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Regularity of conformal metrics
with large first eigenvalue

Henrik Matthiesen(1)

RÉSUMÉ. — On démontre un résultat sur la régularité de métriques
conformes de volumes unitaires avec une borne supérieure sur la norme
Lp de la courbure scalaire pour p > n/2, et une borne inférieure sur la
première valeur propre de ∆ par une constante B > Λ1(Sn, [gst.]).

ABSTRACT. — We establish a regularity result for conformal metrics with
unit volume, Lp scalar curvature bounds for p > n/2 and first eigenvalue
of ∆ bounded from below by a constant B > Λ1(Sn, [gst.]).

1. Introduction

Let (M, g) be a closed Riemannian manifold of dimension n � 3. For a
fixed metric g we consider conformally related metrics of the form u4/(n−2)g,
where u is a smooth positive function. The volumes of a measurable set
Ω ⊆M with respect to g and u4/(n−2)g are related by

vol(Ω, u4/(n−2)g) =

∫

Ω

u2�dVg,

where 2� = 2n/(n − 2) is the critical Sobolev exponent for the embedding
W 1,2 ↪→ Lp and Vg denotes the volume measure of g.

The scalar curvature transforms according to the semilinear elliptic equa-
tion

4
n− 1

n− 2
∆gu + Rgu = Ru4/(n−2)gu

2�−1 (1.1)
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which is of critical nonlinearity. Here Rg and Ru4/(n−2)g denote the scalar

curvature of the metric g respectively u4/(n−2)g, and ∆g = ∆ the (positive)
Laplace operator of (M, g).

Thus one may view the scalar curvature as a ’Laplacian of the metric’
when one considers only a fixed conformal class. In view of this analogy one
may ask whether Lp-bounds on the scalar curvature imply W 2,p-bounds on
the conformal factors u. In general, this is not true, see e.g. [2]. For p > n/2,
several results in this direction are known under certain additional assump-
tions. Classical examples of such assumptions are that the first eigenvalue of
the Laplace operator is bounded away from 0 and that additionally (M, g)
has dimension three [1, 4] or (M, g) = (Sn, gst.) [3]. The assumptions on the
geometry are made in order to rule out a blow-up at a single point. In the
case of the sphere, the result only holds true up to pulling back the con-
formal factors by conformal transformations. The large group of conformal
diffeomorphisms of Sn makes it possible to avoid blow-ups. In dimension
three a possible blow-up can be analyzed carefully and eventually ruled
out.

We prove a result in the spirit of the results in [1, 3, 4, 7], but instead
of geometric assumptions we assume that the first eigenvalue is sufficiently
large in order to rule out a possible blow-up.

Denote by ωn the n-dimensional Euclidean volume of the unit ball. Our
main result is

Theorem 1.1. — Let (M, g) be a closed Riemannian manifold of dimen-
sion n � 3 and u a smooth positive function. Consider the conformal metric
g̃ = u4/(n−2)g and denote by R̃ its scalar curvature. Assume that

(i) vol(M, g̃) = 1,

(ii)
∫
M
|R̃|pu2�dVg � A for some n/2 < p <∞,

(iii) λ1(M, g̃) � B > n ((n + 1)ωn+1)
2/n

.

Then there exist constants C1, C2, C3 > 0 depending on (M, g) and A,B
such that C1 � u � C2 and ‖u‖W 2,p(M,g) � C3.

Observe that once the L∞-bounds on u and u−1 are established, the
bound ‖u‖W 2,p(M,g) � C3 is a consequence of the standard elliptic estimates
in Lp-spaces applied to equation (1.1), see e.g. [12, Theorem 6.4.8]

The geometric significance of the constant B in assumption (iii) is that

we have λ1(S
n, gst.)vol(Sn, gst.)

2/n = n ((n + 1)ωn+1)
2/n

, where gst. de-
notes the round metric on Sn of curvature 1.
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Regularity of conformal metrics with large first eigenvalue

Remark 1.2. — Due to a result of Petrides [14], any conformal class ex-
cept for the standard conformal class on Sn admits a smooth metric g̃ with

unit volume and λ1(M, g̃) > n ((n + 1)ωn+1)
2/n

. See also [5], where a re-
lated but weaker result is proved.

Theorem 1.1 has some immediate and interesting consequences.

As mentioned above, for A sufficiently large we can find a constant B >

n ((n + 1)ωn+1)
2/n

such that there is at least one metric in the conformal
class of g satisfying the assumptions of Theorem 1.1 with these constants
A,B. For such A,B it is possible to find a positive and Hölder continuous
function u, such that u4/(n−2)g maximizes λ1 among all unit volume metrics
in the conformal class of g satisfying the same Lp-bound on the scalar
curvature, see Theorem 3.1.

Another consequence is a compactness result for sets of isospectral met-
rics within a conformal class, which satisfy in addition the assumptions of
Theorem 1.1, see Theorem 3.2

In Section 2 we explain the proof of Theorem 1.1. Afterwards, in Section
3, we briefly discuss the above mentioned applications.

Acknowledgment. — The author started working on this problem in
his master’s thesis at the University of Bonn and it is a great pleasure to
thank his advisor Werner Ballmann for suggesting this problem and many
helpful discussions. He is also very grateful to Bogdan Georgiev for many
mathematical conversations. The comments of the referee helped to improve
the presentation significantly. Moreover, the support and hospitality of the
Max Planck Institute for Mathematics in Bonn are gratefully acknowledged.

2. Proof of the theorem

The main argument for the proof of Theorem 1.1 is that assumption
(iii) rules out a possible blow-up. Once this is established, the result follows
from arguments which are seen as fairly standard by now. These arguments
are based on the Moser iteration scheme. For convenience, we explain how
to lift the integrability in order to find a bound on ‖u‖2�+ε for some ε > 0.
This is proved in different ways in various places, but we could not locate a
reference stating precisely what we need. Once this is done, the L∞-bounds
on u and u−1 follow from a Harnack inequality established by Trudinger in
[16]. Given the L∞-bounds the result follows from standard elliptic theory.

In general, all constants called C may differ from line to line and will
depend on (M, g) and the data A,B.
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2.1. A Volume non-concentration result

We start with a few preparations. From now on all metric quantities refer
to the fixed background metric g if not explicitly stated differently. Recall
the definition of p-capacities,

Definition 2.1. — For a pair (E,F ) of subsets E ⊂⊂ F ⊆M we define
the p-capacity by

Capp(E,F ) := inf

∫

M

|df |pdVg,

where the infimum is taken over all Lipschitz functions f :M → R which
are 1 on E and 0 outside F .

Note that since ∫

M

|df |ng̃dVg̃ =

∫

M

|df |ngdVg, (2.1)

whenever g and g̃ are conformally related, the n-capacity is conformally
invariant. We will use the following frequently.

Lemma 2.2. — Let R > 0, then for p � n and any point x ∈ M , the
p-capacity satisfies limr→0 Capp(B(x, r), B(x,R)) = 0.

Proof. — Observe that Hölder’s inequality implies that it suffices to
consider the case p = n. Moreover, it clearly suffices to prove the statement
only for some small R < inj(M). Let 0 < r < R and define ψr,R by

ψr,R(z) =





log(dg(x,z)R
−1)

log(rR−1) if r � dg(x, z) � R

1 if dg(x, z) � r
0 if dg(x, z) � R.

If g is flat in B(x,R), we have

∫

B(x,R)

|∇ψr,R|ndVg = ωn

(
log

(
R

r

))1−n
.

In general, for R > 0 such that g is comparable on B(x,R) to the Euclidean
metric on B(0, R), we have

∫

B(x,R)

|∇ψr,R|ndVg � C

(
log

(
R

r

))1−n
.

We conclude

lim
r→0

∫

B(x,R)

|∇ψr,R|n = 0,

thus limr→0 Capn(B(x, r), B(x,R)) = 0. �
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Before we can prove the volume non-concentration result, we need the
following observation about conformal immersions which also appears in [6].

Lemma 2.3. — Let Φ: (M, g) → (Sn, gst.) be a conformal immersion.
Denote by z1, . . . , zn+1 the standard coordinate funtions of Rn+1 restricted
to Sn. Then

Φ∗gst. =
1

n

n+1∑

i=1

|∇(zi ◦ Φ)|2g. (2.2)

Proof. — First, observe that for γ ∈ SO(n + 1) we have

(γ ◦ Φ)∗gst. = Φ∗gst.

and
1

n

n+1∑

i=1

|∇(zi ◦ Φ)|2g =
1

n

n+1∑

i=1

|∇(zi ◦ γ ◦ Φ)|2g.

Thus it suffices to compute both sides of (2.2) at a point x ∈ M with
Φ(x) = N, where N = (0, . . . , 0, 1) ∈ Sn denotes the northpole. In this case
we may use the functions z1, . . . , zn as coordinates about N. We thus have
coordinates zi ◦ Φ, i = 1, . . . , n about x, such that DΦ(x) = id in these
coordinates. Moreover, since Φ is conformal, there is positive constant a
such that gjk(x) = aδjk. Thus we find

1

n

n+1∑

i=1

|∇(zi ◦ Φ)|2(x)gjk(x) =
a

n

n+1∑

i=1

1

a
|∇zi|2(N)δjk = δjk = (Φ∗gst.)jk (x).

�

The next proposition states that we can control the volume of small balls
uniformly in terms of the lower bound B on the first eigenvalue.

Proposition 2.4. — Let u be a function satisfying assumptions (i) and
(iii) in Theorem 1.1. For any δ > 0, there is a radius r = r(M, g, δ,B) > 0,
such that

∫
B(x,r)

u2�dVg < δ for any x ∈M.

Proof. — The idea of the proof is based on arguments due to Kokarev,
who proved the same result in dimension two in [9]. Kokarev used ideas
developed by Nadirashvili in [13].

Assume the statement is not correct. Then we can find δ > 0 together
with a sequence xk ∈ M of points and a sequence uk of smooth posi-

tive functions such that vol(M,u
4/(n−2)
k g) = 1, λ1(M,u

4/(n−2)
k g) � B, and∫

B(xk,1/k)
u2�

k dVg � δ. We denote by gk the metric u
4/(n−2)
k g.
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Up to extracting a subsequence we can assume that the probability mea-
sures Vgk converge to a Radon probability measure µ in the weak*-topology.
Moreover, we may also assume that xk → x. We claim that µ({x}) > 0. In
fact, take a sequence ηl ∈ C∞c (B(x, 2/l)) with 0 � ηl � 1 and ηl(x) = 1.
Then, by dominated convergence,

µ({x}) = lim
l→∞

∫

M

ηldµ.

So fix ηl as above and assume in addition that ηl = 1 on B(x, 1/l). We thus
have

µ({x}) = lim
l→∞

lim
k→∞

∫

B(x,2/l)

ηlu
2�

k dVg

� lim
l→∞

lim
k→∞

∫

B(x,1/l)

u2�

k dVg

� lim
l→∞

lim
k→∞

∫

B(xk,1/k)

u2�

k dVg

� lim
k→∞

∫

B(xk,1/k)

u2�

k dVg � δ.

We consider two cases: The first case is µ = δx for some x ∈ M . In the
remaining case we can find for a point x ∈ M with µ({x}) > 0 a radius
R > 0 such that µ(M \ B(x, 2R)) > 0. Let us start with the second case
which is the easier one.

Take a ball B(x, 2R) as described above. By Lemma 2.2 we find r >
0 such that Capn(B(x, r), B(x,R)) < ε. Thus we can choose a Lipschitz
function ψ supported in B(x,R), which satisfies 0 � ψ � 1, ψ = 1 on
B(x, r) and

∫
M
|∇ψ|ndVg < ε.

Denote by αk the mean (with respect to gk) of ψ, i.e.

αk =

∫

M

ψdVgk .

By the min-max principle, Hölder’s inequality and the conformal invariance
(2.1), we find

λ1(gk)

∫

M

(ψ − αk)
2dVgk �

∫

M

|dψ|2gkdVgk

�
(∫

M

|dψ|ngkdVgk
)2/n

(volgk (suppψ))
(n−2)/n
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=

(∫

M

|∇ψ|ndVg
)2/n

(volgk (suppψ))
(n−2)/n

� ε2/n.

We can estimate the left-hand-side from below by λ1(gk) times

α2
k

∫

M\B(x,R)

u2�

k dVg + (1− αk)
2

∫

B(x,r)

u2�

k dVg.

Let us investigate both terms as k →∞. We have

lim inf
k→∞

∫

M\B(x,R)

u2�

k dVg � µ(M \B(x, 2R)),

and

lim inf
k→∞

∫

B(x,r)

u2�

k dVg � µ({x}).

Up to extracting a subsequence we may assume αk → α as k → ∞. By
construction α ∈ [0, 1], thus we find

lim sup
k→∞

λ1(gk) �
ε2/n

α2µ(M \B(x, 2R)) + (1− α)2µ({x})

�
4ε2/n

min{µ(M \B(x, 2R)), µ({x})} .

And thus lim supk→∞ λ1(gk) = 0, a contradiction.

The case µ = δx is slightly more involved. In a first step we observe
that we may assume without loss of generality that g is flat near x. This
observation is motivated by the arguments in [5].

Given any ε > 0 we can replace g by a another metric g′ which is flat
near x and (1 + ε)-quasiisometric to g, i.e. (1 + ε)−2g(v, v) � g′(v, v) �
(1 + ε)2g(v, v) for all non-zero tangent vectors v, see e.g. [5, Lemma 2.3].

Then for each k the metric u
4/(n−2)
k g′ is (1+ε)-quasiisometric to the metric

u
4/(n−2)
k g. Rescale the functions uk to obtain new functions u′k such that

we have vol(M, (u′k)
4/(n−2)

g′) = 1. Since the volumes of (M,u
4/(n−2)
k g) and

(M,u
4/(n−2)
k g′) are controlled by

(1 + ε)−n �
vol(M,u

4/(n−2)
k g′)

vol(M,u
4/(n−2)
k g)

� (1 + ε)n, (2.3)
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we find that the ratios u
4/(n−2)
k /(u′k)

4/(n−2) are uniformly bounded from
above and below by (1 + ε)2 respectively (1 + ε)−2. This implies that

u
4/(n−2)
k g is (1 + ε)2-quasiisometric to (u′)4/(n−2)

k g′, thus

λ1

(
(u′k)

4/(n−2)
g′

)
� (1 + ε)−4(n+1)λ1

(
u

4/(n−2)
k g

)
.

In particular, for ε sufficiently small we find B′ > n ((n + 1)ωn+1)
2/n

, such

that λ1(M, (u′k)
4/(n−2)

g′) � B′.

Similarly as in (2.3), we have for any measurable subset Ω ⊆M that

vol(Ω, (u′k)
4/(n−2)g′) � (1 + ε)2nvol(Ω, u

4/(n−2)
k g),

since u
4/(n−2)
k g is (1 + ε)2-quasiisometric to (u′k)

4/(n−2)g′. Applying this to
subsets of M \ {x} easily implies that (u′k)

2�Vg′ ⇀
∗ δx. In more detail, if

ν is the weak*-limit of a subsequence of (u′k)
2�Vg′ , we have for any open

Ω ⊂⊂M \ {x} that

ν(Ω) � lim inf
k→∞

vol(Ω, (u′k)
4/(n−2)g′)

� lim inf
k→∞

(1 + ε)2nvol(Ω, (uk)
4/(n−2)g)

� lim sup
k→∞

(1 + ε)2nvol(Ω, (uk)
4/(n−2)g)

� (1 + ε)2nµ(Ω)

= 0,

since u2�

k Vg ⇀∗ µ = δx. This implies ν(M \ {x}) = 0 and thus ν = δx.
We have shown that the limit of any weakly*-convergent subsequence of
(u′k)

2�Vg′ has to be δx. Since every subsequence of (u′k)
2�Vg′ has a weakly*-

convergent subsequence, it follows that (u′k)
2�Vg′ ⇀

∗ δx. Now it suffices to
show that such a sequence (u′k) can not exist on (M, g′).

Let Ω be a conformally flat neighborhood of x. Choose a conformal
immersion Φ: (Ω, g) → (Sn, gst.). By diminishing Ω if necessary we may
assume that Φ is an embedding. Fix ε > 0 and choose a function ψ ∈
W 1,∞

0 (Ω) with
∫
Ω
|∇ψ|ndV < ε, 0 � ψ � 1, and ψ(x) = 1, which is possible

thanks to Lemma 2.2. By Lemma 2.5 below, we find sk ∈ Conf(Sn) such
that ∫

Ω

ψ · (zi ◦ sk ◦ Φ)dVgk = 0

for all i = 1, . . . , n. Using the functions ψ · (zi ◦ sk ◦Φ) as test functions and
summing over all i yields

λ1(gk)

∫

Ω

ψ2dVgk = λ1(gk)

n+1∑

i=1

∫

Ω

(ψzi)2dVgk
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�
n+1∑

i=1

∫

Ω

|d(ψ · (zi ◦ sk ◦ Φ))|2gkdVgk

=

n+1∑

i=1

∫

Ω

|dψ|2gk(zi ◦ sk ◦ Φ)2dVgk (2.4)

+2

n+1∑

i=1

∫

Ω

(zi ◦ sk ◦ Φ)ψ〈dψ, d(zi ◦ sk ◦ Φ)〉gkdVgk

+

n+1∑

i=1

∫

Ω

ψ2|d(zi ◦ sk ◦ Φ)|2gkdVgk .

By Hölder’s inequality and conformal invariance, the first summand in (2.4)
can be controlled as follows

n+1∑

i=1

∫

Ω

|dψ|2gk(zi ◦ sk ◦ Φ)2dVgk =

∫

Ω

|dψ|2gkdVgk (2.5)

�
(∫

Ω

|dψ|ngkdVgk
)2/n

volgk(Ω)(n−2)/n

�
(∫

Ω

|∇ψ|dVg
)2/n

� ε2/n.

For the second summand in (2.4) notice that

∫

Ω

|d(zi ◦ sk ◦ Φ)|ngkdVgk =

∫

sk◦Φ(Ω)

|∇zi|ndVgst. (2.6)

� Cvol(sk ◦ Φ(Ω)) � C,

for a constant C = C(n), thanks to conformal invariance. This implies

n+1∑

i=1

∫

Ω

(zi ◦ sk ◦ Φ)ψ〈dψ, d(zi ◦ sk ◦ Φ)〉gkdVgk (2.7)

�
n+1∑

i=1

sup
x∈Ω
|(zi ◦ sk ◦ Φ)|

∫

Ω

|dψ|gk |d(zi ◦ sk ◦ Φ)|gkdVgk

�
n+1∑

i=1

(∫

Ω

|dψ|ngkdVgk
)1/n (∫

Ω

|d(zi ◦ sk ◦ Φ)|ngkdVgk
)1/n

volgk(Ω)(n−2)/n

� Cε1/n.
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The last summand in (2.4) is estimated using Lemma 2.3,

n+1∑

i=1

∫

Ω

ψ2|d(zi ◦ sk ◦ Φ)|2gkdVgk �




∫

Ω

(
n+1∑

i=1

|d(zi ◦ sk ◦ Φ)|2gk

)n/2

dVgk




2/n

(2.8)

=nvol((sk ◦ Φ)(Ω))2/n � n((n + 1)ωn+1)
2/n.

Combining (2.4), (2.5), (2.7) and (2.8), we conclude

lim sup
k→∞

λ1(u
4/(n−2)
k g) = lim sup

k→∞
λ1(u

4/(n−2)
k g)

∫

Ω

ψdVgk

� ε2/n + Cε1/n + n ((n + 1)ωn+1)
2/n

,

which proves our claim. �

Next, we give the version of the Hersch lemma, which we have used in
the proof of Proposition 2.4.

Lemma 2.5 (Hersch lemma). — Let µ be a continuous Radon measure
on M , ψ ∈ W 1,∞

0 (Ω), where Ω ⊆ M . Moreover, assume 0 � ψ � 1. Then
for any fixed conformal map Φ: (Ω, g) → (Sn, gst.) there exists a conformal
diffeomorphsim s ∈ Conf(Sn) such that

∫

Ω

ψ · (zi ◦ s ◦ Φ)dµ = 0,

for all i = 1, . . . , n + 1.

This can be proved in complete analogy to the original Hersch lemma,
see [8]. For convenience of the reader we recall the main idea of the elegant
argument.

Denote by sx the stereographic projection onto TxS
n. For x ∈ Sn and

λ ∈ R>0 we have conformal diffeomorphisms gx,λ of Sn given by gx,λ(y) =
s−1
x (λsx(y)) for y �= −x and gx,λ(−x) = −x. Consider the map C:Dn+1 →

Dn+1 given by

C(λx) =

(∫

Ω

ψdµ

)−1 ∫

Ω

ψ · (z ◦ gx,1−λ ◦ Φ)dµ,

where λ ∈ [0, 1), and x ∈ Sn. It is easily checked that this extends to a

continous map C:D
n+1 → D

n+1
, which restricts to the identity on Sn. It

follows, that there have to be x, λ such that C(λx) = 0.

– 1088 –



Regularity of conformal metrics with large first eigenvalue

2.2. Higher integrability of the conformal factors

The next step is to improve the integrability of the conformal factors.
Once this is done a Harnack inequality due to Trudinger [16] gives L∞-
bounds and Theorem 1.1 follows from the standard elliptic estimates.

Lemma 2.6. — For u as in Theorem 1.1, there are D, ε > 0 depending
on (M, g) and A,B such that

∫

M

u2�+εdVg � D.

Proof. — We follow the proof of Lemma 2.3 in [7].

Of course, it suffices to prove that there are constants ε = ε(n) > 0, r =
r(M, g,A,B) > 0, and C = C(M, g,A,B) such that

∫
B(x,r)

u2�+εdVg � C

for any x ∈M.

For r > 0 to be chosen later we take a smooth function η:M → [0, 1]
with η = 1 on B(x, r/2), η = 0 outside B(x, r), and |∇η| � C/r. If we
choose ε > 0 such that 2+2ε � 2�, we get from the Sobolev inequality that

(∫

M

(
ηu1+ε

)2�

dVg

)2/2�

�C

(∫

M

|∇(ηu1+ε)|2dVg +

∫

M

η2u2+2εdVg

)
(2.9)

�C

∫

M

|∇(ηu1+ε)|2dVg + C

(∫

M

u2�dVg

)(2+2ε)/2�

�C

∫

M

|∇(ηu1+ε)|2dVg + C,

using Hölder’s inequality and the volume bound.

In order to estimate the first summand above we multiply equation (1.1)
by η2u1+2ε and integrate by parts in order to find

(1 + ε)

∫

M

η2u2ε|∇u|2dVg =
n− 2

4(n− 1)

(∫

M

R̃η2u2�+2εdVg −
∫

M

Rη2u2+2εdVg

)

−2

∫

M

ηu1+2ε∇η∇udVg − ε

∫

M

η2u2ε|∇u|2dVg.

Inserting this into
∫

M

|∇(ηu1+ε)|2dVg =

∫

M

u2+2ε|∇η|2dVg + 2(1 + ε)

∫

M

ηu1+2ε∇η∇udVg

+(1 + ε)2
∫

M

η2u2ε|∇u|2dVg

– 1089 –



Henrik Matthiesen

gives
∫

M

|∇(ηu1+ε)|2dVg =

∫

M

u2+2ε|∇η|2dVg − (1 + ε)ε

∫

M

η2u2ε|∇u|2dVg

+(1 + ε)
n− 2

4(n− 1)

(∫

M

R̃η2u2�+2εdVg −
∫

M

Rη2u2+2εdVg

)
(2.10)

�
∫

M

u2+2ε|∇η|2dVg + C

(∫

M

R̃η2u2�+2εdVg −
∫

M

Rη2u2+2εdVg

)
.

Let us discuss all summands above separately. By the choice of η and the
volume bound, we have, using Hölder’s inequality,

∫

M

u2+2ε|∇η|2dVg �
C

r2
. (2.11)

By Hölder’s inequality and the volume bound again, we find

∫

M

R̃η2u2�+2εdVg �
(∫

M

|R̃|pu2�dVg

)1/p (∫

M

(ηuε)2p/(p−1)u2�dVg

)(p−1)/p

.

Observe that p > n/2 implies q = n(p−1)/(p(n−2)) > 1. Thus by Hölder’s
inequality

∫

M

(ηuε)2p/(p−1)u2�dVg �
(∫

M

(
ηu1+ε

)2�

dVg

)1/q
(∫

B(x,r)

u2�dVg

)(q−1)/q

,

which implies

∫

M

R̃η2u2�+2εdVg � A1/p

(∫

M

(
ηu1+ε

)2�

dVg

)2/2�
(∫

B(x,r)

u2�dVg

)(2p−n)/np

.

Since p > n/2 and using Proposition 2.4, we find r = r(M, g,A,B), such
that (∫

B(x,r)

u2�dVg

)(2p−n)/np

�
1

2A1/pC
.

For such r we conclude that

C

∫

M

R̃η2u2�+2εdVg �
1

2

(∫

M

(
ηu1+ε

)2�

dVg

)2/2�

. (2.12)

The last summand is controlled by the volume bound
∫

M

Rη2u2+2εdVg � C

∫

M

u2+2εdVg � C. (2.13)
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Combining (2.9)-(2.13) we conclude

(∫

M

(
ηu1+εdVg

)2�
)2/2�

� C +
C

r2
+

1

2

(∫

M

(
ηu1+ε

)2�

dVg

)2/2�

,

and thus ∫

B(x,r/2)

u2�(1+ε)dVg � C,

with ε = ε(n), r = r(M, g,A,B), and C = C(M, g,A,B, r). �

In order to prove Theorem 1.1 we need the following Harnack inequality,
which can be found in [16].

Lemma 2.7. — Let u ∈ W 1,2(M, g) be a non-negative solution of the
elliptic equation ∆u = fu, with f ∈ Lq(M, g) for some q > n/2. Then there
is C = C(M, g, ‖u‖L2(M,g), ‖f‖Lq(M,g)) such that

C−1 � u � C.

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. — For n/2 < q < p, we have

∫

M

|R̃|qu(2�−2)qdVg =

∫

M

|R̃|qu(2�−2)q−2�u2�dVg

�
(∫

M

|R̃|pu2�dVg

)q/p (∫

M

u((2�−2)q−2�)p/(p−q)+2�dVg

)(p−q)/p
.

Observe that ((2�− 2)q− 2�)p/(p− q) + 2� → 2�, as q → n/2. Thus we can
find q > n/2, such that ((2� − 2)q − 2�)p/(p− q) + 2� � 2� + ε, for ε given
by Lemma 2.6. For such q we have

∫

M

|R̃u(2�−2)|qdVg � D(p−q)/pAq/p.

In particular, we can apply Lemma 2.7 to

4
n− 1

n− 2
∆u =

(
R̃u2�−2 −R

)
u (2.14)

and conclude that we have C1 � |u| � C2 with C1, C2 depending on
M, g,A,B,D. This in turn implies that the right hand side of (2.14) is
bounded in Lp(M, g). Thus the standard elliptic estimates [12, Theorem
6.4.8] in Lp-spaces imply that ‖u‖2,p � C3. �
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3. Applications

We discuss two applications of Theorem 1.1, one of which was in fact a
motivation for studying this problem.

3.1. Conformal spectrum

Thanks to the work of Li–Yau [11], El Soufi–Ilias [6] and Korevaar [10]
the scale invariant quantities λk(M, g)vol(M, g)2/n are bounded within a
fixed conformal class. Thus it is a natural question to ask whether there
are metrics realizing supφ λ1(M,φg)vol(M,φg)2/n, where the supremum is
taken over all smooth positive functions φ. In dimension two the conformal
covariance of the Laplace operator simplifies the situation tremendously,
but it remains a very difficult problem which was resolved only recently
(see [9, 15].) Also, it follows from the appendix in [4] that there are Hölder
continuous maximizers in dimension two, if one additionally imposes Lp

curvature bounds for p > 1. Theorem 1.1 generalizes this partially to higher
dimensions.

For p > n/2, A > 0 and B > n((n + 1)ωn+1)
2/n, denote by [g]A,B the

subset of the conformal class [g] consisting of all metrics of the form u4/n−2g,
such that u ∈ W 2,p with vol(M,u4/n−2g) = 1,

∫
M
|Ru4/(n−2)g|pu2�dVg � A

and λ1(M,u4/n−2g) � B. Thanks to [14], there are A,B as above such that
[g]A,B is non-empty; provided (M, g) is not conformal to (Sn, gst.).

We have

Theorem 3.1. — Let p > n/2, A > 0 and B > n((n+1)ωn+1)
2/n, such

that [g]A,B �= ∅. Then there is a Hölder continuous positive function u, such
that u4/(n−2)g ∈ [g]A,B and λ1(M,u4/(n−2)g) = suph∈[g]A,B λ1(h).

Proof. — Let (uk) be a sequence of functions such that u
4/(n−2)
k g ∈

[g]A,B and limk→∞ λ1(M,u
4/(n−2)
k g) = suph∈[g]A,B λ1(h). Due to Theorem

1.1, (uk) is bounded in W 2,p. Thus we have a subsequence (not relabeled)
uk ⇀ u∗ in W 2,p. By the standard embedding results for Sobolev spaces
we have that W 2,p ↪→ C0,α for some α > 0, since p > n/2. Thanks to
the Theorem of Arzela–Ascoli, the embedding C0,α ↪→ C0,β is compact for
β < α. Thus we can extract a further subsequence (again not relabeled) such
that uk → u∗ in C0,β . Since the functional λ1 is continuous with respect to

convergence in C0, we see that λ1(M,u
4/(n−2)
∗ g) = suph∈[g]A,B λ1(h).

It remains to prove that u
4/(n−2)
∗ g ∈ [g]A,B . Since we have uniform upper

and lower bounds for uk and thus also for u∗, we can write thanks to (1.1)
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that

Rk =
4(n− 1)/(n− 2)∆uk + Ruk

u2�−1
k

(3.1)

and similarly for R∗. Since ∆uk ⇀ ∆u∗ in Lp(M, g) and uk → u∗ in C0,
this implies that Rk ⇀ R∗ in Lp(M, g). Moreover, by the uniform upper

and lower bounds on u∗, this implies that Rk ⇀ R∗ in Lp(M,u
4/(n−2)
∗ g).

This implies

∫

M

|R∗|pu2�dVg � lim inf
k→∞

∫

M

|Rk|pu2�dVg = lim inf
k→∞

∫

M

|Rk|pu2�

k dVg (3.2)

and thus u
4/(n−2)
∗ g ∈ [g]A,B . �

3.2. Isospectral metrics

For a fixed metric g denote by I(g) the set of all metrics on M isospectral
to g. With the same arguments as in in the proof of Theorem 3.1 we find

Theorem 3.2. — Let (M, g) and A > 0 be such that vol(M, g) = 1,
λ1(M, g) > n((n + 1)ωn+1)

2/n and g ∈ [g]A,λ1(M,g). Then the set I(g) ∩
[g]A,λ1(M,g) is precompact in C0,α for some α > 0.
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