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Diffusion-orthogonal polynomial systems of maximal
weighted degree

Lev Soukhanov (1)

ABSTRACT. — A diffusion-orthogonal polynomial system is a bounded
domain Ω in Rd endowed with the measure µ and the second-order elliptic
differential operator L, self adjoint w.r.t L2(Ω, µ), preserving the space
of polynomials of degree 6 n for any n. This notion was initially defined
in [2], and 2-dimensional models were classified.

It turns out that the boundary of Ω is always an algebraic hypersurface
of degree 6 2d. It was pointed out in [2] that in dimension 2, when the
degree is maximal (so, equals 4), the symbol of L (denoted by gij) is a
cometric of constant curvature.

We present the self-contained classification-free proof of this property,
and its multidimensional generalisation.

RÉSUMÉ. — Un système de diffusion polynomial est la donnée d’un
domaine borné Ω ⊂ Rd équipé d’une mesure µ et d’un opérateur différen-
tiel elliptique d’ordre deux L, autoadjoint sur L2(Ω, µ), tels que l’espace
de polynômes de degré 6 n est invariant par L pour tout n. Cette notion
est introduite dans [2] et les modèles en dimension 2 y sont classifiés.

Une conséquence est que la frontière de Ω est toujours une hypersur-
face algébrique de degré 6 2d. D’après [2], en dimension 2 et lorsque le
degré est maximal (égal à 4) le symbole gij de L est une cométrique de
courbure constante.

Nous présentons une démonstration indépendante de cette propriété
valable en toute dimension.

1. Introduction

Definition 1.1. — A model is a triple (Ω, µ, L), such that Ω is a
bounded domain in Rd, µ is a measure on Ω, L is a second-order differential
elliptic operator, self-adjoint in L2(Ω, µ), preserving the space of polynomials
of degree 6 n for any n:

L := gij∂i∂j + hi∂i
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This notion naturally extends the notion of classical orthogonal polyno-
mial systems (we restrict ourselves only to the bounded case). It was initially
defined in [2], and full classification of these systems in dimension 2 was ob-
tained.

Also, there is a weighted case: let us consider the natural numbers w1, . . . ,
wd > 1, called “weights” of the variables x1, . . . , xd.

The space Wk of polynomials of weighted degree 6 k is the span of
monomials of the form xs1

1 . . . xsd

d such that
∑
siwi 6 k. We will say that

the polynomial has a weighted degree 6 k if it is contained in the space Wk.

Then one can introduce the following definition:

Definition 1.2. — A weighted model (for the given weights) is defined
in a same way as a model, but L preserves the spaces Wk instead.

At the moment, there is no known classification of weighted models even
in degree 2.

The following important property holds: the boundary of Ω is a (part
of) algebraic hypersurface and has a weighted degree at most 2(

∑
wi) (it is

proved in [2] and will be explained throughout the text).

Definition 1.3. — The weighted model is called maximal if the degree
of boundary of Ω is exactly 2(

∑
wi).

Remark 1.4. — In [2] it has been noted as a consequence of the classifica-
tion that in the non-weighted case, the curvature of the metric gij = (gij)−1

is constant and non-negative for all maximal models.

We explain this fact and prove it in a much broader scope.

Theorem (Theorem 2.9). — For a maximal weighted model of any di-
mension the riemannian metric gij = (gij)−1 is of constant scalar curvature.

We are currently unable to prove (either in the weighted case, or even in
non-weighted, but without using classification) that the curvature should be
non-negative.

In dimension 2, the constant scalar curvature property implies that the
metric is locally modelled on the round sphere, the euclidean plane or the
hyperbolic plane. Then we make use of other invariants (covariant derivatives
of the curvature tensor) and extend this property to higher dimensions:

Theorem (Corollary 3.10). — The riemannian metric of the maximal
model is locally homogeneous (in any dimension).
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2. Scalar curvature of g

2.1. Necessary facts about diffusion-orthogonal models

Now we are going to present the list of some useful results of [1] and [2]
about (weighted) models.

Property 2.1. — Measure µ is always a smooth function multiple of
the Lebesgue measure on Ω. We will denote this function as µ by abuse of
notation.

Property 2.2. — Hence, by self-adjointness, L is of the form 1
µ∂iµg

ij∂j.

Property 2.3. — It is quite easy to see that gij is a symbol of L, and
then gij must be a polynomial of weighted degree 6 (wi+wj) (if not, L won’t
preserve Wk’s).

Property 2.4. — The boundary of Ω is always contained in the hyper-
surface det(gij) = 0, hence has a weighted degree at most 2(

∑
wi).

Denote det(gij) by D, G = D−1.

Property 2.5. — For a maximal model the polynomial gradg(D) =
gij∂iD is divisible by D.

These properties are contained in Theorem 5.1 of [1].

2.2. Strategy of the proof

In the two following subsections we prove two facts about the scalar
curvature Sc(g). In the first one we obtain by inspection of the formula that
Sc(g) is a rational function of weighted degree 6 0. In the second we prove
that it is, in fact, polynomial, hence, constant.

In what follows the degree of a rational function P/Q is defined as
deg(P )− deg(Q).

– 513 –



Lev Soukhanov

2.3. Formula for Sc(g)

The metric is defined from the cometric as

gij = (gij)−1

gij = ĝijD−1

By the maximality of the model degree

deg(D−1) = −2
∑

wi

and so

deg(ĝij) 6 (2
∑

wi)− (wi + wj)
deg(gij) 6 −wi − wj

The Christoffel symbols are defined as follows:

Γijk = ∂kgij − ∂jgki − ∂igjk
Γkij = gklΓkij

The degrees are as follows: (partial along i derivation lowers degree by wi)

deg(Γijk) 6 −wi − wj − wk
deg(Γkij) 6 wk − wi − wj

The formula of the Riemann curvature tensor is:

Rlijk = ∂iΓljk − ∂jΓlik + ΓsikΓljs − ΓlisΓsjk
The degree is

deg(Rlijk) 6 wl − wi − wj − wk
The scalar curvature is the following contraction:

Sc = Rjijkg
ik

So, its degree is
deg(Sc) 6 0

2.4. Scalar curvature is a polynomial

Claim 2.6. — D vanishes on the boundary of Ω with multiplicity 1.

Proof. — Otherwise, the degree of the boundary would be strictly less
than the degree of D, which contradicts maximality of Ω. �
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Recall also that, by the Property 2.5, gij∂jD is divisible by D.

Now we are going to exploit this fact to substitute the coordinates in
such a way that makes the metric g invertible. For the rest of this part we
consider all equations to be defined over C. We denote the complexification
of the symmetric 2-form g by the same letter.

Consider a variety S (“double cover”, defined by the equation z2 = D in
the space Cd+1 with coordinates (x1, . . . , xd, z)). It is obviously smooth at
the points where D 6= 0, and it is also smooth at the smooth points of the
set {z = 0, D = 0} (because D vanishes with multiplicity 1). Let us denote
by SR the set (Ω×R)∩ S - set of real points of S projected into Ω. Also we
denote the projection from S to Cd as π, the set of smooth points of S as
SSm, the set {p ∈ Cd|D(p) = 0} as ∆.

Lemma 2.7. — The pullback g̃ = π?g is an invertible (as a section of
S2(TSSm)) regular symmetric 2-form on SSm. Its restriction on the smooth
points of SR is a smooth riemannian metric.

Proof. — At first, notice that the pullback of g (either metric or cometric)
is well defined on the preimage of Cd\{D = 0} because π is a covering
away from ∆. So, g̃ is continued from an open dense subset on SSm as a
symmetric 2-form with rational coefficients on SSm, possibly having poles
in the ramification divisor π−1∆.

The rest is to check the absence of poles, which will be a local analysis
in a neighborhood of the smooth point of π−1∆.

Pick local coordinates y0, . . . , yd−1 in such a way that the local equation
of the boundary is y0 = D = 0 (this is possible by the implicit function
theorem), and the point p is (0, . . . , 0). Denote by J the Jacobian of the
change of coordinates x→ y.

By the Property 2.5, gradg(y0)/y0 is regular, which means that the coef-
ficients gy0y∗ are divisible by y0. Also, gy0y0 is not divisible by y2

0 (otherwise,
det(g) = DJ−1, and, hence, D would vanish with multiplicity > 1).

For the neighborhood of S around p pick the local coordinates

ỹ2
0 = z2 = y0

ỹi = yi.

By the chain rule:

∂ỹi
= ∂yi

∂ỹ0 = 2ỹ0∂y0

– 515 –



Lev Soukhanov

Hence, in the ỹ-coordinates,
gỹ∗ỹ∗ = gy∗y∗ , ∗ 6= 0

gỹ0ỹ∗ = gy0y∗/(2ỹ0), ∗ 6= 0
gỹ0ỹ0 = gy0y0/(4ỹ2

0)

Notice that, as gy0y∗ and gy∗y∗ are divisible by y0, these coefficients do
not blow up. Also notice that the determinant of the matrix g is divided
by ỹ2

0 = y0 totally (first row and first column are divided by ỹ0 each), so it
becomes a non-vanishing function (in the y-coordinates it was yJ). Hence,
the form g is regular and invertible in the ỹ-coordinates.

Moreover, the form g is positive-definite at smooth points of SR (as it is
invertible and positive definite in an open dense subset), so it is a smooth
riemannian metric on the smooth part of SR. �

Theorem 2.8. — The scalar curvature is a polynomial.

Proof. — Let us denote the irreducible components of the polynomial D
as D = D1 . . . Dk. There are no multiple components, because the degree
of the boundary is maximal. Also, for each Di there is smooth point on the
boundary such that Di vanishes in it (otherwise we could exclude this Di

from the equation of the boundary).

By the formula of the scalar curvature, it is a rational function of the
irreducible form P/Da1

1 . . . Dan
n (because all the divisions performed are di-

visions on the determinant of gij in the inverse matrix formula).

For each Di choose the smooth point pi on the boundary at which
Di(pi) = 0 but P (pi) 6= 0 (it can be done by a general position argument).
It suffices to check that the scalar curvature is finite at pi’s.

Scalar curvature is an invariant of the metric, so it can be calculated on
the preimages of the points pi’s on S instead (in the ỹ-coordinates). There, by
the previous lemma, we know that the metric is invertible smooth symmetric
2-form, hence the scalar curvature is finite. �

Theorem 2.9. — For a maximal degree model (gij) has constant scalar
curvature.

Proof. — Scalar curvature is a polynomial of degree 0 or less, so it is
constant. �

For the dimension 2, this theorem guarantees that the metric is locally
modelled on one of the three classical spaces: sphere, euclidean plane or
hyperbolic plane. In the higher dimensions the various possible refinements
of this theorem are possible.
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3. Local homogeneity of g

The scalar curvature is important, but it is only the first in the big list
of local metric invariants.

Definition 3.1. — A function of g is a rational function, depending on
∂s1 . . . ∂sk

gij with only (possibly) det(g)n in a denominator.

Remark 3.2. — For example, the coefficients of (gij) and all of their
derivatives are functions of g (as the inverse matrix is ĝ/det(g), and ĝ is
polynomial in g).

Definition 3.3. — A local metric invariant I(g) is a function of g in-
variant under change of coordinates.

Remark 3.4. — For example, the scalar curvature, or, generally, any
contraction of the Riemann curvature tensor and the metric tensor is a local
metric invariant.

Definition 3.5. — The metric is called locally homogeneous if any two
points have isometric neighborhoods.

Definition 3.6. — An invariant is called a scalar Weyl invariant if it is
a full tensor contraction of gij’s, gij’s and covariant derivatives of Riemann
curvature tensor ∇s1 . . .∇srRlijk’s.

Theorem 3.7 (Prufer, Tricerri, Vanhecke). — A metric is locally homo-
geneous if and only if all its scalar Weyl invariants are constant.

This is a version of a famous result of Singer. It is proved in [3].

Lemma 3.8. — Any scalar Weyl invariant on a maximal model is a ra-
tional function of degree 0.

Proof. — It is by the same inspection of the formula as for scalar curva-
ture:

deg(Rlijk) = wl − wi − wj − wk
deg(gij) 6 wi + wj

deg(gij) 6 −wi − wj
deg(Γkij) 6 wk − wi − wj

deg(∂i) = −wi
So, the degree of any formula with these symbols 6 sum of weights of upper
indices minus sum of weights of lower indices. But, as the scalar invariant
is a full contraction, each lower index is paired with an upper index, so the
degree is 6 0 �
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Lemma 3.9. — Any local invariant on a maximal model is polynomial.

Proof. — The same proof as for scalar curvature, literally: it is a rational
function with only possibly powers of D in the denominator, and it does not
tend to infinity at smooth points of boundary. �

Corollary 3.10 (of the theorems above). — For a maximal model the
metric is locally homogeneous.
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