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Annales de la Faculté des Sciences de Toulouse Vol. XXV, n◦ 5, 2016
pp. 1051-1078

On a representation of the fundamental class
of an ideal due to Lejeune-Jalabert

Elizabeth Wulcan(1)

RÉSUMÉ. — Lejeune-Jalabert a montré que la classe fondamentale d’un
idéal Cohen-Macaulay a ⊂ O0 admet une représentation comme résidu,
associée à une résolution libre de a, d’une certaine forme différentielle
provenant de la même résolution. Nous donnons une description explicite
de cette forme différentielle dans le cas où la résolution est la résolution
Scarf d’un idéal monomial générique. De ce fait, nous obtenons une nou-
velle preuve du résultat de Lejeune-Jalabert dans ce cas.

ABSTRACT. — Lejeune-Jalabert showed that the fundamental class of a
Cohen-Macaulay ideal a ⊂ O0 admits a representation as a residue, con-
structed from a free resolution of a, of a certain differential form coming
from the resolution. We give an explicit description of this differential
form in the case where the free resolution is the Scarf resolution of a
generic monomial ideal. As a consequence we get a new proof of Lejeune-
Jalabert’s result in this case.

1. Introduction

In [14] Lejeune-Jalabert showed that the fundamental class of a Cohen-
Macaulay ideal a in the ring of germs of holomorphic functions O0 at 0 ∈ Cn

admits a representation as a residue, constructed from a free resolution of
a, of a certain differential form coming from the resolution, see also [15, 2].
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This representation generalizes the well-known fact that if a is generated by
a regular sequence f = (f1, . . . , fn), then

resf (dfn ∧ · · · ∧ df1) =
1

(2πi)n

∫

Γ

dfn ∧ · · · ∧ df1
fn · · · f1

= dimC(O0/a), (1.1)

where resf is the Grothendieck residue of f1, . . . , fn and Γ is the real n-cycle
defined by {|fj | = ε} for some ε such that fj are defined in a neighborhood of
{|fj | � ε} and oriented by d(arg f1)∧· · ·∧d(arg fn) � 0, see [10, Chapter 5.2].

We will present a formulation of Lejeune-Jalabert’s result in terms of
currents. Recall that the fundamental cycle of a is the cycle

[a] =
∑

mj [Zj ],

where Zj are the irreducible components of the variety Z of a, and mj

are the geometric multiplicities of Zj in Z, defined as the length of the
Artinian ring OZj ,Z , see, e.g., [9, Chapter 1.5]. In particular, if Z = {0},
then [a] = dimC(O0/a)[{0}].

Assume that
0→ Ep

ϕp−→ . . .
ϕ2−→ E1

ϕ1−→ E0 (1.2)

is a free resolution of O0/a of minimal length p = codim a; here the Ek
are free O0-modules and E0

∼= O0. In [1] together with Andersson we con-
structed from (1.2) a (residue) current R, which has support on Z, takes
values in Ep, is of bidegree (0, p), and can be thought of as a current version
of Lejeune-Jalabert’s residue, cf. [13, Section 6.3]. Given bases of Ek, let dϕk
be the Hom(Ek, Ek−1)-valued (1, 0)-form with entries (dϕk)ij = d(ϕk)ij if
(ϕk)ij are the entries of ϕk and let dϕ denote the E∗p -valued (p, 0)-form

dϕ := dϕ1 ∧ · · · ∧ dϕp.

Now, identifying the fundamental cycle [a] with the current of integration
along [a], see, e.g., [6, Chapter III.2.B], Theorem 1.1 in [13] states that [a]
admits the factorization

[a] =
1

p!(−2πi)p
dϕ ∧R.1 (1.3)

This should be thought of as a current version of Lejeune-Jalabert’s result
in [14]; in particular, the differential form dϕ is the same form that appears
in her paper. In fact, using residue theory the factorization (1.3) can be
obtained from Lejeune-Jalabert’s result and vice versa; for a discussion of

(1) For a discussion of the sign in (1.3), see Section 2.6 in [13].
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this, as well as the formulation of Lejeune-Jalabert’s result, we refer to
Section 6.3 in [13]. In [13] we also give a direct proof of (1.3) that does not
rely on [14] and that extends to pure-dimensional ideal sheaves.

Assume that a is generated by a regular sequence f = (f1, . . . , fp) and
let E•, ϕ• be the associated Koszul complex, i.e., let E be a free O0-module
of rank p with basis e1, . . . , ep, let Ek = ΛkE with bases eI = eik ∧ · · · ∧ ei1 ,
and let ϕk be the contraction with

∑
fje
∗
j . Then

R = ∂̄
1

f1
∧ · · · ∧ ∂̄ 1

fp
e∗∅ ⊗ e{1,...,p},

where Rf
CH = ∂̄(1/f1)∧ · · · ∧ ∂̄(1/fp) is the classical Coleff-Herrera residue

current of f , introduced in [5], and e∅ denotes the basis element of Λ0E ∼=
O0. Moreover dϕ = p!dfp ∧ · · · ∧ df1e∗{1,...,p} ⊗ e∅ and thus (1.3) reads

[a] =
1

(2πi)p
∂̄

1

f1
∧ · · · ∧ ∂̄ 1

fp
∧ dfp ∧ · · · ∧ df1. (1.4)

This factorization of [a] can be seen as a current version of (1.1) and also
as a generalization of the classical Poincaré-Lelong formula

[f = 0] =
1

2πi
∂̄∂ log |f |2 =

1

2πi
∂̄

1

f
∧ df, (1.5)

where [f = 0] is the current of integration along the zero set of f , counted
with multiplicities. It appeared already in [5], and in [7] Demailly and Pas-
sare proved an extension to locally complete intersection ideal sheaves.

In [13] and [14], the factorization (1.3) is proved by comparing R and dϕ
to a residue and differential form, respectively, constructed from a certain
Koszul complex; in [13] this is done using a recent comparison formula for
residue currents due to Lärkäng, [11].

To explicitly describe the factors in (1.3), however, seems to be a delicate
problem in general. In this note we compute the form dϕ when E•, ϕ• is a
certain resolution of a monomial ideal. More precisely, let A be the ring O0

of holomorphic germs at the origin in Cn with coordinates z1, . . . , zn, or let
A be the polynomial ring C[z1, . . . , zn]. We then give an explicit description
of the form

dϕ =
∑

σ

∂ϕ1

∂zσ(1)
dzσ(1) ∧ · · · ∧

∂ϕn
∂zσ(n)

dzσ(n) (1.6)

when E•, ϕ• is the Scarf resolution, introduced in [4], of an Artinian, i.e.,
zero-dimensional, generic monomial ideal M in A, see Section 3 for defini-
tions. Here the sum is over all permutations σ of {1, . . . , n}. It turns out
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that each summand in (1.6) is a vector of monomials (times dzn ∧ · · · ∧ dz1)
whose coefficients have a neat description in terms of the so-called staircase
of M and sum up to the geometric multiplicity of M , see Theorem 1.1 be-
low. This can be seen as a far-reaching generalization of the fact that the
coefficient of d(za) equals a, which is the geometric multiplicity of the prin-
cipal ideal (za), cf. Example 5.1 below. Thus, in a sense, the fundamental
class of M is captured already by the form dϕ. In the case of the Scarf reso-
lution we recently, together with Lärkäng, [12], gave a complete description
of the current R. Combining Theorem 1.1 below with Theorem 1.1 in [12]
we obtain a new proof of (1.3) in this case, cf. Corollary 1.2 below.

Let us describe our result in more detail. LetM be an Artinian monomial
ideal in A. By the staircase S = SM of M we mean the set

S = {(x1, . . . , xn) ∈ Rn
>0|z

�x1	
1 · · · z�xn	n /∈M} ⊂ Rn

>0. (1.7)

Here 
x� denotes the largest integer � x. The name is motivated by the
shape of S, cf. Figures 5.1, 5.2, and 6.1. We will refer to the finitely many
maximal elements in S, with respect to the standard partial order on Rn,
as outer corners.

The Scarf resolution E•, ϕ• of M is encoded in the Scarf complex, ∆M ,
which is a labeled simplicial complex of dimension n−1 with one vertex for
each minimal monomial generator of M and one top-dimensional simplex
for each outer corner of S, see Section 3. The rank of Ek equals the number
of (k − 1)-dimensional simplices in ∆M . In particular, E•, ϕ• ends at level
n and the rank of En equals the number of outer corners of S. Thus dϕ is
a vector with one entry for each outer corner of S.

For our description of dϕ we need to introduce certain partitions of S.
Given a permutation σ of {1, . . . , n} let �σ be the lexicographical order
induced by σ, i.e, α = (α1, . . . , αn) �σ β = (β1, . . . , βn) if for some 1 � k �
n, ασ(�) = βσ(�) for 1 � � � k − 1 and ασ(k) > βσ(k), or α = β. If α �σ βn

α �= β we write α >σ β. Let α1 �σ . . . �σ αk � . . . be the total ordering of
the outer corners induced by �σ, and define inductively

Sσ,α1 = {x ∈ S | x � α1}
...

Sσ,αk = {x ∈ S \ (Sσ,α1 ∪ · · · ∪ Sσ,αk−1) | x � αk}
...

For a fixed σ, {Sσ,α}α provides a partition of S, cf. Section 2.
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Theorem 1.1. — Let M be an Artinian generic monomial ideal in A,
and let

0→ En
ϕn−→ . . .

ϕ2−→ E1
ϕ1−→ E0 (1.8)

be the Scarf resolution of A/M . Then

dσϕ :=
∂ϕ1

∂zσ(1)
dzσ(1) ∧ · · · ∧

∂ϕn
∂zσ(n)

dzσ(n) (1.9)

has one entry (dσϕ)α for each outer corner α of the staircase S of M and

(dσϕ)α = sgn(α)Vol(Sσ,α)zα−1dz, (1.10)

where sgn(α) = ±1 comes from the orientation of the Scarf complex, dz =
dzn ∧ · · · ∧ dz1, and zα−1 = zα1−1

1 · · · zαn−1
n if α = (α1, . . . , αn).

The sign sgn(α) will be specified in Section 3.1 below.

Theorem 5.1 in [12] asserts that the residue current associated with the
Scarf resolution has one entry

Rα = sgn(α) ∂̄
1

zα1
1

∧ · · · ∧ ∂̄ 1

zαnn
(1.11)

for each outer corner α of S. Since (1/2πi)∂̄(1/za) ∧ zα−1dz = [z = 0], cf.
(1.5), we conclude from (1.10) and (1.11) that

1

(−2πi)n
dσϕ ∧R =

∑

α

Vol(Sσ,α)[0] = Vol(S)[0].

Note that Vol(S) equals the number of monomials that are not in M . Since
these monomials form a basis for A/M , Vol(S) equals the geometric multi-
plicity dimC(A/M) of M . Thus we get the following version of (1.3).

Corollary 1.2. — Let M and (1.8) be as in Theorem 1.1 and let R be
the associated residue current. Then

1

(−2πi)n
∂ϕ1

∂zσ(1)
dzσ(1) ∧ · · · ∧

∂ϕn
∂zσ(n)

dzσ(n) ∧R = [M ]. (1.12)

Summing over all permutations σ we get back (1.3). In fact, as was
recently pointed out to us by Jan Stevens, if (1.8) is any free resolution of
an Artinian ideal and R is the associated residue current, then the left hand
side of (1.12) is independent of σ, see Proposition 6.3.

The core of the proof of Theorem 1.1 is an alternative description of
the Sσ,α as certain cuboids, see Lemma 4.1. Given this description it is
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fairly straightforward to see that the volumes of the Sσ,α are precisely the
coefficients of the monomials in dσϕ; this is done in Section 4.2.

We suspect that Theorem 1.1 extends to a more general setting than
the one above. If M is an Artinian non-generic monomial ideal, we can
still construct the partitions {Sσ,α}α. The elements Sσ,α will, however, no
longer be cuboids in general. Also, the computation of dϕ is more delicate
in general. In Example 6.1 we compute dϕ for a non-generic monomial ideal
for which the hull resolution, introduced in [3], is minimal, and show that
Theorem 1.1 holds in this case. On the other hand, in Example 6.2 we
consider a monomial ideal for which the hull resolution is not a minimal
resolution and where Theorem 1.1 fails to hold.

The paper is organized as follows. In Section 2 and 3 we provide some
background on staircases of monomial ideals and the Scarf complex, respec-
tively. The proof of Theorem 1.1 occupies Section 4 and in Section 5 we
illustrate the theorem and its proof by some examples. Finally, in Section 6
we consider resolutions of non-generic Artinian monomial ideals and look at
some examples. We also show that the left hand side of (1.12) is independent
of σ in general.

Acknowledgment. — I want to thank Mats Andersson, Richard Lärkäng,
and Jan Stevens for valuable discussions. Also, thanks to the referee for
many useful comments and suggestions that have helped to improve the
exposition of the paper.

2. Staircases

We let � denote the standard partial order on Rn, i.e., a = (a1, . . . , an) �
b = (b1, . . . , bn) a� � b� for � = 1, . . . , n. If a � b and a �= b we write a > b.
If a� > b� for all � we write a � b. Throughout we let A = An denote the
ring C[z1, . . . , zn] or the ring O0 of holomorphic germs at 0 ∈ Cn

z1,...,zn . For
a = (a1, . . . , an) ∈ Nn, where N = 0, 1, . . ., we use the shorthand notation
za for the monomial za1

1 · · · zann in A. For a general reference on (resolutions
of) monomial ideals, see, e.g., [16].

Unless otherwise stated M will be a monomial ideal in A, i.e., an ideal
generated by monomials, and S will be the staircase of M as defined in
(1.7). Note that M is Artinian if and only if there are generators of the
form zaii , ai > 0, for i = 1, . . . , n, which is equivalent to that S ⊂ {x ∈
Rn
>0 | xi � ai, i = 1, . . . , n} for some ai, which in turn is equivalent to

that S is bounded. Recall that the closure in (1.7) is taken in Rn
>0; we will

however often consider S as a subset of Rn. As in the introduction we will
refer to the maximal elements of S as outer corners. The minimal elements
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of Rn
>0 \ S ⊂ Rn we will call inner corners. Unless otherwise mentioned the

closure A of a set A is taken in Rn.

One can check that for any monomial ideal M there is a unique minimal
set of exponents B ⊂ Nn such that the monomials {za}a∈B generateM . We
refer to these monomials as minimal monomial generators of M . Moreover

S = Rn
>0 \

⋃

a∈B
(a+ Rn

>0). (2.1)

In particular, the inner corners of S are precisely the elements in B.

Dually, M can be described as an intersection of so-called irreducible
monomial ideals, i.e., ideals generated by powers of variables; such an ideal
can be described as mα := (zαii |αi � 1), where α = (α1, . . . , αn) ∈ Nn.
(More generally an ideal is irreducible if it cannot be written as a non-
trivial intersection of two ideals.) For every monomial ideal M there is a
unique minimal set C ⊂ Nn such that

M =
⋂

α∈C
mα, (2.2)

see, e.g., [16, Theorem 5.27]. The ideal M is Artinian if and only if each
α ∈ C satisfies α � 0 (i.e., α� > 0 for each �). If α � 0, then note that a
monomial zb �∈ mα if and only if b ≺ α. It follows that, if M is Artinian,
then

S =
⋃

α∈C
{x ∈ Rn

>0 | x � α}. (2.3)

In particular, the outer corners of S are precisely the elements in C. If M is
not Artinian, then S is not bounded in Rn and the representation (2.3) fails
to hold. Note that (2.3) guarantees that for a fixed σ, {Sσ,α}α, as defined
in the introduction, is a partition of S.

Inspired by (2.1) we will call any set of this form a staircase: Let H be
an affine subspace of Rn of the form

H = {x�1 = a1, . . . , x�k = ak}

where aj ∈ Z. For a ∈ Zn ∩H let Ua = {x ∈ H | x � a}. Note that UZn

0

is just the first (open) orthant Rn
>0 in Rn. We say that a set S ⊂ H is a

staircase if it is of the form

S = Ua0 \
s⋃

j=1

Uaj
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for some a0, a1, . . . , as ∈ Zn ∩H. We say that a0 is the origin of S and if
a1, . . . , as are chosen so a1, . . . , as � a0 and aj �� ak for j �= k, 1 � j, k � s
we call them the inner corners of S. We call the maximal elements of S the
outer corners of S. Since Zn∩H is a lattice, the outer corners are in Zn∩H.
Note that S is a closed subset of Ua0 .

If π is the projection Rn → Rn−k that maps (x1, . . . , xn) to (xj1 , . . . , xjn−k)
if {j1, . . . , jn−k} = {1, . . . , n} \ {�1, . . . , �k} and ρ : Rn → Rn−k is the affine
map ρ(x) = π(x − a0), let M(S) = Mρ(S) be the monomial ideal in Ak
that is generated by zρ(a

j), where aj are the inner corners of S. Then the
staircase of M(S) equals ρ(S).

For α ∈ Zn ∩H, let Vα = {x ∈ H | x � α}. If M(S) is Artinian, then S
admits a representation analogous to (2.3),

S = Ua0 ∩
⋃

α

Vα, (2.4)

where the union is taken over all outer corners of S.

Note that any set S of the form (2.4) with a0, α ∈ Zn ∩H is a staircase;
indeed since Zn ∩ H is a lattice the minimal elements of Ua0 \ S are in
Zn ∩H.

3. The Scarf complex

For a, b ∈ Rn, we will denote by a∨b the join of a and b, i.e., the unique
c such that c � a, b, and c � d for all d � a, b.

Let M be an Artinian monomial ideal in A, with minimal monomial
generators m1 = za

1

, . . . ,mr = za
r

. The Scarf complex ∆ = ∆M of M was
introduced by Bayer-Peeva-Sturmfels, [4], based on previous work by H.
Scarf. It is the collection of subsets I = {i1, . . . , ik} ⊂ {1, . . . , r} whose cor-

responding least common multiple mI := lcm(mi1 , . . . ,mik) = za
i1∨···∨aik

is unique, that is,

∆ = {I ⊂ {1, . . . , r}|mI = mI′ ⇒ I = I ′}.

Clearly the vertices of ∆ are the minimal monomial generators of M , i.e.,
the inner corners of SM . One can prove that the Scarf complex is a simplicial
complex of dimension at most n−1. We let ∆(k) denote the set of simplices
in ∆ with k vertices, i.e., of dimension k − 1. Moreover we label the faces
I ⊂ ∆ by the monomials mI . We will sometimes be sloppy and identify
the faces in ∆ with their labels or exponents of the labels and write mI or
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α for the face with label mI = zα and {zai1 , . . . , zaik } or {ai1 , . . . , aik} for
I = {i1, . . . , ik}.

The ideal M is said to be generic in the sense of [4, 17] if whenever two
distinct minimal generators mi and mj have the same positive degree in
some variable, then there is a third generatormk that strictly divides m{i,j},
which means thatmk dividesm{i,j}/z� for all variables z� dividingm{i,j}. In
particular, M is generic if no two generators have the same positive degree
in any variable.

If M is generic, then ∆ has precisely dimension n − 1; it is a regular
triangulation of the (n− 1)-dimensional simplex, see [4, Corollary 5.5]. The
(labels of the) top-dimensional faces of ∆ are precisely the exponents α in
the minimal irreducible decomposition (2.2) of M , i.e., the outer corners of
SM , see [4, Theorem 3.7].

For k = 0, . . . , n, let Ek be the free A-module with basis {eI}I∈∆(k) and
let the differential ϕk : Ek → Ek−1 be defined by

ϕk : eI �→
k∑

j=1

(−1)j−1 mI
mIj

eIj , (3.1)

where Ij denotes {i1, . . . , ij−1, ij+1, . . . , ik} if I = {i1, . . . , ik}. Then the
complex E•, ϕ• is exact and thus gives a free resolution of the cokernel of
ϕ0, which with the identification E0 = A equals A/M , see [4, Theorem 3.2].
In fact, this so-called Scarf resolution is a minimal resolution of A/M , i.e.,
for each k, ϕk maps a basis of Ek to a minimal set of generators of Imϕk,
see, e.g., [8, Corollary 1.5]. Originally, in [4], the situation A = C[z1, . . . , zn]
was considered. However, since O0 is flat over C[z1, . . . , zn], see, e.g., [19,
Theorem 13.3.5], the complex E•, ϕ• is exact for A = O0 if and only if it is
exact for A = C[z1, . . . , zn].

3.1. The sign sgn(α)

Let I = {i1, . . . , in} be a top-dimensional simplex in ∆ with label α.
Then there is a unique permutation η = η(α) of {1, . . . , n} such that for

each 1 � � � n iη(�) is a unique vertex of I such that α� = a
iη(�)
� ; we will refer

to this vertex as the x�-vertex of I. To see this, first of all, since α = lcm(ai),
ai� � α� and therefore there must be at least one vertex i of I such that

ai� = α�. Assume that i and j are vertices of I such that ai� = aj� = α�. Then,

since M is generic, there is a generator zb of M that strictly divides za
i∨aj .

But then ai ∨ aj = ai ∨ aj ∨ b and so {i, j} is not in ∆, which contradicts
that i and j are both vertices of I.
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We let sgn(α) denote the sign of the permutation η. This is the sign that
appears in (1.10) in Theorem 1.1 as well as in (1.11). We should remark
that we use a different sign convention in this paper than in [12, 13], which
corresponds to a different orientation of the (n−1)-simplex or, equivalently,
to a different choice of bases for the modules Ek, cf. [1, 13].

3.2. The subcomplex ∆σ,a1,...,ak

Given a permutation σ of {1, . . . , n}, and vertices a1, . . . , ak of ∆, let
∆σ,a1,...,ak be the (possibly empty) subcomplex of ∆, with top-dimensional
simplices α that satisfy ασ(�) = a�σ(�) for � = 1, . . . , k. In other words, the

top-dimensional simplices in ∆σ,a1,...,ak are the ones that have a� as xσ(�)-
vertex for � = 1, . . . , k.

Note that for each choice of permutation σ, k ∈ {1, . . . , n}, and α ∈ ∆(n)
there is a unique sequence a1, . . . , ak such that α ∈ ∆σ,a1,...,ak . Moreover,
∆σ,a1,...,an is the unique simplex in ∆(n) that satisfies a�σ(�) = ασ(�) for
� = 1, . . . , n if α is the label of ∆σ,a1,...,an .

We will write ∆∗σ,a1,...,ak for the subcomplex of ∆σ,a1,...,ak consisting of

all faces in ∆σ,a1,...,ak that do not contain a1, . . . , ak−1, or ak. Note that
since ∆σ,a1,...,ak is simplicial, {b1, . . . , b�} is a face of ∆∗σ,a1,...,ak if and only

{a1, . . . , ak, b1, . . . , b�} is a face of ∆σ,a1,...,ak .

4. Proof of Theorem 1.1

To prove the theorem we will first give an alternative description of the
Sσ,α as certain cuboids. Throughout this section we will assume that E•, ϕ•
is the Scarf resolution of a generic Artinian monomial ideal M and we will
use the notation from above.

Lemma 4.1. — Assume that α is the label of the face I = {i1, . . . , in} ∈
∆(n). Let η be the permutation of {1, . . . , n} associated with I as in Sec-
tion 3.1, and set τ = η ◦ σ.

Then Sσ,α is a cuboid with side lengths

a
iτ(1)
σ(1) ,

(
aiτ(1)∨aiτ(2)−aiτ(1)

)
σ(2)

, . . . ,
(
aiτ(1)∨· · ·∨aiτ(n)−aiτ(1)∨· · ·∨aiτ(n−1)

)
σ(n)

.

In particular,

Vol(Sσ,α) = a
iτ(1)
σ(1) ×

(
aiτ(1) ∨ aiτ(2) − aiτ(1)

)
σ(2)
× · · ·

×
(
aiτ(1) ∨ · · · ∨ aiτ(n) − aiτ(1) ∨ · · · ∨ aiτ(n−1)

)
σ(n)

.
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4.1. Proof of Lemma 4.1

To prove the lemma, let us first assume that σ is the identity permu-
tation and write Sα = Sσ,α, ∆a1,...,ak = ∆σ,a1,...,ak (so that ∆a1,...,ak is
the subcomplex of ∆ whose top-dimensional simplices α satisfy α� = a�� for
� = 1, . . . , k), and ∆∗a1,...,ak = ∆∗σ,a1,...,ak .

We will decompose S in a seemingly different way. First we will construct
certain lower-dimensional staircases with corners in ∆. Given an inner cor-
ner a = (a1, . . . , an) of S let

Ta = {x ∈ S | x1 = a1, x� > a�, � = 2, . . . , n}. (4.1)

Note that Ta is contained in the boundary ∂S of S. LetHa be the hyperplane
{x1 = a1}, and let Ua be defined as in Section 2. Then note that Ta =
Ua ∩ S ⊂ Ha ∩ S.

Claim 4.2. — Let a be an inner corner of S. Then Ta = ∅ if and only if
a1 = 0. If Ta is non-empty, then it is a staircase in the hyperplane Ha with
origin a. The outer corners of Ta are the top-dimensional faces of ∆a. The
inner corners are the lattice points a ∨ b, where b is a vertex in ∆∗a.

Proof. — If a1 = 0, then Ha ∩ S = ∅, and thus Ta is empty. In general,
note that Ta is empty exactly if a + (0, 1, . . . , 1) /∈ S. If a1 > 0, so that
a+ (0, 1, . . . , 1) ∈ Rn

>0, this means that there is an inner corner c of S such
that c ≺ a + (0, 1, . . . , 1). In particular, c � a, which contradicts that a is
an inner corner. Thus Ta �= ∅ if a1 > 0.

Assume that Ta is non-empty and that β = (β1, . . . , βn) is maximal in
Ta. Since Ta ⊂ Ha, β1 = a1. Moreover, since S is of the form (2.3), there
is a maximal γ ∈ S such that γ � β. By the definition of Ta, γ� � β� > a�
for � = 2, . . . , n and thus if γ1 > a1, then γ � a, which contradicts that
γ ∈ S. Hence γ1 = a1 and, since γ� > a� for � = 2, . . . , n, γ ∈ Ta. Since β
is maximal in Ta, γ = β, which means that, in fact, β is maximal in S and
thus β ∈ ∆(n). Since β1 = a1, β ∈ ∆a(n) by the definition of ∆a.

On the other hand, if β ∈ ∆a(n), then β is maximal in S and contained
in Ta ⊂ S, and thus it is maximal in Ta. We conclude that the maximal
elements in Ta are the top-dimensional faces of ∆a.

Since S is of the form (2.3),

Ta = Ua ∩
⋃

β∈∆a(n)

{x | x � β},
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which in light of (2.4) means that Ta is a staircase in Ha with origin a and
outer corners ∆a(n).

It remains to describe the inner corners of Ta. Assume that β = (a1, β2,
. . . , βn) is an inner corner of Ta, i.e., β is minimal in Ua \ S. This means
that any β̃, such that β̃� > β� for � = 2, . . . , n, is not contained in S, which
implies that there is an inner corner b of S such that b ≺ β̃ for any such β̃.
In particular, b � β and b1 < a1. To conclude, there is an inner corner b �= a
of S such that b � β. Now a ∨ b ∈ Ua \ S, since a ∨ b � a, (a ∨ b)1 = a1,
and za∨b ∈ M . Moreover, a ∨ b � a ∨ β = β, since b � β, and, since β by
assumption is minimal in Ua \ S, it follows that β = a ∨ b. Now, since Ta
is a staircase there is a maximal α ∈ ∆a(n) such that b � β � α. It follows
(a ∨ b) � a ∨ β = β that b is a vertex of α, i.e., b ∈ ∆∗a(1).

Conversely, pick b ∈ ∆∗a(1) and let β = a ∨ b. Since a and b are inner
corners of S, zβ ∈ M and thus β ∈ Rn

>0 \ S. Moreover, since b ∈ ∆a,

b1 � a1, so that β1 = (a∨ b)1 = a1, and thus β ∈ Ua \ S. Assume that there
is a γ ∈ Ua \ S such that γ � β. Then, as above, there is an inner corner
c �= a of S such that c ≺ γ + (0, 1, . . . , 1) and γ = a ∨ c. Now the inner
corners a, b, c of S satisfy a ∨ b ∨ c = a ∨ b. Since b ∈ ∆a, {a, b} is an edge
of ∆, which means that {za, zb} is the unique set of minimal generators
with least common multiple za∨b. It follows that c ∈ {a, b} and since c �= a,
we have that c = b, and thus γ = β. Hence β is minimal in Ua \ S. We
conclude that the inner corners of Ta are exactly the lattice points a ∨ b,
where b ∈ ∆∗a(1). �

Let π : Rn
x1,...,xn → Rn−1

x2,...,xn be the projection π : (x1, . . . , xn) �→
(x2, . . . , xn) and let ρ : Rn

x1,...,xn → Rn−1
x2,...,xn be the affine mapping defined

by ρ(x) = π(x− a). Let Ma be the monomial ideal in An−1 (with variables
z2, . . . , zn) defined by Ta and ρ as in Section 2.

Claim 4.3. — Ma is a generic Artinian monomial ideal. The Scarf com-
plex ∆Ma consists of faces of the form {ρ(a ∨ b1), . . . , ρ(a ∨ bj)}, where
{b1, . . . , bj} is a face of ∆∗a.

Proof. — Since S is bounded, Ta ⊂ S is bounded, and thus Ma is
Artinian.

To show that Ma is generic, assume that there are two minimal gener-
ators zβ and zγ that have the same positive degree in some variable, i.e.,
β� = γ� for some 2 � � � n. Assume that β = ρ(a ∨ b) and γ = ρ(a ∨ c),
where b, c ∈ ∆∗a(1). Then β� = (a∨ b)�− a� and γ� = (a∨ c)�− a�, and thus
β� = γ� > 0 implies that (a ∨ b)� = (a ∨ c)� > a�, which in turn implies
that b� = c�. Since M is generic there is a minimal generator zd of M that
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strictly divides lcm(zb, zc), i.e., dk < (b∨ c)k for all k such that (b∨ c)k > 0.
In particular, d1 < (b ∨ c)1 = a1. Set δ = ρ(a ∨ d) and take k such that

0 < (β ∨ γ)k =
(
(a ∨ b− a) ∨ (a ∨ c− a)

)
k

= (a ∨ b ∨ c− a)k.
Then (b ∨ c)k > ak � 0 and thus dk < (b ∨ c)k. This implies that

δk = (d ∨ a− a)k < (a ∨ b ∨ c− a)k = (β ∨ γ)k.
It follows that zδ strictly divides lcm(zβ , zγ) = zβ∨γ . Now a ∨ d ∈ Ua \ S,
since a ∨ d � a, (a ∨ d)1 = a1 and za∨d ∈M . Hence zδ ∈Ma by definition.
To conclude, Ma is a generic monomial ideal.

Since Ma is generic, the Scarf complex ∆Ma
is simplicial and the top-

dimensional faces are precisely the outer corners of the staircase of Ma, i.e.,
simplices of the form {ρ(a ∨ b1), . . . , ρ(a ∨ bn−1)}, where {b1, . . . , bn−1} is
in ∆∗a(n− 1). Since ∆Ma

and ∆a are simplicial, it follows that the faces of
∆Ma are of the desired form. �

Claim 4.4. — Assume that a �= b are inner corners of S. Then π(Ta)∩
π(Tb) = ∅.

In particular, it follows that

Ta ∩ Tb = ∅ if a �= b. (4.2)

Proof. — Let us first assume that a1 �= b1 and that π(Ta) ∩ π(Tb) �=
∅; without loss of generality we may assume that a1 > b1. Pick β =
(β2, . . . , βn) ∈ π(Ta) ∩ π(Tb) and let γ = (a1, β2, . . . , βn). Since β ∈ π(Tb),
βj > bj for j = 2, . . . , n and since a1 > b1 it follows that γ � b. Hence γ
is in the interior of Rn

>0 \ S. On the other hand, β ∈ π(Ta) implies that
γ ∈ Ta ⊂ ∂S, which contradicts that γ is in the interior of Rn

>0 \ S. Thus
π(Ta) ∩ π(Tb) = ∅ if a1 �= b1.

Next, assume that a1 = b1 > 0 and that π(Ta) ∩ π(Tb) �= ∅; if a1 = 0 or
b1 = 0, the claim is trivially true by Claim 4.2. Since Ta and Tb are both
contained in the hyperplane Ha, π(Ta) ∩ π(Tb) �= ∅ is equivalent to that
Ta ∩ Tb �= ∅. Assume that β ∈ Ta ∩ Tb. Then β� > (a ∨ b)� for � = 2, . . . , n.
Since M is generic and a1 = b1, there is a minimal generator zc that strictly
divides lcm(za, zb); in particular c1 < (a ∨ b)1 = β1. It follows that β � c,
and thus β is contained in the interior of Rn

>0 \ S, which contradicts that
β ∈ Ta ∩ Tb ⊂ ∂S. Thus we have proved that π(Ta) ∩ π(Tb) = ∅ when
a �= b. �

Claim 4.5. — For each x ∈ S, there is an inner corner a of S such that
π(x) ∈ π(Ta).
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Proof. — Consider x ∈ Rn
>0. Then there is at least one inner corner

a0 of S such that π(x) � π(a0). Indeed, since M is Artinian, there is a
generator of the form za1

1 , whose exponent (a1, 0, . . . , 0) is mapped to the
origin in Rn−1, and thus we can choose a0 = (a1, 0, . . . , 0).

Given such an a0, either π(x) ∈ π(Ta0) or π(x) � π(β1) for some inner
corner β1 of Ta0 . In the latter case, by Claim 4.2, β1 = a0 ∨ a1, where
a1 ∈ ∆∗a0(1); in particular, a1

1 < a0
1. Now π(x) � π(a0 ∨ a1) � π(a1), which

implies that either π(x) ∈ π(Ta1) or π(x) � π(β2) for some β2 = a1 ∨ a2,
where a2 ∈ ∆∗a1(1); in particular, a2

1 < a
1
1.

By repeating this argument we get a sequence of inner corners a0, . . . , ak,
such that π(x) � π(aj) for j = 0, . . . , k and either π(x) ∈ π(Tak) or ak1 = 0.
If ak1 = 0, then π(x) � π(ak) implies that x � ak, which means that x /∈ S.
Hence, either π(x) ∈ π(Ta) for some inner corner a of S or π /∈ S. �

Next, we will use the staircases Ta to construct a partition of S. For each
inner corner a of S, let

Pa = {x ∈ S | π(x) ∈ π(Ta)}.

In other words, Pa consists of everything in S “below” the staircase Ta. By
a slight abuse of notation, Pa =]0, a1]× Ta.

Remark 4.6. — By Claim 4.5, each x ∈ S is contained in a Pa for some
inner corner a, and by Claim 4.4 the intersection Pa∩Pb is empty if a and b
are different inner corners. Thus the set of (non-empty) Pa gives a partition
of S.

Remark 4.7. — Note that Pa is a staircase itself with the same outer
corners as Ta, i.e., α ∈ ∆a(n).

Next, we will see that each Sα is contained in a Pa.

Claim 4.8. — For each α ∈ ∆(n), Sα is contained in a Pa. More pre-
cisely, if α ∈ ∆a(n), then Sα ⊂ Pa.

Proof. — Let us fix α ∈ ∆(n). Recall from Section 3.2 that there is a
unique a such that α ∈ ∆a(n). We need to show that Sα ∩ Pb = ∅ for all
b �= a.

We first consider the case when b is such that b1 > α1. Take x ∈ Pb.
By Remark 4.7, Pb is a staircase with outer corners ∆b(n). It follows that
x � β for some β ∈ ∆b(n), which, by the definition of the Sγ , implies that
x ∈ ⋃

γ�σβ Sγ . Since β1 = b1 > α1, β >σ α, and thus, since the Sγ are
disjoint, x /∈ Sα. We conclude that Sα ∩ Pb = ∅ in this case.
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Next we consider the case when b1 = α1. Assume that x ∈ Sα∩Pb. Then
α� � x� > b� for � = 2, . . . , n. Since α1 = b1 it follows that α ∈ Tb. On the
other hand, by Claim 4.2, α ∈ ∆a(n) implies that α ∈ Ta, which, by (4.2),
contradicts that α ∈ Tb. It follows that Sα ∩ Pb = ∅.

Finally we consider the case when b1 < α1. Assume that x ∈ Sα ∩ Pb.
Then, as above, α� � x� > b� for � = 2, . . . , n. Since also α1 > b1, it follows
that α � b, which however contradicts that b is an inner corner of S. Hence
Sα ∩ Pb = ∅ also in this case, which concludes the proof. �

Next, we will inductively define staircases and partitions of S associated
with faces of ∆ of higher dimension. Given vertices a1, . . . , ak−1 of ∆, such
that ∆a1,...,ak−1 is non-empty (in particular, aj is in ∆a1,...,aj−1 for j =
2, . . . , k−1) and an inner corner ak of ∆∗a1,...,ak−1 , assuming that Ta1,...,ak−1

is defined, we let

Ta1,...,ak := {x ∈ Ta1,...,ak−1 | xk = (a1 ∨ · · · ∨ ak)k, xj > (a1 ∨ · · · ∨ ak)j ,

j = k + 1, . . . , n}.

Recall that by the definition of the sequence a1, . . . , ak, in fact, (a1 ∨ · · · ∨
ak)j = ajj for j = 1, . . . , k, see Section 3.2. Moreover, note that Ta1,...,ak is
contained in the codimension k-plane

Ha1,...,ak := {x1 = (a1 ∨ · · · ∨ ak)1, . . . , xk = (a1 ∨ · · · ∨ ak)k}

= {x1 = a1
1, . . . , xk = akk}.

Let πk : Rn
x1,...,xn → Rn−k

xk+1,...,xn
be the projection πk : (x1, . . . , xn) �→

(xk+1, . . . , xn), and let ρk : Rn
x1,...,xn → Rn−k

xk+1,...,xn
be the affine mapping

defined by ρk : x �→ πk(x− a1 ∨ · · · ∨ ak).

Claim 4.9. — Assume that Ta1,...,ak−1 is non-empty and that
ak ∈ ∆∗a1,...,ak−1(1). Then Ta1,...,ak = ∅ if and only if akk = (a1 ∨ · · · ∨
ak−1)k. If Ta1,...,ak is non-empty, then it is a staircase in Ha1,...,ak . The
origin of Ta1,...,ak is a1 ∨ · · · ∨ ak, the outer corners are the top-dimensional
faces of ∆a1,...,ak and the inner corners are the lattice points of the form
a1 ∨ . . . ∨ ak ∨ b, where b is a vertex of ∆∗a1,...,ak .

The monomial ideal Ma1,...,ak defined by Ta1,...,ak and ρk as in Section 2,
i.e., it has staircase ρk(Ta1,...,ak), is an Artinian generic monomial ideal.
The Scarf complex ∆M

a1,...,ak
consists of faces of the form {ρk(a1 ∨ · · · ∨

ak ∨ b1), . . . , ρk(a1 ∨ · · · ∨ ak ∨ bj)}, where {b1, . . . , bj} is a face of ∆∗a1,...,ak .
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Proof. — By Claims 4.2 and 4.3 the claim holds for k = 1. Assume that
it holds for k = κ− 1; we then need to prove that it holds for k = κ.

First, it is clear from the definition that Ta1,...,aκ is contained inHa1,...,aκ .
If aκκ = (a1 ∨ · · · ∨ aκ−1)κ then Ha1,...,aκ ∩ Ta1,...,aκ−1 = ∅ and thus Ta1,...,aκ

is empty. In general, note that Ta1,...,aκ is empty exactly if a1 ∨ · · · ∨ aκ +
(0, . . . , 0, 1, . . . , 1) /∈ S; here (0, . . . , 0, 1, . . . , 1) means that the first κ entries
are 0 and the rest are 1. Assume that aκκ �= (a1 ∨ · · · ∨ aκ−1)κ. Then,
by the definition of the ajj , in fact, aκκ > (a1 ∨ · · · ∨ aκ−1)κ � 0. Since

Ta1,...,aκ−1 �= ∅ and the claim holds for k = κ− 1 by assumption, ajj > 0 for
j = 1, . . . , κ− 1, and thus a+(0, . . . , 0, 1, . . . , 1) ∈ Rn

>0. Then the condition
a1∨· · ·∨aκ+(0, . . . , 0, 1, . . . , 1) /∈ S implies that there is an inner corner c of
S such that c ≺ a+(0, . . . , 0, 1, . . . , 1). In particular, c � a, which contradicts
that a is an inner corner. Thus Ta1,...,aκ �= ∅ if aκκ �= (a1 ∨ · · · ∨ aκ−1)κ.

Let us now assume that aκκ > (a1∨· · ·∨aκ−1)κ. We will use Claim 4.2 to

show that Ta1,...,aκ is a staircase of the desired form. Let S̃ be the staircase
ρκ−1(Ta1,...,aκ−1) ⊂ Rn−κ+1

xκ,...,xn of Ma1,...,aκ−1 and choose an inner corner ã :=

ρκ−1(a
1 ∨ · · · ∨ aκ) of S̃. Then note that

Tã = {x ∈ S̃ | xκ = ãκ, x� > ã�, � = κ+ 1, . . . , n}
= {x ∈ ρκ−1(Ta1,...,aκ−1) | xκ = ρκ−1(a

1 ∨ · · · ∨ aκ)κ,
x� > ρκ−1(a

1 ∨ · · · ∨ aκ)�, � = κ+ 1, . . . , n}
= ρκ−1(Ta1,...,aκ).

Now, by Claim 4.2, Tã is a staircase in the hyperplane {xκ = ãκ} ⊂ Rn−κ+1
xκ,...,xn

with origin ã. The outer corners are the top-dimensional faces α̃ of ∆ã, i.e.,
the top-dimensional faces α̃ of ∆Ma1,...,aκ−1 such that

α̃κ = ãκ = ρκ−1(a
1 ∨ · · · ∨ aκ)κ = (a1 ∨ · · · ∨ aκ)κ = aκκ. (4.3)

Since the claim holds for k = κ − 1, that α̃ is a top-dimensional face of
∆Ma1,...,aκ−1 means that α̃ = ρκ−1(a

1 ∨ · · · ∨ aκ−1 ∨ β), where β is a top-

dimensional face of ∆∗a1,...,aκ−1 . In other words, α̃ = ρκ−1(α), where α is a

top-dimensional face of ∆ such that αj = ajj for j = 1, . . . , κ−1. By (4.3) we
also have that ακ = ρκ−1(α)κ = aκκ, so that α ∈ ∆a1,...,aκ(n). To conclude,
the outer corners of Tã are of the form ρκ−1(α) where α ∈ ∆a1,...,aκ(n).

Moreover, by Claim 4.2 the inner corners of Tã are the lattice points
ã ∨ b̃, where b̃ is a vertex of ∆∗ã. Since the lemma holds for k = κ − 1, this
means that b̃ = ρκ−1(a

1 ∨ · · · ∨ aκ−1 ∨ b), where b ∈ ∆∗a1,...,aκ−1(1). Since

b̃ �= ã, b �= aκ, and thus ã∨ b̃ = ρκ−1(a
1∨· · ·∨aκ∨b), where b ∈ ∆∗a1,...,aκ(1).
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Since the restriction ρκ−1 : Ha1,...,aκ−1 → Rn−κ+1 is a just a translation
of the plane Ha1,...,aκ−1 (if we consider Rn−κ+1 as embedded in Rn) it
follows that Ta1,...,aκ is a staircase in Ha1,...,aκ with origin a1 ∨ · · · ∨ aκ,
where the outer corners are the top-dimensional faces of ∆a1,...,aκ and the
inner corners are of the form a1 ∨ · · · ∨ aκ ∨ b, where b ∈ ∆∗a1,...,aκ(1). This
proves the first part of the claim.

Next, we will use Claim 4.3 to prove the second part of the claim. Let
ρ̃ : Rn−κ+1

xκ,...,xn → Rn−κ
xκ+1,...,xn be the affine map

ρ̃ : (xκ, . . . , xn) �→ (xκ+1 − ãκ+1, . . . , xn − ãn).

Note that ρκ = ρ̃ρκ−1. It follows that the ideal Ma1,...,aκ has staircase

ρκ(Ta1,...,aκ) = ρ̃ρκ−1(Ta1,...,aκ) = ρ̃(Tã),

where we have used (4.3) for the second equality. In other words, Ma1,...,aκ

is the ideal defined by Tã and ρ̃ as in Section 2. Thus by Claim 4.3, it is an
Artinian generic monomial ideal.

Moreover, by Claim 4.3, the Scarf complex ∆Ma1,...,aκ
consists of faces

of the form
{ρ̃(ã ∨ b̃1), . . . , ρ̃(ã ∨ b̃j)}, (4.4)

where {b̃1, . . . , b̃j} is a face of ∆∗ã. As above, b̃� ∈ ∆∗ã(1) implies that ã∨ b̃� =
ρκ−1(a

1 ∨ · · · ∨ aκ−1 ∨ b�), where b ∈ ∆∗a1,...,aκ(1). Hence,

ρ̃(ã ∨ b̃�) = ρ̃ρκ−1(a
1 ∨ · · · ∨ aκ ∨ b�) = ρκ(a

1 ∨ · · · ∨ aκ ∨ b�)

where b ∈ ∆∗a1,...,aκ(1). Thus the faces (4.4) are of the desired form, and we
have proved the second part of the claim. �

To construct the partitions associated with the staircases Ta1,...,ak , we
define inductively

Pa1,...,ak = {x ∈ Pa1,...,ak−1 | πk(x) ∈ πk(Ta1,...,ak)}.

Then Pa1,...,ak is a k-dimensional cuboid times the (n−k)-dimensional stair-
case Ta1,...,ak . The �th side length is given as the “height” of Ta1,...,a� in
Ta1,...,a�−1 , which equals (a1 ∨ · · · ∨ a� − a1 ∨ · · · ∨ a�−1)�. By a slight abuse
of notation

Pa1,...,ak=]0, a1
1]×]a1

2,(a
1∨a2)2]×· · ·×](a1∨· · ·∨ak−1)k,(a

1∨· · ·∨ak)k]×Ta1,...,ak .

In particular,

Pa1,...,an =]0, a1
1]×]a1

2, (a
1 ∨ a2)2]× · · ·×](a1 ∨ · · · ∨ an−1)n, (a

1 ∨ · · · ∨ an)n].
(4.5)
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Remark 4.10. — Note that Pa1,...,ak is, in fact, a staircase with outer
corners α ∈ ∆a1,...,ak(n).

Claim 4.11. — For each k, the set of non-empty Pa1,...,ak gives a parti-
tion of S.

In particular, since Ta1,...,ak ⊂ Pa1,...,ak ,

Ta1,...,ak ∩ Tb1,...,bk = ∅ if {a1, . . . , ak} �= {b1, . . . , bk}. (4.6)

Proof. — By Remark 4.6, the claim holds for k = 1. Assume that the
claim holds for k = κ − 1. To prove that it holds for k = κ it suffices
to show that, given a sequence a1, . . . , aκ−1 of inner corners, the set of
Pa1,...,aκ , where aκ ∈ ∆∗a1,...,aκ−1(1), gives a partition of Pa1,...,aκ−1 . Take
x ∈ Pa1,...,aκ−1 . We then need to show that there is exactly one choice of
aκ ∈ ∆∗a1,...,aκ−1(1) such that πκ(x) ∈ πκ(Ta1,...,aκ).

Let S̃ be the staircase πκ−1(Ta1,...,aκ−1) ⊂ Rn−κ+1
xκ,...,xn . By Claim 4.9, S̃ is a

staircase with (origin πκ−1(a
1∨· · ·∨aκ−1) and) inner corners πκ−1(a

1∨· · ·∨
aκ), where aκ ∈ ∆∗a1,...,aκ−1(1). Given an inner corner ã := πκ−1(a

1∨· · ·∨aκ)
of S̃, note that

Tã = {x ∈ S̃ | xκ = ãκ, x� > ã� for � = κ+ 1, . . . , n} =

{x ∈ πκ−1(Ta1,...,aκ−1) | xκ = πκ−1(a
1 ∨ · · · ∨ aκ)κ, x� > πκ−1(a

1 ∨ · · · ∨ aκ)�
for � = κ+ 1, . . . , n} = πκ−1(Ta1,...,aκ). (4.7)

Let π̃ : Rn−κ+1
xκ,...,xn → Rn−κ

xκ+1,...,xn be the projection (xκ, . . . , xn) �→ (xκ+1, . . . ,
xn). Then, clearly, π̃πκ−1 = πκ. By a slight modification of the proofs,
Claims 4.4 and 4.5 hold also for staircases with origin different from 0; it
follows that for x̃ ∈ S̃ there is exactly one inner corner ã = πκ−1(a

1∨· · ·∨aκ)
of S̃ such that

π̃(x̃) ∈ π̃(Tã) = π̃πκ−1(Ta1,...,aκ) = πκ(Ta1,...,aκ),

where we have used (4.7) for the second equality. Now take x ∈ Pa1,...,aκ−1 .
Then πκ−1(x) ∈ πκ−1(Ta1,...,aκ−1), and thus there is exactly one choice of
aκ ∈ ∆∗a1,...,aκ−1(1) such that π̃

(
πκ−1(x)

)
= πκ(x) ∈ πκ(Ta1,...,aκ). This

concludes the proof. �

Claim 4.12. — For each k and each α ∈ ∆(n), there is a unique se-
quence of k inner corners a1, . . . , ak such that Sα is contained in Pa1,...,ak .
More precisely, if α ∈ ∆a1,...,ak , then Sα ⊂ Pa1,...,ak .
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Proof. — Let us fix k. Recall from Section 3.2 that given α ∈ ∆(n), there
is a unique sequence of k inner corners a1, . . . , ak such that α ∈ ∆a1,...,ak(n).

Also, recall from the definition of ∆a1,...,ak that (a1 ∨ · · · ∨ ak)j = ajj for
j = 1, . . . , k. To prove the claim we need to show that Sα ∩Pb1,...,bk = ∅ for
all sequences of k inner corners b1, . . . , bk different from a1, . . . , ak.

We first consider the case when there is an � � k, such that bjj = ajj for

j < � and b�� > a
�
�. Pick x ∈ Pb1,...,bk . Since Pb1,...,bk is a staircase with outer

corners in ∆b1,...,bk(n), see Remark 4.10, it follows that x � β for some
β ∈ ∆b1,...,bk(n). By the definition of the Sγ , then x ∈ ⋃

γ�σβ Sγ . Since

βjj = bjj = ajj for j = 1, . . . , �− 1 and β�� = b�� > a
�
�, β >σ α, and thus, since

the Sγ are disjoint, x /∈ Sα. We conclude that Sα∩Pb1,...,bk = ∅ in this case.

Next, we consider the case when bjj = ajj for j = 1, . . . , k. Assume that

x ∈ Sα ∩ Pb1,...,bk . Then αj = ajj = bjj for j = 1, . . . , k and αj � xj >

(b1 ∨ · · · ∨ bk)j for j = k + 1, . . . , n. Thus by definition α ∈ Tb1,...,bk . On
the other hand, by Claim 4.9 α ∈ Ta1,...,ak , which by (4.6) contradicts that
α ∈ Tb1,...,bk . It follows that Sα ∩ Pb1,...,bk = ∅.

Finally we consider the case when there is an � � k, such that bjj = ajj
for j < � and b�� < a��. If � = 1 we know from (the proof of) Claim 4.8 that
Sα ∩Pb1 = ∅ and thus Sα ∩Pb1,...,bk ⊂ Sα ∩Pb1 = ∅. Assume that � � 2 and
that

x ∈ Sα ∩ Pb1,...,bk ⊂ Sα ∩ Pb1,...,b� .

Then αj = ajj = bjj for j = 1, . . . , � − 1, α� = a�� > b��, and αj � xj >

(b1 ∨ · · · ∨ b�)j for j = �+ 1, . . . , n. It follows that α ∈ Tb1,...,b�−1 , but, from
Claim 4.9 we know that α ∈ Ta1,...,a�−1 , which leads to a contradiction by
brutal. Hence Sα ∩ Pb1,...,bk = ∅ also in this case. �

Recall from Section 3.2 that ∆a1,...,an is just the simplex α ∈ ∆(n)
with vertices a1, . . . , an. On the other hand, each outer corner α gives rise
to a non-empty Pα := Pa1,...,an by choosing a� as the x�-vertex of α. By
Claim 4.12, Sα ⊂ Pα, and since both {Pα} and {Sα} give partitions of S,
we conclude that Sα = Pα.

Now, given I = {i1, . . . , in} ∈ ∆(n), we choose a� as the x�-vertex aiη(�).
Then Lemma 4.1 follows in light of (4.5).

For a general choice of σ the above proof works verbatim, with the
coordinates x� and the variables z� replaced by xσ(�) and zσ(�), respectively,
and η replaced by τ .
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4.2. Computing dϕ

Let us now compute the e∗I-entry of dσϕ for a given I = {i1, . . . , in} ∈
∆(n). Recall from (3.1) that

ϕk =
∑

J={j1,...,jk}⊂I

k∑

�=1

(−1)�−1za
j1∨···∨ajk−aj1∨···âj� ···∨ajk e∗J ⊗ eJ� + ϕ′k

(4.8)
where ϕ′k are the remaining terms that will not contribute to the e∗I-entry.
It follows that the coefficient of e∗I in dσϕ equals

sgn
(
(n, . . . , 1)

) ∑

τ

sgn(τ)
∂

∂zσ(1)
za

iτ(1)
dzσ(1) ∧

∂

∂zσ(2)
za

iτ(1)∨aiτ(2)−aiτ(1)dzσ(2)

∧ · · · ∧ ∂

∂zσ(n−1)
za

iτ(1)∨···∨aiτ(n−1)−aiτ(1)∨···∨aiτ(n−2)
dzσ(n−1)

∧ ∂

∂zσ(n)
za

iτ(1)∨···∨aiτ(n)−aiτ(1)∨···∨aiτ(n−1)
dzσ(n) =:

∑

τ

Fτ , (4.9)

where the sum is over all permutations τ of {1, . . . , n} and sgn(τ) denotes
the sign of the permutation τ .

Let η be the permutation of {1, . . . , n} associated with I as in Section 3.1
and let α be the label of I. Then, by the definition of η,

(
aiτ(1)∨· · ·∨aiτ(κ)

)
�
=

α� precisely for � = η−1
(
τ(1)

)
, . . . , η−1

(
τ(κ)

)
. It follows that

za
iτ(1)∨···∨aiτ(k)−aiτ(1)∨···∨aiτ(k−1)

is a monomial in the variables zη−1(τ(k)), . . . , zη−1(τ(n)). Therefore the last

factor in Fτ vanishes unless τ(n) = η
(
σ(n)

)
. Given, τ(n) = η

(
σ(n)

)
, the

next to last factor vanishes unless τ(n− 1) = η
(
σ(n− 1)

)
, etc. To conclude,

Fτ , where τ = η ◦ σ, is the only non-vanishing term in (4.9).

Now with τ = η ◦ σ,

Fτ = sgn(τ)× aiτ(1)σ(1) ×
(
aiτ(1) ∨ aiτ(2) − aiτ(1)

)
σ(2)
× · · · ×

(
aiτ(1) ∨ · · · ∨ aiτ(n) − aiτ(1) ∨ · · · ∨ aiτ(n−1)

)
σ(n)

za
iτ(1)∨···∨aiτ(n) dzσ(n)

zσ(n)

∧ · · · ∧ dzσ(1)

zσ(1)
= sgn(η)Vol(Sσ,α)zα−1dzn ∧ · · · ∧ dz1, (4.10)

where the last equality follows from Lemma 4.1. This concludes the proof
of Theorem 1.1, since, by definition sgn(α) = sgn(η), see Section 3.1.
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5. Examples

Let us illustrate (the proof of) Theorem 1.1 by some examples.

Example 5.1. — Assume that n = 1. Then each monomial ideal M is
a principal ideal generated by a monomial za. The staircase of M is just
the line segment ]0, a] ⊂ R>0 with one outer corner α = a so that Sα = S.
Moreover, the Scarf complex is just a point with label za, and thus the Scarf

resolution is just 0→ A
za−→ A. Thus in this case Theorem 1.1 just reads

dϕ = d(za) = Vol(]0, a])za−1dz = aza−1dz.

Example 5.2. — Assume that n = 2. Then each Artinian monomial ideal
M ⊂ A2 is of the formM = (za1

1 z
b1
2 , . . . , z

ar
1 z

br
2 ) for some integers a1 > . . . >

ar = 0 and 0 = b1 < . . . < br. Since no two minimal monomial generators
have the same positive degree in any variable, M is trivially generic. In this
case the staircase of M looks like an actual staircase with r inner corners
(aj , bj) and r−1 outer corners αj := (aj , bj+1), see Figure 5.1. In particular,

M =
⋂r−1
j=1(z

aj
1 , z

bj+1

2 ).

Sα1

Sαj

Sαr−1

Sα1

Sαj

Sαr−1

(aj ↪ bj)

(aj+1↪ bj+1)

αj

α1

αr−1

S

Figure 5.1. — The staircase S of M in Example 5.2 and the partitions

{Sαj }j = {Sσ,αj }j of S corresponding to the permutations σ = (1, 2) and σ = (2, 1),

respectively.

With σ as the identity, T(aj ,bj) is just the line segment {x1 = aj , bj <
x2 � bj+1}.

Note that σ = (1, 2) corresponds to the ordering α1 �σ . . . �σ αr−1 of
the outer corners and

S(1,2),αj = {x ∈ R2
>0 | 0 � x1 < aj , bj � x2 < bj+1},

whereas σ = (2, 1) corresponds to the reverse ordering of the outer corners
and so

S(2,1),αj = {x ∈ R2
>0 | aj+1 � x1 < aj , 0 � x2 < bj+1},
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see Figure 5.1. Thus, the partitions just correspond to vertical and horison-
tal, respectively, slicing of S.

In this case the Scarf complex is just a triangulation of the one-dimensional
simplex, and it is not very hard to directly compute dϕ, cf. [12, Section 7].

Example 5.3. — Let M be the generic monomial ideal M = (z31 , z
2
1z2,

z1z
2
2z

2
3 , z

4
2 , z

3
2z3, z

3
3) ⊂ A3. The staircase S of M , depicted in Figure 5.2, has

six inner corners, a1 = (3, 0, 0), a2 = (2, 1, 0), a3 = (1, 2, 2), a4 = (0, 4, 0),
a5 = (0, 3, 1), and a6 = (0, 0, 3), and five outer corners, α1 = (3, 1, 3),
α2 = (2, 4, 1), α3 = (2, 3, 2), α4 = (2, 2, 3), and α5 = (1, 3, 3).

α1

α2

α3

α4 α5

α1

α2

α3

α4 α5

α1

α2

α3

α4 α5

Figure 5.2. — The staircase of M in Example 5.3 and the partitions {Sαj }j
corresponding to the orderings α1, α2, α3, α4, α5 and α2, α5, α3, α4, α1, respectively.

By Claim 4.2, Taj is non-empty for j = 1, 2, 3. These two-dimensional
staircases are the light grey regions facing the reader in the first figure in
Figure 5.2.

The six different permutations σ of {1, 2, 3} give rise to six different
orderings of the αj : for example σ1 := (1, 2, 3) and σ2 := (2, 3, 1) cor-
respond to the orderings α1 �σ α2 �σ α3 �σ α4 �σ α5 and α2 �σ
α5 �σ α3 �σ α4 �σ α1, respectively. In the first case Sσ1,α1 is the cuboid
]0, 3]×]0, 1]×]0, 3], Sσ1,α2 =]0, 2]×]1, 4]×]0, 1], Sσ1,α3 =]0, 2]×]1, 3]×]1, 2],
Sσ1,α4 =]0, 2]×]1, 2]×]2, 3], and Sσ1,α5 =]0, 1]×]2, 3]×]2, 3], see Figure 5.2,
where also the Sσ2,αj are depicted.

6. General (monomial) ideals

The Scarf resolution is an instance of a more general construction of so-
called cellular resolutions of monomial ideals, introduced by Bayer-Sturmfels
[3]. The Scarf complex is then replaced by a more general oriented polyhedral
cell complex X, with vertices corresponding to and labeled by the genera-
tors of the monomial ideal M ; as above a face γ of X is labeled by the least
common multiple mγ of the vertices. Analogously to the Scarf complex, X
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encodes a graded complex of free A-modules: for k = 0, . . . ,dimX+1, let Ek
be a free A-module of rank equal to the number of (k−1)-dimensional faces
of X and let ϕk : Ek → Ek−1 be defined by ϕk : eγ �→

∑
δ⊂γ sgn(δ, γ)

mγ

mδ
eδ,

where γ and δ are faces of X of dimension k−1 and k−2, respectively, and
where sgn(δ, γ) = ±1 comes from the orientation of X. The complex E•, ϕ•
is exact if X satisfies a certain acyclicity condition see, e.g., [16, Proposi-
tion 4.5], and thus gives a resolution - a so-called cellular resolution - of
the cokernel of ϕ0, which, with the identification E0 = A, equals A/M . For
more details we refer to [3] or [16].

In [3] was also introduced a certain canonical choice of X. Given t ∈
R, let Pt = Pt(M) be the convex hull in Rn of {(tα1 , . . . , tαn) | zα ∈
M}. Then Pt is an unbounded polyhedron in Rn of dimension n and the
face poset of bounded faces of Pt (i.e., the set of bounded faces partially
ordered by inclusion) is independent of t if t � 0. The hull complex of M
is the polyhedral cell complex of all bounded faces of Pt for t � 0. The
corresponding complex E•, ϕ• is exact and thus gives a resolution, the hull
resolution, of A/M . It is in general not minimal, but it has length at most n.
IfM is generic, however, the Hull complex coincides with the Scarf complex;
in particular, it is minimal.

In [12] together with Lärkäng we computed the residue current R asso-
ciated with the hull resolution, or, more generally, any cellular resolution
where the underlying polyhedral complex X is a polyhedral subdivision of
the (n − 1)-simplex, of an Artinian monomial ideal. Theorem 5.1 in [12]
states that the entries of R are of the form (1.11), where the sum is now
over all top-dimensional faces (with label α) of X and sgn(α) comes from
the orientation of X.

Note that the definition of Sσ,α still makes sense when M is a general
Artinian monomial ideal. However, in general the Sσ,α will not be cuboids
as the following example shows.

Example 6.1. — Let M = (z21 , z1z2, z1z3, z
2
2 , z

2
3) ⊂ A3. Then M is not

generic, since there is no generator that strictly divides lcm(z1z2, z1z3) =
z1z2z3. The staircase S of M is depicted in Figure 6.1.

Note that S has two outer corners α1 = (2, 2, 1) and α2 = (1, 1, 2).

Assume that σ is a permutation of {1, 2, 3} such that σ(1) equals 1 or 2.
Then the lexicographical order of the outer corners is α1 �σ α2. Otherwise,
if σ(1) = 3, the lexicographical order is reversed. In the first case Sα1 is
the cuboid ]0, 2]×]0, 2]×]0, 1], and Sα2 is the cuboid ]0, 1]×]0, 1]×]1, 2], see
Figure 6.1. In the second case Sα2 is the cuboid ]0, 1]×]0, 1]×]0, 2], whereas
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Sα1 is the set ]0, 2]×]0, 2]×]0, 1]\]0, 1]×]0, 1]×]0, 1]; in particular Sα1 is not
a cuboid.

200

101

002

011

020
α1

α2

α1

α2

α1

α2

200

101

002

011

020

Figure 6.1. — The staircase of M in Example 6.1, the partitions Sα1 and Sα2

corresponding to the orderings α1, α2 and α2, α1, respectively, and the hull complex

of M .

In this case, the hull resolution is a minimal resolution of A/M . There are
two top-dimensional faces in the hull complex, with vertices {z21 , z1z2, z1z3, z22}
and {z1z2, z1z3, z23} and thus labels zα

1

and zα
2

, respectively, see
Figure 6.1. A computation yields that if σ(1) = 3, then the coefficient of

sgn(α1)zα
1−1dze∗α1 is 3 = Vol(Sσ,α1) and the coefficient of sgn(α2)zα

2−1dze∗α2

is 2 = Vol(Sσ,α2). Otherwise the coefficients are 4 = Vol(Sσ,α1) and
1 = Vol(Sσ,α2), respectively. Thus in this case Theorem 1.1 holds.

Example 6.1 suggests that Theorem 1.1 might hold when E•, ϕ• is the
hull resolution of an Artinian monomial ideal and this resolution is minimal.
However, we do not know how to prove it in general. The proof in Section 4
does not extend to this situation. For example the staircases Ta constructed
in Section 4.1 are not disjoint in general, cf. (4.2). Choose σ such that
σ(1) = 3 and consider the inner corners a = (1, 1, 0) and b = (1, 0, 1) of the
staircase S in Example 6.1. Then

Ta ∩ Tb = {x ∈ R3|x3 = 1, 1 < xj � 2, j = 1, 2}.

Also, the computation of dϕ is more involved in this case. Indeed, in general
it is not true that the coefficient of e∗I in R just consists of one non-vanishing
term as in (4.9).

Example 6.2 below shows that Theorem 1.1 does not hold for the hull
resolution in general if it is not minimal, and also that it does not hold for
arbitrary minimal resolutions of monomial ideals. It would be interesting to
look for an alternative description of the coefficients of dϕ that extends to
general (monomial) resolutions.

Example 6.2. — Let M = (z31 , z
2
1z

2
2 , z1z3, z

3
2 , z2z3, z

2
3). Then M is not

generic; for example, as in Example 6.1, there is no generator of M that
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strictly divides lcm(z1z2, z1z3) = z1z2z3. The staircase of M has three outer
corners, α1 = (3, 2, 1), α2 = (2, 3, 1), and α3 = (1, 1, 2).

In this case the hull resolution is not minimal. The hull complex consists
of four triangles; one triangle αj for each outer corner and one extra triangle
β with vertices {z21z22 , z1z3, z2z3} and thus label zβ = z21z

2
2z3, see Figure 6.2.

A computation yields that the coefficient of sgn(α3)zα
3−1dze∗α3 in dσϕ

equals Vol(Sσ,α3) for all permutations σ. The coefficient of sgn(α1)zα
1−1dze∗α1

in d(3,1,2)ϕ, however, equals 4, whereas Vol(S(3,1,2),α1) = 5. Thus Theo-
rem 1.1 does not hold in this case.

One can create a minimal cellular resolution from the hull complex, e.g.,
by removing the edge between z21z

2
2 and z1z3. The polyhedral cell complex

X so obtained has one top-dimensional face for each outer corner αj in S.
The face corresponding to α1 is the union of the two triangles α1 and β in
the hull complex, see Figure 6.2.

300 220 030

101 011

002

321 231

112

221

300 220 030

101 011

002

321 231

112

Figure 6.2. — The hull complex of the ideal M in Example 6.2 (labels on vertices and

2-faces) (left) and the minimal free resolution (right).

It turns out that the coefficient of sgn(α1)zα
1−1dze∗α1 in dσϕ is the sum

of the coefficients of sgn(α1)zα
1−1dze∗α1 and sgn(β)zβ−1dze∗β for each σ,

whereas the coefficients of sgn(α2)zα
2−1dze∗α2 and sgn(α3)zα

3−1dze∗α3 are

the same as above. Thus, as above, the coefficient of sgn(α2)zα
2−1dze∗α2 in

d(3,2,1)ϕ is different from Vol(S(3,1,2),α2), and so Theorem 1.1 fails to hold
also in this case.

Although Theorem 1.1 fails to hold in Example 6.2, Corollary 1.2 still
holds for both resolutions. In fact, the left hand side of (1.12) is independent
of σ for all free resolutions of Artinian ideals. We will present an argument
of this communicated to us by Jan Stevens, [18].

Assume that

0→ En
ϕn−→ . . .

ϕ2−→ E1
ϕ1−→ E0

∼= O0 (6.1)
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is a resolution of minimal length of an Artinian ideal a ⊂ O0 and let R be
the associated residue current as constructed in [1]. Since a is Artinian, it
follows from the construction that

ϕnR = 0, (6.2)

see [1, Proposition 2.2]. Moreover, R satisfies that if ψ is (a germ of ) a
holomorphic function, then ψR = 0 if and only if ψ ∈ a, see [1, Theorem 1.1].
In particular,

ϕ1ξR = 0 (6.3)

for any End(En, E2)-valued section ξ.

Proposition 6.3. — Assume that (6.1) is a resolution of an Artinian
ideal a ⊂ O0 and that z1, . . . , zn are holomorphic coordinates at 0 ∈ Cn. Let
σ be a permutation of {1, . . . , n}. Then

∂ϕ1

∂zσ(1)
dzσ(1) ∧ · · · ∧

∂ϕn
∂zσ(n)

dzσ(n) ∧R

is independent of σ.

Proof. — Since each permutation of {1, . . . , n} can be obtained as a
composition of permutations σ of the form

σj : {1, . . . , n} �→ {1, . . . , j − 1, j + 1, j, j + 2, . . . , n}, (6.4)

it suffices to prove that

∂ϕ1

∂z1
dz1∧· · ·∧

∂ϕn
∂zn

dzn∧R =
∂ϕ1

∂zσj(1)
dzσj(1)∧· · ·∧

∂ϕn
∂zσj(n)

dzσj(n)∧R. (6.5)

Since ϕjϕj+1 = 0,

0 =
∂2(ϕjϕj+1)

∂zj∂zj+1
(6.6)

=
∂2ϕj

∂zj∂zj+1
ϕj+1 +

∂ϕj
∂zj

∂ϕj+1

∂zj+1
+

∂ϕj
∂zj+1

∂ϕj+1

∂zj
+ ϕj

∂2ϕj+1

∂zj∂zj+1
.

Let us compose (6.6) from the left and the right by

∂ϕ1

∂z1
· · · ∂ϕj−1

∂zj−1
and

∂ϕj+2

∂zj+2
· · · ∂ϕn

∂zn
,

respectively. Since ϕkϕk+1 = 0 for each k, Leibniz’s rule gives that

∂ϕk
∂z�

ϕk+1 = −ϕk
ϕk+1

∂z�
,
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cf. (6.6). Using this repeatedly for k = j+1, . . . , n− 1 we get that the term
corresponding to the first term in the left hand side of (6.6) equals

±∂ϕ1

∂z1
· · · ∂ϕj−1

∂zj−1

∂2ϕj
∂zj∂zj+1

∂ϕj+1

∂zj+2
· · · ∂ϕn−1

∂zn
ϕn.

Similarly the term corresponding to the last term in the left hand side of
(6.6) equals

±ϕ1
∂ϕ2

∂z1
· · · ∂ϕj

∂zj−1

∂2ϕj+1

∂zj∂zj+1

∂ϕj+2

∂zj+2
· · · ∂ϕn

∂zn
.

Next let us compose from the right by R. Using (6.2) and (6.3) we get

0 =
∂ϕ1

∂z1
· · · ∂ϕn

∂zn
R+

∂ϕ1

∂z1
· · · ∂ϕj

∂zj+1

∂ϕj+1

∂zj
· · · ∂ϕn

∂zn
R

=
∂ϕ1

∂z1
· · · ∂ϕn

∂zn
R+

∂ϕ1

∂zσj(1)
· · · ∂ϕn

∂zσj(n)
R.

Combining this with dz1 ∧ · · · ∧ dzn = −dzσj(1) ∧ · · · ∧ dzσj(n) we obtain
(6.5). �
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