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1. Introduction

Let K be a differential field of characteristic zero and let k be an algebraically
closed differential subfield of K with the same field of constants C :

C = {f ∈ K | f ′ = 0} = {f ∈ k| f ′ = 0} .
A typical example is the field of Puiseux series K = C((x)) over the algebraically
closed field C endowed with the usual derivation d/dx and k = C(x) the field of
algebraic functions over C(x).
The present paper is concerned with the following general question.
Question. — We let f and g be elements of K× satisfying some nontrivial

homogeneous linear differential equations over k, say
L(f) = 0 and M(g) = 0,

and we assume that f and g are algebraically dependent over k. What can be said
about the form of the algebraic dependence?
Differential Galois theory has been an effective tool in understanding the possible

algebraic relations among solutions of linear differential equations (see, for example,
[BBH88, HS85, HS86, Kol68, Roq14, Sin86, Spe86]). A celebrated illustration of this
is the following result which is a special case of the Kolchin–Ostrowski Theorem
characterizing the algebraic relations among exponentials and integrals. This answers
Question 1 when L and M are first order equations:
Theorem 1.1 (Kolchin [Kol68]). — If L and M have order 1, then f and g

are algebraically dependent over k if and only if there exists (m,n) ∈ Z2 \ {(0, 0)}
such that

fmgn ∈ k.
The present work started with the following question: what can be said if we

assume that L has order 1, but do not make any assumption on the order of M?
Our answer reads as follows:
Theorem 1.2 (Theorem 3.2 in Section 3). — If L has order 1 and if f 6∈ k, then

f and g are algebraically dependent over k if and only if there exists θ in an algebraic
extension of K and a positive integer n such that

f = θn and g ∈ k
[
θ, θ−1

]
.

The rest of the paper is devoted to the case when the operator L has order > 2.
For any f ∈ K× as above, we let A(f) be the k-algebra made up of the elements
g of K holonomic and algebraically dependent on f over k. In general, the obvious
inclusion

k[f ] ⊂ A(f)
is not an equality. For example, let K = C(x) endowed with its usual derivation
d/dx, k = C, f = x2 and g = x. Both f and g are holonomic over C and clearly
algebraically dependent. Nonetheless g /∈ k[f ].
The principal aim of Sections 4, 5 and 6 is to give criteria on the differential Galois

group of L over k ensuring that A(f) = k[f ]. In this introduction, we only state the
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following concrete consequence of these criteria and refer to Sections 4, 5 and 6 for
more general statements.

Theorem 1.3 (Consequence of Proposition 4.3 in Section 4 and Proposition 5.2
in Section 5). — Assume that L has order n > 2 and that its differential Galois
group GL over k is either SLn(C) or GLn(C). Then, we have

A(f) = k[f ].

Remark 1.4. —

(1) We note that the hypothesis that k is algebraically closed implies that the
differential Galois group GL of any linear differential equation L(y) = 0
over k is connected. Indeed, according to [S03, Proposition 1.34(2)], the
quotient H = GL/G

◦
L of GL by its identity component G◦L is isomorphic to

the differential Galois group of some linear differential equation P (y) = 0 over
k. But, since H is finite, [S03, Proposition 1.34(3)] ensures that any Picard–
Vessiot extension of P (y) = 0 over k is a finite extension of k and, hence, is
equal to k. So, H is reduced to the identity and GL = G◦L as expected.

(2) The hypothesis that k is algebraically closed also implies that the differential
Galois group GL cannot be an intermediate subgroup between SLn(C) and
GLn(C). Indeed, if SLn(C) ⊂ GL ( GLn(C), then GL/SLn(C) is finite and,
hence, SLn(C) contains the identity component G◦L of GL. We thus have G◦L ⊂
SLn(C) ⊂ GL. But, we have seen that GL is connected, so G◦L = SLn(C) = GL

as expected.
(3) When n = 2, the fact that the differential Galois group over k of L is either

SL2(C) or GL2(C) is equivalent to the irreducibility of L over k [NvdPT08].
We thus have the following statement : If L has order 2 and is irreducible
over k then A(f) = k[f ].

(4) Another simple consequence of Theorem 1.3 is: Assume that L has order
n > 2 and that its differential Galois group GL over k is either SLn(C) or
GLn(C). If f 6∈ k, then, for m > 2, f 1/m does not satisfy any nontrivial linear
differential equation over k. This follows easily form the fact that we cannot
have f 1/m ∈ k[f ] unless f is algebraic over k and, hence, belongs to k. For
related results, see [HS86, Sin86, Spe86].

(5) In [Kol68], Kolchin proves a general result characterizing when entries of
fundamental matrices of linear differential equations having Galois groups
SLn(C) are algebraically dependent. His conclusion is that the entries of one
such matrix can be expressed as k-linear combinations of the entries of the
other matrix. In terms of scalar equations this means that the solutions and
their derivatives of one equation can be expressed as k-linear combinations
of solutions and their derivatives of the other equation. Our results in this
paper start with the stronger hypothesis that one solution is algebraically
dependent on a solution of the other equation and determines the form of the
dependence without the intervention of derivatives.
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144 J. Roques & M. F. Singer

Theorem 1.3 applies, for example, to many generalized hypergeometric series

pFq [α; β;x] =
+∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)k

xk

k! ∈ C((x))

where α = (α1, . . . , αp) ∈ Cp and β = (β1, . . . , βq) ∈ (C\Z6 0)q for some p, q ∈ Z> 0
and where the Pochhammer symbols (t)k are defined by (t)0 = 1 and, for k ∈ Z> 1,
(t)k = t(t+1) · · · (t+k−1). Indeed, this series satisfies the generalized hypergeometric
differential equation

pHq [α; β]
(
pFq [α; β;x]

)
= 0

where

pHq [α; β] = δ
q∏

k=1
(δ + βk − 1)− x

p∏
k=1

(δ + αk)

with δ = x d
dx

and the work of Beukers, Brownawell and Heckman [BBH88], Beuk-
ers and Heckman [BH89], Duval and Mitschi [DM89], Katz [Kat87, Kat90] and
Mitschi [Mit96] give explicit conditions (holding for generic parameters α,β) ensur-
ing that the differential Galois group over C(x) of pHq [α; β] is either SLn(C) or
GLn(C) (in these references, the differential Galois groups are computed over C(x),
not C(x); this is not a problem since if the differential Galois group over C(x) is
connected then it does not change when one replaces the base field with C(x) [Mag94,
Proposition 5.28]. For instance, it follows from [Kat90, Theorem 3.6] that, for any
β ∈ Q \ Z6 0, the differential Galois group over C(x) of 0H1 [−; β] is SL2(C); so, for
K = C((x)) endowed with the derivation d/dx and k = C(x), Theorem 1.3 ensures
that:

Corollary 1.5. — For any β ∈ Q \ Z6 0, we have

A (0F1 [−; β;x]) = C(x) [0F1 [−; β;x]] .

Moreover, we show in Section 7.1 that our methods (combined with the local
formal theory of differential equations) can be used in order to examine in detail
the algebraic dependence relations between hypergeometric series. For instance,
Corollary 1.5 ensures that if some generalized hypergeometric series pFq [γ; δ;x] is
algebraically dependent on 0F1 [−; β;x], then it is a polynomial in 0F1 [−; β;x]; in
Section 7.1, we establish a much more precise statement:

Theorem 1.6. — Consider β ∈ Q \ Z6 0. Consider γ ∈ (C \ Z6 0)p and δ ∈
(C \ Z6 0)q. If 0F1 [−; β;x] and pFq [γ; δ;x] are algebraically dependent over C(x),
then

• either

q = p+ 1 and pFq [γ; δ;x] ∈ C(x)0F1 [−; β;x] + C(x);

• or
q = p− 1 and pFq [γ; δ;x] ∈ C(x).
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Remark 1.7. — Whether or not the second condition holds can be decided by
using Beukers and Heckman’s [BH89] provided that γi−δj 6∈ Z for all i ∈ {1, . . . , p}
and j ∈ {1, . . . , q}.

As already mentioned, Theorem 1.3 is a consequence of results contained in Sec-
tions 4, 5 and 6, where the hypothesis that the differential Galois group GL of L
over k is either SLn(C) or GLn(C) is replaced by the hypothesis that GL is either
simply connected or reductive. These generalizations (more precisely, the generaliza-
tion to the simply connected case) allow us to describe A(f) when f is an iterated
integral (i.e., when f (n) ∈ k for some positive integer n, see [Sri10]) and to study
the algebraic relations among iterated integrals. Indeed, in Section 7.2 we prove the
following results.

Theorem 1.8 (Theorem 7.2 in Section 7.2). — Let f ∈ K× \ k be an iterated
integral over k. Assume that k contains an element x with x′ = 1. Then, we have

A(f) = k[f ].

Proposition 1.9 (Proposition 7.8 in Section 7.2). — Assume that there is an
element x ∈ k such that x′ = 1. Let f1, . . . , fn ∈ K be iterated integrals over k. If
f1, . . . , fn are algebraically dependent over k then there exist u1, . . . , un ∈ k, not
all zero, such that

u1f1 + · · ·+ unfn ∈ k.

Remark 1.10. — Our proof of Proposition 1.9 does not use the fact that k is
algebraically closed; it only requires that C be algebraically closed.

This paper is organized as follows. Section 3 is devoted to the case where L has
order 1 and contains a proof of Theorem 1.2 above. In Section 4 we give a result
when the differential Galois group GL of L over k is simply connected, apply this
to the case when GL = SLn(C) (proving the SLn(C)-case of Theorem 1.3 above).
In Section 5 we consider the case when GL is GLn(C) (proving the GLn(C)-case of
Theorem 1.3 above) and in Section 6 the case when GL is a general reductive group.
We have included a full treatment of the GLn(C)-case before considering the general
reductive case because the proof is less technical in the GLn(C)-case but already
contains most of the ideas used in the general reductive case. In Section 7.1 we apply
the results of the previous sections to generalized hypergeometric series and prove
Theorem 1.1 above. In Section 7.2 we study the algebraic relations among iterated
integrals (proving Proposition 1.8 and Proposition 1.9 above). The Appendix A gives
an informal introduction to the tannakian approach to the differential Galois theory
- an approach that appears in several of our proofs.

2. Notations and conventions

In the whole paper, except where noted to the contrary (e.g., in Section 7.2):
• K is a differential field of characteristic zero;
• k is an algebraically closed differential subfield of K;
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• we assume that K and k have the same field of constants C:
C = {f ∈ K | f ′ = 0} = {f ∈ k | f ′ = 0} .

Note that C has characteristic zero and is algebraically closed because it is the
field of constants of k which itself has characteristic zero and is algebraically closed
(see [S03, Exercise 1.5.2]). Also we recall from Remark 1.4 that the assumption that k
is algebraically closed implies that the differential Galois group of any Picard–Vessiot
extension of k is connected.
We will assume that the reader is familiar with some basic notions concerning lin-

ear algebraic groups (a general reference is [Hum75]) and the basic differential Galois
theory (a general reference is [Mag94] or [S03]). In our proofs we will also sometimes
use the tannakian correspondence. Briefly this states that for a differential equation
Y ′ = AY , there is a correspondence between representations of the associated differ-
ential Galois group and equations gotten from the original equations via applying the
constructions of linear algebra (direct sums, tensor products, duals, submodules and
quotients) to the differential module associated with Y ′ = AY . In the Appendix A
we give a fuller but still informal description of this. Formally this is given as an
equivalence of categories; for precise details we refer to [DM81, Kat72, Kat87, S03]).
Except with explicit mention to the contrary, by “algebraic group”, we will mean

“linear algebraic group over C”.

3. The first order case
We start this Section with a preliminary result concerning algebraic groups. This

result will be used several times in this paper. Recall that an isogeny ϕ : G1 → G2
is an epimorphism whose kernel is finite [Hum75, Section 32.1].
Lemma 3.1. — Let ϕ : G1 → G2 be an isogeny between two algebraic groups G1

and G2. If G1 is connected and if G2 is a torus, then G1 is a torus as well and G1
and G2 have the same dimension.
Proof. — To show that the connected group G1 is a torus it is enough to show

that it consists of semisimple elements (c.f. [Hum75, Exercise 2 in Section 21.4]). It
is equivalent to showing that eG1 is the unique unipotent element of G1 (because any
linear algebraic group over C contains the semisimple and the unipotent parts of the
Jordan decompositions of its elements). Since the image by ϕ of a unipotent element
of G1 is unipotent and since the only unipotent element of G2 is eG2 , the unipotent
elements of G1 are all in kerϕ. Since kerϕ is finite and unipotent elements have
infinite order or are the identity, G1 has a unique unipotent element, namely eG1 .
It remains to prove that G1 and G2 have the same dimension. This follows from the

fact that dimG1 = dim kerϕ+ dim im ϕ, [Hum75, Chapter 7.3, Proposition B] �
Theorem 3.2. — Let f ∈ K× \ k be such that

f ′ = af

for some a ∈ k. Let g ∈ K satisfy a nonzero homogeneous linear differential equation
over k. We then have that f and g are algebraically dependent over k if and only if
there exists θ in an algebraic extension of K and an integer n such that
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(3.1) f = θn and g ∈ k
[
θ, θ−1

]
.

Proof. — If f and g satisfy (3.1), they are clearly algebraically dependent over k.
Let us prove the converse implication. Let L be a nonzero linear differential operator

with coefficients in k annihilating g and of minimal order r for this property. Let
Y ′ = ALY be the corresponding linear differential system.
We let E be a Picard–Vessiot extension over k for the differential system

(3.2) Y ′ =
(
a 0
0 AL

)
Y

containing f and g. Let GE be the corresponding differential Galois group. The
differential system (3.2) has a fundamental solution of the form

Y =



f 0 · · · 0
0 g1 · · · gr
0 g′1 · · · g′r

0 ... . . . ...
0 g

(r−1)
1 · · · g(r−1)

r

 ∈ GLr+1(E)

with g1 = g (thus, E is the field extension of k generated by the entries of Y). The
field extension E1 (resp. E2) of k generated by f (resp. by the g(j)

i ) is a Picard–
Vessiot extension over k for y′ = ay (resp. Y ′ = ALY ); we let G1 (resp. G2) be the
corresponding differential Galois group over k.
By minimality of L, we have

spanC Gg = spanC G2g = spanC {g1, . . . , gr}

(note that Gg = G2g because the restriction morphisms G → G2 is surjective).
Moreover, the C-line generated by f is left invariant by G. These facts, together
with the fact that g is algebraic over k(f), imply that the g(j)

i are algebraic over k(f)
as well, i.e., E is a finite extension of E1.
The differential Galois theory implies that the restriction morphism G → G1 is

surjective and hence induces a short exact sequence

0→ H → G→ G1 → 0.

The kernel H (which is the group of differential field automorphisms of E over E1)
is finite because E is a finite extension of E1. Moreover, G1 is a one dimensional
torus (it is C× in the representation given by f). Lemma 3.1 implies that G itself is
a one dimensional torus.
Therefore, there exists a basis of solutions g̃1, . . . , g̃r of L in E such that the image

of the representation of the Galois group G with respect to
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Ỹ =



f 0 · · · 0
0 g̃1 · · · g̃r
0 g̃′1 · · · g̃′r

0 ... . . . ...
0 g̃

(r−1)
1 · · · g̃(r−1)

r

 ∈ GLn(E)

is given by {
diag (tn0 , . . . , tnm)

∣∣∣ t ∈ C×}
for some n0, . . . , nm ∈ Z.
Therefore, if θ is such that f = θn0 , then g̃i = aiθ

ni for some ai ∈ k× (because
(g̃i/θni)n0 is fixed byG). This concludes the proof since g is in the C-span of the g̃i. �

Corollary 3.3. — Let f ∈ K× be such that
f ′ = af

for some a ∈ k. Let g ∈ K satisfy a nonzero homogeneous linear differential equation
over k. Assume that

f = P (g)
for some nonconstant polynomial P with coefficients in k. Then, there exists θ in K
such that

f = θ` and g = c+ dθ

for some ` ∈ Z> 1 and some c, d ∈ k.

Proof. — If f is algebraic over k, g is algebraic over k as well and, hence, belongs
to k.
So, we can and will assume that f is transcendental over k. Theorem 3.2 ensures

that there exists θ and an integer n ∈ Z such that

f = θn and g ∈ k
[
θ, θ−1

]
.

Since k is algebraically closed, we may factor P (Y ) as a product of linear factors
and, hence, the equation P (g) = f can be rewritten as

e1
∏̀
i=1

(g − di) = θn

for some ` ∈ Z> 1 and some e1 and di in k. Since θ is transcendental over k, the
unique factorization property of k[θ, θ−1] implies that each factor in the above equality
belongs to kθZ; in particular, we have for each i

g − di = eiθ
ri

for some ei ∈ k× and some ri ∈ Z. For any pair ri, rj, i 6= j, we have di − dj =
eiθ

ri − ejθrj . Since θ is transcendental, we must have di = dj =: d, ei = ej =: e and
ri = rj =: r. So g = eθr + d and e, d ∈ k.
In particular we have that n = r`. Whence the desired result where the θ of the

conclusion is θr of this proof. �
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Corollary 3.4. — Let f, g ∈ K satisfy some nonzero homogeneous linear dif-
ferential equations over k. Assume that

f ∈ k(g).

Then,
• either f ∈ k[g],
• or there exists θ in K such that θ′/θ ∈ k and

g = c+ dθ and f ∈ k
[
θ, θ−1

]
for some c, d ∈ k.

Proof. — Consider R ∈ k(X) such that f = R(g). Let A,B ∈ k[X] be such that
gcd(A,B) = 1 and R = A/B. Bézout’s Identity states that there exist U, V ∈ k[X]
such that AU + BV = 1, so RU + V = 1/B. Since the set of elements satisfy-
ing homogeneous linear differential equations over k forms a k-algebra, it follows
that fU(g) + V (g) = R(g)U(g) + V (g) = 1/B(g) satisfies a nonzero homogeneous
linear differential equations over k. By [HS85] (see also [Spe86, Sin86]), we have
B(g)′/B(g) ∈ k and hence we can apply Corollary 3.3: if B is nonconstant then
there exists θ such that

B(g) = θ` and g = c+ dθ

for some ` ∈ Z> 0 and some c, d ∈ k. Since f = R(g) = A(g)/B(g) = A(c + dθ)θ−`,
we have f ∈ k[θ, θ−1].
Of course, if B is constant, then f ∈ k[g]. �

4. The simply connected case

We begin with some facts concerning simply connected(1) algebraic groups.

Lemma 4.1. — A simply connected algebraic group G has no torus quotient,
that is, there is no nontrivial homomorphism φ : G→ T = (C∗)n. In particular, any
multiplicative character of G is trivial.

Proof. — From [Hoc81, Chapter XVIII, Proposition 3.2], we know that the radical
R(G) is unipotent. Let φ : G → T = (C∗)n be a homomorphism. Since homomor-
phisms preserve unipotent elements, we must have that R(G) ⊂ Ker(φ). Therefore φ
factors through H := G/R(G). Since H is semisimple(2) , it coincides with its derived
subgroup H ′. Therefore, φ takes its values in the derived subgroup T ′ of T . Since T ′
is trivial, we have that φ is trivial. �

(1)Here, simply connected means: a connected algebraic group G not admitting any non-trivial
isogeny φ : H → G where H is also a connected algebraic group. For semisimple algebraic groups
over the field of complex numbers this definition is equivalent to the topological one.
(2)R(G) is the smallest closed normal subgroup K of G such that G/K is semisimple, cf. [Hum75,
Section 19.5 and Theorem 27.5].
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In the proof of the following proposition, we give two arguments - one based on the
Picard–Vessiot approach to the Galois theory and the other based on the tannakian
approach. The tannakian approach plays the dominant role in what follows and this
allows the reader to compare the two approaches in this simpler situation.

Proposition 4.2. — Let f ∈ K× \ k satisfy a nonzero homogeneous linear
differential equation L(f) = 0 over k of order n > 1 and assume that the differential
Galois group GL over k of the latter equation is simply connected. Let g ∈ K satisfy
a nonzero homogeneous linear differential equation over k. Assume that f and g are
algebraically dependent over k.

(1) If F is a differential field extension of k(f, g) with field of constants C con-
taining a basis of solutions f1 = f, f2, . . . , fn of L, then

g ∈ k [W (f1, . . . , fn)]
where W (f1, . . . , fn) denotes the Wronskian matrix associated to f1, . . . , fn.

(2) Assume
(∗) k(f)is relatively algebraically closed in k (W (f1, . . . , fn)) .

Then,
g ∈ k[f ].

Proof.
(1) Let Y ′ = ALY be the linear differential system corresponding to L.
Let M be a nonzero linear differential operator with coefficients in k annihilating

g and of minimal order m for this property. Let Y ′ = AMY be the corresponding
linear differential system.
We let E be a Picard–Vessiot extension over k of the differential system

(4.1) Y ′ =
(
AL 0
0 AM

)
Y

containing f and g. Let G be the corresponding differential Galois group over k. The
differential system (4.1) has a fundamental solution of the form

Y =
(
YL 0
0 YM

)
∈ GLm+n(E)

where

YL =


f1 · · · fn
f ′1 · · · f ′n
... . . . ...

f
(n−1)
1 · · · f (n−1)

n

 ∈ GLn(E)

and

YM =


g1 · · · gm
g′1 · · · g′m
... . . . ...

g
(m−1)
1 · · · g(m−1)

m

 ∈ GLm(E)

ANNALES HENRI LEBESGUE



Algebraic dependence of holonomic functions 151

with f1 = f and g1 = g (thus, E is the field extension of k generated by the entries
of YL and YM). The field extension EL (resp. EM) of k generated by the f (j)

i (resp.
by the g(j)

i ) is a Picard–Vessiot extension over k for Y ′ = ALY (resp. Y ′ = AMY );
we let GL (resp. GM) be the corresponding differential Galois group over k.
By minimality of M , we have

spanC Gg = spanC GMg = spanC {g1, . . . , gm}
(note that Gg = GMg because the restriction morphism πM : G→ GM is surjective).
Moreover, EL is left invariant by G. These facts, together with the fact that g is
algebraic over EL (because f and g are algebraically dependent over k and f is
transcendental over k), imply that the g(j)

i are algebraic over EL as well, i.e., E is a
finite extension of EL.
Again, the differential Galois theory implies that the restriction morphism πL :

G→ GL is surjective and hence induces a short exact sequence
0→ H → G

πL−→ GL → 0.
The kernel H (which is the group of differential fields automorphisms of E over EL)
is finite because E is a finite extension of EL.
Since GL is a connected and simply connected algebraic group, the kernel H is

trivial and πL : G → GL is an isomorphism. In particular, since H is trivial, the
Galois correspondence implies that E = EL. The C-span of the entries of YM

form a G = GL-invariant finite dimensional C-vector space. It follows from [S03,
Corollary 1.38] that all of these entries, and in particular g = g1, lie in the Picard–
Vessiot ring k[YL, det(YL)−1]. Note that GL leaves the C-line spanned by det(YL)
invariant and, since all characters of GL are trivial (see Lemma 4.1), it must leave
det(YL) fixed. Therefore det(YL) ∈ k and so k[YL, det(YL)−1] = k[YL]. This proves
the first claim (1) of the Proposition 4.2.
We now turn to a tannakian proof of the first claim. As already noted the fact that

GL is a connected and simply connected algebraic group implies that the kernel H is
trivial and πL : G→ GL is an isomorphism. It follows that there exists an algebraic
group morphism u : GL → GM such that

G = im (πL ⊕ πM) = im (idGL ⊕u) .
We now adopt the tannakian point of view (see Appendix A): the category of

rational linear representations of G is equivalent to the tannakian category generated
by the differential system (4.1). In this equivalence, the differential system Y ′ = ALY
(resp. Y ′ = AMY ) corresponds to the restriction morphism πL : G → GL (resp.
πM : G→ GM). The factorization

πM = u ◦ πL
ensures that Y ′ = AMY belongs to the tannakian category generated by Y ′ = ALY .
It follows that the entries of the solutions of Y ′ = AMY belong to the Picard–Vessiot
ring RL = k[YL, det(YL)−1] of Y ′ = ALY . As before GL leaves the line spanned by
det(YL) invariant and, since all characters of GL are trivial (see Lemma 4.1), it must
leave det(YL) fixed. Therefore det(YL) ∈ k and so k[YL, det(YL)−1] = k[YL]. This
yields the second proof of the first claim (1) of the Proposition 4.2.
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(2) If (∗) is satisfied, then g belongs to k(f) (because g is algebraic over k(f)).
Corollary 3.4 implies that either g ∈ k[f ], or there exists θ in K such that θ′/θ ∈ k
and f = c+ dθ and g ∈ k[θ, θ−1] for some c, d ∈ k. We claim that the latter case is
impossible. Indeed, otherwise the line Cθ spanned by θ would be left invariant by
GL. But Lemma 4.1 states that any character of GL is trivial. So GL would act as
the identity on θ. By the Galois correspondence, this would imply that θ ∈ k and,
hence, that f ∈ k. This is excluded by the assumption. �

In order to draw the conclusion of Proposition 4.2(2), one needs to verify con-
dition (∗). We will give two examples of this below but first mention a general
approach.
Since we are assuming k is algebraically closed, the Galois group G of any Picard–

Vessiot extension of k is connected and the Picard–Vessiot ring of any linear dif-
ferential equation over k is k-isomorphic to the coordinate ring k[G ⊗ k] of the
group G over k ([Mag94, Corollary 5.16], [S03, Proposition 1.31, Corollary 1.32]). In
particular, this implies that the Picard–Vessiot field K is isomorphic to the function
field of G ⊗ k. This latter field is known to be a purely transcendental extension
of k ([Bor91, Remark 14.14]). Therefore, if one can find algebraically independent
elements z1 = f, z2, . . . , zm such that K = k(z1, . . . , zm) then k(f) will be relatively
algebraically closed in K. Note that in Proposition 4.2 the field k(W (f1, . . . , fn)) is
the Picard–Vessiot field of the equation L(y) = 0.

4.1. When GL = SLn(C)

In this section, we will prove

Proposition 4.3. — Let f ∈ K× \ k satisfy an nth order nonzero homogeneous
linear differential equation L(f) = 0 over k and assume that the differential Galois
group GL over k of this equation is SLn(C) seen as a subgroup of GLn(C). Let g ∈ K
satisfy a nonzero homogeneous linear differential equation over k. Assume that f
and g are algebraically dependent over k. Then,

g ∈ k[f ].

The proof will depend on the following Lemma.

Lemma 4.4. — Let K, f, L,GL, g be as in Proposition 4.2. Assume that GL,
seen as a subgroup of GLn(C) via the basis of solutions f1, . . . , fn, also satisfies the
following property : if we let

k [GL ⊗ k] = k
[
(Xi, j)16 i, j 6n , det (Xi, j)−1

16 i6n

]
/I

be the coordinate ring of GL ⊗ k, then, for any a ∈ spank{Xi, 1 | 1 6 i 6 n} mod I,
k(a) is relatively algebraically closed in k(GL ⊗ k). Then,

g ∈ k[f ].
Moreover, g ∈ k[f ] if GL, seen as a subgroup of GLn(C) via some basis of solutions
of L, satisfies the following property : for any a ∈ spank{Xi, j | 1 6 i, j 6 n} mod I,
k(a) is relatively algebraically closed in k(GL ⊗ k).
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Proof. — We know that the Picard–Vessiot ring RL of L is isomorphic, as a
k-algebra, to k[GL ⊗ k], more precisely (c.f. [Mag94, Corollary 5.16], [S03, Proposi-
tion 1.31, Corollary 1.32]) there exists v ∈ GLn(k) such that the k-algebra morphism

k
[
(Xi, j)16 i, j 6n , det

(
(Xi, j)16 i, j 6n

)−1
]
→ RL

defined by X 7→ vYL induces an isomorphism

k [GL ⊗ k] = k
[
(Xi, j)16 i, j 6n , det (Xi, j)−1

16 i, j 6n

]
/I

∼−→ RL.

In this isomorphism, f corresponds to an element of spank{Xi, 1 | 1 6 i 6 n} mod I,
so, the hypothesis on k(GL ⊗ k) implies k(f) is relatively algebraically closed in
k(W (f1, . . . , fn)). Proposition 4.2 implies the conclusion.
The final assertion follows from this. Indeed, the differential Galois group of L

seen as a group of matrices via some basis of solutions of L is conjugate via some
element of GLn(C) to the same differential Galois group seen as a group of matrices
via the basis of solutions f1, . . . , fn. It follows that if the final hypothesis is satisfied
then the previous hypothesis is satisfied as well. �

Remark 4.5. — The difference between the two parts of Lemma 4.4 is that, in
the first part, GL is seen as a group of matrices via the basis of solutions f1, . . . , fn
which has f1 = f as first element, whereas, in the second, f is not required to be an
element of the basis used to see GL as a group of matrices.

Remark 4.6. — The hypotheses of Lemma 4.4 concerning the coordinate ring of
GL ⊗ k are not hypotheses on the differential Galois group of L as an “abstract”
algebraic group but hypotheses on the incarnation GL of this differential Galois
group as a subgroup of GLn(C) via the linear representation given by the choice of a
basis of solutions of L. In other words, these hypotheses are not necessarily invariant
under isomorphisms of algebraic groups. For instance, this hypothesis is satisfied by
GL = SL2(C) ⊂ GL2(C), but not by Sym3(SL2(C)) ⊂ GL4(C), despite the fact that
these two algebraic groups are isomorphic. The fact that the hypothesis is satisfied
when GL = SL2(C) is shown in the proof of Proposition 4.3 below. Let us prove that
it is not satisfied by GL = Sym3(SL2(C)). We have denoted by Sym3(SL2(C)) the
image of SL2(C) by its (faithful) 3rd symmetric power representation

Sym3 : SL2(C)→ GL4(C),

which has the form

(
a b
c d

)
7→


a3 3a2b 3ab2 b3

a2c ∗ ∗ b2d
ac2 ∗ ∗ bd2

c3 3c2d 3cd2 d3

 .
Let

k
[
Sym3 (SL2(C))⊗ k

]
= k

[
(Xi, j)16 i, j 6 4 , det (Xi, j)−1

16 i, j 6 4

]
/I

= k
[
(xi, j)16 i, j 6 4 , det (xi, j)−1

16 i, j 6 4

]
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be the coordinate ring of Sym3(SL2(C)). Then,

f = 3−1x1, 2 (x2, 4/x1, 4 − x2, 1/x1, 1) ∈ k
(
Sym3 (SL2(C))⊗ k

)
satisfies f 3 = x1, 1. Therefore, f is algebraic over k(x1, 1) but does not belong to k(x1, 1)
and, hence, k(x1, 1) is not relatively algebraically closed in k(Sym3(SL2(C))⊗ k).
This is not a surprise: the conclusion of Proposition 4.3 is not satisfied when

GL = Sym3(SL2(C)). Indeed, letM be a linear differential equation over k of order 2
with differential Galois group SL2(C). Consider the third symmetric power L = Ms3;
this is a linear differential equation over k of order 4 with differential Galois group
GL = Sym3(SL2(C)). If (u, v) is a basis of solutions of M , then (u3, u2v, uv2, v3) is
a basis of solutions of L. Therefore, f = u3 is a solution of L, g = u is a solution of
M , f 6∈ k and f and g are algebraically dependent over k but g 6∈ k(f).

Proof of Proposition 4.3. — We shall prove that the hypotheses of Lemma 4.4
are satisfied when GL = SLn(C). The fact that SLn(C) is connected and simply
connected is well-known (cf. [Hum75, Section 31.1]). It remains to prove that, if we
denote by

k [SLn(C)⊗ k] = k
[
(Xi, j)16 i, j 6n , det (Xi, j)−1

16 i, j 6n

]
/
(
det (Xi, j)16 i, j 6n − 1

)
= k

[
(xi, j)16 i, j 6n

]
the coordinate ring of SLn(C)⊗ k, we have: for any

a =
∑

16 i, j 6n
λi, j xi, j ∈ spank {xi, j | 1 6 i, j 6 n} ,

k(a) is relatively algebraically closed in k(SLn(C)⊗ k).
Let us first assume that at least one of the λi, j is zero, say λi0, j0 = 0. Then, we

have

k (SLn(C)⊗ k) = k
(
(xi, j)16 i, j 6n

)
= k

(
(xi, j)16 i, j 6n, (i, j) 6= (i0, j0)

)
= k

(
a, (xi,j)16 i, j 6n, (i, j) 6= (i0, j0), (i1, j1)

)
where (i1, j1) is chosen such that λi1, j1 6= 0. The second equality above follows from
the fact xi0, j0 ∈ k((xi, j)16 i, j 6n, (i, j) 6= (i0, j0)) which itself follows from the equality
det(xi, j)16 i, j 6n = 1. The third equality follows from the fact that xi1, j1 belongs to
the k-span of a and (xi, j)16 i, j 6n,(i, j) 6= (i0, j0), (i1, j1). Since

tr. deg(k(SLn(C)⊗ k)/k) = n2 − 1

and

]
{
a, (xi, j)16 i, j 6n, (i, j) 6= (i0, j0),(i1, j1)

}
6 n2 − 1,

we get that the family (a, (xi, j)16 i, j 6n, (i, j) 6= (i0, j0), (i1, j1)) is algebraically independent
over k. In particular, k(a) is algebraically closed in k(SLn(C)⊗ k).
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Let us now assume that the λi, j are nonzero. We have

k(SLn(C)⊗ k) = k
(
(xi, j)16 i, j 6n

)
= k

(
a, (xi, j)16 i, j 6n, (i, j) 6= (1, 1)

)
.

The latter equality follows from the fact that x1, 1 belongs to the k-span of a and
(xi, j)16 i, j 6n, (i, j) 6= (1, 1). But, we have

x2, 1 = λ−1
2, 1a−

∑
16 i, j 6n

(i, j) 6= (1, 1), (2, 1)

λ−1
2, 1λi, jxi, j − λ−1

2, 1λ1, 1x1, 1.

The equality det(xi, j)16 i, j 6n = 1 ensures that

x1, 1 = −δ2, 1

δ1, 1
x2, 1 −

n∑
i=3

δi, 1
δ1, 1

xi, 1 + 1
δ1, 1

where δi, j is the (i, j) cofactor of the matrix (xi, j)16 i, j 6n. It follows that(
1− λ−1

2, 1λ1, 1
δ2, 1

δ1, 1

)
x2, 1 =

λ−1
2, 1a−

∑
16 i, j 6n

(i, j) 6= (1, 1), (2, 1)

λ−1
2, 1λi, jxi, j + λ−1

2, 1λ1, 1

(
n∑
i=3

δi, 1
δ1, 1

xi, 1 −
1
δ1, 1

)
.

This shows that x2, 1 belongs to k(a, (xi, j)16 i, j 6n, (i, j) 6= (1, 1), (2, 1)) and, hence, that

k (SLn(C)⊗ k) = k
(
a, (xi, j)16 i, j 6n, (i, j) 6= (1, 1), (1, 2)

)
.

We can now conclude that k(a) is algebraically closed in k(SLn(C)⊗ k) by using a
transcendence degree argument as we did above. �

5. A special case of reductive GL: GLn(C)

We denote the center of a group G by ZG.
Lemma 5.1. — Let ϕ : G1 → G2 be an isogeny with G1 connected. Then:
• ϕ−1(ZG2) = ZG1 , ϕ(ZG1) = ZG2 and ϕ(Z0

G1) = Z0
G2 ;

• if G2 = Z0
G2G

′
2, then G1 = Z0

G1G
′
1

(3) ;
• if Z0

G2 is a torus of dimension d, then Z0
G1 is a torus of dimension d as well;

• if G′2 is semi-simple, then G′1 is semi-simple as well;
• if G2 is reductive, then G1 is reductive as well.

Proof. — We first prove that ϕ−1(ZG2) ⊂ ZG1 . Consider g ∈ ϕ−1(ZG2). For any
h ∈ G1, ϕ([g, h]) = [ϕ(g), ϕ(h)] = eG2 , so [g, h] ∈ kerϕ. Since G1 is connected, the
image the morphism of algebraic varieties

G1 → kerϕ
h 7→ [g, h]

is contained in (kerϕ)0 = {eG1}, so g ∈ ZG1 as expected.
(3)Recall that G′ is the derived subgroup of the algebraic group G.
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The inclusion ZG1 ⊂ ϕ−1(ZG2) follows from the fact that ϕ is onto and therefore
ϕ−1(ZG2) = ZG1 .
The equality ϕ(ZG1) = ZG2 follows form this and from the fact that ϕ is onto.
It follows that ϕ(Z0

G1) = ϕ(ZG1)0 = Z0
G2 .

Since ϕ is onto, we have ϕ(G′1) = G′2. We have seen that ϕ(Z0
G1) = Z0

G2 . Therefore,
ϕ(Z0

G1G
′
1) = Z0

G2G
′
2 = G2. Since kerϕ is central, we get G1 ⊂ (kerϕ)Z0

G1G
′
1 ⊂ ZG1G

′
1,

so G1 = ZG1G
′
1. But Z0

G1G
′
1 is a closed subgroup of G1 = ZG1G

′
1 of finite index, so

G0
1 = G1 ⊂ Z0

G1G
′
1, whence the equality G1 = Z0

G1G
′
1.

Assume that Z0
G2 is a torus of dimension d. We have seen that ϕ(Z0

G1) = Z0
G2 , so

ϕ induces an isogeny between Z0
G1 and Z0

G2 . Lemma 3.1 implies that Z0
G1 is a torus

of dimension d.
Since ϕ(G′1) = G′2, ϕ induces an isogeny between G′1 and G′2. Therefore, G′1 is

semi-simple if and only if G′2 is semi-simple.
The last assertion follows from the previous one. �

In the proof of the next result we will use the tannakian correspondence. Appen-
dix A contains a review of this tool.

Proposition 5.2. — Let f ∈ K× satisfy a nonzero homogeneous linear differen-
tial equation over k of order n and assume that the differential Galois group over k
of the latter equation is GLn(C). Let g ∈ K satisfy a nonzero homogeneous linear
differential equation over k. Assume that f and g are algebraically dependent over
k. We have:

(1) if n = 1, then there exist θ and an integer ` such that

f = θ` and g ∈ k
[
θ, θ−1

]
;

(2) if n > 1, then
g ∈ k[f ].

Proof. — Let L be a nonzero linear differential operator of order n with coefficients
in k and with differential Galois group over k equal to GLn(C) annihilating f . Let
Y ′ = AY be the corresponding linear differential system.
LetM be a nonzero linear differential operator with coefficients in k annihilating g

and of minimal order m for this property. Let Y ′ = BY be the corresponding linear
differential system.
We let E be a Picard–Vessiot extension over k of the differential system

(5.1) Y ′ =
(
A 0
0 B

)
Y

containing f and g. Let G be the corresponding differential Galois group over k. The
differential system (5.1) has a fundamental solution of the form

Y =
(
YA 0
0 YB

)
∈ GLm+n(E)
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where

YA =


f1 · · · fn
f ′1 · · · f ′n
... . . . ...

f
(n−1)
1 · · · f (n−1)

n

 ∈ GLn(E)

and

YB =


g1 · · · gm
g′1 · · · g′m
... . . . ...

g
(m−1)
1 · · · g(m−1)

m

 ∈ GLm(E)

with f1 = f and g1 = g (thus, E is the field extension of k generated by the entries
of YA and YB). The field extension EA (resp. EB) of k generated by the f (j)

i (resp.
by the g(j)

i ) is a Picard–Vessiot extension over k for Y ′ = AY (resp. Y ′ = BY ); we
let GA (resp. GB) be the corresponding differential Galois group over k.
By minimality of M , we have

spanC Gg = spanC GBg = spanC {g1, . . . , gm}
(note that Gg = GBg because the restriction morphism G → GB is surjective).
Moreover, EA is left invariant by G. These facts, together with the fact that g is
algebraic over EA (because f and g are algebraically dependent over k and f is
transcendental over k because GA is GLn(C)) imply that the g(j)

i are algebraic over
EA as well, i.e., E is a finite extension of EA.
It is a general fact that the restriction morphism πA : G → GA is surjective and

hence induces a short exact sequence
0→ H → G

πA−→ GA → 0.
The kernel H (which is the group of differential field automorphisms of E over EA)
is finite because E is a finite extension of EA.
Since k is algebraically closed, G is connected. Applying Lemma 5.1 to πA : G→

GA (with GA = GLn(C) = Z0
GA
G′A with Z0

GA
= C×In and G′A = SLn(C)), we get

G = ZGG
′ = Z0

GG
′

and also that Z0
G is a one dimensional torus. There exists P ∈ diag(In,GLm(C)) ⊂

GLn+m(C) such that

PZ0
GP
−1 =

{
diag (tα0In, t

α1Im1 , . . . , t
αlIml)

∣∣∣ t ∈ C×}
for some m1, . . . , ml ∈ Z> 1 and some α0, . . . , αl ∈ Z with α1, . . . , αl pairwise
distinct. Therefore, PGP−1 is block diagonal:

PGP−1 ⊂ diag (GLn(C),GLm1(C), . . . , GLml(C)) .
It follows that there exist B1 ∈ Mm1(k), . . . , Bl ∈ Mml(k) such that Y ′ = BY is
equivalent over k to

Y ′ = diag (B1, . . . , Bl)Y.
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So, up to changing YB by RYB for some R ∈ GLm(k), we can and will assume that
B = diag(B1, . . . , Bl) and that P = In.
Let Ã = A− tr(A)/nIn and consider the differential system

(5.2) Y ′ = diag
(
tr(A)/nIn, Ã, B1, . . . , Bl

)
Y.

Since tr(Ã) = 0, the differential Galois group of Ã is unimodular ([S03, Exer-
cise 1.35.5]). We let H be the differential Galois group of (5.2). In the tannakian
correspondence (cf., Example A.1), the equation

Y ′ = diag (A,B1, . . . , Bl)Y
corresponds to the representation ρ : H → G given by

ρ : diag
(
t, h̃, h1, . . . , hl

)
7→ diag

(
th̃, h1, . . . , hl

)
.

Applying Lemma 5.1 to ρ : H → G (again the differential Galois theory implies that
ρ is onto, and that it has finite kernel), we have

H = Z0
HH

′

and Z0
H = ρ−1(Z0

G)0 is a one dimensional torus. The restriction

ρ|Z0
H

: Z0
H = ρ−1

(
Z0
G

)0
→ Z0

G

is given by
h 7→

(
χ0(h)In, χ1(h)Im1 , . . . , χl(h)Iml

)
for some characters χi : Z0

H → C×. Another morphism Z0
H → Z0

G is given by

h = diag
(
t, h̃, h1, . . . , hl

)
7→ diag (tα0In, t

α1Im1 , . . . , t
αlIml) .

Therefore (since Z0
K and Z0

G are one dimensional tori: see Lemma 6.1), there exist
nonzero relatively prime integers N,M such that, for all i,

χi(h)N = tαiM .

Consider the differential system
Y ′ = diag

(
tr(A)/nN, Ã, B1, . . . , Bl

)
Y.

Let HN be the differential Galois group of this system. In the tannakian correspon-
dence, the equation

Y ′ = diag (A,B1, . . . , Bl)Y
corresponds to

% :=ρ ◦ p : HN → G

where p : HN → H (which corresponds to Y ′ = diag(tr(A)/n, Ã, B1, . . . , Bl)Y in the
tannakian correspondence) is given by

p : diag
(
z, h̃, h1, . . . , hl

)
7→ diag

(
zN , h̃, h1, . . . , hl

)
.

Applying Lemma 5.1 to p : HN → H, we get
HN = Z0

HN
H ′N
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and Z0
HN

= p−1(Z0
H)0 is a one dimensional torus.

If h = diag
(
z, h̃, h1, . . . , hl

)
∈ Z0

HN
= p−1(Z0

H)0, then

χi(p(h))N = zαiNM

so

χi(p(h)) = zαiM .

So, we have

%|Z0
HN

:
(
z, h̃, h1, . . . , hl

)
7→
(
zNIn = zα0MIn, z

α1MIm1 , . . . , z
αlMIml

)
.

On the other hand, the representation corresponding to Y ′ = AY in the tannakian
correspondence is

$A = πA ◦ % : HN → GA.

It is surjective (differential Galois theory) and has finite kernel (because % and πA
have finite kernels), so it is an isogeny. Therefore, it induces an isogeny

$A|H′N = πA ◦ % : H ′N → G′A.

Since G′A = SLn(C) is a connected and simply connected algebraic group,

$A|H′N = πA ◦ % : H ′N → G′A

is actually an isomorphism. Since G = im(πA ◦%⊕πB ◦%), it follows that there exists
an algebraic group morphism u = (u1, . . . , ul) : G′A → GB such that

πB ◦ % = u ◦ (πA ◦ %) .

So,
%|H′N :

(
1, h̃, h1, . . . , hl

)
7→
(
h̃, u1(h̃), . . . , ul(h̃)

)
.

Finally, we see that the representation $B = πB ◦ % corresponding to Y ′ = BY in
the tannakian correspondence is given by

$B = πB ◦ % :
(
z, h̃, h1, . . . , hl

)
7→
(
zα1Mu1(h̃), . . . , zαlMul(h̃)

)
.

This ensures, by the tannakian correspondence, that Y ′ = BiY is equivalent to a
system of the form Y ′ = (Constri(Ã) + αiM(tr(A)/nN)Imi)Y where Constri(Ã) is
obtained from Ã by some construction of linear algebra. It follows that the entries
of the solutions of Y ′ = BY belong to

k
[
YL,

q

√
det (YL)

−1]
for some positive integer q; in particular, g belongs to

k
[
YL,

q

√
det (YL)

−1]
.

For n = 1, this gives the desired result (which, of course, already follows from
Corollary 3.3).
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Let us now assume n > 1. We have that RL = k[YL, det(YL)−1] is isomorphic,
as a k-algebra, to k[GLn(k)]. More precisely there exists v ∈ GLn(k) such that the
k-algebra morphism

k
[
(Xi, j)16 i, j 6n , det

(
(Xi, j)16 i, j 6n

)−1
]
→ RL

defined by X 7→ vYL is an isomorphism; it induces an isomorphism

k

[
(Xi, j)16 i, j 6n ,

q

√
det

(
(Xi, j)16 i, j 6n

)−1]
→ k

[
YL,

q

√
det (YL)

−1]
In this isomorphism, f corresponds to an element a of spank{Xi, 1 | 1 6 i 6 n}
mod I. The fact that k(a) is relatively algebraically closed in

k

(
(Xi, j)16 i, j 6n ,

q

√
det

(
(Xi, j)16 i, j 6n

)−1)

(see Lemma 5.3 below) implies that

g ∈ k(f).

Corollary 3.4 ensures that:
• either g ∈ k[f ],
• or there exists θ such that θ′/θ ∈ k and

f = c+ dθ and g ∈ k
[
θ, θ−1

]
for some c, d ∈ k.

The latter possibility is incompatible with the fact thatGL = GLn(C) acts irreducibly
on the solution space of L. �

Lemma 5.3. — For any a ∈ spank{Xi, j | 1 6 i, j 6 n}, k(a) is relatively alge-
braically closed in

k
(
(Xi, j)16 i, j 6n ,∆

−1
)

where ∆ = q

√
det

(
(Xi, j)16 i, j 6n

)
.

Proof. — Let
L = k

(
(Xi, j)16 i, j 6n ,∆

)
.

and let a = ∑
λi, jXi, j be in the k-span of the Xi, j.

Let us first assume at least one of the λi, j is zero, say λi0, j0 = 0. Then, we have

L = k
(
(Xi, j)16 i, j 6n ,∆

)
= k

(
(Xi, j)16 i, j 6n, (i, j) 6= (i0, j0) ,∆

)
= k

(
a, (Xi, j)16 i, j 6n, (i, j) 6= (i0, j0),(i1, j1) ,∆

)
where (i1, j1) is such that λi1,j1 6= 0. The second equality follows from the fact that
Xi0,j0 ∈ k((Xi,j)16 i, j 6n, (i, j) 6= (i0, j0),∆) which itself follows from the equality

det(Xi, j)16 i, j 6n =
n∑
j=1

Xi0, jδi0, j = ∆q
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where δi, j is the (i, j) cofactor of (Xi, j)16 i, j 6n. The third equality follows from the
fact that Xi1,j1 belongs to the k-span of a and (Xi, j)16 i, j 6n, (i, j) 6= (i0, j0),(i1, j1). Since

tr. deg(L/k) = n2 and ]
{
a, (Xi, j)16 i, j 6n, (i, j) 6= (i0, j0),(i1, j1) ,∆

}
6 n2,

we get that the family (a, (Xi, j)16 i, j 6n, (i, j) 6= (i0, j0), (i1, j1),∆) is algebraically indepen-
dent over k. In particular, k(a) is algebraically closed in L.
Let us now assume that the λi, j are nonzero. We have

L = k
(
(Xi, j)16 i, j 6n ,∆

)
= k

(
a, (Xi, j)16 i, j 6n, (i, j) 6= (1, 1) ,∆

)
The latter equality follows from the fact that X1,1 belongs to the k-span of a and
(Xi, j)16 i, j 6n, (i, j) 6= (1, 1). We have

X2, 1 = λ−1
2, 1a−

∑
16 i, j 6n

(i, j) 6= (1, 1), (2, 1)

λ−1
2, 1λi, jXi, j − λ−1

2, 1λ1, 1X1, 1.

Furthermore the equality det(Xi, j)16 i, j 6n = ∆q ensures that

X1, 1 = −δ2, 1

δ1, 1
X2, 1 −

n∑
i=3

δi, 1
δ1, 1

Xi, 1 + δq

δ1, 1

where δi, j is the (i, j) cofactor of (Xi, j)16 i, j 6n. It follows that(
1 + λ−1

2, 1λ1, 1
δ2, 1

δ1, 1

)
X2, 1 =

λ−1
2, 1a−

∑
16 i, j 6n

(i, j) 6= (1, 1),(2, 1)

λ−1
2, 1λi, jXi, j + λ−1

2, 1λ1, 1

(
n∑
i=3

δi, 1
δ1, 1

Xi, 1 −
δq

δ1, 1

)
.

This shows that X2, 1 belongs to k((Xi, j)16 i, j 6n, (i, j) 6= (1, 1), (2, 1),∆) and, hence, that

L = k
(
a, (Xi, j)16 i, j 6n, (i, j) 6= (1, 1), (1, 2) ,∆

)
.

We can now conclude as above by a transcendence degree argument. �

6. The general reductive case

Lemma 6.1. — Let T1 and T2 be tori of dimension d. Let φ, ϕ : T1 → T2 be
two isogenies. Then, there exist N ∈ Z> 1 and an isogeny ψ : T2 → T2 such that
ϕN = ψ ◦ φ.

Proof. — Using the fact that T1 and T2 are isomorphic to (C×)d, we can assume
that T = T1 = T2 = (C×)d. We let X(T ) be the character group of T ; it is a
free abelian group of rank d. We set φ = (φ1, . . . , φd) and ϕ = (ϕ1, . . . , ϕd); the
φi and ϕi are thus elements of X(T ). Since φ : T → T is an isogeny, φ1, . . . , φd
are multiplicatively independent elements of X(T ) and, hence, they generate a free
subgroup 〈φ1, . . . , φd〉 of rank d of X(T ). Thus, every element of X(T ) has a positive
power belonging to 〈φ1, . . . , φd〉. In particular, there exist a positive integer N such
that the ϕNi belong to 〈φ1, . . . , φd〉. Therefore, there exists ψi ∈ X(T ) such that
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ϕNi = ψi ◦φ. Thus, the morphism ψ = (ψ1, . . . , ψd) : T → T is such that ϕN = ψ ◦φ.
Since ϕN is an isogeny, ψ is an isogeny as well. �

Proposition 6.2. — Let f ∈ K× \ k satisfy a nonzero homogeneous linear
differential equation L(f) = 0 over k of order n and assume that the differential
Galois group over k of the latter equation is reductive and has a simply connected
derived subgroup. Let g ∈ K satisfy a nonzero homogeneous linear differential
equation over k. Assume that f and g are algebraically dependent over k.

(1) If F is a differential field extension of k(f, g) with field of constants C con-
taining a basis of solutions f1 = f, f2, . . . , fn of L, then

g ∈ k
[
W (f1, . . . , fn) , y−1/q

1 , . . . , y−1/q
s

]
where W (f1, . . . , fn) denotes the Wronskian matrix associated to f1, . . . , fn,
the yi ∈ k[W (f1, . . . , fn)] are such that y′i/yi ∈ k and q is a positive integer.

(2) Assume

(∗∗) k(f)is relatively algebraically closed in k
(
W (f1, . . . , fn), y−1/q

1 , . . . , y−1/q
s

)
.

Then,
g ∈ k[f ].

Remark 6.3. — Actually, the proof of Proposition 6.2 gives the following more
precise information. We let L = L1 · · ·Lr be a factorization of L over k into irreducible
factors. The proof of Proposition 6.2 shows that s 6 r and that the yi can be chosen
such that yi are solutions of y′ = tr(Ai)y where Ai is a certain matrix gauge equivalent
to the companion matrix of Li(Y ) = 0. In particular, with these refinements in mind,
we recover the main ingredients of the proof of Proposition 5.2 (the only additional
ingredient of the proof of Proposition 5.2 is the fact that the hypothesis (∗∗) is
satisfied under the assumptions of Proposition 5.2).

Proof. — Let Y ′ = AY be the linear differential system corresponding to L. Its
differential Galois group over k (the same as L) being reductive, we have that
Y ′ = AY is equivalent over k to

Y ′ = AY, A = diag(A1, . . . , As)
for some Ai ∈Mni(k) such that Y ′ = AiY is irreducible over k.
LetM be a nonzero linear differential operator with coefficients in k annihilating g

and of minimal order m for this property. Let Y ′ = BY be the corresponding linear
differential system.
We let E be a Picard–Vessiot extension over k of the differential system

(6.1) Y ′ =
(
A 0
0 B

)
Y

containing f and g. Let G be the corresponding differential Galois group over k. The
differential system (6.1) has a fundamental solution of the form

Y =
(
YA 0
0 YB

)
∈ GLm+n(E)
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where YA is a fundamental solution of Y ′ = AY and YB is a fundamental solution
of Y ′ = BY (thus, E is the field extension of k generated by the entries of YA and
YB). The field extension EA (resp. EB) of k generated by the entries of YA (resp.
by the YB) is a Picard–Vessiot extension over k for Y ′ = AY (resp. Y ′ = BY ); we
have f ∈ EA and g ∈ EB. We let GA (resp. GB) be the corresponding differential
Galois group over k. We recall that GA is reductive with simply connected derived
subgroup G′

A
; we will denote by d the dimension of the torus Z0

G
A
.

By minimality of M , we have that EB is generated, as a differential field extension
of k, by Gg = GBg (we recall that Gg = GBg because the restriction morphism
G → GB is surjective). Moreover, EA is left invariant by G. These facts, together
with the fact that g is algebraic over EA, imply that E is a finite extension of EA.
We again have that the restriction morphism πA : G→ GA is surjective and hence

induces a short exact sequence

0→ J → G
π
A−→ GA → 0.

The kernel J (which is the group of differential field automorphisms of E over EA)
is finite because E is a finite extension of EA.
Applying Lemma 5.1 to πA : G→ GA, we get that G is reductive and that Z0

G is
a torus of dimension d.
Let

Ã = A− diag
(

tr(A1)/n1In1 , . . . , tr(As)/nsIns
)

and consider the differential system

Y ′ = diag
(

tr(A1)/n1, . . . tr(As)/ns, Ã, B
)
Y.

We let H be the differential Galois group over k of this equation. In the tannakian
correspondence, the equation (6.1) corresponds to the representation ρ : H → G
given by

ρ : diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ diag (c1g̃1, . . . , csg̃s, g) .

Applying Lemma 5.1 to the isogeny ρ : H → G (as before, ρ is onto, and it is
clear that it has finite kernel because the g̃i have determinant 1), we have that H is
reductive and that Z0

H = ρ−1(Z0
G)0 is a torus of dimension d. We claim that there

exists an isogeny Ξ : Z0
H → Z0

G of the form

diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ Ξ (c1, . . . , cs) ,

an isogeny ψ : Z0
G → Z0

G and a positive integer N such that

ρN|Z0
H

= ψ ◦ Ξ.

Indeed, the image of Z0
H by

diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ diag (c1, . . . , cs)

is a torus of dimension d (this is because πA ◦ ρ : H → GA, which is given by

diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ diag(c1g̃1, . . . , csg̃s)
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is an isogeny and, hence, induces an isogeny ZH → ZG
A
, but ZG

A
is made of diagonal

matrices of the form
diag (∗In1 , . . . , ∗Ins) ,

and the g̃i have determinant 1, so (πA ◦ ρ|ZH )n1 ···ns can be described as follows:(
πA ◦ ρ|ZH

)n1···ns : diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ diag (c1In1 , . . . , csIns)
n1 ···ns

and hence the image of ZH by
diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ diag (c1In1 , . . . , csIns)

has the same dimension as the image of πA ◦ ρ|ZH , which is equal to the dimension
of ZG

A
), so there exists an isogeny Ξ : Z0

H → Z0
G of the form

diag (c1, . . . , cs, g̃1, . . . , g̃s, g) 7→ Ξ (c1, . . . , cs) .
But ρ|Z0

H
: Z0

H → Z0
G is also an isogeny, so Lemma 6.1 ensures that there exist a

positive integer N and an isogeny ψ : Z0
G → Z0

G such that
ψ ◦ Ξ = ρN|Z0

H
.

This proves our claim.
Consider the differential system

Y ′ = diag
(
tr (A1) / (Nn1) , . . . , tr (As) / (Nns) , Ã, B

)
Y.

Let HN be the differential Galois group over k of this system. In the tannakian
correspondence, the equation

Y ′ = diag(A,B)Y
corresponds to

% := ρ ◦ p : HN → G

where p : HN → H (which corresponds to

Y ′ = diag
(
tr(A1)/n1, . . . tr(As)/ns, Ã, B

)
Y

in the tannakian correspondence) is given by

p : diag (e1, . . . , es, g̃1, . . . , g̃s, g) 7→ diag
(
eN1 , . . . , e

N
s , g̃1, . . . , g̃s, g

)
.

Applying Lemma 5.1 to p : HN → H, we get that HN is reductive and that
Z0
HN

= p−1(Z0
H)0 is torus of dimension d.

If diag(e1, . . . , es, g̃1, . . . , g̃s, g) ∈ Z0
HN

, then

% (diag (e1, . . . , es, g̃1, . . . , g̃s, g))N = ρ|Z0
H

(
diag

(
eN1 , . . . , e

N
s , g̃1, . . . , g̃s, g

))N
= ψ ◦ Ξ

(
eN1 , . . . , e

N
s

)
= ψ ◦ Ξ (e1, . . . , es)N

so
%|Z0

HN
= ψ ◦ Ξ.

Moreover, the representation of HN corresponding to Y ′ = AY in the tannakian
correspondence is

$A = πA ◦ % : HN → GA.
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It is surjective (general fact) and has finite kernel (because % and πA have finite
kernels), so it is an isogeny. Therefore, it induces an isogeny

$A|H′N
= πA ◦ % : H ′N → G′

A
.

Since G′
A
is a connected and simply connected algebraic group,

$A|H′N
= πA ◦ % : H ′N → G′

A
.

is actually an isomorphism. Since G = im(πA ◦%⊕πB ◦%), it follows that there exists
an algebraic group morphism u : G′

A
→ G′B such that

πB ◦ % = u ◦ (πA ◦ %) .

So, the restriction of % to the derived subgroup H ′N of HN is given by

%|H′N : (1, g̃1, . . . , g̃s, g) 7→ diag
(
g̃1, . . . , g̃s, u (g̃1, . . . , g̃s)

)
.

Finally, we see that the representation $B = πB ◦ % of HN corresponding to
Y ′ = BY in the tannakian correspondence is given by

$B = πB ◦ % : diag (e1, . . . , es, g̃1, . . . , g̃s, g) 7→ ψ ◦ Ξ (e1, . . . , es)u (g̃1, . . . , g̃s) .

It follows that the differential system Y ′ = BY is equivalent over k to

Y ′ = diag (B1, . . . , B`)Y

where each Bi ∈Mmi(k) has the form

Constri
(
Ã
)

+
s∑
j=1

αi, j tr(Aj)/(njN)Imj

for some αi, j ∈ Z and some Constri(Ã) obtained from Ã by some construction of
linear algebra. It follows that the entries of the solutions of Y ′ = BY belong to
k[YA, q

√
y1
−1, . . . , q

√
ys
−1] for some positive integer q, where each yj satisfies y′j =

tr(Aj)yj. �

7. Applications

In this section we will apply the previous results to generalized hypergeometric
series and to iterated integrals.

7.1. Generalized hypergeometric series

The aim of this Section is to prove Theorem 1.6 stated in Section 1.
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7.1.1. The generalized hypergeometric series and equations

We recall that, for any p, q ∈ Z> 0, the generalized hypergeometric series with
parameters α = (α1, . . . , αp) ∈ Cp and β = (β1, . . . , βq) ∈ (C \ Z6 0)q is given by

pFq [α; β;x] =
+∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)k

xk

k! ∈ C((x))

where the Pochhammer symbols (t)k are defined by (t)0 = 1 and, for k ∈ Z> 1,
(t)k = t(t+ 1) · · · (t+ k − 1).
This series satisfies the generalized hypergeometric differential equation

pHq [α; β] (pFq [α; β;x]) = 0
where

pHq [α; β] = δ
q∏

k=1
(δ + βk − 1)− x

p∏
k=1

(δ + αk)

with δ = x d
dx
.

Note that :
• if q + 1 = p, then pHq [α; β] has order q + 1 = p and has at most three
singularities, namely 0, 1 and ∞, all regular;
• if q+ 1 > p, then pHq [α; β] has order q+ 1 and has at most two singularities,
namely 0 and ∞; 0 is regular whereas ∞ is irregular.
• if q + 1 < p, then pHq [α; β] has order p and has at most two singularities,
namely 0 and ∞; 0 is irregular whereas ∞ is regular.

7.1.2. Formal structure at ∞ of the generalized hypergeometric equations when
q + 1 > p

We shall now recall some basic facts concerning the formal structure at ∞ of
pHq [α; β] when q + 1 > p. Consider the uniformiser at ∞ given by t = x−1. We
have

pHq [α; β] = t−1
(

(−1)q+1tδt

q∏
k=1

(δt − βk + 1)− (−1)p
p∏

k=1
(δt − αk)

)

with δt = t d
dt
. By definition (see [S03, Definition 3.44]), the Newton polygon

N∞(pHq [α; β]) of pHq [α; β]
at ∞ is the convex hull of{

(x, y) ∈ R2
∣∣∣ there is a monomial tmδnt in pHq [α; β] with (x, y) > (n,m)

}
where (x1, y1) > (x2, y2) if and only if x1 6 x2 and y1 > y2. A straightforward
calculation shows that this polygon has three extremal points, namely (0, 0), (p, 0)
and (q + 1, 1). Thus, the slopes of pHq [α; β] at ∞ are

λ1 = 0 with multiplicity p and λ2 = 1/σ with multiplicity σ,
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where
σ = q − p+ 1.

It follows from [S03, Theorem 3.48] that the differential moduleM over C(x) asso-
ciated to pHq [α; β] satisfies
(7.1) C((t))⊗C(x)M = M̂λ1 ⊕ M̂λ2

where M̂λ1 is a regular singular differential module over C((t)) of rank p and M̂λ2

is an irregular differential module over C((t)) of rank σ, with only one slope, namely
λ2. According to [S03, Remark 3.34], we have

(7.2) C
((
t1/σ

))
⊗C((t)) M̂λ2 = ⊕σj=1R̂ ⊗C((t1/σ)) Ê

(
qj
(
t−1/σ

))
where:

• R̂ is a regular singular differential module over C((t1/σ)) of rank one,
• for all j ∈ {1, . . . , σ}, qj(t−1/σ) = q(ζjt−1/σ) with ζj = e

2πij
σ for some q(X) ∈

XC[X] of X-adic valuation 1,
• Ê(qj(t−1/σ)) is the rank one differential module over C((t1/σ)) defined by
Ê(qj(t−1/σ)) = C((t1/σ))ej with ∂(ej) = qj(t−1/σ)ej.

Recall from [S03, Remark 3.55] that the slopes of M̂λ2 can be computed using the
qj(t−1/σ): they are the negative of the t-adic valuations of the qj(t−1/σ), which are
all equal to degX q(X)

σ
. Since M̂λ2 has a unique slope λ2 = 1/σ, we get degX q(X) = 1

so q(X) = aX is a nonconstant monomial and

qj
(
t−1/σ

)
= aζjt

−1/σ.

We shall now determine a. Set w = t1/σ and δw = w d
dw

= σδt. We claim that
the equivalence class of the nonzero complex number a modulo µσ = {ζ1, . . . , ζσ} is
characterized by the fact that the Newton polygon (with respect to w and at w = 0)
of e−aw−1

pHq [α; β] eaw−1 has height(4) < q+ 1. Indeed, (7.1) and (7.2) above ensure
that the differential module over C((w)) associated to pHq [α; β] has a decomposition
of the form
(7.3) N̂ ⊕ ⊕σj=1Ŝ ⊗C((w)) Ê

(
aζjw

−1
)

where N̂ is a regular singular differential module over C((w)) of rank p and Ŝ is
a regular singular differential module over C((w)) of rank 1. Therefore, for any
b ∈ C×, the differential module over C((w)) associated to e−bw−1

pHq [α; β] ebw−1 has
a decomposition of the form

N̂ ⊗C((w)) Ê
(
−bw−1

)
⊕⊕σj=1Ŝ ⊗C((w)) Ê

(
(aζj − b)w−1

)
.

But, according to [S03, Remark 3.55], the slopes of (7.3) are the negative of the
w-adic valuations of the polynomials −bw−1 and (aζj − b)w−1 for j ∈ {1, . . . , σ},
so:
(4)The height of the Newton polygon of a differential operator L =

∑n
i=0 ai(w)δw of order n

with coefficients in C((w)) is equal to the sum of the slopes of L counted with multiplicities or,
equivalently, to maxi∈{0, ..., n} vw(an(w))−vw(ai(w)) where vw : C((w))→ Z∪{−∞} is the w-adic
valuation.
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• if b 6∈ aµσ, then 1 is the unique slope of (7.3) and, hence, the Newton polygon
of e−bw−1

pHq [α; β] ebw−1 (with respect to w and at w = 0) has height q + 1;
• if b ∈ aµσ, then (7.3) has two slopes, namely 0 and 1, and, hence, the Newton
polygon of e−bw−1

pHq [α; β] ebw−1 (with respect to w and at w = 0) has height
< q + 1.

Let us now determine the nonzero complex numbers b such that the Newton polygon
(with respect to w and at w = 0) of e−bw−1

pHq [α; β] ebw−1 has height < q + 1. We
have

pHq [α; β] = w−σ
(

(−1)q+1wσ
δw
σ

q∏
k=1

(
δw
σ
− βk + 1

)
− (−1)p

p∏
k=1

(
δw
σ
− αk

))
and

e−bw
−1
pHq [α; β] ebw−1 =

w−σ
(

(−1)q+1wσ
(
δw
σ
− b

σ
w−1

) q∏
k=1

(
δw
σ
− b

σ
w−1 − βk + 1

)

−(−1)p
p∏

k=1

(
δw
σ
− b

σ
w−1 − αk

))

The coefficient of δjw in e−bw
−1
pHq [α; β] ebw−1 has w-adic valuation > −q + j − 1

and the w-adic valuation of δq+1
w is equal to 0; therefore, we have to find the b such

that the coefficient of δ0
w in e−bw−1

pHq [α; β] ebw−1 has w-adic valuation > −(q + 1).
But the latter coefficient is of the form(

b

σ
w−1

)q+1

− w−σ
(
b

σ
w−1

)p
+ terms of higher degree in w;

it has w-adic valuation > −(q + 1) if and only if ( b
σ
)q+1 = ( b

σ
)p if and only if

b ∈ σµσ.
Therefore,

a ∈ σµσ.
In conclusion, the list of determining polynomials(5) at ∞ of pHq [α; β] is(

0 repeated p times, ζ1σt
−1/σ, . . . , ζσσt

−1/σ
)

with ζj = e
2πij
σ .

7.1.3. A preliminary remark concerning Proposition 4.2 in the SL2(C) case

The hypothesis of Proposition 4.2 is:
Let f ∈ K× satisfy a nonzero homogeneous linear differential equation
L(f) = 0 over k of order n > 1 and assume that the differential
Galois group GL over k of the latter equation is simply connected.
Let g ∈ K satisfy a nonzero homogeneous linear differential equation

(5)These “determining polynomials” are the “eigenvalues” of [S03, Definition 3.26].
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over k. Assume that f 6∈ k and that f and g are algebraically dependent
over k.

With the notations of the proof of Proposition 4.2, we have
πM = u ◦ πL.

We shall now focus on the case GL = SL2(C). Then, the classification of the repre-
sentations of SL2(C) shows that the representation u : GL → GM is conjugate to the
direct sum of symmetric power representations

Symmi : GL = SL2(C)→ SLmi+1(C).
LettingM and L denote the differential modules associated with Y ′ = AMY and
Y ′ = ALY , the tannakian correspondence implies thatM is isomorphic to the direct
sum of the Symmi(L). We will now use this to study the algebraic relations between
generalized hypergeometric series.

7.1.4. Proof of Theorem 1.6

The differential Galois group over C(x) of L = 0H1 [−; β] is SL2(C); see [Kat90,
Theorem 3.6]. As explained in Section 7.1.3, the differential moduleM associated to
the minimal nonzero differential equation M with coefficients in C(x) annihilating
pFq [γ; δ;x] is isomorphic to a direct sum of symmetric powers of L, say

M∼= ⊕ri=1 Symmi(L).
Let us first assume that q + 1 > p. We have seen in Section 7.1.2 that L is

irregular at∞: it has exactly one slope at∞, namely 1/2, and its list of determining
polynomials at ∞ is ±2x1/2. Therefore, the list of the determining polynomials of
Symmi(L) at ∞ is

(7.4) − 2mix
1/2, 2 (−mi + 2)x1/2, 2 (−mi + 4)x1/2, . . . , 2 (mi − 2)x1/2, 2mix

1/2.

So, the list of determining polynomials ofM is the concatenation of the lists (7.4)
for i varying in {1, . . . , r}.
On the other hand, M is a factor of pHq [γ; δ] so (see Section 7.1.3) the list of

determining polynomials ofM is a sublist of
0 with multiplicity p, ζ1σx

1/σ, . . . , ζσσx
1/σ

with σ = q − p+ 1 and ζj = e
2πij
σ .

Comparing the two preceding descriptions of the determining factors of M, we
find that σ = 2 and that we have

• either all the mi are equal to 0;
• or one of the mi, say mr, is equal to 1 and the other mi are equal to 0.

We claim that the first case cannot happen. Indeed, otherwise the entire function
pFq [γ; δ;x] would be algebraic and, hence, polynomial, which is false.
Therefore, we have

M∼= Sym0(L)⊕ · · · ⊕ Sym0(L)⊕ Sym1(L).
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It follows that pFq [γ; δ;x] is of the form a + bg + cg′ for some a, b, c ∈ C(x), b or
c 6= 0, and some nonzero solution g of L. Since the differential Galois group of L
over C(x) is SL2(C), the only possibility for a+ bg + cg′ to be algebraically depend
with 0F1 [α; β;x] is that g = d · 0F1 [−; β;x] for some d ∈ C and c = 0. Therefore,

pFq [γ; δ;x] ∈ C(x)0F1 [−; β;x] + C(x).
The fact that we can descend this linear relation to C(x) follows from the fact that
pFq [γ; δ;x] and 0F1 [−; β;x] are entire functions and that 0F1 [−; β;x] and 1 are
linearly independent over C(x).
Let us now consider the case q + 1 6 p. In that case, we have seen that pHq [γ; δ]

is regular at ∞. Since M is a factor of pHq [γ; δ], M and henceM are regular at
∞ as well. Since Symmi(L) is irregular at ∞ if mi is nonzero, we infer that all the
mi are equal to 0. Therefore, pFq [γ; δ;x] belongs to C(x). This excludes the case
q + 1 < p, because the radius of convergence of pFq [γ; δ;x] is 0 in that case.

7.2. Iterated integrals

From [Hoc81, Chapter XVIII, Theorem 3.3] we know that a unipotent group is
simply connected. This allows us to make an application of Proposition 4.3 when
the Galois group is unipotent.

Definition 7.1 (Cf. [Sri10]). — We say that f ∈ K is an iterated integral over
k if, for some n ∈ N, f (n) ∈ k.

Theorem 7.2. — Let f ∈ K× be an iterated integral over k and let g ∈ K
satisfy a nonzero homogeneous linear differential equation over k. Assume that k
contains an element x with x′ = 1, f is transcendental over k and that f and g are
algebraically dependent over k. Then g ∈ k[f ].

Remark 7.3. — The condition that k contains an element x such that x′ = 1 is
needed. For example, let k = C and K = C(x), x′ = 1. The element x2 is an iterated
integral over k, x satisfies a linear differential equation over k and these elements
are algebraically dependent over k. Nonetheless, x /∈ C[x2].

We will use, again and again, the fact that if E ⊂ F are differential fields with
the same algebraically closed field of constants and y ∈ F with y′ ∈ E, then either
y ∈ E or y is transcendental over E. This follows easily from the Galois theory and
the fact that the only algebraic subgroups of Ga(C) are {0} and C.

Lemma 7.4. — Let E ⊂ F be differential fields with the same algebraically closed
subfield C of constants. If x ∈ E such that x′ = 1 and y, z ∈ F such that

(1) y′ ∈ E and y transcendental over E and
(2) z ∈ E(y) and z′ = y,

then z = Ay +B for some A,B ∈ E.

Proof. — Let z = p(y)/q(y) where p and q are relatively prime polynomials. As
in the proof of Corollary 3.4, [HS85] implies that q(y)′/q(y) is algebraic over E and
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therefore in E (since E is algebraically closed in E(y)). We then have that E(q(y))
is a Picard–Vessiot extension of E whose differential Galois group G is a subgroup of
GL1(C) and is a quotient of Ga(C). This implies that G must be trivial so q(y) ∈ E.
Therefore we may write z = amy

m + . . .+ a0 with the ai ∈ E. Differentiating, we
have

y = z′ = a′my
m +

(
mamy

′ + a′m−1

)
ym−1 + . . . .

If a′m 6= 0 we have m = 1 and our conclusion follows. If a′m = 0 we must have m > 2
and we will derive a contradiction. We have that

mamy
′ + a′m−1 = c ∈ E

where c = 0 if m > 2 or c = 1 if m = 2. In either case, y = 1
mam

(cx− am−1 + d) ∈ E
for some constant d, contradicting the fact that y is transcendental over E. �

Lemma 7.5. — Let k ⊂ K be differential fields with the same algebraically closed
subfield of constants C. Assume that there exists x ∈ k such that x′ = 1.

(1) If f is an iterated integral over k, then k〈f〉 is a Picard–Vessiot extension of
k with unipotent Galois group.

(2) If f /∈ k, then there exist algebraically independent y1, . . . yr−1, yr = f such
that k〈f〉 = k(y1, . . . , yr). In particular, k(f) is algebraically closed in k〈f〉.

Proof. — If f (n) = h ∈ k then f satisfies

(7.5) y(n+1) − h′

h
y(n) = 0.

(1) If f ∈ k, then clearly k〈f〉 is a Picard–Vessiot extension of k. If f /∈ k then
f, 1, x, . . . xn−1 are linearly independent over C and so form a basis of the solution
space of (7.5) and k〈f〉 is a Picard–Vessiot extension of k. In addition, if we define
ki = ki−1(f (n−i)), we have a tower of differential fields k = k0 ⊂ k1 ⊂ . . . ⊂ kn =
k〈f〉 where each ki is a Picard–Vessiot extension whose differential Galois group is
either {0} or Ga. Therefore the differential Galois group of k〈f〉 over k is unipotent.
(2) Assume that the transcendence degree of k〈f〉 over k is r. By assumption r > 1.

Using the construction of the ki we see that from the set {f (n−1), f (n−2), . . . , f ′, f}
we may select a subset of elements

T =
{
yi = f (n−ni)

∣∣∣n1 < n2 < . . . < nr
}

that forms a transcendence basis. We wish to show that we can select these so
that nr = n. Suppose among all choices of the set T we have selected one with
nr maximal. If nr < n, let E = k(y1, . . . , yr−1), y = yr = f (n−nr), z = f (n−(nr+1)).
Applying Lemma 7.4, we have that yr = az + b for some a, b ∈ E. Therefore

k〈f〉 = k(f (n−n1), . . . , f (n−nr−1), f (n−nr))
= E(yr)
= E(z)
= k(f (n−n1), . . . , f (n−nr−1), f (n−(nr+1))),

contradicting the maximality of nr. �

Proof of Theorem 7.2. — This now follows from Proposition 4.2. �
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For the rest of Section 7.2 we remove the assumption that k is algebraically closed
and only assume it is a differential field of characteristic zero with an algebraically
closed subfield of constants.
A consequence of the Kolchin–Ostrowski Theorem ([Kol68, Section 2]) is that if

k ⊂ K are differential fields with the same constants and f1, . . . , fn ∈ K with f ′i ∈ k
for i = 1, . . . n then the fi are algebraically dependent over k if and only if there
exist constants ci, not all zero, such that c1f1 + . . .+ cnfn ∈ k. Proposition 7.8 below
gives a related result for iterated integrals.

Corollary 7.6. — Let k ⊂ K have the same field of constants and assume that
there is an element x ∈ k such that x′ = 1. Let f, g ∈ K be iterated integrals over
k. If f and g are algebraically dependent over k then there exist u, v ∈ k, not both
zero, such that uf + vg ∈ k.

Proof. — Let E = k(f, f ′, . . . , f (n−1), g, g′, . . . , g(m−1)). Proceeding in a man-
ner similar to the proof of Lemma 7.5(2), there is an algebraically independent
set of elements {z1, . . . , zt} ⊂ {f, f ′, . . . , f (n−1), g, g′, . . . , g(m−1)} such that E =
k(z1, . . . , zt), that is, E is a purely transcendental extension of k. Therefore if either
f or g are algebraic, then both of them will lie in k and the conclusion follows.
Therefore we may assume neither f nor g are algebraic over k.
Theorem 7.2 implies that f = P (g) and g = Q(f) for some polynomials P,Q ∈ k̄[Y ]

where k̄ is the algebraic closure of k. This implies that P and Q are linear polynomials
so f , g and 1 are linearly dependent over k̄. Since E is a purely transcendental
extension of k, it is linearly disjoint from k̄ over k. Therefore f , g and 1 are linearly
dependent over k. �

Example 7.7. — Let k = C(x), K = C(x, log x) and let f = log x+ x, g = x log x.
We have f ′, g′′ ∈ k and xf − g = x2 ∈ k.

Proposition 7.8. — Let k ⊂ K have the same field of constants and assume
that there is an element x ∈ k such that x′ = 1. Let f1, . . . , fn ∈ K be iterated
integrals over k. If f1, . . . , fn are algebraically dependent over k then there exist
u1, . . . , un ∈ k, not all zero, such that u1f1 + . . .+ unfn ∈ k.

Proof. — We can assume that for each pair i, j, i 6= j

• the set {f1, . . . , f̂i, . . . , f̂j, . . . , fn} is algebraically independent over k,
• fi, fj are transcendental over Fi, j = k(f1, . . . , f̂i, . . . , f̂j, . . . , fn), and
• fi and fj are algebraically dependent over Fi, j.

Corollary 7.6 implies that

fi =Ai, jfj +Bi, j for some Ai, j, Bi, j ∈ Fi, j.

In particular, f1 = A1, 2f2 + B1, 2 for some A1, 2, B1, 2 ∈ F1, 2. We shall show that
A1, 2 ∈ k and that B1, 2 is a k linear combination of f3, . . . , fn, 1. Note that k(f2, . . . ,
fn) is a purely transcendental extension of k. We will let ∂i denote the derivation
∂
∂fi

on this field.
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A1, 2 ∈ k. Since we also have f1 = A1, 3f3+B1, 3 for some A1, 2, B1, 2 ∈ F1, 3, A1, 3f3+
B1, 3 = A1, 2f2 +B1, 2. Applying ∂3, we have A1, 3 = ∂3(A1, 2)f2 + ∂3(B1, 2). Since A1, 3
is independent of f3 and A1, 2 is independent of f1, f2 we have A1, 2 ∈ k(y4, . . . , yn)
so A1, 2 = αf3 + β, where α, β ∈ k(f4, . . . , fn).
We also have f2 = A2, 1f1 + B2, 1 for some A2, 1, B2, 1 ∈ F1, 2 = F2, 1 and f2 =

A2, 3f3 + B2, 3 for some A2, 3, B2, 3 ∈ F2, 3. Comparing these two expressions in a
manner similar to the above we have that A2, 1 = ᾱf3 + β̄, α, β ∈ k(f4, . . . , fn).
Since A2, 1 = A−1

1, 2, we must have α = ᾱ = 0, that is, A1, 2 is independent of f3.
Replacing f3 with each fi, i = 4, . . . , n in the above argument yields that A1, 2 ∈ k.

B1, 2 is a k-linear combination of f3, . . . , fn, 1. Note that the above argument
can be modified to work equally well for f1, fj, j > 1 to conclude that f1 = A1, jfj +
B1, j where A1, j ∈ k and B1, j ∈ F1, j. Therefore ∂j(f1) = A1, j ∈ k, that is, f1 ∈
k(f2, . . . , fn) is linear in each of the fi, 2 6 i 6 n and so the conclusion is obtained.

�

Appendix A. The tannakian correspondence

We give an informal description of this correspondence, enough to understand its
use in our proofs. For a formal description see [DM81, Kat72, Kat87], [S03, Chapter 2
and Appendix B].
Let k be a differential field of characteristic zero (not assumed to be algebraically

closed) with algebraically closed field of constants C. Let

Y ′ =AY(A.1)

with A ∈ gln(k) and let K be its Picard–Vessiot extension. If Y ∈ GLn(K) is a
fundamental solution matrix of (A.1), we refer to the ring k[Y, det(Y)−1] generated
by the entries of Y and the inverse of its determinant as the Picard–Vessiot ring
associated with (A.1). It is independent of our choice of fundamental solution matrix.
One can associate to (A.1) a differential module M , that is, a finite dimensional

k-vector space M endowed with a map ∂ : M → M such that for all f ∈ k and
m,n ∈ M , ∂(m + n) = ∂m + ∂n and ∂(fm) = f ′m + f∂m. This is done in the
following way. Let M = kn and denote the standard basis by {ei}. We define ∂ by
setting ∂(ei) := −∑j aj, iej where A = (ai, j). Given any differential module together
with a basis e = {ei}, one can reverse this process and produce a differential equation
Y ′ = AeY . If f = Be is another basis of M with B ∈ GLn(k) then Ae and Af are
related by Ae = B−1AfB −B−1B′. In this case we say that the equations are gauge
equivalent or just equivalent.
Given differential modules M1,M2 one can define a differential module homomor-

phism as well as sub and quotient differential modules in the obvious way. One can
also form direct sums, tensor products, and duals as in the following table:
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Construction ∂ Equation

M1 ⊕M2 ∂(m1 ⊕m2) = ∂1m1 ⊕ ∂2m2 Y ′ =
(
A1 0
0 A2

)
Y

M1 ⊗M2 ∂(m1 ⊗m2) = Y ′ =
∂1m1 ⊗m2 +m1 ⊗ ∂2m2 (A1 ⊗ Im2 + Im1 ⊗ A2)Y

M∗
1 ∂(f)(m) = f(∂1(m)) Y ′ = −ATY

The collection of all differential modules forms a category closed under differential
module homomorphism and the constructions of submodules, quotients, direct sums,
tensor products, and duals, which we refer to as the constructions of linear algebra.
We denote by {{M}} the smallest subcategory containing M and closed under these
five constructions. Given any N ∈ {{M}} and any basis e of N , we can form the
associated differential equation Y ′ = AN, eY , AN, e ∈ glm(k). It is known ([S03,
Chapter 2.4]) that this equation has a fundamental matrix YN, e ∈ GLm(K) and,
a fortiori, in the Picard–Vessiot ring k[Y, det(Y)−1] ([S03, Corollary 1.38]). The
differential Galois group G ofK over k acts on the C-space V spanned by the columns
of Y and so induces a representation of G. The space V depends on our selection of
bases of N but it can be shown that the representation of G is independent, up to
G-isomorphism, of this choice of bases (see [S03, Chapter 2.4] for a basis free way of
defining this representation). We will denote this representation of G by S(N).
We denote by ReprG the category of representations of G, that is the category

of finite dimensional C-vector spaces on which G acts. In this category one also
has a notion of the five constructions above. The tannakian correspondence [S03,
Theorem 2.22] says that

The map N 7→ S(N) is a bijective map between elements of {{M}}
(modulo isomorphism of differential modules) and representations of G
(modulo conjugacy of representations). This map is compatible with
homomorphisms and the five constructions above.

One consequence of this is: if k is algebraically closed, then there is an isomorphism
ϕ of the Picard–Vessiot ring R = k[Y, det(Y)−1] and the coordinate ring k[G ⊗ k]
such that for σ ∈ G and z ∈ R we have

ϕ(σ(z)) = ρ∗σ(ϕ(z))

where ρ∗σ : k[G⊗ k]→ k[G⊗ k] is the isomorphism which, when applied to a regular
function F ∈ k[G⊗ k], yields the regular function ρ∗σ(F ) : G⊗ k → G⊗ k given by
ρ∗σ(F )(g) = F (g · σ).

Example A.1. — Consider Y ′ = AY with A ∈ gln(k) and let Ã = A−(tr(A)/n)In.
Since tr(Ã) = 0, the differential Galois group of the equation Y ′ = ÃY is unimodular
([S03, Exercise 1.35.5]) and this construction is often used to reduce questions about
general linear differential equations to ones that have unimodular Galois groups. We
now form the 2n× 2n differential system

Y ′ = diag
(
(tr(A)/n)In, Ã

)
Y(A.2)
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and let K̃ be its Picard-Vessiot extension with differential Galois group H. Let K be
the Picard–Vessiot extension for Y ′ = AY and let G be its differential Galois group.
IfY is the fundamental solution matrix of Y ′ = AY , thenY = n

√
detY is a solution

of y′ = (trA/n)y. Note that Y need not lie in K but Yn ∈ K. A computation shows
that if Ỹ is a fundamental solution matrix of y′ = Ãy, then YIn · Ỹ is a fundamental
solution matrix of Y ′ = AY . ThereforeK ⊂ K̃. The differential Galois theory implies
that restricting H to K gives a short exact sequence

0→ H0 → H
ρ−→ G→ 0

where H0 is a finite subgroup of GLn(C) (since K̃ is a simple radical extension of
K) and the map ρ is given by

ρ : diag(t, h)→ th.

This defines a homomorphism of H ⊂ GL2n(C) to GLn(C) and so defines a repre-
sentation of H.
This example appears in the proof of Proposition 5.2.
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