21, b ∈ e1Ae2.

(B.8)
{{c, d}}2→ 1

ind = e1 {{a, b}}′ ê⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 1.9: d = e12be21, b ∈ e2Ae2.

(B.9)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0.

B.2
We consider the second specialisation of a generator of first type, that is c = a for

a ∈ e1Aê.

Case 2.1: d = b, b ∈ e1Aê. This was done in the proof of Lemma 4.7.

Case 2.2: d = b, b ∈ êAe1.

(B.10)

{{c, d}}2→ 1
ind = ê {{a, b}}′ ê⊗ e1 {{a, b}}′′ e1, {{c, d}}2→ 1

fus = 0,
{{ψ(c), ψ(d)}}1→ 2

ind = Φ2e21 ∗ {{a, b}} e12Φ−1
2

− 1
2
(
be12Φ2e21a⊗ Φ−1

2 − be12Φ−1
2 e21a⊗ Φ2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = 1

2
(
be12Φ2e21a⊗ Φ−1

2 − be12Φ−1
2 e21a⊗ Φ2

)
.
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Case 2.3: d = b, b ∈ e1Ae1.

{{c, d}}2→ 1
ind = e1 {{a, b}}′ ê⊗ e1 {{a, b}}′′ e1, {{c, d}}2→ 1

fus = 0,(B.11)
{{ψ(c), ψ(d)}}1→ 2

ind = Φ2e21 ∗ Φ2e21 {{a, b}} e12Φ−1
2

− 1
2
(
Φ2e21be12Φ2e21a⊗ Φ−1

2 − Φ2
2e21a⊗ e21be12Φ−1

2

)
− 1

2
(
e21a⊗ Φ2

2e21be12Φ−1
2 − Φ2e21be12Φ−1

2 e21a⊗ Φ2
)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
Φ2e21be12Φ2e21a⊗ Φ−1

2 − Φ2
2e21a⊗ e21be12Φ−1

2

)
+ 1

2
(
e21a⊗ Φ2

2e21be12Φ−1
2 − Φ2e21be12Φ−1

2 e21a⊗ Φ2
)
.

Case 2.4: d = e12b, b ∈ e2Aê.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ ê⊗ e1 {{a, b}}′′ ê,(B.12)

{{c, d}}2→ 1
fus = −1

2a⊗ e12b,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} −

1
2 (e21a⊗ Φ2b+ Φ2e21a⊗ b) ,

{{ψ(c), ψ(d)}}1→ 2
fus = 1

2e21a⊗ Φ2b .

Case 2.5: d = e12b, b ∈ e2Ae1.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ ê⊗ e1 {{a, b}}′′ e1,(B.13)

{{c, d}}2→ 1
fus = −1

2a⊗ e12b,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} e12Φ−1

2 −
1
2Φ2e21a⊗ be12Φ−1

2

− 1
2
(
be12Φ2e21a⊗ Φ−1

2 − be12Φ−1
2 e21a⊗ Φ2 + e21a⊗ Φ2be12Φ−1

2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus =

+ 1
2
(
be12Φ2e21a⊗ Φ−1

2 − be12Φ−1
2 e21a⊗ Φ2 + e21a⊗ Φ2be12Φ−1

2

)
.

Case 2.6: d = be21, b ∈ êAe2. (5)

{{c, d}}2→ 1
ind = ê {{a, b}}′ ê⊗ e1 {{a, b}}′′ e21,(B.14)

{{c, d}}2→ 1
fus = 1

2be21a⊗ e1,

(5)This is the first case where one needs to be careful when computing ψ⊗2 {{c, d}}2→ 1
fus in order to

verify (4.14). It is given in this case by 1
2ψ(be21a) ⊗ ψ(e1), and we have by definition of ψ that

ψ(e1) = Φ2e21e12Φ−1
2 = e2. For the first factor, we need to remark that be21a is not a specialisation

of generators of A1 as defined earlier, but it is a product of two. Hence, ψ(be21a) = ψ(be21)ψ(a)
= bΦ2e21a.
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{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}}+ 1

2 (be21a⊗ Φ2 + bΦ2e21a⊗ e2) ,

{{ψ(c), ψ(d)}}1→ 2
fus = −1

2be21a⊗ Φ2 .

Case 2.7: d = be21, b ∈ e1Ae2.
{{c, d}}2→ 1

ind = e1 {{a, b}}′ ê⊗ e1 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2be21a⊗ e1,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ Φ2e21 {{a, b}}+ 1

2Φ2e21bΦ2e21a⊗ e2

− 1
2
(
e21a⊗ Φ2

2e21b− Φ2
2e21a⊗ e21b− Φ2e21be21a⊗ Φ2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
e21a⊗ Φ2

2e21b− Φ2
2e21a⊗ e21b− Φ2e21be21a⊗ Φ2

)
.

Case 2.8: d = e12be21, b ∈ e2Ae2.
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ e1 {{a, b}}′′ e21,(B.15)

{{c, d}}2→ 1
fus = 1

2 (e12be21a⊗ e1 − a⊗ e12be21) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}}+ 1

2 (bΦ2e21a⊗ e2 − Φ2e21a⊗ b)

− 1
2 (e21a⊗ Φ2b− be21a⊗ Φ2) ,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2 (e21a⊗ Φ2b− be21a⊗ Φ2) .

B.3

We consider the third specialisation of a generator of first type, that is c = a for
a ∈ êAe1.

Case 3.1: d = b, b ∈ êAe1.

(B.16)

{{c, d}}2→ 1
ind = ê {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e1, {{c, d}}2→ 1

fus = 0,
{{ψ(c), ψ(d)}}1→ 2

ind = {{a, b}} e12Φ−1
2 ∗ e12Φ−1

2

− 1
2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2

)
.

Case 3.2: d = b, b ∈ e1Ae1.
{{c, d}}2→ 1

ind = e1 {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e1, {{c, d}}2→ 1
fus = 0,(B.17)

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} e12Φ−1

2 ∗ e12Φ−1
2
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− 1
2
(
Φ2 ⊗ ae12Φ−1

2 e21be12Φ−1
2 − Φ−1

2 ⊗ ae12Φ2e21be12Φ−1
2

)
− 1

2
(
Φ2e21be12Φ−2

2 ⊗ ae12 − Φ2e21be12 ⊗ ae12Φ−2
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
Φ2 ⊗ ae12Φ−1

2 e21be12Φ−1
2 − Φ−1

2 ⊗ ae12Φ2e21be12Φ−1
2

)
+ 1

2
(
Φ2e21be12Φ−2

2 ⊗ ae12 − Φ2e21be12 ⊗ ae12Φ−2
2

)
.

Case 3.3: d = e12b, b ∈ e2Aê.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ ê {{a, b}}′′ ê,(B.18)

{{c, d}}2→ 1
fus = 1

2e1 ⊗ ae12b,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} ∗ e12Φ−1

2 + 1
2
(
e2 ⊗ ae12Φ−1

2 b+ Φ−1
2 ⊗ ae12b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = −1

2Φ−1
2 ⊗ ae12b .

Case 3.4: d = e12b, b ∈ e2Ae1.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e1,(B.19)

{{c, d}}2→ 1
fus = 1

2e1 ⊗ ae12b,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} e12Φ−1

2 ∗ e12Φ−1
2 + 1

2e2 ⊗ ae12Φ−1
2 be12Φ−1

2

− 1
2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2 − Φ−1

2 ⊗ ae12be12Φ−1
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus =

+ 1
2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2 − Φ−1

2 ⊗ ae12be12Φ−1
2

)
.

Case 3.5: d = be21, b ∈ êAe2.

{{c, d}}2→ 1
ind = ê {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1

fus = −1
2be21 ⊗ a,(B.20)

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} ∗ e12Φ−1

2 −
1
2
(
bΦ−1

2 ⊗ ae12 + b⊗ ae12Φ−1
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2bΦ
−1
2 ⊗ ae12 .

Case 3.6: d = be21, b ∈ e1Ae2.

{{c, d}}2→ 1
ind = e1 {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e21,(B.21)

{{c, d}}2→ 1
fus = −1

2be21 ⊗ a,

ANNALES HENRI LEBESGUE



Morphisms of double (quasi-)Poisson algebras and action-angle duality 243

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} ∗ e12Φ−1

2 −
1
2Φ2e21b⊗ ae12Φ−1

2

− 1
2
(
Φ2e21bΦ−1

2 ⊗ ae12 + Φ2 ⊗ ae12Φ−1
2 e21b− Φ−1

2 ⊗ ae12Φ2e21b
)
,

{{ψ(c), ψ(d)}}1→ 2
fus =

+ 1
2
(
Φ2e21bΦ−1

2 ⊗ ae12 + Φ2 ⊗ ae12Φ−1
2 e21b− Φ−1

2 ⊗ ae12Φ2e21b
)
.

Case 3.7: d = e12be21, b ∈ e2Ae2.
{{c, d}}2→ 1

ind = e12 {{a, b}}′ e1 ⊗ ê {{a, b}}′′ e21,(B.22)

{{c, d}}2→ 1
fus = 1

2 (e1 ⊗ ae12be21 − e12be21 ⊗ a) ,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
e2 ⊗ ae12Φ−1

2 b− b⊗ ae12Φ−1
2

)
− 1

2
(
bΦ−1

2 ⊗ ae12 − Φ−1
2 ⊗ ae12b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = + 1

2
(
bΦ−1

2 ⊗ ae12 − Φ−1
2 ⊗ ae12b

)
.

B.4

We consider the fourth specialisation of a generator of first type, that is c = a for
a ∈ e1Ae1.

Case 4.1: d = b, b ∈ e1Ae1.
{{c, d}}2→ 1

ind = e1 {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ e1, {{c, d}}2→ 1
fus = 0,(B.23)

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ Φ2e21 {{a, b}} e12Φ−1

2 ∗ e12Φ−1
2

− 1
2
(
Φ2

2e21ae12Φ−1
2 ⊗ e21be12Φ−1

2 − e21ae12Φ−1
2 ⊗ Φ2

2e21be12Φ−1
2

)
− 1

2
(
Φ2e21be12 ⊗ Φ2e21ae12Φ−2

2 − Φ2e21be12Φ−2
2 ⊗ Φ2e21ae12

)
− 1

2
(
Φ2e21be12Φ−1

2 e21ae12Φ−1
2 ⊗ Φ2 − Φ2e21be12Φ2e21ae12Φ−1

2 ⊗ Φ−1
2

)
− 1

2
(
Φ−1

2 ⊗ Φ2e21ae12Φ2e21be12Φ−1
2 −Φ2 ⊗ Φ2e21ae12Φ−1

2 e21be12Φ−1
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus =

+ 1
2
(
Φ2

2e21ae12Φ−1
2 ⊗ e21be12Φ−1

2 − e21ae12Φ−1
2 ⊗ Φ2

2e21be12Φ−1
2

)
+ 1

2
(
Φ2e21be12 ⊗ Φ2e21ae12Φ−2

2 − Φ2e21be12Φ−2
2 ⊗ Φ2e21ae12

)
+ 1

2
(
Φ2e21be12Φ−1

2 e21ae12Φ−1
2 ⊗ Φ2 − Φ2e21be12Φ2e21ae12Φ−1

2 ⊗ Φ−1
2

)
+ 1

2
(
Φ−1

2 ⊗ Φ2e21ae12Φ2e21be12Φ−1
2 − Φ2 ⊗ Φ2e21ae12Φ−1

2 e21be12Φ−1
2

)
.
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Case 4.2: d = e12b, b ∈ e2Aê.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ ê,(B.24)

{{c, d}}2→ 1
fus = 1

2(e1 ⊗ ae12b− a⊗ e12b),

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
e2 ⊗ Φ2e21ae12Φ−1

2 b− Φ2e21ae12Φ−1
2 ⊗ b

)
− 1

2
(
e21ae12Φ−1

2 ⊗ Φ2b− Φ−1
2 ⊗ Φ2e21ae12b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
e21ae12Φ−1

2 ⊗ Φ2b− Φ−1
2 ⊗ Φ2e21ae12b

)
.

Case 4.3: d = e12b, b ∈ e2Ae1.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ e1,(B.25)

{{c, d}}2→ 1
fus = 1

2 (e1 ⊗ ae12b− a⊗ e12b) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} e12Φ−1

2 ∗ e12Φ−1
2

+ 1
2
(
e2 ⊗ Φ2e21ae12Φ−1

2 be12Φ−1
2 − Φ2e21ae12Φ−1

2 ⊗ be12Φ−1
2

)
− 1

2
(
e21ae12Φ−1

2 ⊗ Φ2be12Φ−1
2 − Φ−1

2 ⊗ Φ2e21ae12be12Φ−1
2

)
− 1

2
(
be12Φ2e21ae12Φ−1

2 ⊗ Φ−1
2 − be12Φ−1

2 e21ae12Φ−1
2 ⊗ Φ2

)
− 1

2
(
be12Φ−2

2 ⊗ Φ2e21ae12 − be12 ⊗ Φ2e21ae12Φ−2
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
e21ae12Φ−1

2 ⊗ Φ2be12Φ−1
2 − Φ−1

2 ⊗ Φ2e21ae12be12Φ−1
2

)
+ 1

2
(
be12Φ2e21ae12Φ−1

2 ⊗ Φ−1
2 − be12Φ−1

2 e21ae12Φ−1
2 ⊗ Φ2

)
+ 1

2
(
be12Φ−2

2 ⊗ Φ2e21ae12 − be12 ⊗ Φ2e21ae12Φ−2
2

)
.

Case 4.4: d = be21, b ∈ êAe2.

{{c, d}}2→ 1
ind = ê {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ e21,(B.26)

{{c, d}}2→ 1
fus = 1

2 (be21a⊗ e1 − be21 ⊗ ae1) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
bΦ2e21ae12Φ−1

2 ⊗ e2 − b⊗ Φ2e21ae12Φ−1
2

)
− 1

2
(
bΦ−1

2 ⊗ Φ2e21ae12 − be21ae12Φ−1
2 ⊗ Φ2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
bΦ−1

2 ⊗ Φ2e21ae12 − be21ae12Φ−1
2 ⊗ Φ2

)
.
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Case 4.5: d = be21, b ∈ e1Ae2.

{{c, d}}2→ 1
ind = e1 {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ e21,(B.27)

{{c, d}}2→ 1
fus = 1

2 (be21a⊗ e1 − be21 ⊗ ae1) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ Φ2e21 {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
Φ2e21bΦ2e21ae12Φ−1

2 ⊗ e2 − Φ2e21b⊗ Φ2e21ae12Φ−1
2

)
− 1

2
(
e21ae12Φ−1

2 ⊗ Φ2
2e21b− Φ2

2e21ae12Φ−1
2 ⊗ e21b

)
− 1

2
(
Φ2 ⊗ Φ2e21ae12Φ−1

2 e21b− Φ−1
2 ⊗ Φ2e21ae12Φ2e21b

)
− 1

2
(
Φ2e21bΦ−1

2 ⊗ Φ2e21ae12 − Φ2e21be21ae12Φ−1
2 ⊗ Φ2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
e21ae12Φ−1

2 ⊗ Φ2
2e21b− Φ2

2e21ae12Φ−1
2 ⊗ e21b

)
+ 1

2
(
Φ2 ⊗ Φ2e21ae12Φ−1

2 e21b− Φ−1
2 ⊗ Φ2e21ae12Φ2e21b

)
+ 1

2
(
Φ2e21bΦ−1

2 ⊗ Φ2e21ae12 − Φ2e21be21ae12Φ−1
2 ⊗ Φ2

)
.

Case 4.6: d = e12be21, b ∈ e2Ae2.

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ e1 {{a, b}}′′ e21 ,(B.28)

{{c, d}}2→ 1
fus = 1

2 (e12be21a⊗ e1 + e1 ⊗ ae12be21 − e12be21 ⊗ a− a⊗ e12be21) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
bΦ2e21ae12Φ−1

2 ⊗ e2 + e2 ⊗ Φ2e21ae12Φ−1
2 b

)
− 1

2
(
b⊗ Φ2e21ae12Φ−1

2 + Φ2e21ae12Φ−1
2 ⊗ b

)
− 1

2
(
bΦ−1

2 ⊗ Φ2e21ae12 + e21ae12Φ−1
2 ⊗ Φ2b

)
+ 1

2
(
be21ae12Φ−1

2 ⊗ Φ2 + Φ−1
2 ⊗ Φ2e21ae12b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
bΦ−1

2 ⊗ Φ2e21ae12 + e21ae12Φ−1
2 ⊗ Φ2b

)
− 1

2
(
be21ae12Φ−1

2 ⊗ Φ2 + Φ−1
2 ⊗ Φ2e21ae12b

)
.

B.5

We consider the first specialisation of a generator of second type, that is c = e12a
for a ∈ e2Aê.
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Case 5.1: d = e12b, b ∈ e2Aê.

(B.29)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ e12 {{a, b}}′′ ê, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 5.2: d = e12b, b ∈ e2Ae1.

(B.30)

{{c, d}}2→ 1
ind = e12 {{a, b}}′ ê⊗ e12 {{a, b}}′′ e1,

{{c, d}}2→ 1
fus = −1

2e12be12a⊗ e1,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} e12Φ−1

2 −
1
2
(
be12a⊗ Φ−1

2 + be12Φ−1
2 a⊗ e2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2be12a⊗ Φ−1
2 .

Case 5.3: d = be21, b ∈ êAe2.

(B.31)
{{c, d}}2→ 1

ind = ê {{a, b}}′ ê⊗ e12 {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 5.4: d = be21, b ∈ e1Ae2.

(B.32)

{{c, d}}2→ 1
ind = e1 {{a, b}}′ ê⊗ e12 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2e12a⊗ be21,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}}+ 1

2 (Φ2a⊗ e21b+ a⊗ Φ2e21b) ,

{{ψ(c), ψ(d)}}1→ 2
fus = −1

2Φ2a⊗ e21b .

Case 5.5: d = e12be21, b ∈ e2Ae2.

(B.33)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ ê⊗ e12 {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

B.6

We consider the second specialisation of a generator of second type, that is c = e12a
for a ∈ e2Ae1.
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Case 6.1: d = e12b, b ∈ e2Ae1.

(B.34)

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ e12 {{a, b}}′′ e1,

{{c, d}}2→ 1
fus = 1

2 (e1 ⊗ e12ae12b− e12be12a⊗ e1) ,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} e12Φ−1

2 ∗ e12Φ−1
2

+ 1
2
(
e2 ⊗ ae12Φ−1

2 be12Φ−1
2 − be12Φ−1

2 ae12Φ−1
2 ⊗ e2

)
− 1

2
(
be12ae12Φ−1

2 ⊗ Φ−1
2 − Φ−1

2 ⊗ ae12be12Φ−1
2

)
− 1

2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
be12ae12Φ−1

2 ⊗ Φ−1
2 − Φ−1

2 ⊗ ae12be12Φ−1
2

)
+ 1

2
(
be12Φ−2

2 ⊗ ae12 − be12 ⊗ ae12Φ−2
2

)
.

Case 6.2: d = be21, b ∈ êAe2.

(B.35)

{{c, d}}2→ 1
ind = ê {{a, b}}′ e1 ⊗ e12 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = −1

2be21 ⊗ e12a,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} ∗ e12Φ−1

2

− 1
2
(
b⊗ ae12Φ−1

2 + bΦ−1
2 ⊗ ae12

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2bΦ
−1
2 ⊗ ae12 .

Case 6.3: d = be21, b ∈ e1Ae2.

(B.36)

{{c, d}}2→ 1
ind = e1 {{a, b}}′ e1 ⊗ e12 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2 (e12a⊗ be21 − be21 ⊗ e12a) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
ae12Φ−1

2 ⊗ Φ2e21b− Φ2e21b⊗ ae12Φ−1
2

)
− 1

2
(
Φ2 ⊗ ae12Φ−1

2 e21b− Φ−1
2 ⊗ ae12Φ2e21b

)
− 1

2
(
Φ2e21bΦ−1

2 ⊗ ae12 − Φ2ae12Φ−1
2 ⊗ e21b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
Φ2 ⊗ ae12Φ−1

2 e21b− Φ−1
2 ⊗ ae12Φ2e21b

)
+ 1

2
(
Φ2e21bΦ−1

2 ⊗ ae12 − Φ2ae12Φ−1
2 ⊗ e21b

)
.
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Case 6.4: d = e12be21, b ∈ e2Ae2.

(B.37)

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e1 ⊗ e12 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2 (e1 ⊗ e12ae12be21 − e12be21 ⊗ e12a) ,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} ∗ e12Φ−1

2

+ 1
2
(
e2 ⊗ ae12Φ−1

2 b− b⊗ ae12Φ−1
2

)
− 1

2
(
bΦ−1

2 ⊗ ae12 − Φ−1
2 ⊗ ae12b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2
(
bΦ−1

2 ⊗ ae12 − Φ−1
2 ⊗ ae12b

)
.

B.7

We consider the first specialisation of a generator of third type, that is c = ae21
for a ∈ êAe2.

Case 7.1: d = be21, b ∈ êAe2.

(B.38)
{{c, d}}2→ 1

ind = ê {{a, b}}′ e21 ⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Case 7.2: d = be21, b ∈ e1Ae2.

(B.39)

{{c, d}}2→ 1
ind = e1 {{a, b}}′ e21 ⊗ ê {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = −1

2e1 ⊗ ae21be21,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 {{a, b}} −

1
2 (e2 ⊗ aΦ2e21b+ Φ2 ⊗ ae21b) ,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2Φ2 ⊗ ae21b .

Case 7.3: d = e12be21, b ∈ e2Ae2.

(B.40)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ e21 ⊗ ê {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

B.8

We consider the second specialisation of a generator of third type, that is c = ae21
for a ∈ e1Ae2.
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Case 8.1: d = be21, b ∈ e1Ae2.

(B.41)

{{c, d}}2→ 1
ind = e1 {{a, b}}′ e21 ⊗ e1 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2(be21ae21 ⊗ e1 − e1 ⊗ ae21be21),

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ Φ2e21 {{a, b}}

+ 1
2 (Φ2e21bΦ2e21a⊗ e2 − e2 ⊗ Φ2e21aΦ2e21b)

− 1
2 (Φ2 ⊗ Φ2e21ae21b− Φ2e21be21a⊗ Φ2)

− 1
2
(
e21a⊗ Φ2

2e21b− Φ2
2e21a⊗ e21b

)
,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2 (Φ2 ⊗ Φ2e21ae21b− Φ2e21be21a⊗ Φ2)

+ 1
2
(
e21a⊗ Φ2

2e21b− Φ2
2e21a⊗ e21b

)
.

Case 8.2: d = e12be21, b ∈ e2Ae2.

(B.42)

{{c, d}}2→ 1
ind = e12 {{a, b}}′ e21 ⊗ e1 {{a, b}}′′ e21,

{{c, d}}2→ 1
fus = 1

2 (e12be21ae21 ⊗ e1 − ae21 ⊗ e12be21) ,

{{ψ(c), ψ(d)}}1→ 2
ind = Φ2e21 ∗ {{a, b}}+ 1

2 (bΦ2e21a⊗ e2 − Φ2e21a⊗ b)

− 1
2 (e21a⊗ Φ2b− be21a⊗ Φ2) ,

{{ψ(c), ψ(d)}}1→ 2
fus = +1

2 (e21a⊗ Φ2b− be21a⊗ Φ2) .

B.9

We consider a generator of fourth type, that is c = e12ae21 for a ∈ e2Ae2.

Case 9.1: d = e12be21, b ∈ e2Ae2.

(B.43)
{{c, d}}2→ 1

ind = e12 {{a, b}}′ e21 ⊗ e12 {{a, b}}′′ e21, {{c, d}}2→ 1
fus = 0,

{{ψ(c), ψ(d)}}1→ 2
ind = {{a, b}} , {{ψ(c), ψ(d)}}1→ 2

fus = 0 .

Appendix C. Identities for the proof of Lemma 4.8

In this appendix, we show that (4.25) holds. It suffices to verify this identity on a
choice of generators of A1. We will consider nine cases, which are given below with
their images in A2 under ψ. For ê = 1− e2 − e3, we have

ψ(t) = t, if t ∈ êA ê;
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on generators of first type (2.13b) of A1,

ψ(e12u) = e12u, if u ∈ e2Aê; ψ(e12e23u) = e13u, if u ∈ e3Aê ;

on generators of second type (2.13b) of A1,

ψ(ve21) = ve21, if v ∈ êAe2; ψ(ve32e21) = ve31, if v ∈ êAe3;

on generators of third type (2.13c) of A1,

ψ(e12we21) = e12we21, if w ∈ e2Ae2;
ψ(e12we32e21) = e12we31, if w ∈ e2Ae3;
ψ(e12e23we21) = e13we21, if w ∈ e3Ae2;

ψ(e12e23we32e21) = e13we31, if w ∈ e3Ae3;

on generators of fourth type (2.13d) of A1.
Thanks to the cyclic antisymmetry, we have 45 cases where we have to check (4.25).

If both c, d ∈ A1 are of the form t for t ∈ êAê, e12u for u ∈ e2Aê, ve21 for v ∈ êAe2,
or e12we21 for w ∈ e2Ae2, it is easy to derive that

(C.1)
{{ψ(c), ψ(d)}}2→ 1

2, fus = (ψ ⊗ ψ) {{c, d}}2→ 1
1,fus ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 0, (ψ ⊗ ψ) {{c, d}}3→ 2

1, fus = 0,

so that (4.25) is satisfied. So we are left with 35 cases to check. We will compute
one case explicitly, and in the remaining cases we will only collect the four double
brackets involved in (4.25) for the reader’s convenience.

C.1

We consider that c is a generator of first type, that is c = a for a ∈ êAê.

Case 1.1: d = e12be32e21, b ∈ e2Ae3.
By definition, the double bracket {{c, d}}3→ 2

1, fus is obtained from the fusion bracket
in Afe3→ e2 by inducing it in A1, so that we can write

{{c, d}}3→ 2
1, fus = e12 {{a, be32}}3→ 2

fus e21 ,

with the double bracket on the right-hand side given by the fusion bracket from
Appendix A with j = 3, i = 2. In Afe3→ e2 , a is a generator of first type (2.13a) while
be32 is a generator of third type (2.13c), so that the double bracket between them is
given by (A.1c), and we get

{{c, d}}3→ 2
1, fus = 1

2e12 [be32a⊗ e2 − be32 ⊗ ae2] e21 = 0 ,

as ae2 = 0 = e2a. Next, we have

{{c, d}}3→ 2
1, fus = {{a, e12(be32)e21}}2→ 1

fus ,
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with the double bracket on the right-hand side given by the fusion bracket from
Appendix A with j = 2, i = 1. In A1, a is a generator of first type (2.13a) while
e12(be32)e21 is a generator of fourth type (2.13d) so that we get from (A.1d)

{{c, d}}3→2
1,fus = 1

2
(
e12(be32)e21a⊗ e1 + e1 ⊗ ae12(be32)e21

− e12(be32)e21 ⊗ ae1 − e1a⊗ e12(be32)e21
)

= 1
2 (dc⊗ e1 + e1 ⊗ cd− d⊗ ce1 − e1c⊗ d) .

We now get the right-hand side of (4.25) by applying ψ ⊗ ψ to these two double
brackets.
Meanwhile, we have in A2 that ψ(c) = a and ψ(d) = e12be31. We note that by

inducing the double bracket from Afe2→ e1 to A2,

{{ψ(c), ψ(d)}}2→ 1
2, fus = {{a, e12b}}2→ 1

2, fus e31 ,

where the double on the right-hand side given by the fusion bracket from Appendix A
with j = 2, i = 1. We have that a is a generator of first type (2.13a) while e12b is a
generator of second type (2.13b), so that using (A.1b)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2
(
e1 ⊗ ae12b− e1a⊗ e12b

)
e31

= 1
2
(
e1 ⊗ ψ(c)ψ(d)− e1ψ(c)⊗ ψ(d)

)
.

Finally, we have

{{ψ(c), ψ(d)}}3→ 1
2, fus = {{a, (e12b)e31}}2→ 1

2, fus ,

where the double on the right-hand side given by the fusion bracket from Appendix A
with j = 3, i = 1. We have that a is a generator of first type (2.13a) while (e12b)e31
is a generator of third type (2.13c), so that using (A.1c)

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e12be31a⊗ e1 − e12be31 ⊗ ae1

)
= 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)e1

)
.

Gathering the four expressions obtained for the double brackets, we can see that (4.25)
is satisfied.

Case 1.2: d = e12e23b, b ∈ e3Aê.

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2(e1 ⊗ cd− e1c⊗ d) ,(C.2)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 , {{ψ(c), ψ(d)}}3→ 1

2, fus = 1
2
(
e1 ⊗ ψ(c)ψ(d)− e1ψ(c)⊗ ψ(d)

)
.
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Case 1.3: d = be32e21, b ∈ êAe3.

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (dc⊗ e1 − d⊗ ce1) ,(C.3)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 , {{ψ(c), ψ(d)}}3→ 1

2, fus = 1
2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)e1

)
.

Case 1.4: d = e12e23be21, b ∈ e3Ae2.

(C.4)

{{c, d}}3→ 2
1, fus = 0 ,

{{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 + e1 ⊗ cd− d⊗ ce1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)e1

)
,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− e1ψ(c)⊗ ψ(d)

)
.

Case 1.5: d = e12e23be32e21, b ∈ e3Ae3.

{{c, d}}3→ 2
1, fus = 0 , {{ψ(c), ψ(d)}}2→ 1

2, fus = 0 ,(C.5)

{{c, d}}2→ 1
1, fus = 1

2(dc⊗ e1 + e1 ⊗ cd− d⊗ ce1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus =

1
2
(
ψ(d)ψ(c)⊗ e1 + e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)e1 − e1ψ(c)⊗ ψ(d)

)
.

C.2

We consider that c is a generator of second type of the form c = e12a for a ∈ e2Aê.

Case 2.1: d = e12e23b, b ∈ e3Aê.

{{c, d}}3→ 2
1, fus = −1

2c⊗ d , {{c, d}}2→ 1
1, fus = 1

2 (e1 ⊗ cd− dc⊗ e1) ,(C.6)

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2ψ(d)ψ(c)⊗ e1 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(c)⊗ ψ(d)

)
.

Case 2.2: d = be32e21, b ∈ êAe3.

(C.7)

{{c, d}}3→ 2
1, fus = 1

2dc⊗ e1 , {{c, d}}2→ 1
1, fus = 1

2 (c⊗ e1d− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2ψ(c)⊗ e1ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)e1

)
.
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Case 2.3: d = e12be32e21, b ∈ e2Ae3.

(C.8)

{{c, d}}3→ 2
1, fus = 1

2dc⊗ e1 , {{c, d}}2→ 1
1, fus = 1

2(e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2e1 ⊗ ψ(c)ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)e1

)
.

Case 2.4: d = e12e23be21, b ∈ e3Ae2.

(C.9)

{{c, d}}3→ 2
1, fus = −1

2c⊗ d , {{c, d}}2→ 1
1, fus = 1

2(e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2ψ(d)⊗ ψ(c)e1 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(c)⊗ ψ(d)

)
.

Case 2.5: d = e12e23be32e21, b ∈ e3Ae3.

{{c, d}}3→ 2
1, fus = 1

2 (dc⊗ e1 − c⊗ d) ,(C.10)

{{c, d}}2→ 1
1, fus = 1

2 (e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus =
1
2
(
ψ(d)ψ(c)⊗ e1 + e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)e1 − ψ(c)⊗ ψ(d)

)
.

C.3

We consider that c is a generator of third type of the form c = ae21 for a ∈ êAe2.

Case 3.1: d = e12e23b, b ∈ e3Aê.

(C.11)

{{c, d}}3→ 2
1, fus = 1

2e1 ⊗ cd , {{c, d}}2→ 1
1, fus = 1

2 (de1 ⊗ c− e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2ψ(d)e1 ⊗ ψ(c),

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2 (e1 ⊗ ψ(c)ψ(d)− e1ψ(c)⊗ ψ(d)) .

Case 3.2: d = be32e21, b ∈ êAe3.

(C.12)

{{c, d}}3→ 2
1, fus = −1

2d⊗ c , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1 ⊗ cd) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2e1 ⊗ ψ(c)ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)

)
.
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Case 3.3: d = e12be32e21, b ∈ e2Ae3.

(C.13)

{{c, d}}3→ 2
1, fus = −1

2d⊗ c , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2e1ψ(c)⊗ ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)

)
.

Case 3.4: d = e12e23be21, b ∈ e3Ae2.

(C.14)

{{c, d}}3→ 2
1, fus = 1

2e1 ⊗ cd , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2ψ(d)ψ(c)⊗ e1 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2 (e1 ⊗ ψ(c)ψ(d)− e1ψ(c)⊗ ψ(d)) .

Case 3.5: d = e12e23be32e21, b ∈ e3Ae3.

(C.15)

{{c, d}}3→ 2
1, fus = 1

2 (e1 ⊗ cd− d⊗ c) , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus =

1
2
(
ψ(d)ψ(c)⊗ e1 + e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)− e1ψ(c)⊗ ψ(d)

)
.

C.4

We consider that c is a generator of fourth type of the form c = e12ae21 for
a ∈ e2Ae2.

Case 4.1: d = e12e23b, b ∈ e3Aê.

{{c, d}}3→ 2
1, fus = 1

2(e1 ⊗ cd− c⊗ d) , {{c, d}}2→ 1
1, fus = 1

2 (de1 ⊗ c− dc⊗ e1) ,(C.16)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2
(
ψ(d)e1 ⊗ ψ(c)− ψ(d)ψ(c)⊗ e1

)
,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(c)⊗ ψ(d)

)
.

Case 4.2: d = be32e21, b ∈ êAe3.

{{c, d}}3→ 2
1, fus = 1

2 (dc⊗ e1 − d⊗ c) , {{c, d}}2→ 1
1, fus = 1

2 (c⊗ e1d− e1 ⊗ cd) ,(C.17)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2
(
ψ(c)⊗ e1ψ(d)− e1 ⊗ ψ(c)ψ(d)

)
,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)

)
.
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Case 4.3: d = e12be32e21, b ∈ e2Ae3.

(C.18)

{{c, d}}3→ 2
1, fus = 1

2 (dc⊗ e1 − d⊗ c) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2 (ψ(d)ψ(c)⊗ e1 − ψ(d)⊗ ψ(c)) .

Case 4.4: d = e12e23be21, b ∈ e3Ae2.

(C.19)

{{c, d}}3→ 2
1, fus = 1

2 (e1 ⊗ cd− c⊗ d) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(c)⊗ ψ(d)

)
.

Case 4.5: d = e12e23be32e21, b ∈ e3Ae3.

{{c, d}}3→ 2
1, fus = 1

2 (dc⊗ e1 + e1 ⊗ cd− d⊗ c− c⊗ d) ,(C.20)

{{c, d}}2→ 1
1, fus = 0, {{ψ(c), ψ(d)}}2→ 1

2, fus = 0 ,
{{ψ(c), ψ(d)}}3→ 1

2, fus =
1
2
(
ψ(d)ψ(c)⊗ e1 + e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)− ψ(c)⊗ ψ(d)

)
.

C.5

We consider that c is a generator of second type of the form c = e12e23a for
a ∈ e3Aê.

Case 5.1: d = e12e23b, b ∈ e3Aê.

(C.21)

{{c, d}} 3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (e1 ⊗ cd− dc⊗ e1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(d)ψ(c)⊗ e1

)
.

Case 5.2: d = be32e21, b ∈ êAe3.

(C.22)

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (c⊗ e1d− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(c)⊗ e1ψ(d)− ψ(d)⊗ ψ(c)e1

)
.

TOME 5 (2022)



256 M. FAIRON

Case 5.3: d = e12be32e21, b ∈ e2Ae3.

(C.23)

{{c, d}}3→ 2
1, fus = 1

2c⊗ d , {{c, d}}2→ 1
1, fus = 1

2 (e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2e1 ⊗ ψ(c)ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(c)⊗ ψ(d)− ψ(d)⊗ ψ(c)e1

)
.

Case 5.4: d = e12e23be21, b ∈ e3Ae2.

(C.24)

{{c, d}}3→ 2
1, fus = −1

2dc⊗ e1 , {{c, d}}2→ 1
1, fus = 1

2 (e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2ψ(d)⊗ ψ(c)e1 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(d)ψ(c)⊗ e1

)
.

Case 5.5: d = e12e23be32e21, b ∈ e3Ae3.

(C.25)

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (e1 ⊗ cd− d⊗ ce1) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)e1

)
.

C.6

We consider that c is a generator of third type of the form c = ae32e21 for a ∈ êAe3.

Case 6.1: d = be32e21, b ∈ êAe3.

(C.26)

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (dc⊗ e1 − e1 ⊗ cd) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − e1 ⊗ ψ(c)ψ(d)

)
.

Case 6.2: d = e12be32e21, b ∈ e2Ae3.

(C.27)

{{c, d}}3→ 2
1, fus = −1

2e1 ⊗ cd , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = −1

2e1ψ(c)⊗ ψ(d) ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − e1 ⊗ ψ(c)ψ(d)

)
.
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Case 6.3: d = e12e23be21, b ∈ e3Ae2.

(C.28)

{{c, d}}3→ 2
1, fus = 1

2d⊗ c , {{c, d}}2→ 1
1, fus = 1

2 (dc⊗ e1 − e1c⊗ d) ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 1

2ψ(d)ψ(c)⊗ e1 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)⊗ ψ(c)− e1ψ(c)⊗ ψ(d)

)
.

Case 6.4: d = e12e23be32e21, b ∈ e3Ae3.

{{c, d}}3→ 2
1, fus = 0 , {{c, d}}2→ 1

1, fus = 1
2 (dc⊗ e1 − e1c⊗ d) ,(C.29)

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − e1ψ(c)⊗ ψ(d)

)
.

C.7

We consider the remaining cases. The elements c, d are generators of fourth type
in each of them.

Case 7.1: c = e12ae32e21, a ∈ e2Ae3, and d = e12be32e21, b ∈ e2Ae3.

(C.30)

{{c, d}}3→ 2
1, fus = 1

2 (dc⊗ e1 − e1 ⊗ cd) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − e1 ⊗ ψ(c)ψ(d)

)
.

Case 7.2: c = e12ae32e21, a ∈ e2Ae3, and d = e12e23be21, b ∈ e3Ae2.

(C.31)

{{c, d}}3→ 2
1, fus = 1

2 (d⊗ c− c⊗ d) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)⊗ ψ(c)− ψ(c)⊗ ψ(d)

)
.

Case 7.3: c = e12ae32e21, a ∈ e2Ae3, and d = e12e23be32e21, b ∈ e3Ae3.

(C.32)

{{c, d}}3→ 2
1, fus = 1

2(dc⊗ e1 − c⊗ d) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
ψ(d)ψ(c)⊗ e1 − ψ(c)⊗ ψ(d)

)
.
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Case 7.4: c = e12e23ae21, a ∈ e3Ae2, and d = e12e23be21, b ∈ e3Ae2.

(C.33)

{{c, d}}3→ 2
1, fus = 1

2 (e1 ⊗ cd− dc⊗ e1) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(d)ψ(c)⊗ e1

)
.

Case 7.5: c = e12e23ae21, a ∈ e3Ae2, and d = e12e23be32e21, b ∈ e3Ae3.

(C.34)

{{c, d}}3→ 2
1, fus = 1

2 (e1 ⊗ cd− d⊗ c) , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 ,

{{ψ(c), ψ(d)}}3→ 1
2, fus = 1

2
(
e1 ⊗ ψ(c)ψ(d)− ψ(d)⊗ ψ(c)

)
.

Case 7.6: c = e12e23ae32e21, a ∈ e3Ae3, and d = e12e23be32e21, b ∈ e3Ae3.

(C.35)
{{c, d}}3→ 2

1, fus = 0 , {{c, d}}2→ 1
1, fus = 0 ,

{{ψ(c), ψ(d)}}2→ 1
2, fus = 0 , {{ψ(c), ψ(d)}}3→ 1

2, fus = 0.
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