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Remarks on the Gibbs measures for nonlinear
dispersive equations (∗)

Nicolas Burq (1), Laurent Thomann (2) and Nikolay Tzvetkov (3)

ABSTRACT. — We show, by the means of several examples, how we can use
Gibbs measures to construct global solutions to dispersive equations at low reg-
ularity. The construction relies on the Prokhorov compactness theorem combined
with the Skorokhod convergence theorem. To begin with, we consider the nonlinear
Schrödinger equation (NLS) on the tri-dimensional sphere. Then we focus on the
Benjamin–Ono equation and on the derivative nonlinear Schrödinger equation on
the circle. Next, we construct a Gibbs measure and global solutions to the so-called
periodic half-wave equation and of the Szegő equation. Finally, we consider the cubic
2d defocusing NLS on an arbitrary spatial domain and we construct global solutions
on the support of the associated Gibbs measure.

RÉSUMÉ. — On montre, grâce à différents exemples, comment on peut utiliser
des mesures de Gibbs pour construire des solutions globales, à basse régularité, pour
des équations dispersives. La construction repose sur le théorème de compacité de
Prokhorov, combiné avec le théorème de convergence de Skorokhod. D’abord, on
considère l’équation de Schrödinger non-linéaire (NLS) sur la sphère de dimension 3.
Ensuite, on étudie l’équation de Benjamin–Ono et l’équation de Schrödinger avec
dérivée sur le cercle. Puis, on construit une mesure de Gibbs et une solution glo-
bales aux équations des demi-ondes et de Szegő avec conditions périodiques. Enfin,
on considère NLS cubique défocalisante, en dimension deux, sur un domaine quel-
conque et on construit des solutions globales sur le support de la mesure de Gibbs
correspondante.
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1. Introduction and main results

1.1. General introduction

A Gibbs measure can be an interesting tool to show that local solutions
to some dispersive PDEs are indeed global. Once we have a suitable local
existence and uniqueness theory on the support of such a measure, we can
expect to globalise these solutions; this measure in some sense compensates
the lack of conservation law at some level of Sobolev regularity. See [5, 6, 13,
16, 37, 38, 47, 48, 53] where this approach has been fruitful.

Assume now that we have a Gibbs measure, but that we are not able to
show that the equation is locally well-posed on its support. The aim of this
paper is to show (through several examples) that in this case we can use
some compactness methods to construct global (but non unique) solutions
on the support of the measure. Although this method of construction of
solutions is well-known in other contexts, like for the Euler equation (see
Albeverio–Cruzeiro [1]) or for the Navier–Stokes equation (see Da Prato–
Debussche [20]), it seems to be not exploited in the context of dispersive
equations.

In [14] we have constructed global rough solutions to the periodic wave
equation in any dimension with stochastic tools. While in [14] we used the
energy conservation and a regularisation property of the wave equation in
the argument, here we use instead the invariance of the measure by the
nonlinear flow. As a consequence we also obtain that the distribution of the
solutions we construct is independent of time.

Our first example concerns the nonlinear Schrödinger equation on the
sphere S3 restricted to zonal functions (the functions which only depend on
the geodesic distance to the north pole). For sub-quintic nonlinearities, we
are able to define a Gibbs measure with support inHσ(S3) for any σ < 1

2 , and
to construct global solutions in this space. This is the result of Theorem 1.1.
In [7], Bourgain–Bulut have considered a similar equation (the radial NLS
on R3) in the case of the cubic nonlinearity. The solutions obtained in [7]
are certainly “stronger” compared to the ones obtained in the present paper,
the uniqueness statement being however not explicited in [7].

In a second time we deal with the Benjamin–Ono equation on the circle
S1 = R/(2πZ). This model arises in the study of one-dimensional internal
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long waves. In [33, 34] L. Molinet has shown that the equation is glob-
ally well-posed in L2(S1) and that this result is sharp. For this problem, a
Gibbs measure with support in H−σ(S1), for any σ > 0 has already been
constructed by N. Tzvetkov in [49]. In this case, we also construct global
solutions on the support of the measure and prove its invariance (Theo-
rem 1.2). A uniqueness result of the dynamics on the support of the measure
was recently proven in a remarkable paper by Y. Deng [21].

Our third example concerns the periodic derivative Schrödinger equa-
tion. Here we use the measure constructed by Thomann–Tzvetkov [46]. We
construct a dynamics for which the measure is invariant (Theorem 1.3).
This result may be seen as a consequence of a recent work by Nahmod,
Oh, Rey-Bellet and Staffilani [35] and Nahmod, Rey-Bellet, Sheffield and
Staffilani [36]. Their approach is based on the local deterministic theory of
Grünrock–Herr [27] which gauges out (the worst part of) the nonlinearity,
and the uniqueness is only proved in this gauged-out context.

Next, we consider the so-called half-wave equation on the circle, which
can be seen as a limit model of Schrödinger-like equations for which one has
very few dispersion. This model has been studied by Gérard–Grellier [25] who
showed that it is well-posed in H 1

2 (S1) (see also O. Pocovnicu [41] and more
recently Krieger–Lenzmann–Raphaël [32] for a study of the equation on the
real line). Here a Gibbs measure with support in H−σ(S1), for any σ > 0 can
be defined, and global solutions (see Theorem 1.7) can be constructed. This
approach directly applies to the cubic Szegő equation which was introduced
and studied by Gérard–Grellier [23, 24, 26]. This equation has no linear part,
but using the particular structure of the (resonant) nonlinearity, we are able
to show the invariance of a Gaussian measure (at negative regularity).

Finally, we consider the NLS on an arbitrary 2d spatial domain. Here the
construction of the Gibbs measure goes back to the works in QFT (see [43]
and the references therein). For the sake of completeness, we shall present
a proof below based on (precise versions of) the Weyl formula. However we
want to stress that the ideas used in the construction of the Gibbs measure
are in the spirit of [43]. The support of the measure is again H−s for any
s > 0. In the case of the torus as spatial domain, J. Bourgain [6] constructs
strong global solutions on the support of the measure. This remarkable result
relies on the local theory in Hσ, σ > 0 and on a probabilistic regularization
property. In the case of an arbitrary spatial domain the local theory is much
more involved (and presently restricted to much higher regularity) compared
to the case of the torus. Consequently, it seems natural to turn to weak
solution techniques.
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Therefore our results on the half-wave equation and the 2d NLS are out
of reach of the present “strong solutions” methods and as such they should
be seen as the main result of this article.

Summarizing the previous discussion, one may also conclude that the
main point to be discussed when applying strong solutions techniques in all
considered examples is the uniqueness.

1.2. The Schrödinger equation on S3

Let S3 be the unit sphere in R4. We then consider the nonlinear Schröd-
inger equation {

i∂tu+ ∆S3u = |u|r−1u, (t, x) ∈ R× S3,

u(0, x) = f(x) ∈ Hσ(S3),
(1.1)

for 1 6 r < 5. In [11] N. Burq, P. Gérard and N. Tzvetkov have shown
that (1.1) is globally well-posed in the energy space H1(S3). In this paper
we address the question of the existence of global solutions at regularity
below the energy space. Denote by Z(S3) the space of the zonal functions,
i.e. the space of the functions which only depend on the geodesic distance to
the north pole of S3. Set Hσ

rad(S3) := Hσ(S3) ∩ Z(S3), L2
rad(S3) = H0

rad(S3)
and

X
1
2
rad = X

1
2
rad(S

3) =
⋂
σ< 1

2

Hσ
rad(S3).

In the sequel we say that uN converges to u in X
1
2
rad if uN converges to u in

Hs
rad for any s < 1

2 .

For x ∈ S3, denote by θ = dist(x,N) ∈ [0, π] the geodesic distance of x
to the north pole and define

Pn(x) =
√

2
π

sinnθ
sin θ , n > 1. (1.2)

Then, (Pn)n>1 is a Hilbertian basis of L2
rad(S3), which will be used in the

sequel. Next, in order to avoid the issue with the 0-frequency, we make the
change of unknown u 7−→ e−it u, so that we are reduced to consider the
equation {

i∂tu+ (∆S3 − 1)u = |u|r−1u, (t, x) ∈ R× S3,

u(0, x) = f(x) ∈ Hσ(S3).
(1.3)

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n>1 a sequence of inde-

pendent complex normalised Gaussians, gn ∈ NC(0, 1), which means that gn
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can be written
gn(ω) = 1√

2
(
hn(ω) + i`n(ω)

)
,

where
(
hn(ω), `n(ω)

)
n>1 are independent standard real Gaussians (NR(0, 1)).

For N > 1 we define the random variable

ω 7→ ϕN (ω, x) =
N∑
n=1

gn(ω)
n

Pn(x),

and we can show that if σ < 1
2 , then (ϕN )N>1 is a Cauchy sequence in

L2(Ω; Hσ(S3)
)
: this enables us to define its limit

ω 7→ ϕ(ω, x) =
∑
n>1

gn(ω)
n

Pn(x) ∈ L2(Ω; Hσ(S3)
)
. (1.4)

We then define the Gaussian probability measure µ on X
1
2
rad(S3) by µ =

p ◦ ϕ−1. In other words, µ is the image of the measure p under the map

Ω −→ X
1
2
rad(S

3)

ω 7−→ ϕ(ω, · ) =
∑
n>1

gn(ω)
n

Pn.

We now construct a Gibbs measure for the Equation (1.3). For u ∈ Lr+1(S3)
and β > 0, define the density

G(u) = β e−
1
r+1

∫
S3 |u|

r+1
, (1.5)

and with a suitable choice of β > 0, this enables to construct a probability
measure ρ on X

1
2
rad(S3) by

dρ(u) = G(u)dµ(u).

Then we can prove

Theorem 1.1. — Let 1 6 r < 5. The measure ρ is invariant under a
dynamics of (1.1). More precisely, there exists a set Σ of full ρ measure so
that for every f ∈ Σ the Equation (1.1) with initial condition u(0) = f has
a solution

u ∈ C
(
R ;X

1
2
rad(S

3)
)
.

The distribution of the random variable u(t) is equal to ρ (and thus indepen-
dent of t ∈ R):

L
X

1
2
rad

(
u(t)

)
= L

X
1
2
rad

(
u(0)

)
= ρ, ∀ t ∈ R.

– 531 –



Nicolas Burq, Laurent Thomann and Nikolay Tzvetkov

Here and after, we abuse notation and write

C
(
R ;X

1
2
rad(S

3)
)

=
⋂
σ< 1

2

C
(
R ;Hσ

rad(S3)
)
.

In our work, the only point where we need to restrict to zonal functions is
for the construction of the Gibbs measure. The other arguments do not need
any radial assumption. The result of Theorem 1.1 can not be extended to
the case r = 5. Indeed, it is shown in [2, Theorem 4] that ‖u‖L6(S3) = +∞,
µ−a.s.

Since G(u) > 0, µ−a.s., both measures µ and ρ have same support. In-
deed, µ(X

1
2
rad(S3)) = ρ(X

1
2
rad(S3)) = 1, but we can check that µ(H

1
2
rad(S3)) =

ρ(H
1
2
rad(S3)) = 0 (see [12, Proposition C.1]).

Let us compare our result to the result given by the usual deterministic
compactness methods. The energy of the Equation (1.1) reads

H(u) = 1
2

∫
S3
|∇u|2 + 1

r + 1

∫
S3
|u|r+1.

Then, one can prove (see e.g. [17]) that for all f ∈ H1(S3) ∩ Lr+1(S3) there
exists a solution to (1.1) so that

u ∈ Cw
(
R;H1(S3)

)
∩ Cw

(
R;Lr+1(S3)

)
, (1.6)

(here Cw stands for weak continuity in time) and so that for all t ∈ R,
H(u)(t) 6 H(f). Notice that in (1.6) we can replace the space H1 with
H1
rad if f ∈ H1

rad.

The advantage of this method is that there is no restriction on r > 1 and
no radial assumption on the initial condition. However this strategy asks
more regularity on f . We also point out that with the deterministic method
one loses the conservation of the energy, while in Theorem 1.1 we obtain an
invariant probability measure (see also Remark 2.3).

1.3. The Benjamin–Ono equation

Recall that S1 := R/(2πZ) and let us define

‖f‖2L2(S1) = (2π)−1
∫ 2π

0
|f(x)|2dx.

For f(x) =
∑
k∈Z αk eikx and N > 1 we define the spectral projector ΠN by

ΠNf(x) =
∑
|k|6N αk eikx. We also define the spaceX0(S1) =

⋂
σ>0H

−σ(S1).
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Denote by H the Hilbert transform, which is defined by

Hu(x) = −i
∑
n∈Z?

sign(n)cn einx, for u(x) =
∑
n∈Z?

cn einx .

In this section, we are interested in the periodic Benjamin–Ono equation{
∂tu+H∂2

xu+ ∂x
(
u2) = 0, (t, x) ∈ R× S1,

u(0, x) = f(x).
(1.7)

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n>1 a sequence of indepen-

dent complex normalised Gaussians, gn ∈ NC(0, 1). Set g−n(ω) = gn(ω). For
any σ > 0, we can define the random variable

ω 7→ ϕ(ω, x) =
∑
n∈Z∗

gn(ω)
2|n| 12

einx ∈ L2(Ω; H−σ(S1)
)
, (1.8)

and the measure µ on X0(S1) by µ = p ◦ ϕ−1. Next, as in [49] define the
measure ρN on X0(S1) by

dρN (u) = ΨN (u)dµ(u), (1.9)

where the weight Ψ is given by

ΨN (u) = βNχ
(
‖uN‖2L2 − αN

)
e−

2
3

∫
S1 u

3
N (x)dx

, uN = ΠNu,

with χ ∈ C∞0 (R),

αN =
∫
X0(S1)

‖uN‖2L2(S1)dµ(u) =
∫

Ω
‖ϕN (ω, · )‖2L2(S1)dp(ω) =

∑
16n6N

1
n
,

and where the constant βN > 0 is chosen so that ρN is a probability measure
onX0(S1). Then the result of N. Tzvetkov [49] reads: There exists Ψ(u) which
satisfies for all p ∈ [1,+∞[, Ψ(u) ∈ Lp(dµ) and

ΨN (u) −→ Ψ(u) in Lp(dµ(u)). (1.10)

As a consequence, we can define a probability measure ρ on X0(S1) by
dρ(u) = Ψ(u)dµ(u). Then our result is the following

Theorem 1.2. — There exists a set Σ of full ρ measure so that for every
f ∈ Σ the Equation (1.7) with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Some care has to be given for the definition of the nonlinear term in (1.7),
since u has a negative Sobolev regularity. Here we can define ∂x(u2) on the
support of µ as a limit of a Cauchy sequence (see Lemma 5.3).
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As in [13, Proposition 3.10] we can prove that⋃
χ∈C∞0 (R)

supp ρ = suppµ.

The cut-off χ
(
‖uN‖2L2 − αN

)
can not be avoided here because the term∫

S1 u
3
N (x)dx does not have a sign (compare with the analysis of the half-

wave equation and the defocusing NLS below where it can be avoided, after
a suitable renormalization of the potential energy).

Observe that ϕ in (1.8) has mean 0, thus µ and ρ are supported on 0-
mean functions. This is not a restriction since the mean

∫
S1 u is an invariant

of (1.7).

We complete this section by mentioning [22, 50, 51, 52] where the authors
construct Gibbs type measures associated with each conservation law of the
Benjamin–Ono equation.

1.4. The derivative nonlinear Schrödinger equation

We consider the periodic DNLS equation.{
i∂tu+ ∂2

xu = i∂x
(
|u|2u

)
, (t, x) ∈ R× S1,

u(0, x) = u0(x).
(1.11)

Here, for σ < 1
2 we define the random variable (〈n〉 = (1 + n2) 1

2 )

ω 7→ ϕ(ω, x) =
∑
n∈Z

gn(ω)
〈n〉

einx ∈ L2(Ω; Hσ(S1)
)
, (1.12)

and the measure µ on X 1
2 (S1) =

⋂
σ< 1

2
Hσ(S1) by µ = p◦ϕ−1. Next, denote

by
fN (u) = Im

∫
S1
u2
N (x) ∂x(u2

N (x))dx.

Let κ > 0, and let χ : R −→ R, 0 6 χ 6 1 be a continuous function
with support supp χ ⊂ [−κ, κ] and so that χ = 1 on [−κ2 ,

κ
2 ]. We define the

density
ΨN (u) = βNχ

(
‖uN‖L2(S1)

)
e

3
4 fN (u)− 1

2

∫
S1 |uN (x)|6dx

,

and the measure ρN on X 1
2 (S1) by
dρN (u) = ΨN (u)dµ(u), (1.13)

and where βN > 0 is chosen so that ρN is a probability measure on X 1
2 (S1).

By Thomann–Tzvetkov [46, Theorem 1.1], ρN converges to a probability
measure ρ so that dρ(u) = Ψ(u)dµ(u). Moreover, for all p > 2, if κ 6 κp,
then Ψ(u) ∈ Lp(dµ). Then our result reads
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Theorem 1.3. — Assume that κ 6 κ2. Then there exists a set Σ of full
ρ measure so that for every f ∈ Σ the Equation (1.11) with initial condition
u(0) = f has a solution

u ∈ C
(
R ;X 1

2 (S1)
)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Here, for κ 6 κ2, we have⋃
χ∈C∞0 ([−κ,κ])

supp ρ =
{
‖u‖L2 6 κ

}⋂
suppµ.

1.5. The half-wave equation

The periodic cubic Schrödinger on the circle has been much studied and in
particular rough solutions have been constructed. See Christ [18], Colliander–
Oh [19], Guo–Kwon–Oh [28], and Bourgain [6] in the 2-dimensional case.

Here we investigate a related equation where one has no more dispersion:
We replace the Laplacian with the operator |D|, i.e. the operator defined by
|D| einx = |n| einx, and we consider the following half-wave Cauchy problem{

i∂tu− |D|u = |u|2u, (t, x) ∈ R× S1,

u(0, x) = f(x).

This model has been studied by P. Gérard and S. Grellier [25] who showed
that it is well-posed inH 1

2 (S1). However, the Sobolev space which is invariant
by scaling is L2(S1), hence it is natural to try to construct solutions which
have low regularity. In the sequel, in order to avoid trouble with the 0-
frequency, we make the change of unknown u 7−→ e−it u, so that we are
reduced to consider the equation

i∂tu− Λu = |u|2u, (t, x) ∈ R× S1,

where Λ := |D|+ 1.

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n∈Z a sequence of inde-

pendent complex normalised Gaussians. Here we define the random variable

ω 7→ ϕ(ω, x) =
∑
n∈Z

gn(ω)
(1 + |n|) 1

2
einx ∈ L2(Ω; H−σ(S1)

)
, (1.14)

for any σ > 0, and we then define the measure µ on X0(S1) by µ = p ◦ϕ−1.

We need to give a sense to |u|2u on the support of µ. In order to avoid the
worst interaction term, we rather consider a gauged version of the equation

– 535 –



Nicolas Burq, Laurent Thomann and Nikolay Tzvetkov

for which the nonlinearity is formally |u|2u− 2‖u‖2L2(S1)u. More precisely,
define the Hamiltonian

HN (u) =
∫
S1
|Λu|2 + 1

2

∫
S1
|ΠNu|4 −

(∫
S1

∣∣ΠNu
∣∣2)2

,

and consider the equation
i∂tu = δHN

δu
,

which reads {
i∂tu− Λu = GN (u), (t, x) ∈ R× S1,

u(0, x) = f(x),
(1.15)

where GN stands for
GN (u) = ΠN

(
|ΠNu|2ΠNu

)
− 2‖ΠNu‖2L2(S1)ΠNu. (1.16)

This modification of the nonlinearity is classical, and is the Wick ordered
version of the usual cubic nonlinearity (see Bourgain [6], Oh–Sulem [40]).
Recall, that since the L2 norm of (1.15) is preserved by the flow, one can
recover the standard cubic nonlinearity with the change of function vN (t) =
uN (t) exp

(
− 2i

∫ t
0 ‖uN (τ)‖2L2dτ

)
with the notation uN = ΠNu.

Here, the main interest for introducing the gauge transform in (1.16) is
to define the limit equation, when N −→ +∞.

Proposition 1.4. — For all p > 2, the sequence
(
GN (u)

)
N>1 is a

Cauchy sequence in the space Lp
(
X0(S1),B, dµ;H−σ(S1)

)
. Namely, for all

p > 2, there exist η > 0 and C > 0 so that for all 1 6M < N ,∫
X0(S1)

‖GN (u)−GM (u)‖pH−σ(S1)dµ(u) 6 C

Mη
.

We denote by G(u) the limit of this sequence.

It is then natural to consider the equation{
i∂tu− Λu = G(u), (t, x) ∈ R× S1,

u(0, x) = f(x).
(1.17)

We now define a Gibbs measure for (1.17) as a limit of Gibbs measures
for (1.15). In the sequel we use the notation uN = ΠNu. Let χ ∈ C∞0 (R) so
that 0 6 χ 6 1. Define

αN =
∫
X0(S1)

‖uN‖2L2(S1)dµ(u) =
∑
|n|6N

1
1 + |n| ,

consider the density

ΘN (u) = βNχ
(
‖uN‖2L2(S1) − αN

)
e−
(
‖uN‖4

L4(S1)−2‖uN‖4
L2(S1)

)
, (1.18)
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and define the measure

dρN (u) = ΘN (u)dµ(u),

where βN > 0 is chosen so that ρN is a probability measure.

Remark 1.5. — We could avoid the cut-off procedure, χ, above, by using
another renormalization, namely defining

G̃N (u) = ΠN

(
|ΠNu|2ΠNu

)
− 2αNΠNu, αN = Eµ

[
‖ΠNu‖2L2(S1)

]
, (1.19)

see the construction in Section 8.3 for NLS on a bounded domain.

In our next result, we define a weighted Wiener measure for the Equa-
tion (1.17).

Theorem 1.6. — The sequence ΘN (u) defined in (1.18) converges in
measure, as N → ∞, with respect to the measure µ. Denote by Θ(u) the
limit and define the probability measure

dρ(u) ≡ Θ(u)dµ(u). (1.20)

Then for every p ∈ [1,∞[, Θ(u) ∈ Lp(dµ(u)) and the sequence ΘN converges
to Θ in Lp(dµ(u)), as N tends to infinity.

The sign of the nonlinearity in (1.17) (defocusing) plays a role. Indeed,
Theorem 1.6 is not expected to hold when G(u) is replaced with −G(u).

Again, with the arguments of [13, Proposition 3.10], we can prove that⋃
χ∈C∞0 (R)

supp ρ = suppµ.

Consider the measure ρ defined in (1.20), then

Theorem 1.7. — There exists a set Σ of full ρ measure so that for every
f ∈ Σ the Equation (1.17) with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

In Equation (1.17) the dispersive effect is weak and it seems difficult to
deal with the regularities on the support of the measure by deterministic
methods.

Remark 1.8. — More generally, we can consider the equation

i∂tu− Λαu = |u|p−1u, (t, x) ∈ R× S1,
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with α > 1 and p > 1. Define Xβ(S1) =
⋂
τ<β H

τ (S1). In this case, the
situation is better since the series

ω 7→ ϕα(ω, x) =
∑
n∈Z

gn(ω)
(1 + |n|)α2

einx,

are so that ϕα ∈ L2(Ω;Hβ(S1)
)
for all 0 < β < (α−1)

2 . Here we should be
able to construct solutions

u ∈ C
(
R;X

(α−1)
2 (S1)

)
.

1.6. The Szegő equation

Our approach can also be applied to the Szegő equation, introduced and
studied by Gérard–Grellier [23, 24, 26]. This equation is defined by

i∂tu = Π+(|u|2u), (t, x) ∈ R× S1, (1.21)
where Π+ is the orthogonal projector on the non-negative frequencies:
Π+(

∑
n∈Z cnen) =

∑
n>0 cnen. In this context, we define the Gaussian mea-

sure µ+ by µ+ = p ◦ ϕ−1
+ with

ω 7→ ϕ+(ω, x) =
∑
n>0

gn(ω)
(1 + n) 1

2
einx ∈ L2(Ω; H−σ+ (S1)

)
, σ > 0,

where Hs
+(S1) = Hs(S1) ∩

{
u = Π+(u)

}
. Moreover, one can prove that the

H
1
2
+(S1) norm is conserved by the flow of (1.21). Since the Szegő equation is

a Hamiltonian equation which preserves the volume form, the measure µ+ is
formally invariant under its flow. As a consequence, the result of Theorem 1.7
also applies to the measure µ+ (such a fact is not true for (1.17)). More
precisely, one has

Theorem 1.9. — There exists a set Σ of full µ+ measure so that for
every f ∈ Σ the Equation (1.21) with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is µ+.

The probabilistic approach for the construction of dynamics for the Szegő
equation below H

1
2
+(S1) is relevant for two reasons. In [39], T. Oh studied

the second iterate of the Szegő equation with random initial conditions and
showed that there is no stochastic smoothing, which shows the difficulty to
perform a fixed point argument below H

1
2
+(S1). Next, concerning the study

of the Szegő equatio at negative Sobolev regularity, Gérard and Grellier
recently proved that there exists a sequence (un)n>0 of smooth solutions
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of (1.21) and a sequence of times tn −→ 0 such that for all σ > 0, when
n −→ +∞

‖un(0)‖H−σ(S1) −→ 0,
but ∣∣〈un(tn), 1〉

∣∣ −→ +∞,
which shows that if a deterministic flow map exists in H−σ(S1), it can not
be continuous near the origin. The sequence (un(0))n>0 is explicit and takes
the form un(0) = λn(einx +εn), see [23].

For n > 0, we have Λen = (n+ 1)en, then u satisfies (1.21) if and only if
v = e−itΛ u satisfies

i∂tv + Λv = Π+(|v|2v), (t, x) ∈ R× S1.

Notice that u and v only contain non-negative frequencies. It is easy to see
that the renormalized equation in this context is the same as in the case
of the half-wave equation, but restricted on non-negative frequencies. As
consequence, the analysis is very close to (1.17), except that we only deal
with non-negative frequencies.

Observe that the truncated renormalized Szegő equation, with nonlinear-
ity given by

G+
N (u) = Π+

N

(
|Π+
Nu|

2Π+
Nu
)
− 2‖Π+

Nu‖
2
L2(S1)Π

+
Nu,

is a Hamiltonian PDE with the Hamiltonian given by

1
2

∫
S1
|Π+
Nu|

4 −
(∫

S1

∣∣Π+
Nu
∣∣2)2

.

As a consequence, the L4
+-norm is conserved by the dynamics of

i∂tu = G+
N (u),

and as in the previous section, one can construct the corresponding objects
ρ+
N , ρ+ by replacing ΠN by Π+ΠN . Then the result of Theorem 1.9 also

applies with the measure ρ+.

The details of the proof of Theorem 1.9 are omitted since one can rely
on the analysis of the previous section.

1.7. The 2d NLS on an arbitrary spatial domain

We assume that (M, g) is either a two dimensional compact Riemannian
manifold without boundary or a bounded domain in R2. We suppose that
vol(M) = 1. This assumption is not a restriction since we can always reduce
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the analysis to this case by rescaling the metric. We impose it since some of
the computations simplify a little under this assumption.

Denote by −∆g the Laplace–Beltrami operator on M (with Dirichlet
boundary conditions in the case of a domain in R2). Consider the nonlinear
Schrödinger equation{

i∂tu+ (∆g − 1)u = |u|2u, (t, x) ∈ R×M,

u(0, x) = f(x).
(1.22)

Our aim is to construct a Gibbs measure ρ associated to (1.22) and to con-
struct global solutions to (1.22) on the support of ρ. Let (ϕn)n>0 be an or-
thonormal basis of L2(M) of eigenfunctions of −∆g associated with increas-
ing eigenvalues (λ2

n)n>0. By the Weyl asymptotics λn ≈ n
1
2 . Let (gn(ω))n>0

be a sequence of independent standard complex Gaussian variables on a
probability space (Ω,F ,p). We denote by µ the Gaussian measure induced
by the mapping

ω 7−→ Ψ(ω, x) :=
∑
n>0

gn(ω)
(λ2
n + 1) 1

2
ϕn(x) ,

and we can interpret µ as the Gibbs measure which is associated to the
linear part of (1.22). One may see µ as a measure on H−s(M) for any fixed
s > 0, and we can check that µ(L2(M)) = 0. Notice also that thanks to the
invariance of the Gaussians under rotations the measure µ is independent of
the choice of the orthonormal basis (ϕn)n>0.

Now, if one wishes to define a Gibbs measure ρ (which is a density measure
w.r.t. µ) associated to (1.22), namely corresponding to the Hamiltonian

H(u) = 1
2

∫
M

(|∇u|2 + |u|2) + 1
4

∫
M
|u|4,

we have
∫
M |u|

4 = +∞ on the support of µ. Therefore a suitable renormal-
ization is needed. For u =

∑
n>0 cnϕn, we set uN := ΠNu =

∑
n6N cnϕn.

Denote by

αN =
∫
X0(M)

‖uN‖2L2(M)dµ(u) =
∑

06n6N

1
1 + λ2

n

. (1.23)

Then we define the renormalized Hamiltonian

HN (u) =
∫
M

(|∇u|2 + |u|2) + 1
2

∫
M
|ΠNu|4 − 2αN

∫
M

∣∣ΠNu
∣∣2 + α2

N ,

and consider the equation

i∂tu = δHN

δu
,
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which reads {
i∂tu+ (∆g − 1)u = FN (uN ), (t, x) ∈ R×M,

u(0, x) = f(x),
(1.24)

where FN stands for

FN (uN ) = ΠN

(
|uN |2uN

)
− 2αNuN . (1.25)

Recall, that since the L2 norm of (1.24) is preserved by the flow, one can
recover the standard cubic nonlinearity with the change of function vN (t) =
uN (t) exp(−2αN t).

Thanks to the gauge transform in (1.25) we are able to define the limit
equation, when N −→ +∞. Set X0(M) =

⋂
σ<0H

σ(M), then

Proposition 1.10. — For all p > 2 and σ > 2, the sequence(
FN (uN )

)
N>1 is Cauchy in Lp

(
X0(M),B, dµ;H−σ(M)

)
. Namely, for all

p > 2, there exist η > 0 and C > 0 so that for all 1 6M < N ,∫
X0(M)

‖FN (uN )− FM (uM )‖pH−σ(M)dµ(u) 6 C

Mη
.

We denote by F (u) the limit of this sequence.

We now consider the equation{
i∂tu+ (∆g − 1)u = F (u), (t, x) ∈ R×M,

u(0, x) = f(x).
(1.26)

We now define a Gibbs measure for (1.26) as a limit of Gibbs measures
for (1.24). Set

fN (u) = 1
2

∫
M
|ΠNu|4 − 2αN

∫
M

∣∣ΠNu
∣∣2 + α2

N , (1.27)

and consider the measure

dρN (u) = CN e−fN (u) dµ(u),

where CN > 0 is chosen so that ρN is a probability measure. Then

Theorem 1.11. — Let us fix 1 6 p < ∞. The sequence (fN (u))N>1
converges in Lp(dµ(u)) to some limit denoted by f(u). Moreover

e−f(u) ∈ Lp(dµ(u)) .

Therefore, we can define a probability measure on X0(M) by

dρ(u) = C∞e
−f(u)dµ(u). (1.28)
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The result of Theorem 1.11 is not new. One may find a proof of it in the
book by B. Simon [43, p. 229]. The approach in [43] is using the control of
the singularity on the diagonal of the Green function associated with ∆−1

g .
Here we present a slightly different proof based on spectral consideration via
the Weyl asymptotics. We decided to include this proof since the argument
is in the spirit of the analysis of the other models considered in this article.

We are able to use the measure ρ defined in (1.28) to define global dy-
namics for the Equation (1.26).

Theorem 1.12. — There exists a set Σ of full µ measure so that for
every f ∈ Σ the Equation (1.26) with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(M)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Remark 1.13. — Another choice of renormalization procedure, namely
defining

F̃N (uN ) = ΠN

(
|uN |2uN

)
− 2‖uN‖2L2(M)uN . (1.29)

would lead to another limit equation

i∂tu+ (∆g − 1)u = F̃ (u),

with
F̃ (u) = lim

N→+∞
F̃N (u) “ =′′ |u|2u− 2‖u‖2L2(M)u,

which is slightly more natural as if v is a (L2-bounded) solution of

i∂tv + (∆g − 1)v = |v|2v,

then u = e
−2it‖v‖2

L2(M)v satisfies

i∂tu+ (∆g − 1)u = F̃ (u).

However, this renormalization would require another cut-off (see Section 7)
because the main contribution of the potential energy in the Hamiltonian is
no longer positive. Finally, yet another renormalization is possible: by the
Weyl formula (8.1) we know αN = 1

4π lnN+C+o(1), and it is easy to check
that it is possible to replace αN by its equivalent in the definition of HN (u)
and in (1.25). In this case, the renormalization does not depend onM (but
only on its volume which if fixed to 1).

Remark 1.14. — In Theorems 1.11, 1.12, the sign of the nonlinearity
(defocusing) plays key a role and we do not know how to define a probability
Gibbs measure if F is replaced by −F . See Brydges–Slade [8] for a non
existence result in this context.
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Let us recall some deterministic results on the nonlinear cubic Schrödinger
equation on a compact surface. The equation is locally well-posed in Hs for
all s > 0 whenM = T2 (Bourgain [4]), in Hs for all s > 1

4 whenM = S2 and
Hs for all s > 1

2 in the case of a general surfaceM without boundary (Burq–
Gérard–Tzvetkov [10]). In the case of a surface with boundary, the equation
is locally well-posed in Hs for all s > 2

3 (Blair–Smith–Sogge [3]). In each of
the previous cases, thanks to an interpolation argument, S. Zhong [54] has
shown that the (defocusing) equation is globally well-posed in Hs for some
1− δ < s < 1 with δ > 0 sufficiently small.

1.8. Notations and structure of the paper

Notation. — In this paper c, C > 0 denote constants the value of which
may change from line to line. These constants will always be universal, or
uniformly bounded. For n ∈ Z, we write 〈n〉 = (1 + |n|2) 1

2 . In Section 7 we
use the notation [n] = 1 + |n|, while in Section 8 we write [n] = 1 + λ2

n. We
will sometimes use the notations LpT = Lp(−T, T ) for T > 0. For a manifold
M, we write Lpx = Lp(M) and for s ∈ R we define the Sobolev space Hs

x =
Hs(M) by the norm ‖u‖Hsx = ‖

(
1 − ∆

) s
2u‖L2(M). If E is a Banach space

and µ is a measure on E, we write Lpµ = Lp(dµ) and ‖u‖LpµE =
∥∥‖u‖E∥∥Lpµ .

For M a manifold, we define Xσ(M) =
⋂
τ<σH

τ (M), and if I ⊂ R is an
interval, C

(
I;Xσ(M)

)
=
⋂
τ<σ C

(
I;Hτ (M)

)
. If Y is a random variable, we

denote by L (Y ) its law (its distribution).

The rest of the paper is organised as follows. In Section 2 we recall the
Prokhorov and the Skorokhod theorems which are the crucial tools for the
proof of our results. In Section 3 we present the general strategy for the
construction of the weak stochastic solutions. Each of the remaining sections
is devoted to a different equation.

Acknowledgements.The authors want to thank Arnaud Debussche for
pointing out the reference [20]. The second author is very grateful to Philippe
Carmona for many clarifications on measures. We also benefitted from dis-
cussions with Christian Gérard and Igor Chueshov.

2. The Prokhorov and Skorokhod theorems

In this section, we state two basic results, concerning the convergence of
random variables. To begin with, recall the following definition (see e.g. [31,
p. 114])
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Definition 2.1. — Let S be a metric space and (ρN )N>1 a family of
probability measures on the Borel σ−algebra B(S). The family (ρN ) on
(S,B(S)) is said to be tight if for any ε > 0 one can find a compact set
Kε ⊂ S such that ρN (Kε) > 1− ε for all N > 1.

Then, we have the following compactness criterion (see e.g. [31, p. 114]
or [30, p. 309])

Theorem 2.2 (Prokhorov). — Assume that the family (ρN )N>1 of prob-
ability measures on the metric space S is tight. Then it is weakly compact,
i.e. there is a subsequence (Nk)k>1 and a limit measure ρ∞ such that for
every bounded continuous function f : S → R,

lim
k→∞

∫
S

f(x)dρNk(x) =
∫
S

f(x)dρ∞(x).

In fact, the Prokhorov theorem is stronger. In the case where the space
S is separable and complete, the converse of the previous statement holds
true, but we will not use this here.

Remark 2.3. — Let us make a remark on the case S = Rn. The measure
given by the theorem allows mass concentration in a point and the tightness
condition forbids the escape of mass to infinity.

The Prokhorov theorem is of different nature compared to the compact-
ness theorems giving the deterministic weak solutions. In the latter case
there can be a loss of energy (as mentioned below (1.6)). A weak limit of
L2 functions may lose some mass whereas in the Prokhorov theorem a limit
measure is a probability measure.

We now state the Skorokhod theorem

Theorem 2.4 (Skorokhod). — Assume that S is a separable metric
space. Let (ρN )N>1 and ρ∞ be probability measures on S. Assume that
ρN −→ ρ∞ weakly. Then there exists a probability space on which there
are S−valued random variables (YN )N>1, Y∞ such that L(YN ) = ρN for all
N > 1, L(Y∞) = ρ∞ and YN −→ Y∞ a.s.

For a proof, see e.g. [30, p. 79]. We illustrate this result with two elemen-
tary but significant examples:

• Assume that S = R. Let (YN )16N6∞ be standard Gaussians, i.e.
L(YN ) = L(Y∞) = NR(0, 1). Then the convergence in law obviously
holds, but in general we can not expect the almost sure convergence
of the YN to Y∞ (define for example YN = (−1)NY∞).
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• Assume that S = R. Let (YN )16N6∞ be random variables. For
any random variable Y on R we denote by FY (t) = P (Y 6 t)
its cumulative distribution function. Here we assume that for all
1 6 N 6 ∞, FYN is bijective and continuous, and we prove the
Skorokhod theorem in this case. Let U be a r.v. so that L(U) is the
uniform distribution on [0, 1] and define the r.v. ỸN = F−1

YN
(U). We

now check that the ỸN satisfy the conclusion of the theorem. To
begin with,

F
ỸN

(t) = P (ỸN 6 t) = P (U 6 FYN (t)) = FYN (t),

therefore we have for 1 6 N 6 ∞, L(YN ) = L(ỸN ). Now if we
assume that YN −→ Y∞ in law, we have for all t ∈ R, FYN (t) −→
FY∞(t) and in particular ỸN −→ Ỹ∞ almost surely.

3. General strategy

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n>1 a sequence of in-

dependent complex normalised Gaussians, gn ∈ NC(0, 1). Let M be a Rie-
manian compact manifold and let (en)n>1 be an Hilbertian basis of L2(M)
(with obvious changes, we can allow n ∈ Z). Consider one of the equations
mentioned in the introduction. Denote by

Xσ = Xσ(M) =
⋂
τ<σ

Hτ (M).

We recall that uN converges to u in Xσ
rad if uN converges to u in Hs(M)

for any s < σ.

3.1. General strategy of the proof

The general strategy for proving a global existence result is the following:

Step 1: The Gaussian measure µ

We define a measure µ on Xσ(M) which is invariant by the flow of the
linear part of the equation. The index σc ∈ R is determined by the equation
and the manifold M. Indeed this measure can be defined as µ = p ◦ ϕ−1,
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where ϕ ∈ L2(Ω; Hσ(M)
)
for all σ < σc is a Gaussian random variable

which takes the form

ϕ(ω, x) =
∑
n>1

gn(ω)
λn

en(x).

Here the (λn) satisfy λn ∼ cnα, α > 0 and are given by the linear part and
the Hamiltonian structure of the equation. Notice in particular that for all
measurable f : Xσc(M) −→ R∫

Xσc (M)
f(u)dµ(u) =

∫
Ω
f
(
ϕ(ω, · )

)
dp(ω). (3.1)

Step 2: The invariant measure ρN

By working on the Hamiltonian formulation of the equation, we introduce
an approximation of the initial problem which has a global flow ΦN , and for
which we can construct a measure ρN on Xσc(M) which has the following
properties

(i) The measure ρN is a probability measure which is absolutly contin-
uous with respect to µ

dρN (u) = ΨN (u)dµ(u).

(ii) The measure ρN is invariant by the flow ΦN by the Liouville theo-
rem.

(iii) There exists Ψ 6≡ 0 such that for all p > 1, Ψ(u) ∈ Lp(dµ) and

ΨN (u) −→ Ψ(u), in Lp(dµ).

(In particular ‖ΨN (u)‖Lpµ 6 C uniformly in N > 1.) This enables
to define a probability measure on Xσc(M) by

dρ(u) = Ψ(u)dµ(u),

which is formally invariant by the equation.

Step 3: The measure νN

We abuse notation and write

C
(
[−T, T ];Xσc(M)

)
=
⋂
σ<σc

C
(
[−T, T ];Hσ(M)

)
.
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We denote by νN = ρN◦Φ−1
N the measure on C

(
[−T, T ];Xσc(M)

)
, defined

as the image measure of ρN by the map

Xσc(M) −→ C
(
[−T, T ];Xσc(M)

)
v 7−→ ΦN (t)(v).

In particular, for any measurable F : C
(
[−T, T ];Xσc(M)

)
−→ R∫

C
(

[−T,T ];Xσc
) F (u)dνN (u) =

∫
Xσc

F
(
ΦN (t)(v)

)
dρN (v). (3.2)

For each model we consider, we show that the corresponding sequence
of measures (νN ) is tight in C

(
[−T, T ];Hσ(M)

)
for all σ < σc. Therefore,

for all σ < σc, by the Prokhorov theorem, there exists a measure νσ = ν
on C

(
[−T, T ];Hσ(M)

)
so that the weak convergence holds (up to a sub-

sequence):

For all σ < σc and all bounded continuous F : C
(
[−T, T ];Hσ(M)

)
−→ R

lim
N→∞

∫
C
(

[−T,T ];Hσ
) F (u)dνN (u) =

∫
C
(

[−T,T ];Hσ
) F (u)dν(u).

At this point, observe that if σ1 < σ2, then νσ1 ≡ νσ2 on C
(
[−T, T ];Hσ1(M)

)
.

Moreover, by the standard diagonal argument, we can ensure that ν is a mea-
sure on C

(
[−T, T ];Xσc(M)

)
.

Finally, with the Skorokhod theorem, we can construct a sequence of
random variables which converges to a solution of the initial problem.

We now state a result which will be useful in the sequel. Assume that ρN
satisfies the properties mentioned in Step 2.

Proposition 3.1. — Let σ < σc. Let p > 2 and r > p. Then for all
N > 1 ∥∥‖u‖Lp

T
Hσx

∥∥
LpνN
6 CT

1
p

∥∥‖v‖Hσx ∥∥Lrµ . (3.3)

Let q > 1, p > 2 and r > p. Then for all N > 1∥∥‖u‖Lp
T
Lqx

∥∥
LpνN
6 CT

1
p

∥∥‖v‖Lqx∥∥Lrµ . (3.4)

In case ΨN 6 C, one can take r = p in the previous inequalities.

Proof. — We apply (3.2) with the function u 7−→ F (u) = ‖u‖p
Lp
T
Hσx

. Here
and after, we make the abuse of notation∥∥‖u‖Lp

T
Hσx

∥∥
LpνN

= ‖u‖LpνNLpTHσx .
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Then

‖u‖p
LpνNL

p
T
Hσx

=
∫
C
(

[−T,T ];Xσc
) ‖u‖pLp

T
Hσx

dνN (u)

=
∫
Xσc
‖ΦN (t)(v)‖p

Lp
T
Hσx

dρN (v)

=
∫
Xσc

[ ∫ T

−T
‖ΦN (t)(v)‖pHσx dt

]
dρN (v)

=
∫ T

−T

[ ∫
Xσc
‖ΦN (t)(v)‖pHσx dρN (v)

]
dt, (3.5)

where in the last line we used Fubini. Now we use the invariance of ρN under
ΦN , and we deduce that for all t ∈ [−T, T ]∫

Xσc
‖ΦN (t)(v)‖pHσx dρN (v) =

∫
Xσc
‖v‖pHσx dρN (v).

Therefore, from (3.5) and Hölder we obtain with 1
r1

+ 1
r2

= 1

‖u‖p
LpνNL

p
T
Hσx

= 2T
∫
Xσc
‖v‖pHσx dρN (v)

= 2T
∫
Xσc
‖v‖pHσxΨN (v)dµ(v)

6 2T‖v‖p
L
pr1
µ Hσx

‖ΨN (v)‖Lr2
µ
.

Now, let r > p, take r1 = r
p and we can conclude since ΨN (v) ∈ Lr2(dµ).

For the proof of (3.4), we proceed similarly. We take F (u) = ‖u‖p
Lp
T
Lqx

in (3.2), and use the same arguments as previously. �

3.2. Some deterministic estimates

We now state an interpolation result, which will be useful for the study
of each model. Consider (en)n>1 a Hilbertian basis of L2 = L2(M) of eigen-
functions of ∆:

−∆en = λ2
nen, n > 1.

For u =
∑
n>1 αnen, we define the spectral projector

∆ju =
∑

n>1 | 2j6〈λn〉<2j+1

αnen,

so that we have u =
∑
j>0 ∆ju and for σ ∈ R

C12jσ‖∆ju‖L2 6 ‖∆ju‖Hσ(M) 6 C22jσ‖∆ju‖L2 .

– 548 –



Remarks on the Gibbs measures for nonlinear dispersive equations

Define the space W 1,p
T by the norm ‖u‖W 1,p

T
= ‖u‖Lp

T
+ ‖∂tu‖Lp

T
. Then

Lemma 3.2. — Let T > 0 and p ∈ [1,+∞]. Assume that u ∈
Lp
(
[−T, T ];L2) and ∂tu ∈ Lp([−T, T ];L2). Then u ∈ L∞([−T, T ];L2) and

‖u‖L∞
T
L2 6 C‖u‖1−

1
p

Lp
T
L2‖u‖

1
p

W 1,p
T

L2 .

Proof. — Let γ ∈ L2(M) be so that ‖γ‖L2 = 1, and define v(t) =
〈u(t), γ〉. Then we clearly have

‖v‖Lp
T
6 ‖u‖Lp

T
L2 , ‖∂tv‖Lp

T
6 ‖∂tu‖Lp

T
L2 ,

and from the Gagliardo–Nirenberg inequality we deduce

‖v‖L∞
T
6 C‖v‖1−

1
p

Lp
T

‖v‖
1
p

W 1,p
T

6 C‖u‖1−
1
p

Lp
T
L2‖u‖

1
p

W 1,p
T

L2 . (3.6)

Now from (3.6) we get
‖u‖L∞

T
L2 = sup

t∈[−T,T ]
‖u(t)‖L2

= sup
t∈[−T,T ]

sup
‖γ‖L2 =1

v(t)

= sup
‖γ‖L2 =1

sup
t∈[−T,T ]

v(t) 6 C‖u‖1−
1
p

Lp
T
L2‖u‖

1
p

W 1,p
T

L2 .

This completes the proof of Lemma 3.2. �

Denote by Hσ = Hσ(M). Using the previous result we can prove

Lemma 3.3. — Let T > 0 and p ∈ [1,+∞]. Let −∞ < σ2 6 σ1 < +∞
and assume that u ∈ Lp

(
[−T, T ];Hσ1

)
and ∂tu ∈ Lp

(
[−T, T ];Hσ2

)
. Then

for all ε > σ1
p −

σ2
p , u ∈ L

∞([−T, T ];Hσ1−ε
)
and

‖u‖L∞
T
Hσ1−ε 6 C‖u‖

1− 1
p

Lp
T
Hσ1 ‖u‖

1
p

W 1,p
T

Hσ2
. (3.7)

Moreover, there exists η > 0 and θ ∈ [0, 1] so that for all t1, t2 ∈ [−T, T ]
‖u(t1)− u(t2)‖Hσ1−2ε 6 C|t1 − t2|η‖u‖1−θLp

T
Hσ1 ‖u‖

θ
W 1,p
T

Hσ2 .

Proof. — We use the frequency decomposition as recalled at the begin-
ning of the section, and apply Lemma 3.2 to ∆ju

‖∆ju‖L∞
T
Hσ1−ε 6 C2j(σ1−ε)‖∆ju‖L∞

T
L2

6 C2j(σ1−ε)‖∆ju‖
1− 1

p

Lp
T
L2

(
‖∂t∆ju‖Lp

T
L2 + ‖∆ju‖Lp

T
L2
) 1
p

6 C2j(σ1−ε)2−jσ1(1− 1
p )2−

jσ2
p ‖∆ju‖

1− 1
p

Lp
T
Hσ1‖∆ju‖

1
p

W 1,p
T

Hσ2

6 C2−j(ε−
σ1
p +σ2

p )‖u‖1−
1
p

Lp
T
Hσ1 ‖u‖

1
p

W 1,p
T

Hσ2
.
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This inequality together with ‖u‖L∞
T
Hσ1−ε 6

∑
j>0 ‖∆ju‖L∞

T
Hσ1−ε yields

(3.7). By Hölder we get

‖u(t1)− u(t2)‖Hσ2 =
∥∥∥∥∫ t2

t1

∂τu(τ)dτ
∥∥∥∥
Hσ2

6 |t1 − t2|1−
1
p ‖∂tu‖Lp

T
Hσ2 . (3.8)

Next by interpolation, there exists θ0 ∈ (0, 1) so that

‖u(t1)− u(t2)‖Hσ1−2ε 6 ‖u(t1)− u(t2)‖1−θ0
Hσ1−ε‖u(t1)− u(t2)‖θ0

Hσ2

6 C‖u‖1−θ0
L∞
T
Hσ1−ε‖u(t1)− u(t2)‖θ0

Hσ2 ,

and the result follows from this latter inequality combined with (3.7)
and (3.8). �

4. The nonlinear Schrödinger equation on the three dimensional
sphere

4.1. The setting

Let S3 be the unit sphere in R4. Consider the nonlinear Schrödinger
equation {

i∂tu+ (∆− 1)u = |u|r−1u, (t, x) ∈ R× S3,

u(0, x) = f(x) ∈ Hσ(S3),
(4.1)

where ∆ = ∆S3 stands for the Laplace–Beltrami operator, and where 1 6
r < 5. In the sequel we consider functions which only depend on the geodesic
distance to the north pole, these are called zonal functions. Denote by Z(S3)
this space. Roughly speaking, this is the same type of reduction as restricting
to radial functions in R3. Denote by L2

rad(S3) = L2(S3) ∩ Z(S3). We endow
this space with the natural norm

‖f‖L2
rad

(S3) =
(∫

S3
|f |2

) 1
2

=
√

2
π

(∫ π

0
|f(x)|2(sin x)2dx

) 1
2
,

where x ∈ [0, π] represents the geodesic distance to the north pole of S3 (the
normalisation constant is chosen such that the unit function has norm 1).
The operator ∆ can be restricted to L2

rad, and it reads

∆ = ∂2

∂x2 + 2
tan x

∂

∂x
.

One of the main interests to restrict to zonal functions, is that the eigen-
values of ∆ in L2

rad(S3) are simple. The family (Pn)n>1 defined in (1.2) is a
Hilbertian basis of L2

rad(S3) of eigenfunction of the Laplacian: for all n > 1,
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−∆Pn = (n2 − 1)Pn. We define the operator Λ =
(
1 − ∆

) 1
2 , in particu-

lar ΛPn = nPn.

Let us define the complex vector space EN = span((Pn)16n6N ). Then
we introduce a smooth version of the usual spectral projector on EN . Let
χ ∈ C∞0 (−1, 1), so that χ ≡ 1 on (− 1

2 ,
1
2 ). We then define

SN

(∑
n>1

cnPn

)
= χ( Λ

N
)
∑
n>1

cnPn =
∑
n>1

χ( n
N

)cnPn.

One of the advantages of this operator compared with the usual spectral
projector, is the following result. See Burq–Gérard–Tzvetkov [9] for a proof.

Lemma 4.1. — Let 1 < p <∞. Then SN : Lp(S3) −→ Lp(S3) is contin-
uous and there exists C > 0 so that for all N > 1,

‖SN‖Lp(S3)→Lp(S3) 6 C.

Moreover, for all f ∈ Lp(S3), SNf −→ f in Lp(S3), when N −→ +∞.

4.2. Preliminaries: Some estimates

In the sequel, we will need a particular case of Sogge’s estimates.

Lemma 4.2. — The following bounds hold true for n > 1

‖Pn‖Lp(S3) 6

{
Cn

1
2−

1
p , if 2 6 p 6 4,

Cn1− 3
p , if 4 6 p 6∞.

(4.2)

Proof. — The bound for p =∞ is clear by the definition (1.2). The case
p = 4 is proved in [48, Lemma 10.1] thanks to the formula

PkP` =
√

2
π

min (k,`)∑
j=1

P|k−`|+2j−1, k, ` > 1.

The general case follows from Hölder. �

The next Lemma (Khinchin inequality) shows a smoothing property of
the random series in the Lp spaces. See e.g. [15, Lemma 4.2] for the proof.

Lemma 4.3. — There exists C > 0 such that for all p > 2 and (cn) ∈
`2(N) ∥∥∥∥∑

n>1
gn(ω) cn

∥∥∥∥
Lpp

6 C
√
p

(∑
n>1
|cn|2

) 1
2

. (4.3)

Define µ = p ◦ ϕ−1, with ϕ given in (1.4). Then we can state
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Lemma 4.4. — Let σ < 1
2 , then there exists C > 0 so that for all p > 2∥∥‖v‖Hσx ∥∥Lpµ 6 C√p. (4.4)

Let 2 6 q < 6, then there exists C > 0 so that for all p > q∥∥‖v‖Lqx∥∥Lpµ 6 C√p. (4.5)

Proof. — We prove (4.4). Let σ < 1
2 and apply (4.3) to (1 − ∆)σ2 ϕ =∑

n>1
gn
n1−σPn. Then

‖(1−∆)σ2 ϕ‖Lpp 6 C
√
p

(∑
n>1

|Pn|2

n2(1−σ)

) 1
2

.

Take the L2(S3) norm of the previous inequality, and by the Minkowski
inequality the claim follows. The proof of (4.5) is similar, using (4.2) and
the Minkowski inequality. �

We will also need the next result. See [13, Lemma 3.3] for the proof.

Lemma 4.5. — Let 2 6 q < 6. Then there exist c, C > 0 so that for all
N > 1 and λ > 0

µ
(
u ∈ X 1

2 (S3)
∣∣ ‖SNu‖Lq(S3) > λ

)
6 C e−cλ

2
.

Moreover there exist α, c, C > 0 so that for all 1 6M 6 N and λ > 0

µ
(
u ∈ X 1

2 (S3)
∣∣ ‖SNu− SMu‖Lq(S3) > λ

)
6 C e−cM

αλ2
. (4.6)

4.3. A convergence result

Let 1 6 r < 5 and recall the definition (1.5) of G. Let N > 1 and set
GN = βNG ◦ SN , where βN > 0 is chosen such that

dρN (u) = GN (u)dµ(u),
defines a probability measure on X

1
2 (S3). Notice here that Lemma 4.5 en-

sures that βN is bounded below away from 0. The next statement shows that
we can pass to the limit N −→ +∞ in the previous expression.

Proposition 4.6. — Let p ∈ [1,∞[, then
GN (u) −→ G(u), in Lp(dµ(u)),

when N −→ +∞.

In particular, for any Borel set A ⊂ X
1
2 (S3), limN→∞ ρN (A) =

ρ(A). Observe that for all N > 1, ρN
(
X

1
2 \X

1
2
rad

)
= 0, as well as

ρ
(
X

1
2 \X

1
2
rad

)
= 0.
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Proof. — Let q < 6. By Lemma 4.1, and the Lebesgue theorem, we can
pass to the limit N −→ +∞ in (4.6) and deduce that for all M > 1

µ
(
u ∈ X 1

2 (S3) |
∣∣‖u‖Lq(S3) − ‖SMu‖Lq(S3)

∣∣ > λ
)

6 µ
(
u ∈ X 1

2 (S3) | ‖u− SMu‖Lq(S3) > λ
)
6 C e−cM

αλ2
.

Therefore ‖SNu‖Lqx −→ ‖u‖Lqx in measure, w.r.t. µ, and then GN (u) =
G(SNu) −→ G(u). In other words, if for ε > 0 and N > 1 we denote by

AN,ε =
{
u ∈ X 1

2 (S3)
∣∣ |GN (u)−G(u)| 6 ε},

then µ(AcN,ε) −→ 0, when N −→ +∞. Now use that 0 6 G,GN 6 c

‖G−GN‖Lpµ 6 ‖(G−GN )1AN,ε‖Lpµ + ‖(G−GN )1Ac
N,ε
‖Lpµ

6 ε
(
µ(AN,ε )

) 1
p + 2c

(
µ(AcN,ε)

) 1
p 6 Cε,

for N large enough. This ends the proof. �

4.4. Study of the measure νN

Let N > 1. We then consider the following approximation of (4.1){
i∂tu+ (∆− 1)u = SN

(
|SNu|r−1SNu

)
, (t, x) ∈ R× S3,

u(0, x) = v(x) ∈ X
1
2
rad(S3).

(4.7)

The main motivation to introduce this system is the following proposition,
which is directly inspired from [13, Section 8]. Therefore we omit the proof.

Proposition 4.7. — The Equation (4.7) has a global flow ΦN . More-
over, the measure ρN is invariant under ΦN . For any Borel set A ⊂ X

1
2
rad(S3)

and for all t ∈ R, ρN
(
ΦN (t)(A)

)
= ρN

(
A
)
.

In particular if L
X

1
2
rad

(v) = ρN then for all t ∈ R, L
X

1
2
rad

(ΦN (t)v) = ρN .

Remark 4.8. — Observe that (4.7) is not a finite dimensional system of
ODE, but its flow restricted to high frequencies is linear.

We denote by νN the measure on C
(
[−T, T ];X 1

2 (S3)
)
, defined as the

image measure of ρN by the map

X
1
2 (S3) −→ C

(
[−T, T ];X 1

2 (S3)
)

v 7−→ ΦN (t)(v).
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Lemma 4.9. — Let σ < 1
2 and p > 2. Then for all N > 1∥∥‖u‖Lp

T
Hσx

∥∥
LpνN
6 C. (4.8)

Let 2 6 q < 6 and p > q. Then for all N > 1∥∥‖u‖Lp
T
Lqx

∥∥
LpνN
6 C. (4.9)

Proof. — By (3.3) and the fact that G 6 C we already have
‖u‖LpνNLpTHσx 6 C‖v‖LpµHσx = C‖ϕ‖LppHσx ,

where we used the transport property (3.1) with the map f : u 7−→ ‖u‖pHσx .
Finally we conclude with (4.4).

For the proof of (4.9), we use (3.4) and (4.5). �

Lemma 4.10. — Let σ > 3
2 and p > 2. Then there exists C > 0 so that

for all N > 1 ∥∥‖u‖W 1,p
T

H−σx

∥∥
LpνN
6 C. (4.10)

Proof. — By (4.8) it is enough to show that
∥∥‖∂tu‖Lp

T
H−σx

∥∥
LpνN
6 C. By

definition

‖∂tu‖pLpνNLpTH−σx
=
∫
C
(

[−T,T ];X
1
2 (S3)

) ‖∂tu‖pLp
T
H−σx

dνN (u)

=
∫
X

1
2 (S3)

‖∂tΦN (t)(v)‖p
Lp
T
H−σx

dρN (v).

Now we use that wN := ΦN (t)(v) satisfies (4.7) to get

‖∂twN‖LpρNLpTH−σx
6 ‖(∆− 1)wN‖LpρNLpTH−σx + ‖SN

(
|SNwN |r−1SNwN

)
‖LpρNLpTH−σx ,

which in turn implies

‖∂tu‖LpνNLpTH−σx
6 ‖(∆− 1)u‖LpνNLpTH−σx + ‖SN

(
|SNu|r−1SNu

)
‖LpνNLpTH−σx . (4.11)

Firstly, by (4.8) we get for σ > 3
2

‖(∆− 1)u‖LpνNLpTH−σx = ‖u‖LpνNLpTH2−σ
x
6 C. (4.12)

Then by Sobolev, since σ > 3
2 , we get ‖g‖H−σx 6 C‖g‖L1

x
. Therefore

‖SN
(
|SNu|r−1SNu

)
‖LpνNLpTH−σx 6 C‖SN

(
|SNu|r−1SNu

)
‖LpνNLpTL1

x

6 C‖SNu‖rLrkνNLrkT Lrx

6 C‖u‖rLrkνNLrkT Lrx
,
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where we used twice the continuity of SN on Lpx spaces (see Lemma 4.1).
Now, since 1 6 r < 5 we can apply (4.9) and this together with (4.12) implies
the result. �

4.5. The convergence argument

Proposition 4.11. — Let T > 0 and σ < 1
2 . Then the family of mea-

sures
νN = LCTHσ

(
uN (t); t ∈ [−T, T ]

)
N>1

is tight in C
(
[−T, T ];Hσ(S3)

)
.

Proof. — Let σ < 1
2 . Fix σ < s′ < s′′ < 1

2 and α > 0. We define the
space CαTHs′ = Cα

(
[−T, T ];Hs′(S3)

)
by the norm

‖u‖Cα
T
Hs′ = sup

t1,t2∈[−T,T ], t1 6=t2

‖u(t1)− u(t2)‖Hs′x
|t1 − t2|α

+ ‖u‖L∞
T
Hs′x

,

and it is classical that the embedding CαTHs′ ⊂ C
(
[−T, T ];Hσ(S3)

)
is com-

pact.

We now claim that there exists 0 < α � 1 so that for all p > 1 we have
the bound

‖u‖LpνN CαTHs′ 6 C. (4.13)

Indeed apply Lemma 3.3 with σ1 = s′′ and σ2 = σ. Then for p large enough
we have

‖u‖Cα
T
Hs′ 6 C‖u‖

1−θ
Lp
T
Hs′′
‖u‖θ

W 1,p
T

H−σ
6 C‖u‖Lp

T
Hs′′ + C‖u‖W 1,p

T
H−σ ,

for some small α > 0. By (4.8) and (4.10) we then deduce ‖u‖LpνN CαTHs′ 6 C.
(The fact that (4.13) is indeed true for any p > 1 is a consequence of Hölder.)
Let δ > 0 and define the subset of CTHσ

Kδ =
{
u ∈ CTHσ s.t. ‖u‖Cα

T
Hs′ 6 δ

−1},
endowed with the natural topology of CTHσ. Thanks to the previous con-
siderations, the set Kδ is compact. Finally, by Markov and (4.13) we get
that

νN (Kc
δ) 6 δ ‖u‖L1

νN
Cα
T
Hs′ 6 δC,

which shows the tightness of (νN ). �
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The result of Proposition 4.11 enables us to use the Prokhorov theorem.
For each T > 0 there exists a sub-sequence νNk and a measure ν on the
space C

(
[−T, T ];X 1

2 (S3)
)
so that for all τ < 1

2 and all bounded continuous
function F : C

(
[−T, T ];Hτ (S3)

)
−→ R∫

C
(

[−T,T ];Hτ
) F (u)dνNk(u) −→

∫
C
(

[−T,T ];Hτ
) F (u)dν(u).

By the Skorokhod theorem, there exists a probability space (Ω̃, F̃ , p̃), a se-
quence of random variables (ũNk) and a random variable ũ with values in
C
(
[−T, T ];X 1

2 (S3)
)
so that

L
(
ũNk ; t ∈ [−T, T ]

)
= L

(
uNk ; t ∈ [−T, T ]

)
= νNk ,

L
(
ũ; t ∈ [−T, T ]

)
= ν,

(4.14)

and for all τ < 1
2

ũNk −→ ũ, p̃− a.s. in C
(
[−T, T ];Hτ (S3)

)
. (4.15)

We now claim that L
X

1
2

(uNk(t)) = L
X

1
2

(ũNk(t)) = ρNk , for all t ∈
[−T, T ] and k > 1. For all t ∈ [−T, T ], the evaluation map

Rt : C
(
[−T, T ];X 1

2 (S3)
)
−→ X

1
2 (S3)

u 7−→ u(t, · ),
is well defined and continuous. Then, for all t ∈ [−T, T ], uNk(t) and ũNk(t)
have the same distribution. Let us now determine the distribution of uNk(t)
which we denote by νtNk . By definition of νtNk and νNk we have for all mea-
surable F : X 1

2 (S3) −→ R∫
X

1
2 (S3)

F (v)dνtNk(v) =
∫
C
(

[−T,T ];X
1
2 (S3)

) F (Rtu)dνNk(u)

=
∫
X

1
2 (S3)

F
(
RtΦNk( · )w

)
dρNk(w)

=
∫
X

1
2 (S3)

F
(
ΦNk(t)(w)

)
dρNk(w).

From the invariance of ρNk under ΦNk we get νtNk = ρNk .

Thus from (4.15) and the convergence property of Proposition 4.6, we
deduce that

L
X

1
2

(ũ(t)) = ρ, ∀ t ∈ [−T, T ]. (4.16)
Let k > 1 and t ∈ R and consider the r.v. Xk given by

Xk = i∂tuNk + (∆− 1)uNk − SNk
(
|SNkuNk |r−1SNkuNk

)
.
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Define X̃k similarly to Xk with uNk replaced with ũNk . Then by (4.14),
L
CTX

1
2

(X̃Nk) = L
CTX

1
2

(XNk) = δ0, in other words, X̃k = 0 p̃ – a.s. and
ũNk satisfies the following equation p̃ – a.s.

i∂tũNk + (∆− 1)ũNk = SNk
(
|SNk ũNk |r−1SNk ũNk

)
. (4.17)

We now show that we can pass to the limit k −→ +∞ in (4.17) in order
to show that ũ is p̃ – a.s. a solution to (4.1). Firstly, from (4.15) we deduce
the convergence of the linear terms of the equation. Indeed, p̃ – a.s. , when
k −→ +∞

i∂tũNk + (∆− 1)ũNk −→ i∂tũ+ (∆− 1)ũ in D′
(
[−T, T ]× S3).

To handle the nonlinear term, we apply the next lemma.

Lemma 4.12. — Let 1 6 r < 5. Up to a sub-sequence, the following
convergence holds true

ũNk −→ ũ, p̃− a.s. in Lr
(
[−T, T ]× S3).

Proof. — In order to simplify the notations in the proof, we drop all the
tildes and write Nk ≡ k and Lpt,x = Lp([−T, T ]×S3). If 1 6 r 6 2, the result
immediately follows from (4.15). For 2 < r < 5, by the Hölder inequality,

‖uk − u‖Lrt,x 6 ‖uk − u‖
θ
L2
t,x
‖uk − u‖1−θLr+1

t,x

, (4.18)

with θ = 2
r(r−1) . By (4.15), a.s. in ω ∈ Ω

‖uk − u‖L2
t,x
−→ 0. (4.19)

Let ε > 0 and λ > 0. By the inclusion

∀ X,Y > 0,
{
XY > λ

}
⊂
{
X > εθλ

}
∪
{
Y > ε−θ

}
,

together with (4.18) and the Markov inequality we have

p
(
‖uk − u‖Lrt,x > λ

)
6 p

(
‖uk − u‖θL2

t,x
> εθλ

)
+ p

(
‖uk − u‖1−θLr+1

t,x

> ε−θ
)

6 p
(
‖uk − u‖L2

t,x
> ελ

1
θ

)
+ ε

2
(r−2)

∫
Ω
‖uk − u‖r+1

Lr+1
t,x

dp. (4.20)

By (4.9) and the definition of νk∫
Ω
‖uk‖r+1

Lr+1
t,x

dp =
∫
‖w‖r+1

Lr+1
t,x

dνk(w) 6 CT .
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Similarly,
∫

Ω ‖u‖
r+1
Lr+1
t,x

dp 6 CT . Therefore
∫

Ω ‖uk − u‖r+1
Lr+1
t,x

dp is bounded
uniformly in k. Thus, thanks to (4.19) and (4.20), we get the following con-
vergence in probability

∀ λ > 0, p
(
‖uk − u‖Lrt,x > λ

)
−→ 0, when k −→ +∞,

and after passing to a sub-sequence, we obtain the announced almost sure
convergence. �

4.6. Conclusion of the proof of Theorem 1.1

Define f̃ = ũ(0). Then by (4.16), L
X

1
2

( f̃ ) = ρ and by the previous ar-
guments, there exists Ω̃′ ⊂ Ω̃ of full p̃-measure such that the following holds
true.

Set Σ = f̃(Ω′), then ρ(Σ) = p̃(Ω̃′) = 1. Moreover, for ω′ ∈ Ω̃′, the r.v. ũ
satisfies the equation{

i∂tũ+ (∆− 1)ũ = |ũ|r−1ũ, (t, x) ∈ R× S3,

ũ(0, x) = f̃(x) ∈ X
1
2
rad(S3).

(4.21)

It remains to check that we can construct a global dynamics. Take a
sequence TN → +∞, and perform the previous argument for T = TN . For
all N > 1, let ΣN be the corresponding set of initial conditions and set
Σ = ∩N∈NΣN . Then ρ(Σ) = 1 and for all f̃ ∈ Σ, there exists

ũ ∈ C
(
R ;X

1
2
rad(S

3)
)
,

which solves (4.21).

This completes the proof of Theorem 1.1.

5. The Benjamin–Ono equation

5.1. Preliminaries

As in [49], consider the following approximation of (1.7){
∂tu+H∂2

xu+ ΠN∂x
(
(ΠNu)2) = 0, (t, x) ∈ R× S1,

u(0, x) = f(x).
(5.1)

This equation is a linear PDE for the high frequencies (modes larger than N)
and an ODE for the low frequencies. It is straightforward to check that the
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quantity ‖u‖L2(S1) is preserved by the equation, thus (5.1) admits a global
flow ΦN (t). The motivation for introducing (5.1), is that it is given by the
Hamiltonian

HN (u) = −1
2

∫
S1

(
|Dx|

1
2u
)2 − 1

3

∫
S1

(
ΠNu

)3
.

As a consequence, we can check that the measure ρN as defined in (1.9) is
invariant by ΦN . See [49] for more details.

We now state a technical result which we will need in the sequel.

Lemma 5.1. — Let α > 1
2 , then there exists Cβ > 0 so that for all N ∈ Z∑

n∈Z

1
〈n〉α〈n−N〉α

6
Cβ
〈N〉β

, (5.2)

for all β < 2α− 1 when 1
2 < α 6 1 and β = α when α > 1.

Proof. — Cut the sum in two parts∑
n∈Z

1
〈n〉α〈n−N〉α

6
∑
|n|6N

2

1
〈n〉α〈n−N〉α

+
∑
|n|>N

2

1
〈n〉α〈n−N〉α

. (5.3)

Assume that α > 1. Then by (5.3)∑
n∈Z

1
〈n〉α〈n−N〉α

6
C

〈N〉α
∑
|n|6N

1
〈n〉α

6
C

〈N〉α
.

Assume that 1
2 < α 6 1 and fix β < 2α− 1. Then by (5.3)∑

n∈Z

1
〈n〉α〈n−N〉α

6
C

〈N〉β
∑
|n|6N

2

1
〈n〉α〈n−N〉α−β

+ C

〈N〉β
∑
|n|>N

2

1
〈n〉α−β〈n−N〉α

6
C

〈N〉β
,

which completes the proof. �

5.2. Definition of the nonlinear term in (1.7)

To begin with, we have

Lemma 5.2. — Let σ > 0. Then there exists C > 0 so that for all p > 2∥∥‖v‖H−σx ∥∥
Lpµ
6 C
√
p.
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The proof is analogous to (4.4) and is omitted here.

We define the term ∂x(u2) in (1.7) on the support of µ as the limit of
a Cauchy sequence. Recall the notation uN = ΠNu and set Π0 = 1 − Π0
the orthogonal projection on 0-mean functions. The next result is inspired
from [49, Lemma 5.1]

Lemma 5.3. — For all p > 2, the sequence
(
Π0(u2

N )
)
N>1 is Cauchy in

Lp
(
X0(S1),B, dµ;H−σ(S1)

)
. Namely, for all p > 2, there exist η > 0 and

C > 0 so that for all 1 6M < N ,∫
X0(S1)

‖Π0(u2
N )−Π0(u2

M )‖pH−σ(S1)dµ(u) 6 C

Mη
.

We denote by Π0(u2) its limit. This enables to define

∂x
(
u2) := ∂x

(
Π0(u2)

)
.

Proof. — By the result [46, Proposition 2.4] on the Wiener chaos, we only
have to prove the statement for p = 2.

Firstly, by definition of the measure µ∫
X0(S1)

‖Π0(u2
N )−Π0(u2

M )‖2H−σ(S1)dµ(u)

=
∫

Ω
‖Π0(ϕ2

N )−Π0(ϕ2
M )‖2H−σ(S1)dp.

Therefore, it is enough to prove that
(
Π0(ϕ2

N )
)
N>1 is a Cauchy sequence in

L2(Ω;H−σ(S1)
)
. Let 1 6 M < N , let k ∈ Z and denote by ek(x) = eikx.

Then, by definition of ϕN ,

Π0(ϕ2
N ) =

∑
0<|n1|,|n2|6N

n1 6=−n2

gn1gn2

|n1|
1
2 |n2|

1
2

ei(n1+n2)x,

and thus we get

〈Π0(ϕ2
N − ϕ2

M ) | ek 〉 =
∑
B

(k)
M,N

gn1gn2

|n1|
1
2 |n2|

1
2
,

where B(k)
M,N is the set defined by

B
(k)
M,N =

{
(n1, n2) ∈ Z2

∣∣∣∣∣ 0 < |n1|, |n2| 6 N, n1 6= −n2,(
|n1| > M or |n2| > M

)
and n1 + n2 = k

}
.
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Therefore we obtain∥∥〈Π0(ϕ2
N − ϕ2

M ) | ek 〉
∥∥2
L2(Ω) =

∫
Ω

∑
(n1,n2)∈B(k)

M,N

(m1,m2)∈B(k)
M,N

gn1gn2gm1gm2

|n1|
1
2 |n2|

1
2 |m1|

1
2 |m2|

1
2

dp.

Since (gn)n∈Z∗ are independent and centred Gaussians, we deduce that each
term in the r.h.s. vanishes, unless (n1, n2) = (m1,m2) or (n1, n2) = (m2,m1).
Thus by interpolation between (5.2) and the inequality∑

|n|>M

1
|n||n− k|

6
1
Mθ

∑
n6=0

1
|n|1−θ|n− k|

6
Cθ
Mθ

,

we obtain that for all 0 < η < 1 there exists C > 0 so that for all 1 < M < N∥∥〈Π0(ϕ2
N − ϕ2

M ) | ek 〉
∥∥2
L2(Ω) 6 C

∑
(n1,n2)∈B(k)

M,N

1
|n1||n2|

6 C
∑
|n|>M

1
|n||n− k|

6
C

Mη〈k〉1−η
.

As a consequence we get∥∥Π0(ϕ2
N − ϕ2

M )
∥∥2
L2(Ω;H−σ(S1)) =

∑
k∈Z

1
〈k〉2σ

∥∥〈Π0(ϕ2
N − ϕ2

M ) | ek 〉
∥∥2
L2(Ω)

6
C

Mη

∑
k∈Z

1
〈k〉1+2σ−η 6

C

Mη
,

whenever we choose η < 2σ. �

5.3. Study of the measure νN

Consider the probability measure ρN defined by (1.9). Define the measure
νN on C

(
[−T, T ];X0(S1)

)
as the image of ρN by the map

X0(S1) −→ C
(
[−T, T ];X0(S1)

)
v 7−→ ΦN (t)(v),

where ΦN is the flow of (5.1). Then, we are able to prove the following
bounds

Lemma 5.4. — Let σ > 0 and p > 2. Then there exists C > 0 such that
for all N > 1 ∥∥‖u‖Lp

T
H−σx

∥∥
LpνN
6 C, (5.4)

and ∥∥‖∂tu‖Lp
T
H−σ−2
x

∥∥
LpνN
6 C. (5.5)
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Proof. — The bound (5.4) is obtained thanks to (1.10), (3.3) and Lem-
ma 5.2. We now turn to (5.5). From the equation

∂tu = −H∂2
xu−ΠN∂x

(
(ΠNu)2),

similarly to (4.11), we deduce
‖∂tu‖LpνNLpTH−σ−2

x
6 ‖u‖LpνNLpTH−σx + ‖Π0(ΠNu)2‖LpνNLpTH−σx .

By the invariance of the measure ρN by ΦN we get∥∥∥Π0[(ΠNu)2]∥∥∥p
LpνNL

p
T
H−σx

=
∫
C([−T,T ];X0)

∥∥Π0[(ΠNu)2]
∥∥∥p
Lp
T
H−σx

dνN (u)

=
∫
X0(S1)

∥∥∥Π0[(ΠN

[
ΦN (t)(v)

])2]∥∥∥p
Lp
T
H−σx

dρN (v)

=
∫
X0(S1)

∥∥∥Π0[(ΠNv)2]∥∥∥p
Lp
T
H−σx

dρN (v)

= 2T
∫
X0(S1)

∥∥∥Π0[(ΠNv)2]∥∥∥p
H−σx

ΨN (v)dµ(v), (5.6)

and by Cauchy–Schwarz and Lemma 5.3∥∥Π0[(ΠNu)2] ∥∥p
LpνNL

p
T
H−σx

6 CT
∥∥Π0[(ΠNv)2] ∥∥p

L2p
µ H

−σ
x
‖ΨN (v)‖L2

µ
6 C,

which concludes the proof. �

Proposition 5.5. — Let T > 0 and σ > 0. Then the family of measures
νN = LCTH−σ

(
uN (t); t ∈ [−T, T ]

)
N>1

is tight in C
(
[−T, T ];H−σ(S1)

)
.

Proof. — The proof is similar to the proof of Proposition 4.11. Here we
use the estimates (5.4) and (5.5). �

5.4. Proof of Theorem 1.2

By Proposition 5.5 we can use the Prokhorov theorem. For each T > 0
there exists a sub-sequence νNk and a measure ν on the space C

(
[−T, T ];

X0(S1)
)
so that νNk −→ ν weakly on C

(
[−T, T ];H−σ(S1)

)
, for all σ >

0. By the Skorokhod theorem, there exists a probability space (Ω̃, F̃ , p̃), a
sequence of random variables (ũNk) and a random variable ũ with values in
C
(
[−T, T ];X0(S1)

)
so that

L
(
ũNk ; t ∈ [−T, T ]

)
= L

(
uNk ; t ∈ [−T, T ]

)
= νNk , L

(
ũ; t ∈ [−T, T ]

)
= ν,
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and for all σ > 0

ũNk −→ ũ, p̃− a.s. in C
(
[−T, T ];H−σ(S1)

)
. (5.7)

We have that LX0(S1)(uNk(t)) = LX0(S1)(ũNk(t)) = ρNk , for all t ∈ [−T, T ]
and k > 1. Therefore, for all t ∈ [−T, T ], LX0(S1)(u(t)) = ρ. Next, ũNk
satisfies the following equation p̃ – a.s.

∂tũNk +H ∂2
xũNk + ΠNk∂x

(
(ΠNk ũNk)2) = 0.

We now show that we can pass to the limit k −→ +∞ in the previous
equation. Firstly, from (5.7) we deduce the convergence of the linear terms
of the equation. Indeed, p̃ – a.s. , when k −→ +∞

∂tũNk +H ∂2
xũNk −→ ∂tũ+H ∂2

xũ in D′
(
[−T, T ]× S1).

The only difficulty is to pass to the limit in the nonlinear term. Here we can
proceed as in [20].

Lemma 5.6. — Let σ > 0. Up to a sub-sequence, the following conver-
gence holds true

Π0[(ΠNk ũNk)2] −→ Π0[ũ2], p̃− a.s. in L2([−T, T ];H−σ(S1)
)
.

Proof. — In order to simplify the notations, in this proof we drop the
tildes and write Nk = k. Let M > 1 and write

Π0
[
(Πkuk)2 − u2

]
= Π0

[(
(Πkuk)2 − u2

k

)
+
(
u2
k − (ΠMuk)2)

+
(
(ΠMuk)2 − (ΠMu)2)+

(
(ΠMu)2 − u2)].

To begin with, by continuity of the square in finite dimension, when k −→
+∞

Π0[(ΠMuk)2] −→ Π0[(ΠMu)2], p̃− a.s. in L2([−T, T ];H−σ(S1)
)
.

We now deal with the other terms. It is sufficient to show the convergence in
the space X := L2(Ω× [−T, T ];H−σ(S1)

)
, since the almost sure convergence

follows after exaction of a sub-sequence.
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With the same arguments as in (5.6) we obtain∥∥Π0[(ΠMuk)2 − u2
k

] ∥∥2
X

=
∫
C([−T,T ];X0)

∥∥Π0[(ΠMv)2 − v2] ∥∥2
L2
T
H−σx

dνk(v)

=
∫
X0(S1)

∥∥∥∥Π0
[[

ΠMΦk(t)(f)
]2 − [Φk(t)(f)

]2] ∥∥∥∥2

L2
T
H−σx

dρk(f)

=
∫
X0(S1)

∥∥Π0[(ΠMf
)2 − f2] ∥∥2

L2
T
H−σx

dρk(f)

= 2T
∫
X0(S1)

∥∥Π0[(ΠMf
)2 − f2] ∥∥2

H−σx
Ψk(f)dµ(f),

and by Cauchy–Schwarz and (1.10),∥∥Π0[(ΠMuk)2 − u2
k

] ∥∥
X
6 C

∥∥Π0[(ΠMf
)2 − f2] ∥∥

L4
µH
−σ
x
.

This latter term tends to 0 uniformly in k > 1 when M −→ +∞, according
to Lemma 5.3. The term

∥∥Π0[(ΠMu)2 − u2] ∥∥
X

is treated similarly.

Finally, with the same argument we show∥∥Π0[(Πkuk)2 − u2
k

] ∥∥
X
6 C

∥∥Π0[(Πkf
)2 − f2] ∥∥

L4
µH
−σ
x
,

which tends to 0 when k −→ +∞. This completes the proof. �

The conclusion of the proof of Theorem 1.2 is similar to the argument in
Subsection 4.6.

6. The derivative nonlinear Schrödinger equation

6.1. Hamiltonian formalism of DNLS

To begin with, we recall some facts which are explained in the appendix
of [46]. We define the operator ∂−1 by

∂−1 : f(x) =
∑
n∈Z

αn einx 7−→
∑

n∈Z\{0}

αn
in

einx,

and the skew symmetric operator (K(u, v)∗ = −K(u, v))

K(u, v) =
(
−u∂−1(u · ) −i+ u∂−1(v · )
i+ v∂−1(u · ) −v∂−1(v · )

)
. (6.1)
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Define H by

H(u(t)) =
∫
S1
|∂xu|2dx+ 3

4 i
∫
S1
u2 ∂x(u2)dx+ 1

2

∫
S1
|u|6dx,

and introduce the Hamiltonian system(
∂tu

∂tv

)
= K(u, v)

(
δH
δu (u, v)
δH
δv (u, v)

)
. (6.2)

Denote by
Tu(t) = 2 Im

∫
S1
u∂xu+ 3

2

∫
S1
|u|4, (6.3)

then the system (6.2) is a Hamiltonian formulation of the equation
i∂tu+ ∂2

xu = i∂x
(
|u|2u

)
+ Tu(t)u, (6.4)

in the coordinates (u, v) = (u, u) (see [46, Proposition A.2]). Now, if we set

v(t, x) = ei
∫ t

0
Tu(s)ds

u(t, x), (6.5)
then v is the solution of the equation{

i∂tv + ∂2
xv = i∂x

(
|v|2v

)
, (t, x) ∈ R× S1,

v(0, x) = u0(x).

Moreover, if u and v are linked by (6.5), we have Tu = Tv.

Thanks to these observations, we can focus on the Equation (6.4). We
introduce a natural truncation for which we can construct an invariant Gibbs
measure. Namely, let K be given by (6.1), and consider the following system(

∂tu

∂tv

)
= ΠNK(uN , vN )ΠN

(
δH
δu (uN , vN )
δH
δv (uN , vN )

)
. (6.6)

This is an Hamiltonian system with Hamiltonian H(ΠNu,ΠNv). Now we
assume that v = u and we compute the equation satisfied by uN . This will
be a finite dimensional approximation of (6.4). Denote by Π⊥N = 1 − ΠN ,
then in the coordinates vN = uN , the system (6.6) reads

i∂tu+ ∂2
xuN = iΠN

(
∂x(|uN |2uN )

)
+ uNTuN +RN (uN ), (t, x) ∈ R× S1,

(6.7)
where

RN (uN ) = 3
2ΠN

(
uN∂

−1
[
uNΠ⊥N

(
uN∂x(uN 2)

)
+ uNΠ⊥N

(
uN∂x(uN 2)

)])
+ 3

2 iΠN

(
uN∂

−1
[
uNΠ⊥N

(
|uN |4uN

)
− uNΠ⊥N

(
|uN |4uN

)])
:=R1

N (uN ) +R2
N (uN ). (6.8)
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For all N > 1, this equation is globally well-posed in L2(S1) and let us denote
by ΦN the flow map. Moreover, the measure ρN defined in (1.13) is invariant
by ΦN (see [46, Proposition A.4]).

Recall that µ = p ◦ ϕ−1 with ϕ as in (1.12). We need to give a sense to
the expression Tu in (6.3) on the support of µ.

Lemma 6.1. — For all p > 2, the sequence
(
TuN

)
N>1 is a Cauchy se-

quence in Lp
(
X

1
2 (S1),B, dµ;R

)
. Namely, for all p > 2, there exists C > 0

so that for all 1 6M < N ,∫
X

1
2 (S1)

|TuN − TuM |pdµ(u) 6 C

M
.

We denote by Tu the limit of this sequence which is formally given by (6.3).

Proof. — Denote by J(u) = Im
∫
S1 u∂xu. Let 1 6 M < N . Then for

ϕN (ω, x) =
∑
|n|6N

gn(ω)
〈n〉 einx we compute

J(ϕN )− J(ϕM ) = −
∑

M<|n|6N

n|gn|2

〈n〉2
= −

∑
M<|n|6N

n(|gn|2 − 1)
〈n〉2

,

where we used that
∑
M<|n|6N

n
〈n〉2 = 0. Define the r.v.Gn(ω) = |gn(ω)|2−1,

hence
|J(ϕN )− J(ϕM )|2 =

∑
M<|n1|,|n2|6N

n1n2Gn1Gn2

〈n1〉2〈n2〉2
. (6.9)

By independence of the gn, E[GnGm] = Cδn,m. Thus by integration of (6.9)∫
Ω
|J(ϕN )− J(ϕM )|2dp =

∑
M<|n|6N

n2

〈n〉4
6

C

M
.

By definition of µ we have proved the result for p = 2. The general case p > 2
follows from the Wiener chaos estimates (see e.g. [46, Proposition 2.4]). �

6.2. Study of the measure νN

Now define the measure νN = ρN ◦ Φ−1
N on C

(
[−T, T ];X 1

2 (S1)
)
and we

have

Lemma 6.2. — Let σ < 1
2 and p > 2. Then for all N > 1∥∥‖u‖Lp

T
Hσx

∥∥
LpνN
6 C. (6.10)∥∥‖∂tu‖Lp

T
Hσ−2
x

∥∥
LpνN
6 C. (6.11)
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Proof. — The estimate (6.10) is obtained with Proposition 3.1 and the
definition (1.12) of ϕ. Similarly, we also have that for all 2 6 q 6 p

‖u‖LpνNLpTLqx 6 C. (6.12)

We turn to (6.11). From the Equation (6.7) we get (similarly to (4.11))

‖∂tu‖LpνNLpTHσ−2
x

6 ‖∂2
xu‖LpνNLpTHσ−2

x
+ ‖∂x(|uN |2uN )‖LpνNLpTHσ−2

x

+ ‖uNTuN ‖LpνNLpTHσ−2
x

+ ‖RN (uN )‖LpνNLpTHσ−2
x

6 ‖u‖LpνNLpTHσx + ‖uN‖3LpνNLpTL6
x

+ ‖uNTuN ‖LpνNLpTL2
x

+ ‖RN (uN )‖LpνNLpTHσ−2
x

.

We estimate each term of the r.h.s. By (6.10) and (6.12) we only have to
consider the two last ones. By Cauchy–Schwarz (recall that Tu does not
depend on x)

‖uNTuN ‖LpνNLpTL2
x
6 ‖uN‖L2p

νN
L2p
T
L2
x
‖TuN ‖L2p

νN
L2p
T
. (6.13)

Then using the invariance of ρN (see the proof of Proposition 3.1) and
Lemma 6.1 we have

‖TuN ‖
2p
L2p
νN
L2p
T

= 2T
∫
X

1
2 (S1)

|TvN |2pΨN (v)dµ(v)

6 C‖TvN ‖
2p
L4p
µ
‖ΨN (v)‖L2

µ
6 C,

which by (6.13) implies

‖uNTuN ‖LpνNLpTL2
x
6 C.

The conclusion of the proof is given by the next result. �

Lemma 6.3. — Let σ > 1
2 and p > 2. Then∥∥‖RN (uN )‖Lp

T
H−σx

∥∥
LpνN
−→ 0 when N −→ +∞.

Proof. — To begin with, using the same arguments as in the proof of
Proposition 3.1 with F (u) = ‖RN (ΠNu)‖p

Lp
T
H−σx

we have,

‖RN (uN )‖LpνNLpTH−σx 6 C‖RN (vN )‖L2p
µ H

−σ
x
,

where we used that ‖ΨN‖L2
µ
6 C. We estimate each contribution in the r.h.s.

of (6.8).
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• Denote by QN (vN ) = vNΠ⊥N
(
vN∂x(vN 2)

)
. Then by Sobolev and

Cauchy–Schwarz

‖R1
N (vN )‖LrµH−σx 6 C‖R1

N (vN )‖LrµL1
x

6 C‖vN∂−1QN (vN )‖LrµL1
x

6 ‖vN‖L2r
µ L

2
x
‖QN (uN )‖L2r

µ H
−1
x

6 C‖QN (uN )‖L2r
µ H

−1
x
. (6.14)

Next, by the definition of µ and the Wiener chaos estimates

‖R1
N (vN )‖LrµH−σx 6 C‖QN (ϕN )‖L2r

p H−1
x

6 C‖QN (ϕN )‖L2
pH
−1
x
. (6.15)

We now compute the term ‖QN (ϕN )‖L2
pH
−1
x

. We have

ϕN∂x
(
ϕ2
N

)
= −i

∑
|n1|,|n2|,|n3|6N

(n1 + n2)gn1 gn2 gn3

〈n1〉〈n2〉〈n3〉
ei(n3−n2−n1)x,

so that

∂−1QN (ϕN )

= −
∑
n∈AN

(n1 + n2)gn1 gn2 gn3 gn4

〈n1〉〈n2〉〈n3〉〈n4〉(n4 + n3 − n2 − n1) ei(n4+n3−n2−n1)x,

where the set AN is given by

AN :=

n = (n1, n2, n3, n4) ∈ Z4

∣∣∣∣∣∣∣
|n1|, |n2|, |n3|, |n4| 6 N,
|n1 + n2 − n3| > N

and n4 + n3 − n2 − n1 6= 0

 .

As a consequence we obtain the following expression

‖QN (ϕN )‖2
H−1
x

=
∑

n,m∈BN

(n1 + n2)(m1 +m2)gn1 gn2 gn3 gn4 gm1 gm2 gm3 gm4

〈n1〉〈n2〉〈n3〉〈n4〉〈m1〉〈m2〉〈m3〉〈m4〉(n4 +n3−n2−n1)2 , (6.16)

with

BN :=
{
n,m ∈ AN

∣∣ m4 +m3 −m2 −m1 = n4 + n3 − n2 − n1
}
.

We take the expectation of (6.16). By independence of the gn and since they
are centered, each contribution in the r.h.s. is zero, unless

{
n1, n2,m3,m4

}
={

m1,m2, n3, n4
}
. But coming back to the definition of AN , the condition
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|n1 + n2 − n3| > N implies that n3 6∈
{
n1, n2

}
. Similarly, m3 6∈

{
m1,m2

}
.

Therefore, up to permutation we have n = m and by (5.2) with α = 2∫
Ω
‖QN (ϕN )‖2

H−1
x

dp 6 C
∑
n∈AN

(n1 + n2)2

〈n1〉2〈n2〉2〈n3〉2〈n4〉2(n4 + n3 − n2 − n1)2

6 CN2
∑
n∈AN

1
〈n1〉2〈n2〉2〈n3〉2〈n3 − n2 − n1〉2

6 C
∑
n∈AN

1
〈n1〉2〈n2〉2〈n3〉2

.

Next, use that on AN , 〈n1〉〈n2〉〈n3〉 > CN to get that∫
Ω
‖QN (ϕN )‖2

H−1
x

dp 6 C

N
1
2

∑
n∈Z3

1
〈n1〉

3
2 〈n2〉

3
2 〈n3〉

3
2
6

C

N
1
2
. (6.17)

Finally, from (6.14), (6.15) and (6.17) we conclude that

‖R1
N (uN )‖LpνNLpTH−σx −→ 0.

• We now consider the contribution of R2
N . With the same arguments as

previously,

‖R2
N (vN )‖LrµH−σx 6 C‖R2

N (vN )‖LrµL1
x

6 C‖vN∂−1[vNΠ⊥N (|vN |4vN )]‖LrµL1
x

6 C‖vN‖L2r
µ L

2
x
‖vNΠ⊥N

(
|vN |4vN

)
‖L2r

µ H
−1
x

6 C‖vNΠ⊥N
(
|vN |4vN

)
‖L2r

µ L
1
x

6 C‖Π⊥N
(
|vN |4vN

)
‖L4r

µ L
2
x
.

Denote by VN = |vN |4vN . Then by [46, Lemma 2.2], (VN )N>1 is a Cauchy
sequence in L4r

µ L
2
x, and denote by V its limit. Write

‖Π⊥NVN‖L4r
µ L

2
x
6 ‖Π⊥N (VN − V )‖L4r

µ L
2
x

+ ‖Π⊥NV ‖L4r
µ L

2
x

6 ‖VN − V ‖L4r
µ L

2
x

+ ‖Π⊥NV ‖L4r
µ L

2
x
,

which tends to 0 when N −→ +∞. �

Proposition 6.4. — Let T > 0 and σ < 1
2 . Then the family of measures

νN = LCTHσ
(
uN (t); t ∈ [−T, T ]

)
N>1

is tight in C
(
[−T, T ];Hσ(S1)

)
.

Proof. — The proof is similar to the proof of Proposition 4.11. Here we
use the estimates (6.10) and (6.11). �
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6.3. Proof of Theorem 1.3

We can proceed as in the proofs of Theorems 1.1 and 1.2. By Proposi-
tion 6.4 and the Prokhorov theorem we can extract a sub-sequence νNk and
a measure ν on the space C

(
[−T, T ];X 1

2 (S1)
)
so that νNk −→ ν weakly on

C
(
[−T, T ];Hσ(S1)

)
for all σ < 1

2 . Thanks to the Skorokhod theorem, there
exists a probability space (Ω̃, F̃ , p̃), a sequence of random variables (ũNk)
and a random variable ũ with values in C

(
[−T, T ];X 1

2 (S1)
)
so that

L
(
ũNk ; t ∈ [−T, T ]

)
= L

(
uNk ; t ∈ [−T, T ]

)
= νNk , L

(
ũ; t ∈ [−T, T ]

)
= ν,

and for all σ < 1
2

ũNk −→ ũ, p̃− a.s. in C
(
[−T, T ];Hσ(S1)

)
.

Moreover, ũNk satisfies p̃-a.s. the Equation (6.7). Passing to the limit in the
linear terms makes no difficulty, we only have to take care on the nonlinear
terms. Denote by

GN (u) = iΠN

(
∂x(|uN |2uN )

)
+ uNTuN +RN (uN ).

The next result completes the proof of Theorem 1.3 (the conclusion of the
proof is similar to the argument in Subsection 4.6).

Lemma 6.5. — Up to a sub-sequence, the following convergence holds
true. For any σ > 0
GNk(ũNk) −→ i∂x(| ũ |2 ũ) + ũT

ũ
, p̃− a.s. in L2([−T, T ];H−σ(S1)

)
.

Proof. — We drop the tildes and write Nk ≡ N . Since L (uN ) = νN , we
can apply Lemma 6.3

‖RN (uN )‖L2
pL

2
T
H−σx

= ‖RN (uN )‖L2
νN
L2
T
H−σx

−→ 0,

when N −→ +∞. The convergence of the two other terms is obtained as in
Lemma 5.6. �

Remark 6.6. — Observe that in all the proof, we only used the fact
that ΨN ∈ L2(dµ) uniformly in N > 1 (and not higher order integrability).
Therefore the result of Theorem 1.3 holds for κ 6 κ2, and the support of ρ
is not empty.

7. The half-wave equation

7.1. Justification of the equation

Proof of Proposition 1.4. — We prove the result when p = 2. The general
case follows by the Wiener chaos estimates.
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To begin with, use that∫
X0(S1)

‖GN (u)−GM (u)‖2H−σ(S1)dµ(u) =
∫

Ω
‖GN (ϕ)−GM (ϕ)‖2H−σ(S1)dp.

Therefore, we are reduced to prove that
(
GN (ϕ)

)
N>1 is a Cauchy sequence

in L2(Ω;H−σ(S1)
)
. Denote by (with ϕN = ΠNϕ)

χN = |ϕN |2ϕN − 2‖ϕN‖2L2(S1)ϕN .

It is enough to show the result for (χN ), because once we know that χN −→ χ
in L2(Ω;H−σ(S1)

)
, we deduce thatGN (ϕ) = ΠNχN −→χ in L2(Ω;H−σ(S1)

)
.

In the sequel, we will use the notation [n] = 1 + |n|. Then, by definition of
ϕN we can compute

χN =
∑

|n1|,|n2|,|n3|6N

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2

ei(n1−n2+n3)x−2
∑

|n1|,|n3|6N

|gn1 |2gn3

[n1][n3] 1
2

ein3x

=
∑

|n1|,|n2|,|n3|6N,
n1 6=n2,n3 6=n2

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2

ei(n1−n2+n3)x−
∑
|n|6N

|gn|2gn
[n] 3

2
einx

:= χ1,N + χ2,N .

Let 1 6M 6 N , then the second term is easily estimated∥∥χ2,N − χ2,M
∥∥
L2(Ω;L2(S1)) 6

C

M
.

We now turn tho the estimation of χ1,N . Denote by ek(x) = eikx, then for
all 1 6M 6 N

〈χ1,N − χ1,M | ek〉 =
∑
B

(k)
M,N

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2
−, (7.1)

where the set B(k)
M,N is defined by

B
(k)
M,N =

(n1, n2, n3) ∈ Z3

∣∣∣∣∣∣∣
0 < |n1|, |n2|, |n3| 6 N, n1 6= n2, n3 6= n2,

and
(
|n1| > M or |n2| > M or |n3| > M

)
and n1 − n2 + n3 = k

 .

From (7.1) we obtain∥∥〈χ1,N − χ1,M | ek〉
∥∥2
L2(Ω)

=
∫

Ω

∑
(n1,n2,n3)∈B(k)

M,N

(m1,m2,m3)∈B(k)
M,N

gn1gn2gn3gm1gm2gm3

[n1] 1
2 [n2] 1

2 [n3] 1
2 [m1] 1

2 [m2] 1
2 [m3] 1

2
dp.
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Since the (gn) are independent and centered, we deduce that each term in
the r.h.s. vanishes, unless

{
n2 = m2 and (n1, n3) = (m1,m3)

}
or
{

(n1, n3) =
(m3,m1)

}
. Thus∥∥〈χ1,N − χ1,M | ek〉

∥∥2
L2(Ω) 6 C

∑
(n1,n2,n3)∈B(k)

M,N

1
〈n1〉〈n2〉〈n3〉

.

By symmetry in the previous sum, we can assume that M < |n1| 6 N ,
0 < |n2| 6 N and write n3 = k+n2−n1. Then by (5.2) for some small ε > 0∥∥〈χ1,N − χ1,M | ek〉

∥∥2
L2(Ω)

6 C
∑

M<|n1|6N

1
〈n1〉

∑
n2∈Z

1
〈n2〉〈n2 − (n1 − k)〉

6 C
∑

M<|n1|6N

1
〈n1〉〈n1 − k〉1−ε

6
C

Mε〈k〉1−2ε . (7.2)

Now, by (7.2) we get∥∥χ1,N − χ1,M
∥∥2
L2(Ω;H−σ(S1)) =

∑
k∈Z

1
〈k〉2σ

∥∥〈χ1,N − χ1,M | ek〉
∥∥2
L2(Ω)

6
C

Mε

∑
k∈Z

1
〈k〉1+2σ−2ε 6

C

Mε
,

if we choose ε < σ, and this concludes the proof.

As a conclusion, we are able to define a limit G(u) so that for all p > 2
‖G(u)‖LpµH−σ(S1) 6 Cp, (7.3)

hence the result. �

7.2. Construction of the measure ρ

In this section ϕ is given by (1.14). Denote by [n] = 1 + |n|, then define
αN =

∑
|n|6N

1
[n] and

gN (u) = ‖ΠNu‖2L2 − αN .

7.2.1. Preliminar results

We begin with the following result due to N. Tzvetkov. See [49, Lem-
ma 4.8] for a proof.
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Lemma 7.1. — The sequence
(
gN (u)

)
N>1 is Cauchy in L2(X0(S1),

B, dµ
)
. Moreover there exists c > 0 so that for all λ > 0 and N > M > 1

µ
(
u ∈ X0(S1)

∣∣∣ |gN (u)− gM (u)| > λ
)
6 C e−cλM

1
2 .

Define the sequence

fN (u) = −
∫
S1
|uN |4 + 2

(∫
S1
|uN |2

)2
= −‖uN‖4L4 + 2‖uN‖4L2 . (7.4)

Proposition 7.2. — The sequence (fN )N>1 is Cauchy in L2(X0(S1),
B, dµ

)
. More precisely, there exists C > 0 so that for all N > M > 1

‖fN (u)− fM (u)‖
L2
(
X0(S1),B,dµ

) 6 C

M
1
2
. (7.5)

Moreover, for all p > 2 and N > M > 1

‖fN (u)− fM (u)‖
Lp
(
X0(S1),B,dµ

) 6 C (p− 1)2

M
1
2

. (7.6)

Corollary 7.3. — There exists c > 0 so that for all λ > 0 and N >
M > 1

µ
(
u ∈ X0(S1)

∣∣∣ |fN (u)− fM (u)| > λ

)
6 C e−cλ

1
2 M

1
4 .

Proof of Corollary 7.3. — By Markov and (7.6) we have that for all
p > 2

µ
(
u ∈ X0(S1)

∣∣∣ |fN (u)−fM (u)| > λ
)
6

1
λp
‖fN (u)−fM (u)‖p

Lp
(
X0(S1),B,dµ

)
6

(
Cp2

λM
1
2

)p
.

Then choose p = c0λ
1
2M

1
4 for c0 > 0 small enough. �

Proof of Proposition 7.2. — We prove (7.5). The estimate (7.6) im-
mediately follows from [46, Proposition 2.4]. Firstly, we have

∫
S1 |ϕN |2 =∑

|n|6N
|gn|2
[n] (recall the notation [n] = 1 + |n|). Thus(∫

S1
|ϕN |2

)2
=

∑
|n|,|m|6N

|gn|2|gm|2

[n][m] . (7.7)

Similarly, we explicitly obtain∫
S1
|ϕN |4 =

∑
|n1|,|n2|,|n3|,|n4|6N
n1−n2+n3−n4=0

gn1gn2gn3gn4

[n1] 1
2 [n2] 1

2 [n3] 1
2 [n4] 1

2
. (7.8)
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We introduce the set

AN =
{

(n1, n2, n3, n4) ∈ Z4
∣∣∣∣ |n1|, |n2|, |n3|, |n4| 6 N
and n1 − n2 + n3 − n4 = 0

}
.

We now split the sum (7.8) in two parts, by distinguishing the cases
n3 = n1 and n3 6= n1 in AN and write∫

S1
|ϕN |4 = YN + ZN , (7.9)

with
YN =

∑
BN

gn1gn2gn3gn4

[n1] 1
2 [n2] 1

2 [n3] 1
2 [n4] 1

2
,

where BN = AN ∩ {n1 = n2 or n1 = n4 }, and

ZN =
∑

AN ,n1 6=n2
n1 6=n4

gn1gn2gn3gn4

[n1] 1
2 [n2] 1

2 [n3] 1
2 [n4] 1

2
. (7.10)

We observe that if (n1, n2, n3, n4) ∈ BN , then either (n1, n3) = (n2, n4) or
(n1, n3) = (n4, n2). Thus

YN =
∑

|n1|,|n3|6N

|gn1 |2|gn3 |2

[n1][n3] +
∑

|n1|,|n3|6N
n1 6=n3

|gn1 |2|gn3 |2

[n1][n3]

= 2
(∫

S1
|ϕN |2

)2
−
∑
|n|6N

|gn|4

[n]2 ,

where in the last line we used (7.7). Thus, with (7.9) we obtain

fN (ϕN ) = −
∫
S1
|ϕN |4 + 2

(∫
S1
|ϕN |2

)2
=
∑
|n|6N

|gn|4

[n]2 − ZN .

We now show that (ZN )N>1 is Cauchy in L2(Ω,F ,p). Let 1 6 N < M , then
we define

AM,N =

(n1, n2, n3, n4) ∈ Z4

∣∣∣∣∣∣∣
M < |n1|, |n2|, |n3|, |n4| 6 N,
n1 − n2 + n3 − n4 = 0,
and |nj | > M for some 1 6 j 6 4

 .

Thus, thanks to (7.10) we have

(ZM − ZN )2 =
∑
AM,N ,
n1 6=n2
n1 6=n4

∑
AM,N ,
m1 6=m2
m1 6=m4

gn1gn2gn3gn4

[n1] 1
2 [n2] 1

2 [n3] 1
2 [n4] 1

2

gm1gm2gm3gm4

[m1] 1
2 [m2] 1

2 [m3] 1
2 [m4] 1

2
.
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We take the integral over Ω of the previous sum. By the independence of the
Gaussians each term vanishes unless {n1, n2, n3, n4} = {m1,m2,m3,m4}.
Thus

‖ZM − ZN‖2L2(Ω) 6 C
∑
AM,N

1
〈n1〉〈n2〉〈n3〉〈n4〉

.

By symmetry of the sum, we can assume that |n1| > M and we replace
n4 = n1 − n2 + n3. Then by (5.2)

‖ZM − ZN‖2L2(Ω) 6 C
∑

n1,n2,n3∈Z
|n1|>M

1
〈n1〉〈n2〉〈n3〉〈n1 − n2 + n3〉

6 C
∑

n1,n2∈Z
|n1|>M

1
〈n1〉〈n2〉〈n1 − n2〉1−ε

6 C
∑
|n1|>M

1
〈n1〉2−2ε 6

C

M1−2ε ,

which was the claim. �

7.2.2. The crucial estimate

We now have all the ingredients to prove the following proposition, which
is the key point in the proof of Theorem 1.6. Recall the definition (7.4).

Proposition 7.4. — Let χ ∈ C∞0
(
[−R,R]

)
. Then for all 1 6 p < ∞

there exists C > 0 such that for every N > 1,∥∥∥χ(‖ΠNu‖2L2(S1) − αN
)

efN (u)
∥∥∥
Lp(dµ(u))

6 C .

Proof. — Our aim is to show that the integral
∫∞

0 λp−1µ(Aλ,N )dλ is
convergent uniformly with respect to N , where

Aλ,N =
{
u ∈ X0(S1)

∣∣∣ χ(‖ΠNu‖2L2(S1) − αN
)
efN (u) > λ

}
.

Proposition 7.4 is a straightforward consequence of the following lemma. �

Lemma 7.5. — For any L > 0, there exists C > 0 such that for every N
and every λ > 1,

µ(Aλ,N ) 6 Cλ−L.

Proof. — Firstly, observe that we can assume that λ > CR for any con-
stant CR > 0. Let c0 > 0 a small number which will be fixed later and
set

M = ec0(lnλ)
1
2 .
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To begin with µ(Aλ,N ) 6 µ(Ãλ,N ), where

Ãλ,N =
{
u ∈ X0(S1)

∣∣∣ fN (u) > lnλ, |gN (u)| 6 R
}
.

• Assume that N 6M . On the set
{
|gN (u)| 6 R+ 1

}
we have

fN (u) 6 2‖ΠNu‖4L2(S1) 6 2(C lnN +R)2 6 2(C lnM +R)2 = Cc20 lnλ,

if λ > CR large enough. We fix c0 > 0 so that Cc20 < 1
4 . In particular

µ(Aλ,N ) 6 µ(Ãλ,N ) = 0.

• Assume that N >M . First observe that if we define

Bλ,N =
{
u ∈ X0(S1)

∣∣∣ ∣∣gN (u)− gM (u)
∣∣ > 1

}
,

by Lemma 7.1 and the definition of M , we get for any L > 1

µ(Bλ,N ) 6 C exp(−cM 1
2 ) 6 CLλ−L .

Similarly, set

Cλ,N =
{
u ∈ X0(S1)

∣∣∣ ∣∣fN (u)− fM (u)
∣∣ > 1

}
,

then by Corollary 7.3, for any L > 1 we have

µ(Cλ,N ) 6 C exp(−cM 1
4 ) 6 CLλ−L .

We have Ãλ,N ⊂ Cλ,N ∪Dλ,N where

Dλ,N =
{
u ∈ X0(S1)

∣∣∣∣ fM (u) > 1
2 lnλ, |gN (u)| 6 R

}
.

Then observe that {|gN (u)| 6 R} ∩ {|gN (u) − gM (u)| 6 1} ⊂ {|gM (u)| 6
R+ 1}, therefore we can write Dλ,N ⊂ Bλ,N ∪ Eλ,N where

Eλ =
{
u ∈ X0(S1)

∣∣∣∣ fM (u) > 1
2 lnλ, |gM (u)| 6 R+ 1

}
.

In the first part of the proof, we have already shown that µ(Eλ) = 0. Finally,
we put all the estimates together and obtain µ(Aλ,N ) 6 CLλ−L. �

7.2.3. Convergence to the mesure ρ

We now have all the ingredients to complete the proof of Theorem 1.6.

First we define the density Θ : X0(S1) −→ R with respect to the mea-
sure µ of the measure ρ. To begin with, let us recall the definition(1.18) of
the density ΘN . By Lemma 7.1 and Proposition 7.2, we have the following
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convergences in the µ measure: gN (u) converges to g(u) and fN (u) to f(u).
Then, by composition and multiplication of continuous functions, we obtain

ΘN (u) −→ βχ
(
g(u)

)
ef(u) ≡ Θ(u),

in measure, with respect to the measure µ, and where β > 0 is so that
dρ(u) = Θ(u)dµ(u) is a probability measure onX0(S1). By this construction,
Θ is measurable from

(
X0(S1),B

)
to R.

Then, we can extract a sub-sequence ΘNk(u) so that ΘNk(u) −→ Θ(u),
µ a.s. and by Proposition 7.4 and the Fatou lemma, for all p ∈ [1,+∞),∫

X0(S1)
|Θ(u)|pdµ(u) 6 lim inf

k→∞

∫
X0(S1)

|ΘNk(u)|pdµ(u) 6 C,

thus Θ(u) ∈ Lp(dµ(u)).

It remains to prove the convergence of ΘN (u) in Lp(dµ(u)). Here we can
follow the proof of Proposition 4.6. We do not write the details.

7.3. Study of the measure νN

Let N > 1 and consider the Equation (1.15). Observe that uN = ΠNu
satisfies an ODE, while u⊥N = (1 − ΠN )u is solution to the linear problem
(i∂t−Λ)u⊥N = 0. Since the L2(S1)-norm of a solution u to (1.15) is preserved,
it follows that the equation is globally well-posed in L2(S1). We denote by
ΦN the flow map. Moreover, because of the Hamiltonian structure and the
Liouville theorem, the measure ρN is invariant by ΦN .

Similarly to the previous section, for T > 0 we define the measure νN on
C
(
[−T, T ];X0(S1)

)
as the image of ρN by the flow map

X0(S1) −→ C
(
[−T, T ];X0(S1)

)
v 7−→ ΦN (t)(v).

Using this definition, we can prove

Lemma 7.6. — Let σ > 0, then for all p > 2∥∥‖G(u)‖Lp
T
H−σx

∥∥
LpνN
6 C. (7.11)
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Proof. — By definition, invariance of ρN and Cauchy–Schwarz

‖G(u)‖p
LpνNL

p
T
H−σx

=
∫
C
(

[−T,T ];X0
) ‖G(u)‖p

Lp
T
H−σx

dνN (u)

=
∫
X0
‖G
(
ΦN (t)(v)

)
‖p
Lp
T
H−σx

dρN (v)

= 2T
∫
X0
‖G(v)‖p

H−σx
θN (v)dµ(v)

6 2T‖G(v)‖p
L2p
µ H

−σ
x
‖θN (v)‖L2

µ
.

We conclude with (7.3) and Proposition 7.4. �

Lemma 7.7. — Let σ > 0, then for all p > 2∥∥‖u‖Lp
T
H−σx

∥∥
LpνN
6 C, (7.12)∥∥‖u‖W 1,p

T
H−σ−1
x

∥∥
LpνN
6 C. (7.13)

Proof. — The proof of (7.12) is a consequence of (3.3) and Lemma 5.2.
The estimate (7.13) is obtained from (7.11) and (7.12). The proof is similar
to (5.5) and we do not write the details. �

As a consequence we can show
Proposition 7.8. — Let T > 0 and σ > 0. Then the family of measures

νN = LCTH−σ
(
uN (t); t ∈ [−T, T ]

)
N>1

is tight in C
(
[−T, T ];H−σ(S1)

)
.

7.4. Proof of Theorem 1.7

The proof is similar to the Benjamin–Ono case. The only difficulty lies
in the limit of the nonlinear term. Recall the definition (1.16), then

Lemma 7.9. — Up to a sub-sequence, the following convergence holds
true

GNk(ũNk) −→ G(ũ), p̃− a.s. in L2([−T, T ];H−σ(S1)
)
,

where G is defined by Proposition 1.4.
Proof. — We only give the main lines, and we refer to the proof of

Lemma 5.6 for the details. We drop the tildes and write Nk = k. Let M > 1
and write

Gk(uk)−G(u) =
(
Gk(uk)−G(uk)

)
+
(
G(uk)−GM (uk)

)
+
(
GM (uk)−GM (u)

)
+
(
GM (u)−G(u)

)
.
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For fixed M > 1, using that GM is continuous
GM (uk) −→

k→+∞
GM (u), p̃− a.s. in L2([−T, T ];H−σ(S1)

)
.

For the other terms, we use the definition of the measure νk and Proposi-
tion 1.4 to prove the convergence (when k → +∞ orM → +∞) in the space
X := L2(Ω × [−T, T ];H−σ(S1)

)
. Then the almost sure convergence follows

after extraction of a sub-sequence. �

8. The two dimensional nonlinear Schrödinger equation on an
arbitrary domain

8.1. Preliminaries: some pointwise estimates on the spectral func-
tion

Let
e(x, λ, µ) =

∑
µ6λn<λ

|ϕn(x)|2,

be the spectral function.

We first state a precise asymptotic of the spectral function “away” from
the boundary essentially due to Hörmander [29, Theorem 17.5.10].

Proposition 8.1. — Let d(x) = d(x, ∂M) be the distance of the point
x ∈ M to the boundary ∂M. There exists C > 0 such that for any λ > 1,
any x ∈M satisfying d(x) > λ− 1

2 and any δ ∈ [0, 1], we have∣∣∣∣e(x, λ+ δλ
1
2 , λ)− δ

2πλ
3
2

∣∣∣∣ 6 Cλ 5
4 . (8.1)

This result can be deduced from Seeley [42, Estimate (0.1) with n = 2 and
τ = λ]. Here, in Section 8.6 we give an argument based on Hörmander [29].

Now we give a general bound of the spectral function near the boundary
due to Sogge [45].

Proposition 8.2. — There exists C > 0 such that for any λ > 1 and
x ∈M

e(x, λ+ 1, λ) 6 Cλ. (8.2)

In particular, the previous result implies the bound

‖ϕn‖L∞ 6 Cλ
1
2
n 6 C〈n〉

1
4 . (8.3)

Proposition 8.2 is the case q = +∞ in [44, (1.5)], which in turn is an easy
consequence of [45].
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8.2. Estimates on the spectral function in mean value

The following propositions which will be proved in Section 8.6 are the key
elements in our argument. The first one is a rough bound which states that
(in a mean value meaning with respect to the index n), the eigenfunctions are
uniformly bounded onM. We state it for windows of size 1 for the spectral
projector.

Proposition 8.3. — There exists C > 0 such that for any orthonormal
basis (ϕn)n>0 of eigenfunctions of −∆g, and any µ > 0, any x ∈ M, we
have ∑

λm∈[µ,µ+1)

1
λ2
m + 1 |ϕm|

2(x) 6 C
∑

λm∈[µ,µ+1)

1
λ2
m + 1 .

The second one is more precise and states that (again in a mean value
meaning), the eigenfunctions are actually constant on M (away from the
boundary and modulo errors). Remark that our assumption that Vol(M) = 1
and the L2 normalization of eigenfunctions imply that this constant has to
be 1.

Proposition 8.4. — There exists C > 0 such that for any orthonormal
basis (ϕn)n>0 of eigenfunctions of −∆g, and any µ > 0, δ ∈ [0, 1], we have∑

λm∈[µ,µ+δµ
1
2 )

1
λ2
m + 1 |ϕm|

2(x) =
∑

λm∈[µ,µ+δµ
1
2 )

1
λ2
m + 1 +Gµ(x),

with ∫
M
Gµ(x) dx = 0, (8.4)

and
|Gµ(x)| 6 Cµ− 3

4 + Cµ−
1
21
{d(x)<µ−

1
2 }
, (8.5)

where for x ∈M, d(x) is the distance of x to the boundary ofM.

Remark 8.5. — The introduction of windows [µ, µ+ δµ
1
2 ) is required by

the analysis near the boundary but are unnecessary for manifolds without
boundaries, in which case elementary version of Proposition 8.3 are sufficient.

8.3. Definition of the Gibbs measure

The aim of this paragraph is to prove Theorem 1.11. To begin with, we
decompose, on the support of the measure µ, the quartic term ‖ΠNu‖4L4(M)
in the Hamiltonian in order to get a suitable renormalization in the following
section.
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8.3.1. Decomposition of ‖ΠNu‖4L4(M) on the support of µ

Recall that αN is defined in (1.23) and that ΠNu =
∑
n6N cnϕn for

u =
∑
n>0 cnϕn. Therefore we can write

‖ΠNu‖4L4(M) =
∑

n1,n2,n3,n46N

cn1cn2cn3cn4 γ(n1, n2, n3, n4),

where
γ(n1, n2, n3, n4) =

∫
M
ϕn1ϕn2ϕn3ϕn4 .

Next, we set

Λ =
{

(n1, n2, n3, n4) ∈ N4
∣∣∣ {n1, n3} = {n2, n4}

}
.

We denote by Λc the complementary of Λ in N4. Therefore, we can split

‖ΠNu‖4L4(M) = Y1,N (u) + Y2,N (u) + Y3,N (u),

where

Y1,N (u) =
∑

(n1,n2,n3,n4)∈Λc
n1,n2,n3,n46N

cn1cn2cn3cn4 γ(n1, n2, n3, n4),

Y2,N (u) = 2
∑

n1,n26N

|cn1 |2|cn2 |2γ(n1, n1, n2, n2),

and finally
Y3,N (u) = −

∑
n6N

|cn|4γ(n, n, n, n).

As we shall see the singular part of the L4 norm on the support of µ is given
by the contribution of Y2,N . Indeed, let us study the behavior of Y2,N on the
support of µ. Write

Y2,N

(∑
n>0

gn(ω)
(λ2
n+1) 1

2
ϕn(x)

)
= 2

∑
n1,n26N

|gn1(ω)|2 |gn2(ω)|2

(λ2
n1

+1)(λ2
n2

+1)

∫
M
|ϕn1 |2|ϕn2 |2.

We can split the last expression as I + II + III, where

I = 2
∑

n1,n26N

(|gn1(ω)|2 − 1) (|gn2(ω)|2 − 1)
(λ2
n1

+ 1)(λ2
n2

+ 1)

∫
M
|ϕn1 |2|ϕn2 |2 ,

II = 4
∑

n1,n26N

|gn1(ω)|2

(λ2
n1

+ 1)(λ2
n2

+ 1)

∫
M
|ϕn1 |2|ϕn2 |2 ,
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and

III = −2
∑

n1,n26N

1
(λ2
n1

+ 1)(λ2
n2

+ 1)

∫
M
|ϕn1 |2|ϕn2 |2 .

• Study of the term I . The term I is a regular term.

• Study of the term II. This one will require the most delicate analysis.
We have

II = 4
∑
n6N

|gn(ω)|2

λ2
n + 1

∑
m6N

1
λ2
m + 1

∫
M
|ϕn|2|ϕm|2dx.

Let
αN =

∑
06m6N

1
λ2
m + 1 = Eµ

[
‖uN‖2L2(M)

]
(notice that according to Weyl formula, |αN | . ln(N)).

We can write the segment [λ0, λN ] as a disjoint union of intervals Ek =
[µk, µk + dkµ

1
2
k ), 1 6 k 6MN , with dk = 1 for k < MN and dMN

∈ [0, 1]. In
other words we define µk by µ0 = λ0, µk+1 = µk + µ

1
2
k for k < MN .

We can check that

µk ∼
k2

4 , (8.6)

and this will be used in the sequel to study convergence of series.

By Proposition 8.4, if we denote by
∑MN

k=1Gµk(x) = KN (x) we have∑
m6N

1
λ2
m + 1 |ϕm|

2(x) = αN +KN (x), (8.7)

and with this decomposition we can split

II = II1 + II2,

where

II1 = 4αN
∑
n16N

|gn1(ω)|2

λ2
n1

+ 1

and

II2 = 4
∑
n6N

|gn(ω)|2

λ2
n + 1

∑
k6MN

∫
M
|ϕn|2Gµk(x)dx.

We deduce
II2 = II21 + II22,
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where

II21 = 4
∑
n6N

(|gn(ω)|2 − 1)
λ2
n + 1

∑
k6MN

∫
M
|ϕn|2Gµk(x)dx

and

II22 = 4
∑
n6N

1
λ2
n + 1

∑
k6MN

∫
M
|ϕn|2Gµk(x)dx.

By Sobolev ‖ϕn‖L∞ 6 Cλn, then by interpolation∫
{x∈M;d(x)<µ

− 1
2

k
}
|ϕn|2(x)dx 6 C inf(1, µ−

1
2

k ‖ϕn‖
2
L∞) 6 Cµ−

1
16

k λ
1
4
n .

Thanks to the previous inequality, we get

∑
k6MN

∫
M
|ϕn|2Gµk(x)dx

6 C
∑
k6MN

(
µ
− 3

4
k + µ

− 1
2

k

∫
{x∈M;d(x)<µ

− 1
2

k
}
|ϕn|2(x)dx

)
6 Cλ

1
4
n ,

where we have used (8.6).

We are now able to show that the term II21 is regular because

E
[
| II21 |2

]
= C

∑
n6N

1
(λ2
n + 1)2

∣∣∣∣∣ ∑
k6MN

∫
M
|ϕn|2Gµk(x)dx

∣∣∣∣∣
2

6 C
∑
n>0

1
(λ2
n + 1) 7

4
< +∞,

where in the last line we used that by Weyl formula, we have λn ∼
√
n.

On the other hand, II22 is a constant (and hence can be renormalized).
However, we want to keep track of the necessary renormalization involved
(and to compare them with the usual ones). Hence, we apply again Propo-
sition 8.3 to the index n now (with the same decomposition on [λ1, λN ]).
With (8.7) and (8.4) we get

II22 = 4αN
∑
k6MN

∫
M
Gµk(x)dx+ 4

∑
k,`6MN

∫
M
Gµk(x)Gµ`(x)dx

= 4
∫
M
K2
N (x)dx,
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and with (8.5) we prove that this term is uniformly bounded with respect
to N . Actually

II22 6 C
∑

k,`6MN

∫
d(x)<min(µ

− 1
2

k
,µ
− 1

2
`

)
Gµk(x)Gµ`(x)dx

+ C
∑

k6`6MN

∫
µ
− 1

2
`

6d(x)6µ
− 1

2
k

Gµk(x)Gµ`(x)dx

+ C
∑

k,`6MN

∫
d(x)>max(µ

− 1
2

k
,µ
− 1

2
`

)
Gµk(x)Gµ`(x)dx

6 C
∑

k,`6MN

min(µ−
1
2

k , µ
− 1

2
` )

µ
1
2
k µ

1
2
`

+ C
∑

k6`6MN

µ
− 3

4
k µ

− 3
4

`

+ C

( ∑
k6MN

µ
− 3

4
k

)2

6 C. (8.8)

• Study of the term III. We have

III = −2
∫
M

( ∑
n16N

|ϕn1 |2

λ2
n1

+ 1

)( ∑
n26N

|ϕn2 |2

λ2
n2

+ 1

)
dx

= −2
(
α2
N +

∫
M

( ∑
k6MN

Gµk(x)
)2

dx
)
.

The last term in the previous line is I 22 up to a factor, hence we can write
III = −2α2

N + Y4,N ,

where Y4,N = II22 up to a factor.

Remark 8.6. — We could also define ΠN as the smooth projector ΠN =
χ(
√
−∆
N ), where χ ∈ C∞0 (R) is equal to 1 on [−1, 1]. Then

ΠN

(∑
n

cnϕn

)
=
∑
n

χ

(
λn
N

)
cnϕn .

With such a definition of ΠN the singular term II becomes

II =
∑
n

χ(λnN )
1 + λ2

n

|gn(ω)|2
∑
m

χ(λmN )
1 + λ2

m

∫
M
|ϕn(x)ϕm(x)|2dx .

In this context, the main contribution of this term is∑
m

χ(λmN )
1 + λ2

m

|ϕm(x)|2 = KN (x, x),
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whereKN (x, y) is the kernel of the operator (1−∆)−1χ(
√
−∆
N ). ThereforeKN

is a regularised version of the Green function G of 1−∆, namely KN ( · , y) =
ΠNG( · , y). In the case of a manifold without boundary, we can use the
Helffer–Sjöstrand formula (see for instance [9]) and a partition of unity to
prove that

KN (x, x) = αN +O(1),
where

αN ≡
∑
m

χ(λmN )
1 + λ2

m

≈ lnN .

Therefore measuring the singularity on the diagonal of the truncated Green
function of 1−∆ is the key point of the analysis of the singular term. The
above interpretation of KN (x, y) is in the spirit of the analysis in Simon [43].

8.3.2. An L2 estimate

A crucial step in the proof is the following
Lemma 8.7.

‖fN (u)− fM (u)‖L2(dµ(u)) .M
−σ′ , (8.9)

for some positive constant σ′.
Proof. — Thanks to the analysis in the previous section, we can write

‖fN (u)− fM (u)‖L2(dµ(u)) . J1 + J2 + J3 + J4,

where J1, J2, J3 and J4 are defined as follows. The term J1 is the contribution
of Y1,N (u) and thus it is defined by

J1 =

∥∥∥∥∥ ∑
(n1,n2,n3,n4)∈Λc

max(n1,n2,n3,n4)>M
n1,n2,n3,n46N

gn1(ω)
(λ2
n1

+ 1) 1
2

gn2(ω)
(λ2
n2

+ 1) 1
2

gn3(ω)
(λ2
n3

+ 1) 1
2

× gn4(ω)
(λ2
n4

+ 1) 1
2
γ(n1, n2, n3, n4)

∥∥∥∥∥
L2(Ω)

.

The term J2 is the contribution of Y3,N (u) and thus it is defined by

J2 =

∥∥∥∥∥ ∑
M6n6N

|gn(ω)|4

(λ2
n + 1)2 γ(n, n, n, n)

∥∥∥∥∥
L2(Ω)

.

The term J3 is the contribution of I and thus it is defined by

J3 =

∥∥∥∥∥ ∑
max(n1,n2)>M

n1,n26N

(|gn1(ω)|2 − 1) (|gn2(ω)|2 − 1)
(λ2
n1

+ 1)(λ2
n2

+ 1)

∫
M
|ϕn1 |2|ϕn2 |2

∥∥∥∥∥
L2(Ω)

.
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Finally, the term J4 is the contribution of the renormalized part of II and
therefore it is defined by

J4 =

∥∥∥∥∥ ∑
M6n6N

GN (n)(|gn(ω)|2 − 1)
λ2
n + 1

∥∥∥∥∥
L2(Ω)

.

Let us first estimate J4. Using Proposition 8.4 and orthogonality, we get that

J2
4 .

∑
M6n6N

1
n2 .M

−1 .

For the estimate of J2, we will not use an orthogonality in ω, we will simply
rely on the triangle inequality. The estimates for J1 and J3 will rely on
orthogonality arguments. The estimates for J1, J2 and J3 will rely on the
following key estimate for the behavior of γ(n1, n2, n3, n4)

Lemma 8.8. — There exists δ > 0 such that∑
max(λn1 ,λn2 ,λn3 ,λn4 )>M

|γ(n1, n2, n3, n4)|2

(λ2
n1

+1)(λ2
n2

+1)(λ2
n3

+1)(λ2
n4

+1) .M
−δ . (8.10)

We postpone the proof of this result and finish the proof of Lemma 8.7.
Using an orthogonality argument, we can estimate J1 as follows

J2
1 .

∑
max(n1,n2,n3,n4)>M

n1,n2,n3,n46N

|γ(n1, n2, n3, n4)|2

(n1 + 1)(n2 + 1)(n3 + 1)(n4 + 1)

which can be readily estimated by an application of Lemma 8.8.

To estimate J2, we use the bound (8.3), which implies that

‖ϕn‖L4 6 Cλ
1
4
n ,

and therefore
J2 .

∑
M6n6N

1
n

3
2
.M−

1
2 .

Finally concerning J3, we can use another orthogonality argument in order
to write

J2
3 .

∑
max(n1,n2)>M

n1,n26N

|γ(n1, n1, n2, n2)|2

(n1 + 1)2(n2 + 1)2

+
∑

M6n1,n26N

|γ(n1, n1, n1, n1)γ(n2, n2, n2, n2)|
(n1 + 1)2(n2 + 1)2 .
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The first term in the right hand side is estimated similarly as J2
1 (it is a sub-

case), while the second term is estimated as J2. This completes the proof of
Lemma 8.7. �

Proof of Lemma 8.8. — By a symmetry argument, we can estimate the
left hand-side of (8.10) by∑

N1>N2>N3>N4
N1>M

(N1,N2,N3,N4)−dyadic

(N1N2N3N4)−2
∑

λnj∼Nj
j=1,2,3,4

|γ(n1, n2, n3, n4)|2 . (8.11)

Now we can perform the n1 summation and estimate (8.11) as∑
N1>N2>N3>N4

N1>M

(N1N2N3N4)−2
∑

λnj∼Nj
j=2,3,4

‖ϕn2ϕn3ϕn4‖2L2(M) . (8.12)

Next, we can write∑
λnj∼Nj
j=2,3

‖ϕn2ϕn3ϕn4‖2L2(M)

=
∫
M
|ϕn4(x)|2

( ∑
λn2∼N2

|ϕn2(x)|2
)( ∑

λn3∼N3

|ϕn3(x)|2
)

dx.

Now, from Proposition 8.2 applied to control

e(x, 2M,M) = e(x, 2M, 2M − 1) + · · ·+ e(x,M + 1,M),

we get the pointwise bound ∑
λn∼N

|ϕn(x)|2 . N2

and (integrating on the manifold)

#{n |λn ∼ N} . N2.

This gives that (8.12) can be estimated by∑
N1>N2>N3>N4

N1>M

(N1N2N3N4)−2N2
4 (N2

2N
2
3 )

which clearly can be bounded by M−δ for any 0 < δ < 2. �
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8.3.3. Proof of Theorem 1.11

To prove Theorem 1.11, the main point is to estimate the measure

µ
(
u
∣∣−fN (u) > ln(λ)

)
(8.13)

and to show that ∫ ∞
0

µ
(
u
∣∣−fN (u) > ln(λ)

)
λpdλ < C, (8.14)

where C is independent of N . Standards arguments show that (8.13) implies
Theorem 1.11 (see [13, 46, 49]). Now we can write

fN (u) = 1
2

∫
M

(
(ΠN (u))2 − 2αN

)2 − α2
N .

Therefore, we have the pointwise bound

−fN (u) . (ln(N))4 . (8.15)

The power of ln(N) of the last estimate is not of importance for the further
analysis. Notice that here we make a crucial use of the defocusing nature of
the nonlinear interaction. Using (8.15) we obtain that if M is such that

ln(λ)− C(ln(M))4 > 1,

where C is the implicit constant appearing in (8.15), then

µ
(
u
∣∣−fN (u) > ln(λ)

)
6 µ

(
u
∣∣ − (fN (u)− fM (u)) > 1

)
.

We therefore choose M such that ln(λ) ≈ (ln(M))4, i.e.

M ≈ e(ln(λ))
1
4 .

The result clearly follows from the following bound

∃ c, δ > 0; ∀ N > M,µ(u | − (fN (u)− fM (u)) > 1) . e−cM
δ

. (8.16)

Finally, (8.16) follows from the L2-bound (8.9) and classical hypercon-
tractivity estimates (see for instance [46, Proposition 2.4]). This in turn
completes the proof of Theorem 1.11.

8.4. Definition of the nonlinearity

The aim of this paragraph is to prove Proposition 1.10.

By the result [46, Proposition 2.4] on the Wiener chaos, we only have to
prove the statement for p = 2.
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Recall the definition of FN in (1.25) and let σ > 2. To begin with, use
that∫

X0(M)
‖FN (uN )− FM (uM )‖2H−σ(M)dµ(u)

=
∫

Ω
‖FN (ΨN )− FM (ΨM )‖2H−σ(M)dp.

Therefore, we are reduced to prove that
(
FN (ΨN )

)
N>1 is a Cauchy sequence

in L2(Ω;H−σ(M)
)
. Denote by

χN = |ΨN |2ΨN − 2αNΨN .

It is enough to show the result for (χN ), because once we know that χN −→
χ in L2(Ω;H−σ(M)

)
, we deduce that FN (ϕN ) = ΠNχN −→ χ in L2(Ω;

H−σ(M)
)
. In the sequel, we will use the notation [n] = λ2

n+ 1. By the Weyl
formula we have [n] ∼ n when n −→ +∞. Then, by definition of ΨN we can
compute

|ΨN |2ΨN =
∑

n1,n2,n36N

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2
ϕn1ϕn2ϕn3

=
∑

n1,n2,n36N,
n1 6=n2,n3 6=n2

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2
ϕn1ϕn2ϕn3

+ 2
∑

n,m6N

|gn|2gm
[n][m] 1

2
|ϕn|2ϕm −

∑
n6N

|gn|2gn
[n] 3

2
|ϕn|2ϕn

:= Σ1(N) + Σ2(N)− Σ3(N).

Then for Σ2(N) we use the decomposition (8.7)

Σ2(N) = 2ΨN

∑
n6N

|gn|2

[n] |ϕn|
2

= 2ΨN

∑
n6N

|gn|2 − 1
[n] |ϕn|2 + 2αNΨN + 2KNΨN

:= Σ21(N) + Σ22(N)− Σ23(N).

Observe that Σ22(N) is the term which is removed in the definition of χN .
Therefore we are reduced to study the contribution of the other terms.

• Contribution of Σ1. For all 1 6M 6 N

〈Σ1(N)− Σ1(M) |ϕk〉 =
∑
BM,N

gn1gn2gn3

[n1] 1
2 [n2] 1

2 [n3] 1
2
γ(n1, n2, n3, k), (8.17)
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where the set BM,N is defined by

BM,N =
{

(n1, n2, n3) ∈ N3

∣∣∣∣∣ 0 6 n1, n2, n3 6 N, n1 6= n2, n3 6= n2,

and max(n1, n2, n3) > M

}
.

From (8.17) we obtain∥∥〈Σ1(N)− Σ1(M) |ϕk〉
∥∥2
L2(Ω)

=
∫

Ω

∑
(n1,n2,n3)∈BM,N

(m1,m2,m3)∈BM,N

gn1gn2gn3gm1gm2gm3

[n1] 1
2 [n2] 1

2 [n3] 1
2 [m1] 1

2 [m2] 1
2 [m3] 1

2

× γ(n1, n2, n3, k)γ(m1,m2,m3, k)dp.

Since the (gn) are independent and centred, we deduce that each term in
the r.h.s. vanishes, unless n2 = m2 and (n1, n3) = (m1,m3) or (n1, n3) =
(m3,m1). Thus

∥∥〈Σ1(N)− Σ1(M) |ϕk〉
∥∥2
L2(Ω) 6 C

∑
(n1,n2,n3)∈BM,N

|γ(n1, n2, n3, k)|2

〈n1〉〈n2〉〈n3〉
.

Let σ > 1, then we get∥∥Σ1(N)− Σ1(M)
∥∥2
L2(Ω;H−σ(M)) =

∑
k∈N

1
〈k〉σ

∥∥〈Σ1(N)− Σ1(M) |ϕk〉
∥∥2
L2(Ω)

6 C
∑

(n1,n2,n3)∈BM,N
k∈N

|γ(n1, n2, n3, k)|2

〈k〉σ〈n1〉〈n2〉〈n3〉
,

and this term can be estimated as J1, namely for some η > 0∥∥Σ1(N)− Σ1(M)
∥∥
L2(Ω;H−σ(M)) 6

C

Mη
.

• Contribution of Σ3. For all 1 6M 6 N

〈Σ3(N)− Σ3(M) |ϕk〉 =
∑

M<n6N

|gn|2gn
[n] 3

2
γ(n, n, n, k).

By the bound (8.3) we infer

|γ(n, n, n, k)| 6 C〈n〉 1
4 〈k〉 1

4
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and from the independence of the Gaussians we get∥∥〈Σ3(N)− Σ3(M) |ϕk〉
∥∥2
L2(Ω) = C

∑
M<n6N

|γ(n, n, n, k)|2

[n]3

6 C〈k〉 1
2

∑
M<n6N

1
〈n〉 5

2
6 C
〈k〉 1

2

M
.

Finally, if σ > 3
2 we obtain∥∥Σ3(N)− Σ3(M)

∥∥2
L2(Ω;H−σ(M))

=
∑
k∈N

1
〈k〉σ

∥∥〈Σ3(N)− Σ3(M) |ϕk〉
∥∥2
L2(Ω) 6

C

M
.

• Contribution of Σ2. For all 1 6M 6 N

〈Σ21(N)− Σ21(M) |ϕk〉 = 2
∑
CM,N

(|gn|2 − 1)gm
[n][m] 1

2
γ(n, n,m, k),

where the set CM,N is defined by

CM,N =
{

(n,m) ∈ N2

∣∣∣∣∣ (M < n 6 N and m 6 N)
or (M < m 6 N and n 6M)

}
.

Then by the orthogonal properties of the Gaussians we obtain∥∥〈Σ21(N)− Σ21(M) |ϕk〉
∥∥2
L2(Ω) 6 C

∑
n,m6N

max(n,m)>M

|γ(n, n,m, k)|2

〈n〉2〈m〉
,

which (when multiplied by 〈k〉−1) is estimated by Lemma 8.8 in the previous
section (it is actually a sub-case) fixing n1 = n2 = n, n3 = m,n4 = k):∑

k

〈k〉−1∥∥〈Σ21(N)− Σ21(M) |ϕk〉
∥∥2
L2(Ω)

6 C
∑
k

∑
n,m6N

max(n,m)>M

|γ(n, n,m, k)|2

〈n〉2〈m〉〈k〉

6
∑

n1,n2,n3,n46N
max(n1,n2,n3,n4>M

|γ(n1, n2, n3, n4)|2

〈n1〉〈n2〉〈n3〉〈n4〉
6

C

Mδ
.

Therefore, if σ > 1 we obtain∥∥Σ21(N)− Σ21(M)
∥∥2
L2(Ω;H−σ(M)) 6

C

M
.
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We now study the term Σ23. We have
Σ23(N)− Σ21(M) = 2(KN −KM )ΨN + 2KM (ΨN −ΨM ). (8.18)

Let’s consider the contribution of the first term in the previous line. For
k > 0

〈(KN −KM )ΨN |ϕk〉 =
∑
n6N

gn

[n] 1
2

∫
M

(KN −KM )ϕnϕk.

By the orthogonal properties of the Gaussians and Parseval, we obtain∥∥〈(KN −KM )ΨN |ϕk〉
∥∥2
L2(Ω) =

∑
n6N

1
[n]

∣∣∣∣ ∫
M

(KN −KM )ϕnϕk
∣∣∣∣2

6 C
∑
n6N

∣∣∣∣ ∫
M

(KN −KM )ϕnϕk
∣∣∣∣2

6 C
∫
M

(KN −KM )2|ϕk|2

6 C〈k〉
∫
M

(KN −KM )2.

Now we estimate
∫
M(KN −KM )2 as in (8.8) and we get that for σ > 2∥∥(KN −KM )ΨN

∥∥
L2(Ω;H−σ(M)) 6

C

Mη
,

for some η > 0. The estimate of the second term in (8.18) is similar.

As a conclusion, we are able to define a limit F (u) so that for all p > 2
‖F (u)‖LpµH−σ(M) 6 Cp. (8.19)

8.5. Proof of Theorem 1.12

Once estimate (8.19) is proved, the analysis in the proof of Theorem 1.12
is the same as in the proof of Theorem 1.7 (see Section 7).

8.6. Proof of Propositions 8.1, 8.4 and 8.3

Proof of Proposition 8.1. — We first treat the case of Dirichlet boundary
conditions. For y ∈ R2 and τ > 0, denote by

e0(y, τ2) = 1
4π2

∫
{ξ∈R2 | |ξ|<τ}

eiy·ξdξ.
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Then by [29, Theorem 17.5.10]

|e(x, λ, 0)− e0(0, λ2) + e0(2d(x), λ2)| 6 Cλ. (8.20)

(Notice that in [29] the parameter λ denotes the eigenvalues while here
λ are the square root of the eigenvalues and that in our setting γ(x) =
(det(gi,j(x)))− 1

2 ). The function e0 is radial in y and with a change of vari-
ables we get

e0(y, τ2) = τ2

4πJ(τ |y|), with J(t) =
∫
{ξ∈R2 | |ξ|<1}

eitξ1dξ. (8.21)

We now claim that for all t ∈ R

J(t) 6 C〈t〉− 3
2 , J ′(t) 6 C〈t〉− 3

2 . (8.22)

For the first inequality we write for |t| > 1

J(t) =
∫ 1

−1

∫ √1−ξ2
2

−
√

1−ξ2
2

eitξ1dξ1dξ2 = 1
it

∫ 1

−1

(
eit
√

1−ξ2
2 − e−it

√
1−ξ2

2
)
dξ2

= 2
it

∫ π
2

0

(
eit cos θ − e−it cos θ) cos θdθ

and the result follows from the stationary phase. The estimate on J ′ is
obtained similarly.

Clearly, from e0(0, λ2) = λ2

4π we get

e0
(
0, (λ+ δλ

1
2 )2)− e0(0, λ2) = δ

2πλ
3
2 +O(λ), (8.23)

and by (8.21) and (8.22)∣∣e0
(
2d(x), (λ+ δλ

1
2 )2)− e0(2d(x), λ2)

∣∣
6 Cλ2δd(x)λ 1

2 〈d(x)λ〉− 3
2 + Cδλ

3
2 〈d(x)λ〉− 3

2 6 Cδλ
5
4 ,

under the condition d(x) > λ− 1
2 . Then by (8.20) and (8.23) we get (8.1). �

Let us now prove Proposition 8.4.

Proof of Proposition 8.4. — For any µ > 0 and x ∈M, we write∑
λm∈[µ,µ+δµ

1
2 )

1
λ2
m + 1 |ϕm|

2(x)

=
∑

λm∈[µ,µ+δµ
1
2 )

|ϕm|2(x)
µ2 + 1 +

∑
λm∈[µ,µ+δµ

1
2 )

(
1

λ2
m+1 −

1
µ2 +1

)
|ϕm|2(x)

:= F1,µ(x) + F2,µ(x).
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First observe that by (8.2) we have for all x ∈M

e(x, µ+ δµ
1
2 , µ) 6 Cµ 3

2 . (8.24)

Then from the previous bound, we deduce that

|F2,µ(x)| 6 C µ
3
2

µ2 + 1
∑

λm∈[µ,µ+δµ
1
2 )

|ϕm|2(x) 6 Cµ−1,

which is an acceptable bound.

We now turn to the estimate of F1,µ. For x ∈ M such d(x) > µ−
1
2 we

can use (8.1) to write

F1,µ(x) = 1
µ2 + 1e(x, µ+ δµ

1
2 , µ) = δµ

3
2

2π(µ2 + 1) +O(µ− 3
4 ).

But thanks to the Weyl formula

]
{
n;λn ∈ [µ, µ+ δµ

1
2 )
}

= δ

2πµ
3
2
(
1 +O(µ− 1

4 )
)
,

which is obtained by integrating (8.1) and using (8.24), we get∑
λm∈[µ,µ+δµ

1
2 )

1
λ2
m + 1 = δµ

3
2

2π(µ2 + 1) +O(µ− 3
4 ), (8.25)

which was the claim.

Now we assume that d(x) 6 µ− 1
2 . Then by (8.24) we have

F1,µ(x) = 1
µ2 + 1e(x, µ+ δµ

1
2 , µ) 6 C µ

3
2

µ2 + 1 = O(µ− 1
2 ).

This proves (8.5). The fact (8.4) is obtained by integration of Fµ. The proof
of Proposition 8.4 is complete. �

Proof of Proposition 8.3. — By (8.25) with δ = 1, we observe that
Proposition 8.4 directly implies Proposition 8.3. �
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