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On a representation of the fundamental class
of an ideal due to Lejeune-Jalabert

EL1ZABETH WuLcaN()

RESUME. — Lejeune-Jalabert a montré que la classe fondamentale d’un
idéal Cohen-Macaulay a C Op admet une représentation comme résidu,
associée & une résolution libre de a, d’une certaine forme différentielle
provenant de la méme résolution. Nous donnons une description explicite
de cette forme différentielle dans le cas ou la résolution est la résolution
Scarf d’un idéal monomial générique. De ce fait, nous obtenons une nou-
velle preuve du résultat de Lejeune-Jalabert dans ce cas.

ABSTRACT. — Lejeune-Jalabert showed that the fundamental class of a
Cohen-Macaulay ideal a C Qg admits a representation as a residue, con-
structed from a free resolution of a, of a certain differential form coming
from the resolution. We give an explicit description of this differential
form in the case where the free resolution is the Scarf resolution of a
generic monomial ideal. As a consequence we get a new proof of Lejeune-
Jalabert’s result in this case.

1. Introduction

In [14] Lejeune-Jalabert showed that the fundamental class of a Cohen-
Macaulay ideal a in the ring of germs of holomorphic functions Oy at 0 € C™
admits a representation as a residue, constructed from a free resolution of
a, of a certain differential form coming from the resolution, see also [15, 2].
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This representation generalizes the well-known fact that if a is generated by
a regular sequence f = (f1,..., fn), then

1 /dfn/\--~/\df1
(2me)" fnooo S
where resy is the Grothendieck residue of fi,..., f, and I' is the real n-cycle

defined by {|f;| = €} for some e such that f; are defined in a neighborhood of
{If;| < €} and oriented by d(arg f1)A- - -Ad(arg f,) > 0, see [10, Chapter 5.2].

res¢(dfp A--- Adfi) =

= dimc(Op/a), (L.1)

We will present a formulation of Lejeune-Jalabert’s result in terms of
currents. Recall that the fundamental cycle of a is the cycle

[a] =Y m;[Z)],

where Z; are the irreducible components of the variety Z of a, and m;
are the geometric multiplicities of Z; in Z, defined as the length of the
Artinian ring Oz, 7, see, e.g., [9, Chapter 1.5]. In particular, if Z = {0},
then [a] = dimc(Op/a)[{0}].

Assume that
0 E, 2 ... 2B 25 K (1.2)

is a free resolution of Oy/a of minimal length p = codim a; here the Ej
are free Op-modules and Ey = Op. In [1] together with Andersson we con-
structed from (1.2) a (residue) current R, which has support on Z, takes
values in E,, is of bidegree (0, p), and can be thought of as a current version
of Lejeune-Jalabert’s residue, cf. [13, Section 6.3]. Given bases of Ej, let dyy,
be the Hom(Ey, Ex_1)-valued (1,0)-form with entries (dyg)i; = d(pk)i; if
(¢k)ij are the entries of px and let dy denote the Ej-valued (p,0)-form

do :=dp1 A+ ANdpp.

Now, identifying the fundamental cycle [a] with the current of integration
along [a], see, e.g., [6, Chapter II1.2.B], Theorem 1.1 in [13] states that [a]
admits the factorization

1
a=————dpAR! 1.3
= g (13)
This should be thought of as a current version of Lejeune-Jalabert’s result
in [14]; in particular, the differential form dy is the same form that appears
in her paper. In fact, using residue theory the factorization (1.3) can be
obtained from Lejeune-Jalabert’s result and vice versa; for a discussion of

(1) For a discussion of the sign in (1.3), see Section 2.6 in [13].
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this, as well as the formulation of Lejeune-Jalabert’s result, we refer to
Section 6.3 in [13]. In [13] we also give a direct proof of (1.3) that does not
rely on [14] and that extends to pure-dimensional ideal sheaves.

Assume that a is generated by a regular sequence f = (f1,..., fp) and
let F,, e be the associated Koszul complex, i.e., let E be a free Og-module
of rank p with basis ey, ..., e, let B = A*E with bases ez = €i, N Neiy,
and let ¢y be the contraction with ) fje’. Then

=1
A A 6—6@ X €{1,....p}>
fo

where RéH =0(1/f1) A--- ANO(1/f,) is the classical Coleff-Herrera residue
current of f, introduced in [5], and ey denotes the basis element of A°E =2
Op. Moreover dp = pldfy A--- A df1€>{k1 pr @ €0 and thus (1.3) reads

R

1 1 =1
al] = ———0—AN---ANO— Adf, A--- ANdfy. 1.4
[ ] (27”)17 f1 fp fp If1 ( )
This factorization of [a] can be seen as a current version of (1.1) and also
as a generalization of the classical Poincaré-Lelong formula

1
f

where [f = 0] is the current of integration along the zero set of f, counted
with multiplicities. It appeared already in [5], and in [7] Demailly and Pas-
sare proved an extension to locally complete intersection ideal sheaves.

_o= L3 2_ L 3
[ = 0] = 5 —00log| > = 507 Adf, (15)

In [13] and [14], the factorization (1.3) is proved by comparing R and dg
to a residue and differential form, respectively, constructed from a certain
Koszul complex; in [13] this is done using a recent comparison formula for
residue currents due to Larkéng, [11].

To explicitly describe the factors in (1.3), however, seems to be a delicate
problem in general. In this note we compute the form dy when F,, @, is a
certain resolution of a monomial ideal. More precisely, let A be the ring Oy

of holomorphic germs at the origin in C™ with coordinates z1, ..., z,, or let
A be the polynomial ring Clz1, ..., z,]. We then give an explicit description
of the form 5 5
¥1 ©n
do = dzgy N+ A dzg, 1.6
=3 oy oW Dz o) (1.6)

when F,, @, is the Scarf resolution, introduced in [4], of an Artinian, i.e.,
zero-dimensional, generic monomial ideal M in A, see Section 3 for defini-
tions. Here the sum is over all permutations o of {1,...,n}. It turns out
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that each summand in (1.6) is a vector of monomials (times dz,, A---Adzy)
whose coefficients have a neat description in terms of the so-called staircase
of M and sum up to the geometric multiplicity of M, see Theorem 1.1 be-
low. This can be seen as a far-reaching generalization of the fact that the
coefficient of d(z%) equals a, which is the geometric multiplicity of the prin-
cipal ideal (2%), cf. Example 5.1 below. Thus, in a sense, the fundamental
class of M is captured already by the form dy. In the case of the Scarf reso-
lution we recently, together with Larkéng, [12], gave a complete description
of the current R. Combining Theorem 1.1 below with Theorem 1.1 in [12]
we obtain a new proof of (1.3) in this case, cf. Corollary 1.2 below.

Let us describe our result in more detail. Let M be an Artinian monomial
ideal in A. By the staircase S = Sp; of M we mean the set

S ={(x1,...,2,) € RE 21" 2kl ¢ Ay c R2. (1.7)

Here |[z| denotes the largest integer < z. The name is motivated by the
shape of S, cf. Figures 5.1, 5.2, and 6.1. We will refer to the finitely many
maximal elements in S, with respect to the standard partial order on R™,
as outer corners.

The Scarf resolution E,, e of M is encoded in the Scarf complex, Ay,
which is a labeled simplicial complex of dimension n — 1 with one vertex for
each minimal monomial generator of M and one top-dimensional simplex
for each outer corner of S, see Section 3. The rank of F} equals the number
of (k — 1)-dimensional simplices in Ay;. In particular, E,, pe ends at level
n and the rank of E, equals the number of outer corners of S. Thus dyp is
a vector with one entry for each outer corner of S.

For our description of dy we need to introduce certain partitions of S.
Given a permutation o of {1,...,n} let >, be the lexicographical order
induced by o, i.e, @ = (a1, ...,ap) 26 8= (B1,...,0n) if for some 1 < k <
n, Que) = Borey for 1 <L <k —1and ag) > Bor), or a = B. If a >, B
a # B we write a >, 8. Let o' >, ... >, a* > ... be the total ordering of
the outer corners induced by >,, and define inductively

Sear = {zeS|z<a}

Smak = {CE SICAN (Sgyal U---uy S(.,’akﬂ) |z < ak}

For a fixed o, {Ss.}o provides a partition of S, cf. Section 2.
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THEOREM 1.1. — Let M be an Artinian generic monomial ideal in A,
and let
0= E, 2. 2B 2S5 E (1.8)

be the Scarf resolution of A/M. Then

0 dpn
dep = b1 ng(l) VANRERWAN Ldzg(n) (1.9)

820(1) 6zg(n)

has one entry (dy¢)a for each outer corner a of the staircase S of M and
(dop)a = sgn(a)Vol(S, o)2* 1dz, (1.10)

where sgn(a) = +1 comes from the orientation of the Scarf complex, dz =
dzn A+ ANdzy, and 2%71 = zfrl cozOn Tl if o = (ag, ... ap).

The sign sgn(«) will be specified in Section 3.1 below.

Theorem 5.1 in [12] asserts that the residue current associated with the
Scarf resolution has one entry
= 1 = 1
R, =sgn(a) 0—7 A+~ NO—5—
z

Qn

. (1.11)
i n

for each outer corner a of S. Since (1/2mi)d(1/2%) A 2% 1dz = [z = 0], cf.
(1.5), we conclude from (1.10) and (1.11) that

1
————dep AR = Vol(Ss,a)[0] = Vol(S)]0].
Caragede® A = L Vol(Sa)[0] = Vol(S)0)

Note that Vol(S) equals the number of monomials that are not in M. Since

these monomials form a basis for A/M, Vol(S) equals the geometric multi-
plicity dimc(A/M) of M. Thus we get the following version of (1.3).

COROLLARY 1.2. — Let M and (1.8) be as in Theorem 1.1 and let R be
the associated residue current. Then

TP e A A 2 de oy AR = [M]. 1.12
(C2mi) D2y, 200 Dzg ) 2 [M] (1.12)

Summing over all permutations ¢ we get back (1.3). In fact, as was
recently pointed out to us by Jan Stevens, if (1.8) is any free resolution of
an Artinian ideal and R is the associated residue current, then the left hand
side of (1.12) is independent of o, see Proposition 6.3.

The core of the proof of Theorem 1.1 is an alternative description of
the S, o as certain cuboids, see Lemma 4.1. Given this description it is
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fairly straightforward to see that the volumes of the S, , are precisely the
coefficients of the monomials in d,¢; this is done in Section 4.2.

We suspect that Theorem 1.1 extends to a more general setting than
the one above. If M is an Artinian non-generic monomial ideal, we can
still construct the partitions {Sy o }o. The elements S, , will, however, no
longer be cuboids in general. Also, the computation of dy is more delicate
in general. In Example 6.1 we compute dy for a non-generic monomial ideal
for which the hull resolution, introduced in [3], is minimal, and show that
Theorem 1.1 holds in this case. On the other hand, in Example 6.2 we
consider a monomial ideal for which the hull resolution is not a minimal
resolution and where Theorem 1.1 fails to hold.

The paper is organized as follows. In Section 2 and 3 we provide some
background on staircases of monomial ideals and the Scarf complex, respec-
tively. The proof of Theorem 1.1 occupies Section 4 and in Section 5 we
illustrate the theorem and its proof by some examples. Finally, in Section 6
we consider resolutions of non-generic Artinian monomial ideals and look at
some examples. We also show that the left hand side of (1.12) is independent
of o in general.

Acknowledgment. — I want to thank Mats Andersson, Richard Léarkéing,
and Jan Stevens for valuable discussions. Also, thanks to the referee for
many useful comments and suggestions that have helped to improve the
exposition of the paper.

2. Staircases

We let > denote the standard partial order on R", i.e., a = (a1, ...,a,) >
b= (by,...,bn) ag =bsfor £ =1,...,n. If a > b and a # b we write a > b.
If ay > by for all £ we write a > b. Throughout we let A = A,, denote the

ring Cl[z1, ..., 2,] or the ring Oy of holomorphic germs at 0 € C? . For
a=(a,...,a,) € N* where N =0,1,..., we use the shorthand notation

z® for the monomial 27" - -- 22 in A. For a general reference on (resolutions

of) monomial ideals, see, e.g., [16].

Unless otherwise stated M will be a monomial ideal in A, i.e., an ideal
generated by monomials, and S will be the staircase of M as defined in
(1.7). Note that M is Artinian if and only if there are generators of the
form 2%, a; > 0, for 4 = 1,...,n, which is equivalent to that S C {z €
R% | ; < a;,i = 1,...,n} for some a;, which in turn is equivalent to
that S is bounded. Recall that the closure in (1.7) is taken in RZy; we will
however often consider S as a subset of R™. As in the introduction we will

refer to the maximal elements of S as outer corners. The minimal elements
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of R%,\ S C R™ we will call inner corners. Unless otherwise mentioned the
closure A of a set A is taken in R™.

One can check that for any monomial ideal M there is a unique minimal
set of exponents B C N such that the monomials {2%},cp generate M. We
refer to these monomials as minimal monomial generators of M. Moreover

S =R\ U (a+RZy). (2.1)
a€B

In particular, the inner corners of S are precisely the elements in B.

Dually, M can be described as an intersection of so-called irreducible
monomial ideals, i.e., ideals generated by powers of variables; such an ideal
can be described as m® := (2{"|a; > 1), where o = (a1,...,0,) € N™.
(More generally an ideal is irreducible if it cannot be written as a non-
trivial intersection of two ideals.) For every monomial ideal M there is a
unique minimal set C' C N™ such that

M= () m, (2.2)

aeC

see, e.g., [16, Theorem 5.27]. The ideal M is Artinian if and only if each
a € C satisfies a > 0 (i.e., ap > 0 for each ¢). If a > 0, then note that a
monomial 2° ¢ m® if and only if b < a. It follows that, if M is Artinian,
then

S = U{xER’;OML‘ga}. (2.3)

aeC

In particular, the outer corners of S are precisely the elements in C. If M is
not Artinian, then S is not bounded in R™ and the representation (2.3) fails
to hold. Note that (2.3) guarantees that for a fixed o, {Ss.q}a, as defined
in the introduction, is a partition of S.

Inspired by (2.1) we will call any set of this form a staircase: Let H be
an affine subspace of R™ of the form

HZ{xgl =Aai,...,Ty, :ak}
where a; € Z. For a € Z" N H let U, = {zx € H | v = a}. Note that UZ"

is just the first (open) orthant RZ, in R"™. We say that a set S C H is a
staircase if it is of the form

S =Uu \ LSJ Ui
j=1
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for some a®,al,...,a® € Z" N H. We say that aq is the origin of S and if
a',...,a* are chosen so a',...,a® > a” and a; L ai, for j # k, 1 < j, k< s
we call them the inner corners of S. We call the maximal elements of S the
outer corners of S. Since Z™ N H is a lattice, the outer corners are in Z"NH.

Note that S is a closed subset of U,o.

If 7 is the projection R® — R™~* that maps (x1,...,2,) to (zj,,...,2j, ,)
if {j1, s dnont ={1,...,n}\{l1,..., 0} and p : R — R" ¥ is the affine
map p(z) = w(z — a’), let M(S) = M,(S) be the monomial ideal in Ay
that is generated by 2°(%")| where a/ are the inner corners of S. Then the
staircase of M(S) equals p(9).

ForaeZ"NH,let Vo ={x € H |z < a}. If M(S) is Artinian, then S
admits a representation analogous to (2.3),

S =Uun|JVa, (2.4)

where the union is taken over all outer corners of S.

Note that any set S of the form (2.4) with a”, o € Z" N H is a staircase;
indeed since Z™ N H is a lattice the minimal elements of U, \ S are in
Z"NH.

3. The Scarf complex

For a,b € R™, we will denote by aV b the join of a and b, i.e., the unique
¢ such that ¢ > a,b, and ¢ < d for all d > a, b.

Let M be an Artlnlan monomlal ideal in A, with minimal monomial
generators m, = 2% 7...,m . The Scarf complex A = Ap; of M was
introduced by Bayer-Peeva- Sturmfelb, [4], based on previous work by H
Scarf. It is the collection of subsets Z = {iy,...,ix} C {1,...,r} whose cor-
responding least common multiple mz := lem(mg,,...,m; ) = 2% VVa
is unique, that is,

A:{IC{I,...,THmI:mI/ :>I:I,}.

Clearly the vertices of A are the minimal monomial generators of M, i.e.,
the inner corners of Sj;. One can prove that the Scarf complex is a simplicial
complex of dimension at most n—1. We let A(k) denote the set of simplices
in A with k& vertices, i.e., of dimension k& — 1. Moreover we label the faces
Z C A by the monomials mz. We will sometimes be sloppy and identify
the faces in A with their labels or exponents of the labels and write mz or
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o for the face with label mz = 2® and {2%",..., 27"} or {a®, ..., a%*} for
T={in,....in}.

The ideal M is said to be generic in the sense of [4, 17] if whenever two
distinct minimal generators m; and m; have the same positive degree in
some variable, then there is a third generator my, that strictly divides my; ;y,
which means that m;, divides m{iyj}/a for all variables z; dividing my; 53- In
particular, M is generic if no two generators have the same positive degree
in any variable.

If M is generic, then A has precisely dimension n — 1; it is a regular
triangulation of the (n — 1)-dimensional simplex, see [4, Corollary 5.5]. The
(labels of the) top-dimensional faces of A are precisely the exponents « in
the minimal irreducible decomposition (2.2) of M, i.e., the outer corners of
S, see [4, Theorem 3.7].

For k =0,...,n, let Ey be the free A-module with basis {ez}zea k) and
let the differential ¢y, : By, — Fx_1 be defined by

Pk €T —r Z j 1 ﬁezﬂ (31)

Z;

where Z; denotes {i1,...,%j-1,%+1,...,%} if T = {i1,...,4ix}. Then the
complex F,, @, is exact and thus gives a free resolution of the cokernel of
©0, which with the identification Ey = A equals A/M, see [4, Theorem 3.2].
In fact, this so-called Scarf resolution is a minimal resolution of A/M | i.e.,
for each k, ¢ maps a basis of Ej to a minimal set of generators of Im
see, e.g., [8, Corollary 1.5]. Originally, in [4], the situation A = C|zy, ..., 2z,]
was considered. However, since Oy is flat over Clz1, ..., z,], see, e.g., [19,
Theorem 13.3.5], the complex E,, ¢, is exact for A = Oy if and only if it is
exact for A = Clzy, ..., 2,].

3.1. The sign sgn(a)

Let Z = {i1,...,in} be a top-dimensional simplex in A with label «a.
Then there is a unique permutation 7 = n(a) of {1,...,n} such that for
each 1 < £ < n i, is a unique vertex of Z such that oy = a/’“) we will refer
to this vertex as the z,-verter of Z. To see this, first of all, since a = lem(a?),
aé < ay and therefore there must be at least one vertex ¢ of Z such that
al = ay. Assume that ¢ and j are vertices of Z such that aé = ai = ay. Then,
since M is generic, there is a generator z° of M that strictly divides 2% V.
But then ' V @/ = a’ Va/ Vb and so {i,j} is not in A, which contradicts

that ¢ and j are both vertices of Z.
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We let sgn(a) denote the sign of the permutation . This is the sign that
appears in (1.10) in Theorem 1.1 as well as in (1.11). We should remark
that we use a different sign convention in this paper than in [12, 13], which
corresponds to a different orientation of the (n— 1)-simplex or, equivalently,
to a different choice of bases for the modules Ey, cf. [1, 13].

3.2. The subcomplex A, ;1 ,»

Given a permutation o of {1,...,n}, and vertices a',...,a* of A, let
A, a1 .+ be the (possibly empty) subcomplex of A, with top-dimensional
simplices « that satisfy o, = aﬁ_(e) for £ = 1,..., k. In other words, the
top-dimensional simplices in A, ,1 .« are the ones that have a’ as Ty ()"
vertex for £ =1,...,k.

Note that for each choice of permutation o, k € {1,...,n}, and a € A(n)
there is a unique sequence a',...,a* such that a € Ag g1, . q+- Moreover,
Aga1,. qn is the unique simplex in A(n) that satisfies af;(e) = gy for
£=1,...,nif o is the label of A, g1, gn.

We will write A? , ;. for the subcomplex of A, ;1 ,» consisting of

o,al,.
all faces in A, 41+ that do not contain a',.. .,a*=1 or a*. Note that
. PR .. 1 ARE * .
since A, 41 ox is simplicial, {b',...,0} is a face of Aa,al,.“,ak if and only
{a', ... a" b, .. b} is a face of A, g1 gk

4. Proof of Theorem 1.1

To prove the theorem we will first give an alternative description of the
So.« as certain cuboids. Throughout this section we will assume that F,, @
is the Scarf resolution of a generic Artinian monomial ideal M and we will
use the notation from above.

LEMMA 4.1. — Assume that « is the label of the face T = {iy,...,in} €
A(n). Let n be the permutation of {1,...,n} associated with T as in Sec-
tion 3.1, and set T =mnoo.

Then Sy, 1s a cuboid with side lengths

b (a'"®va' @ —git®)

aa(l) 5 . (aiT(l)\/. . .\/amn) —aiT(U\/- . .\/aiT(n71))

CIL o(n)’

In particular,

Vol(Sy,0) = a:((ll)) x (a'~™ v a'r@ — a““))a(m X o

X (aiT(n VeV alitm) —glr . aif(nfn)g(n).
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4.1. Proof of Lemma 4.1

To prove the lemma, let us first assume that o is the identity permu-
tation and write S, = So,ar Ag1, ok = Apar, qr (so that Ay e s
the subcomplex of A whose top-dimensional simplices « satisfy oy = aﬁ for
¢=1,...,k), and Azl,...,ak = A*

1 k-
o,al,...,a

We will decompose S in a seemingly different way. First we will construct
certain lower-dimensional staircases with corners in A. Given an inner cor-
ner a = (a,...,a,) of S let

T,={x€S|z1=a1,2¢>apl=2,...,n}. (4.1)

Note that Ty, is contained in the boundary 95 of S. Let H, be the hyperplane
{z1 = a1}, and let U, be defined as in Section 2. Then note that T, =
U,NSCH,NS.

CLAIM 4.2. — Let a be an inner corner of S. Then T, = 0 if and only if
a1 = 0. If T, is non-empty, then it is a staircase in the hyperplane H, with
origin a. The outer corners of T, are the top-dimensional faces of A,. The
inner corners are the lattice points a V b, where b is a vertex in A .

Proof. — If a; = 0, then H, NS = (), and thus T, is empty. In general,
note that T, is empty exactly if a + (0,1,...,1) ¢ S. If a3 > 0, so that
a+(0,1,...,1) € R, this means that there is an inner corner c of S such
that ¢ < a+ (0,1,...,1). In particular, ¢ < a, which contradicts that a is
an inner corner. Thus T, # 0 if a; > 0.

Assume that T, is non-empty and that § = (31,...,8,) is maximal in
T,. Since T, C H,, B1 = a1. Moreover, since S is of the form (2.3), there
is a maximal v € S such that v > . By the definition of Ty, v¢ > B¢ > ay
for ¢ = 2,...,n and thus if 743 > a;, then v > a, which contradicts that
~v € 5. Hence 71 = a; and, since ¢ > ay for £ = 2,...,n, v € T,. Since
is maximal in T, v = 8, which means that, in fact, 8 is maximal in S and
thus 8 € A(n). Since 81 = a1, 8 € Ay(n) by the definition of A,.

On the other hand, if 8 € A,(n), then § is maximal in S and contained
in T, C S, and thus it is maximal in T,. We conclude that the maximal
elements in T, are the top-dimensional faces of A,.

Since S is of the form (2.3),
T.=U,n |J {zlz<p},
ﬂ€Aa(n)
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which in light of (2.4) means that Ty, is a staircase in H, with origin a and
outer corners A, (n).

It remains to describe the inner corners of Ty,. Assume that 8 = (a1, 52,
..., Bn) is an inner corner of T, i.e., 8 is minimal in U, \ S. This means
that any /3, such that 8, > 8, for £ =2,...,n, is not contained in S, which
implies that there is an inner corner b of S such that b < /3 for any such 3.
In particular, b < 8 and b; < a1. To conclude, there is an inner corner b # a
of S such that b < 5. Now aVb € U, \ S, since a Vb > a, (aVb) = ay,
and 2%V € M. Moreover, a Vb < aV 3 = 3, since b < f3, and, since 3 by
assumption is minimal in U, \ S, it follows that 8 = a V b. Now, since Ty,
is a staircase there is a maximal o € A, (n) such that b < 8 < o It follows
(aVDd) <aVp=p that bis a vertex of a, i.e., b € A%(1).

Conversely, pick b € A% (1) and let 3 = a V b. Since a and b are inner
corners of S, z? € M and thus 8 € R” 2o\ S. Moreover, since b € A,
b1 < a, so that f; = (aVb); = a1, and thus 8 € U, \ S. Assume that there
isa~vy € U,\ S such that v < 8. Then, as above, there is an inner corner
¢ # a of S such that ¢ < v+ (0,1,...,1) and v = a V ¢. Now the inner
corners a,b,c of S satisfy aVbVec=aVb. Since b € A,, {a,b} is an edge
of A, which means that {z%, 2"} is the unique set of minimal generators
with least common multiple 2*V?. It follows that ¢ € {a,b} and since ¢ # a,
we have that ¢ = b, and thus v = . Hence 8 is minimal in U, \ S. We
conclude that the inner corners of T, are exactly the lattice points a V b,

where b € A%(1). O
Let 7 : R} . — R be the projection 7 : (x1,...,2,)
(w2,...,7,) and let p: R 2, = RIT . Dbe the affine mapping defined

by p(x ) =7(x —a). Let M ‘be the monomlal ideal in A,,_; (with variables
Z9,...,2n) defined by T, and p as in Section 2.

CLAIM 4.3. — M, is a generic Artinian monomial ideal. The Scarf com-
plex Anr, consists of faces of the form {p(a V b'),...,p(a V b7)}, where
{b,..., b7} is a face of Af.

Proof. — Since S is bounded, T, C S is bounded, and thus M, is
Artinian.

To show that M, is generic, assume that there are two minimal gener-
ators z° and 27 that have the same positive degree in some variable, i.e.,
Be = ¢ for some 2 < £ < n. Assume that 8 = p(a VvV b) and v = p(a V ¢),
where b, c € A%(1). Then 8, = (aV b)g —as and v = (a V ¢)¢ — ag, and thus
Be = ¢ > 0 implies that (a V b)y = (a V ¢)¢ > ag, which in turn implies
that by = cy. Since M is generic there is a minimal generator 2% of M that
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strictly divides lem(z?, 2¢), i.e., di < (bV ¢)y for all k such that (bV ) > 0.
In particular, d; < (bV ¢); = a;1. Set § = p(a V d) and take k such that

0<(BVNK=((avb—a)V(aVc—a)), =(@VbVc—a.
Then (bV ¢)r > ag > 0 and thus di < (bV ¢). This implies that
0p=(dVa—a),<(aVbVec—a)y=(BVY)k.

It follows that 2° strictly divides lem(2”,27) = 2#V7. Now av d € U, \ S,
since aVd>a, (aVd); =a; and 22V? € M. Hence z° € M, by definition.
To conclude, M, is a generic monomial ideal.

Since M, is generic, the Scarf complex Ay, is simplicial and the top-
dimensional faces are precisely the outer corners of the staircase of M,, i.e.,
simplices of the form {p(a VvV b'),...,p(a VvV b" 1)}, where {b%,... 6" 1} is
in A%(n —1). Since Ay, and A, are simplicial, it follows that the faces of
Ay, are of the desired form. O

CLAIM 4.4. — Assume that a # b are inner corners of S. Then w(T,) N
W(Tb) = @

In particular, it follows that

ToNTy =0 if ab. (4.2)

Proof. — Let us first assume that a; # by and that 7(T,) N7 (Ty) #
(); without loss of generality we may assume that a; > b;. Pick 8 =
(Bay ..., Bn) € ©(T,) N7(Tp) and let v = (ay, B2, ..., Bn). Since 8 € 7(Tp),
Bj > b; for j =2,...,n and since a; > by it follows that v >~ b. Hence
is in the interior of RZ; \ S. On the other hand, 8 € n(7,) implies that
v € T, C 05, which contradicts that « is in the interior of RZ, \ S. Thus
W(Ta) n W(Tb) = @ if al 7& bl.

Next, assume that a; = b; > 0 and that 7(T,) N7 (T}) # 0; if a1 =0 or
b1 = 0, the claim is trivially true by Claim 4.2. Since T, and T} are both
contained in the hyperplane H,, m(T,) N 7(Tp) # 0 is equivalent to that
To NTy # 0. Assume that 8 € T, NTy. Then By > (aV b)y for £=2,...,n.
Since M is generic and a; = by, there is a minimal generator z¢ that strictly
divides lem(z?, 2°); in particular ¢; < (a V b); = 1. It follows that 3 = c,
and thus § is contained in the interior of RZ \ S, which contradicts that
8 € T,NT, C 9S. Thus we have proved that 7(T,) N (1) = O when
a #b. O

CLAIM 4.5. — For each x € S, there is an inner corner a of S such that
m(x) € m(Ty).
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Proof. — Consider + € RZ,. Then there is at least one inner corner
a’ of S such that m(z) = m(a"). Indeed, since M is Artinian, there is a
generator of the form z{*, whose exponent (az,0,...,0) is mapped to the

origin in R"~1, and thus we can choose a” = (ay,0,...,0).

Given such an a°, either 7(x) € m(T,0) or m(z) = 7(B*) for some inner
corner B! of T,o. In the latter case, by Claim 4.2, 8! = a° V a', where
a' € A%y (1); in particular, a} < af. Now 7(z) > 7(a’ V a') > w(a'), which
implies that either m(z) € m(T,1) or w(x) = n(8?) for some B2 = a' V a?,
where a® € A%, (1); in particular, af < af.

By repeating this argument we get a sequence of inner corners aO, ey ak,

such that m(z) = 7(a’) for j =0,...,k and either 7(x) € m(T,x) or a¥ = 0.
If a¥ = 0, then 7(z) = 7(a”*) implies that x = a*, which means that = ¢ S.
Hence, either 7(z) € w(T,) for some inner corner a of S or w ¢ S. O

Next, we will use the staircases T, to construct a partition of .S. For each
inner corner a of S, let

P,={zxeS|n(z) en(T,)}

In other words, P, consists of everything in S “below” the staircase T,. By
a slight abuse of notation, P, =]0,a1] x T,.

Remark 4.6. — By Claim 4.5, each z € S is contained in a P, for some
inner corner a, and by Claim 4.4 the intersection P, N P, is empty if a and b
are different inner corners. Thus the set of (non-empty) P, gives a partition
of S.

Remark 4.7. — Note that P, is a staircase itself with the same outer
corners as T,, i.e., @ € Ay(n).

Next, we will see that each S, is contained in a P,.

CLAIM 4.8. — For each a € A(n), S, is contained in a P,. More pre-
cisely, if « € Ay(n), then S, C P,.

Proof. — Let us fix @ € A(n). Recall from Section 3.2 that there is a
unique a such that o € A,(n). We need to show that S, N P, = @ for all

b # a.

We first consider the case when b is such that by > «ay. Take z € B,.
By Remark 4.7, P, is a staircase with outer corners Ay(n). It follows that
x < B for some 5 € Ay(n), which, by the definition of the S, implies that
T € U’v%ﬁ Sy. Since B1 = b1 > o, B >, «, and thus, since the S, are
disjoint, = ¢ S,. We conclude that S, N P, = ) in this case.
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Next we consider the case when b; = a;. Assume that z € S, NP,. Then
ag = xp > by for £ =2,...,n. Since a; = by it follows that a € Tj. On the
other hand, by Claim 4.2, a € A,(n) implies that o € T,, which, by (4.2),
contradicts that o € Ty,. It follows that S, N P, = 0.

Finally we consider the case when b; < ay. Assume that x € S, N By.
Then, as above, ap > xp > by for £ = 2,...,n. Since also oy > by, it follows
that a = b, which however contradicts that b is an inner corner of S. Hence
S, N P, = 0 also in this case, which concludes the proof. O

Next, we will inductively define staircases and partitions of S associated
with faces of A of higher dimension. Given vertices a',...,a*"1 of A, such
that A, ,+—1 is non-empty (in particular, @l is in Ay 41 for j =
2,...,k—1) and an inner corner a* of Abi -1, assuming that Tor gk
is defined, we let

Tor, ar i={x €Ty gor | 2p = (a1 \VERERV, ak)k,xj > (a1 VeV ak)j,

j=k+1,...,n}

Recall that by the definition of the sequence a',...,a" in fact, (a* vV ---V
ak); = a; for j = 1,...,k, see Section 3.2. Moreover, note that T,1 .« is
contained in the codimension k-plane

Hy o g i={x1 = (a* \/---\/ak)l,...,x;€ = (a! \/-~-\/ak)k}

1 k
={x1=aj,..., 2z =a}}
Let m : R}, . — Rg;ﬁ’m@n be the projection 7y : (21,...,2Z5) —
(Thi1s---,2n), and let pp - RY . — Rp-F  be the affine mapping

defined by py, :  +— 7 (z —al V.-V aF).

CrAaM 4.9. — Assume  that T, ,x-1  is non-empty and that
ap € A¥ (1), Then Ty ox = 0 if and only if af = (@*v .-V
a" =Y. If Tor,.. q+ 18 non-empty, then it is a staircase in Hgi  x. The
origin of Tor . o» 18 a'V---Vva*, the outer corners are the top-dimensional
faces of Ag1. . ox and the inner corners are the lattice points of the form

a' V...V ad* Vb, whereb is a vertex of Ay ke

The monomial ideal My . x defined by Tyy o+ and py as in Section 2,
i.e., it has staircase py(Ty1 . qr), i an Artinian generic monomial ideal.
The Scarf complex Ap, . consists of faces of the form {pp(at V-V

abFvbl), .. pr(at Ve vVaP Vi)Y, where {bY,... b} is a face of AY,

Lak”
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Proof. — By Claims 4.2 and 4.3 the claim holds for £ = 1. Assume that
it holds for k = k — 1; we then need to prove that it holds for k = k.

First, it is clear from the definition that Tj1 .« is contained in Hg1 | gx.
Ifaf = (a*V---Va" 1), then Hyi o NTp1  ge—1 =0 and thus Ty g»
is empty. In general, note that T,1 .~ is empty exactly if atVv---Vat+
0,...,0,1,...,1) ¢ S; here (0,...,0,1,...,1) means that the first x entries
are 0 and the rest are 1. Assume that a® # (a' V ---V a"!),. Then,
by the definition of the a7, in fact, af > (a* Vv ---Va"'), > 0. Since
Tar,.. qr—1 # 0 and the claim holds for k = x — 1 by assumption, a;: > 0 for
j=1,...,k—1,and thus a+(0,...,0,1,...,1) € RZ,. Then the condition
atVv---va®+(0,...,0,1,...,1) ¢ S implies that there is an inner corner ¢ of
S such that ¢ < a+(0,...,0,1,...,1). In particular, ¢ < a, which contradicts
that a is an inner corner. Thus Ty1 o« # 0 if aff # (a* V.- varl),.

Let us now assume that af > (a' V---Vva®~1),. We will use Claim 4.2 to
show that T,1, o~ is a staircase of the desired form. Let S be the staircase
pnfl(Talv_wanfl) CR? ”""‘1 of My1  4«—1 and choose an inner corner a :=

71/‘7L

pr_1(a' V-~V a*) of S. Then note that

T, = {.’EE§|.’E,€:(~Z,{,QI/’[>(~lg,€:l€+1,...,’n}
= {z€pu1(Tar, an—1) | 20 = pre_1(a' V- Vva®),,
xp > pe_1(at V- Va ), b=r+1,...,n}
= pnfl(Tal,u.,a*‘)-
Now, by Claim 4.2, Tj is a staircase in the hyperplane {z, = a,} C Rzm’ﬁin

with origin a. The outer corners are the top-dimensional faces & of Ag, i.e.,
the top-dimensional faces & of Ay , such that

ark—1

Qp = G = pp_1(a* V---Va), = (a"V---Va¥), =a". (4.3)

Since the claim holds for £k = x — 1, that & is a top-dimensional face of
Ay, ..., means that & = pe_1(a' V-V a""' V), where § is a top-
dimensional face of AZI’H_,GN,I. In other words, & = px_1(a), where « is a
top-dimensional face of A such that o; = a? forj=1,...,k—1. By (4.3) we
also have that o, = pe—1(a), = afl, so that o« € Ag1  4x(n). To conclude,
the outer corners of Tj; are of the form p,_;(a) where o € Ay 4= (n).

Moreover, by Claim 4.2 the inner corners of T; are the lattice points
@\ b, where b is a vertex of AZ. Since the lemma holds for £ = x — 1, this
means that b = p,._q(a' V- Vsl b), where b € A*, .. (1). Slnce

b#a,b# a®, and thus d\/IN) = pr_1(a*V---Va®Vb), where b € Al (1)
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Since the restriction p,_1 : Hp1,  ge-1 — R %t ig a just a translation
of the plane H,i 4«1 (if we consider R""*! as embedded in R™) it
follows that T,1 o~ is a staircase in Hgi o~ with origin a' V-V a®,
where the outer corners are the top-dimensional faces of A,1 4~ and the
inner corners are of the form a' V.-V a® V b, where b € A%y ae(1). This
proves the first part of the claim.

Next, we will use Claim 4.3 to prove the second part of the claim. Let
p:REATL 5 RE-F  be the affine map

LseeyTm L4100

P (oo @n) = (Tl — Qrgly vy Ty — Qp)-

Note that p. = pprx—1. It follows that the ideal M1 o~ has staircase

pn(Tal,...,a") = ﬁpnfl(Tal,...,a*") - ﬁ(T&)»

where we have used (4.3) for the second equality. In other words, M1 4«
is the ideal defined by T; and p as in Section 2. Thus by Claim 4.3, it is an
Artinian generic monomial ideal.

Moreover, by Claim 4.3, the Scarf complex Ay, consists of faces
of the form

3@V B, 3@V b}, (1.4)
where {b',...,b7} is a face of A%. As above, b’ € A%(1) implies that aVb* =
pr—1(a* V-V a*"l vt where b € Ay e (1). Hence,

pav ') = ppe_i(atV---va* V') = pelat V- Vat v

where b € A* . (1). Thus the faces (4.4) are of the desired form, and we
have proved the second part of the claim. O

To construct the partitions associated with the staircases Tp1 ok, we
define inductively

Pa17.'.’ak = {x S Pal"”,ak—l | 7T/C(.’L‘) € Wk(Tal’.“’ak)}.

Then P,1 4 is a k-dimensional cuboid times the (n— k)-dimensional stair-
case T,1 4+ The fth side length is given as the “height” of T,1 . in
Ty ae-1, which equals (a' V---Vaf —al V.- Va*~1), By aslight abuse
of notation

Pal,...,a’“:]ov aﬂ X]a’év(al\/a?)ﬂ X 'X](al\/' : '\/akil)ka(al\/. : .\/ak)k} XTal,...,ak'
In particular,

Pal,...,a" :]07 (ZHX]G%, (al \/G’Q)Q} X X](al Vo \/anil)na (al Ve \/an)n]
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Remark 4.10. — Note that P, .« is, in fact, a staircase with outer
corners o € Ag1  ok(n).

CrAaM 4.11. — For each k, the set of non-empty P, x gives a parti-
tion of S.
In particular, since Tp1 0 C Pp1 gr

,afs

Tor g VT e = 0if {at, ... aF} # {1, .. 08 (4.6)

Proof. — By Remark 4.6, the claim holds for £ = 1. Assume that the
claim holds for & = x — 1. To prove that it holds for & = « it suffices
to show that, given a sequence a',...,a" ! of inner corners, the set of
P, qx, where a” € A:l’wa,ﬁ,l(l), gives a partition of P,1  ,«-1. Take
x € Py g«—1. We then need to show that there is exactly one choice of
a® € Ay e-1(1) such that me(z) € me(Tar . an ).

Let S be the staircase M1 (Tar,  an—1) C R;‘;’ffin. By Claim 4.9, Sisa
staircase with (origin 7, _1(a'V---Va®~1) and) inner corners 7, _1(alV---V
a®), where a® € A%, . i(1). Given an inner corner a := m,_1(a'V---Va")

of g, note that

Ta:{$€§|x,€:d,€,x¢ >apfor{=k+1,...,n} =

{reme1(Tyr, gn-1) | @6 = Te_1(a' V- Va™) e, e > me_1(at V-V a®),
ford=r+1,....,n} =7 1(Tor,  an)- (4.7)
Let 7 : R}_*“FL = R~ . bethe projection (zy,...,%n) = (Tet1,- -,
Zn). Then, clearly, #m,_1 = 7,. By a slight modification of the proofs,
Claims 4.4 and 4.5 hold also for staircases with origin different from 0; it
follows that for # € S there is exactly one inner corner @ = m,_1(a'V---Va®)
of S such that

ﬁ—(fi.) € ﬁ—(T&) = 7~l—’/Tlﬁfl(Cral,...,a“) = WH(Tal,...,a"‘%

where we have used (4.7) for the second equality. Now take & € P,1  ge-1.
Then 7,—1(x) € me—1(Tyr .. an—1), and thus there is exactly one choice of
a® € A%y ,.-1(1) such that 7(me1(x)) = me(z) € me(Tyr,  qx). This
concludes the proof. O

CLAIM 4.12. — For each k and each o € A(n), there is a unique se-
quence of k inner corners a',...,a" such that S, is contained in Po gk
More precisely, if o € Dg1 gk, then So C Por k.
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Proof. — Let us fix k. Recall from Section 3.2 that given a € A(n), there
is a unique sequence of k inner corners a', . .., a* such that o € Ayt qr(n).
Also, recall from the definition of A1 .« that (a' V-V a¥); = a;: for
j=1,...,k. To prove the claim we need to show that Sq N Py, = 0 for
all sequences of k inner corners b',...,b* different from o', ..., a".

We first consider the case when there is an ¢ < k, such that bg = a§ for
7 < { and bg > aﬁ. Pick x € Pyi__yk. Since Py gk is a staircase with outer
corners in Ay pr(n), see Remark 4.10, it follows that x < 3 for some

B € Ay pr(n). By the definition of the S,, then z € |J . 5S,. Since

ﬂ; :bg :a; forj=1,...,4—1and ﬁf :bﬁ >a§, B >, «a, and thus, since
the S, are disjoint, x ¢ S,. We conclude that So N Py1 ,r = 0 in this case.

Next, we consider the case when b§ = a;: for j =1,..., k. Assume that
T € So N Py pr. Then oy = a;: = bg forj =1,...,kand o; > z; >
(bt v VbR, for j = k+1,...,n. Thus by definition o € Ty pr- On
the other hand, by Claim 4.9 a € T,1 4+, which by (4.6) contradicts that
a € Ty pe. It follows that So N Py 6 =

Finally we consider the case when there is an ¢ < k, such that b; = a?
for j < ¢ and b} < af. If £ = 1 we know from (the proof of) Claim 4.8 that
So NPy =0 and thus S, NPy C Sq NPy = (. Assume that £ > 2 and
that

.....

€ Sa NPy pr CSa NPy pe.

Then a; = ag = b? forj=1,...,0 -1, ay = aﬁ > bﬁ, and o > x; >

(btv.--v be)j for j =£¢+1,...,n. It follows that o € Ty1 pe-1, but, from
Claim 4.9 we know that o € T,1 -1, which leads to a contradiction by
brutal. Hence S, N Py 4 = 0 also in this case. O

Recall from Section 3.2 that A, ,n is just the simplex o € A(n)
with vertices a',...,a™. On the other hand, each outer corner a gives rise
to a non-empty P, := P, __,» by choosing a’ as the zy-vertex of a. By
Claim 4.12, S, C P,, and since both {P,} and {S,} give partitions of S,
we conclude that S, = P,.

Now, given Z = {iy,...,i,} € A(n), we choose a’ as the zy-vertex a’(*).
Then Lemma 4.1 follows in light of (4.5).

For a general choice of o the above proof works verbatim, with the
coordinates z, and the variables 2z, replaced by z4 sy and z,(s), respectively,
and 7 replaced by 7.
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4.2. Computing dy

Let us now compute the ef-entry of d,¢ for a given T = {iq,...,i,} €
A(n). Recall from (3.1) that

o = Z i(_l)ﬁ—lzah\#u\/ajk—ajl\/ma“ Valk 6‘*7 ® ez, +<Pk
T={j1,--,jx}CT £=1
(4.8)
where ¢}, are the remaining terms that will not contribute to the eX-entry.
It follows that the coefficient of e} in d,¢ equals

sen(( ngn az (1) #704 o 32?(2) e otz
A A 8%(3”1) Zawl)v...v(;r(n—l)_airu)v...wir(n—z)dzo(n_l)
/\%(n)z“if(l)v”'vaif(")_“iT(l)v”'vaiT("l)dzg(n) =: ZFT’ (4.9)

where the sum is over all permutations 7 of {1,...,n} and sgn(r) denotes

the sign of the permutation 7.

Let 1 be the permutation of {1,...,n} associated With 7 asin Segtion 3.1
and let a be the label of Z. Then, by the definition of 7, (a“(l) V- Va'r (=) )e =

ay precisely for £ == (7(1)),...,n7(7(x)). It follows that

Zaifu) Vevait (k) _git() v.vgiT(k—1)

is a monomial in the variables z,-1(7(x)), - - ~1(r(n))- Therefore the last
factor in F, vanishes unless 7(n) = n(a(n)) leen T(n) n(c(n)), the
next to last factor vanishes unless 7(n —1) = ( ), etc. To conclude,

F,, where 7 = n oo, is the only non-vanishing term in (4.9).
Now with 7 =noo,

F, =sgn(r) x ay}) x (a"*m Vaite — aifm) X e X
7 o(2)

(aiT(l) VeV aiT(n) _ aiT(l) VoV aif(7l71)> ZaiT(l) \/...\/aiT(n) M

o(n) Zo(n)

dza(l)

A A = sgn(n)Vol(S,.0)2* tdzy A -+ ANdzy, (4.10)

2o (1)

where the last equality follows from Lemma 4.1. This concludes the proof
of Theorem 1.1, since, by definition sgn(a) = sgn(n), see Section 3.1.
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5. Examples
Let us illustrate (the proof of) Theorem 1.1 by some examples.

Example 5.1. — Assume that n = 1. Then each monomial ideal M is
a principal ideal generated by a monomial z®. The staircase of M is just
the line segment ]0,a] C R~ with one outer corner o = a so that S, = S.
Moreover, the Scarf complex is just a point with label z%, and thus the Scarf

resolution is just 0 — A 2", A. Thus in this case Theorem 1.1 just reads
do = d(2*) = Vol(]0,a])z* tdz = az"'dz.

Example 5.2. — Assume that n = 2. Then each Artinian monomial ideal
M C Ay is of the form M = (281251, 297 25) for some integers a; > ... >
ar=0and 0 =b; < ... <b,. Slnce no two minimal monomial generators
have the same positive degree in any variable, M is trivially generic. In this
case the staircase of M looks like an actual staircase with r inner corners
(aj,b;) and r—1 outer corners o’ := (a;,bj11), see Figure 5.1. In particular,
M= ﬂ (31]722H1)~

A A A

a! [SH-
(a11<0;11)

J
(0]
. SaJ Sar—l

P A S i
5 ' e — | b

Figure 5.1. — The staircase S of M in Example 5.2 and the partitions
{Saiti ={Ss,ai}j of S corresponding to the permutations o = (1,2) and o = (2, 1),

respectively.
With o as the identity, T(,, 5;) is just the line segment {z1 = a;,b; <
z2 < b1}

Note that o = (1,2) corresponds to the ordering a! >, ... >, a"~! of
the outer corners and

S(l 2),ai = {a: € R? ) | 0<x < Clj,bj < x99 < bj+1},

whereas o = (2,1) corresponds to the reverse ordering of the outer corners
and so

2
Sy ={z €R2y | aj41 < z1 < a;,0 <22 <bji1},

- 1071 -



Elizabeth Wulcan

see Figure 5.1. Thus, the partitions just correspond to vertical and horison-
tal, respectively, slicing of S.

In this case the Scarf complex is just a triangulation of the one-dimensional
simplex, and it is not very hard to directly compute dip, cf. [12, Section 7].

Ezample 5.3. — Let M be the generic monomial ideal M = (23, 272,
212322, 25, 2523, 23) C As. The staircase S of M, depicted in Figure 5.2, has
six inner corners, a' = (3,0,0), a* = (2,1,0), a® = (1,2,2), a* = (0,4,0),

3), and five outer corners, o' = (3,1,3),
=(2,2,3), and o’ = (1,3, 3).

a® = (0,3,1), and a® = (0,0,
a? =(2,4,1), a® = (2,3,2), o*

T

Figure 5.2. — The staircase of M in Example 5.3 and the partitions {S,; };

1 2 .3 .4 5 43 L4 1

corresponding to the orderings a', a2, o, a*, a® and o?,a’, a3, a*, al, respectively.

By Claim 4.2, T,; is non-empty for j = 1,2,3. These two-dimensional
staircases are the light grey regions facing the reader in the first figure in
Figure 5.2.

The six different permutations o of {1,2,3} give rise to six different
orderings of the a/: for example o! := (1,2,3) and o2 := (2,3,1) cor-
respond to the orderings a' >, o? >, o >, o* >, o® and o >,
a® 2, a® 2, a' 2, ol respectively. In the first case S,1 41 is the cuboid
}Oﬂg]x]()? 1]X]073}7 Sal,a2 :]0,2}X]1,4]X]0, 1]a Sal,OcS :}072]X]173]X]132]7
So1.04 =0,2]x]1,2]x]2,3], and S,1 45 =]0,1]x]2, 3]x]2, 3], see Figure 5.2,
where also the S,2 ,; are depicted.

6. General (monomial) ideals

The Scarf resolution is an instance of a more general construction of so-
called cellular resolutions of monomial ideals, introduced by Bayer-Sturmfels
[3]. The Scarf complex is then replaced by a more general oriented polyhedral
cell complex X, with vertices corresponding to and labeled by the genera-
tors of the monomial ideal M; as above a face v of X is labeled by the least
common multiple m., of the vertices. Analogously to the Scarf complex, X
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encodes a graded complex of free A-modules: for k = 0,...,dim X +1, let E},
be a free A-module of rank equal to the number of (k — 1)-dimensional faces
of X and let ¢y, : By — Ej_1 be defined by ¢y, : e, — ch,y sgn(d,y) %65,
where v and ¢ are faces of X of dimension £ —1 and k — 2, respectively, and
where sgn(d,v) = 1 comes from the orientation of X. The complex FE,, @
is exact if X satisfies a certain acyclicity condition see, e.g., [16, Proposi-
tion 4.5], and thus gives a resolution - a so-called cellular resolution - of
the cokernel of g, which, with the identification Ey = A, equals A/M. For
more details we refer to [3] or [16].

In [3] was also introduced a certain canonical choice of X. Given t €
R, let P, = P(M) be the convex hull in R™ of {(t*,...,t*) | 2* €
M?}. Then P; is an unbounded polyhedron in R™ of dimension n and the
face poset of bounded faces of P; (i.e., the set of bounded faces partially
ordered by inclusion) is independent of ¢ if ¢ > 0. The hull complex of M
is the polyhedral cell complex of all bounded faces of P; for t > 0. The
corresponding complex F,, o is exact and thus gives a resolution, the hull
resolution, of A/M. 1t is in general not minimal, but it has length at most n.
If M is generic, however, the Hull complex coincides with the Scarf complex;
in particular, it is minimal.

In [12] together with Larkédng we computed the residue current R asso-
ciated with the hull resolution, or, more generally, any cellular resolution
where the underlying polyhedral complex X is a polyhedral subdivision of
the (n — 1)-simplex, of an Artinian monomial ideal. Theorem 5.1 in [12]
states that the entries of R are of the form (1.11), where the sum is now
over all top-dimensional faces (with label ) of X and sgn(a) comes from
the orientation of X.

Note that the definition of S, , still makes sense when M is a general
Artinian monomial ideal. However, in general the S, , will not be cuboids
as the following example shows.

Ezample 6.1. — Let M = (22, 2122, 2123, 25,25) C As. Then M is not
generic, since there is no generator that strictly divides lem(z1 29, 2123) =
z12223. The staircase S of M is depicted in Figure 6.1.

Note that S has two outer corners o = (2,2,1) and o? = (1,1, 2).

Assume that o is a permutation of {1, 2,3} such that (1) equals 1 or 2.
Then the lexicographical order of the outer corners is a! >, o?. Otherwise,
if 0(1) = 3, the lexicographical order is reversed. In the first case S,1 is
the cuboid |0, 2]x]0,2]x]0, 1], and S,2 is the cuboid |0, 1]x]0, 1]x]1, 2], see
Figure 6.1. In the second case S,z is the cuboid ]0, 1]x]0, 1] x]0, 2], whereas
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Sq1 s the set ]0,2]x]0,2]x]0,1]\]0, 1] x]0, 1]x]0, 1]; in particular S,: is not
a cuboid.

002
011
020

Figure 6.1. — The staircase of M in Example 6.1, the partitions S,1 and S, 2

corresponding to the orderings o, a? and o?,al

of M.

, respectively, and the hull complex

In this case, the hull resolution is a minimal resolution of A/M. There are
two top-dimensional faces in the hull complex, with vertices {22, 222, 2123, 25 }
and {z129,2123,253} and thus labels 22" and z("z, respectively, see
Figure 6.1. A computation yields that if o(1) = 3, then the coefficient of
ng(al)z"‘l_ldzej;1 is 3 = Vol(S, 41 ) and the coefficient of sgn(a2)2a2_1dzez2
is 2 = Vol(Sy42). Otherwise the coefficients are 4 = Vol(S, ,1) and
1 =Vol(S, 42), respectively. Thus in this case Theorem 1.1 holds.

Example 6.1 suggests that Theorem 1.1 might hold when FE,, p, is the
hull resolution of an Artinian monomial ideal and this resolution is minimal.
However, we do not know how to prove it in general. The proof in Section 4
does not extend to this situation. For example the staircases T, constructed
in Section 4.1 are not disjoint in general, cf. (4.2). Choose o such that
o(1) = 3 and consider the inner corners ¢ = (1,1,0) and b = (1,0, 1) of the
staircase S in Example 6.1. Then

T.NTy={z e RPz3=1,1<um; <2,j=1,2}.

Also, the computation of dip is more involved in this case. Indeed, in general
it is not true that the coefficient of e} in R just consists of one non-vanishing
term as in (4.9).

Example 6.2 below shows that Theorem 1.1 does not hold for the hull
resolution in general if it is not minimal, and also that it does not hold for
arbitrary minimal resolutions of monomial ideals. It would be interesting to
look for an alternative description of the coefficients of dy that extends to
general (monomial) resolutions.

Ezample 6.2. — Let M = (23,2323, 2123, 23, 2223, 25). Then M is not
generic; for example, as in Example 6.1, there is no generator of M that
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strictly divides lem(z1 22, 2123) = 212223. The staircase of M has three outer
corners, ol = (3,2,1), o? = (2,3,1), and o® = (1,1, 2).

In this case the hull resolution is not minimal. The hull complex consists
of four triangles; one triangle o/ for each outer corner and one extra triangle
B with vertices {2222, 21 23, 2223} and thus label 27 = 272223, see Figure 6.2.
A computation yields that the coefficient of sgn(a3)za3_1dze(’;3 in dyp

equals Vol(S, 3) for all permutations o. The coefficient of sgn(al)z‘xl*ldze:l1
in ds1,2)p, however, equals 4, whereas Vol(S(3,1,2),a1) = 5. Thus Theo-
rem 1.1 does not hold in this case.

One can create a minimal cellular resolution from the hull complex, e.g.,
by removing the edge between 2722 and 2;23. The polyhedral cell complex
X so obtained has one top-dimensional face for each outer corner a? in S.
The face corresponding to a! is the union of the two triangles o! and 3 in
the hull complex, see Figure 6.2.

002 002
112 112
101 011 101 011
991
321 231 321 /931
300 290 030 300 220 030

Figure 6.2. — The hull complex of the ideal M in Example 6.2 (labels on vertices and
2-faces) (left) and the minimal free resolution (right).

It turns out that the coefficient of sgn(a')z® ~dze*, in d,¢ is the sum
of the coefficients of sgn(al)zal_ldzezl and sgn(ﬁ)zﬁ_ldzeg for each o,
whereas the coefficients of sgn(a2)za2’1dze:‘2 and sgn(a?’)zas’ldzezg are
the same as above. Thus, as above, the coeflicient of sgn(az)zo‘z_ldzeg2 in

ds,2,1) is different from Vol(S(s1,2),42), and so Theorem 1.1 fails to hold
also in this case.

Although Theorem 1.1 fails to hold in Example 6.2, Corollary 1.2 still
holds for both resolutions. In fact, the left hand side of (1.12) is independent
of ¢ for all free resolutions of Artinian ideals. We will present an argument
of this communicated to us by Jan Stevens, [18].

Assume that

0= E, 2 . 2B 25 By~ 0, (6.1)
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is a resolution of minimal length of an Artinian ideal a C Oy and let R be
the associated residue current as constructed in [1]. Since a is Artinian, it
follows from the construction that

enR =0, (6.2)

see [1, Proposition 2.2]. Moreover, R satisfies that if ¢ is (a germ of ) a
holomorphic function, then ¥R = 0 if and only if ¢ € a, see [1, Theorem 1.1].
In particular,

©16R =0 (6.3)

for any End(E,,, F3)-valued section £.
PROPOSITION 6.3. — Assume that (6.1) is a resolution of an Artinian

ideal a C Og and that z1, ..., z, are holomorphic coordinates at 0 € C™. Let
o be a permutation of {1,...,n}. Then

aif(ll) dzgy N+ A 82?;) dzy(n) N R
is independent of o.
Proof. — Since each permutation of {1,...,n} can be obtained as a
composition of permutations o of the form
oj AL ...,ony—={1,...,i—1,7+1,5,7+2,...,n}, (6.4)

it suffices to prove that

01 Opn, dp1 Opn,
—dzx N AN=—dzy N\R= ———dz, . )\ -\ dzg.(myNR. (6.5
821 <1 azn “n azaj(l) ZUJ(l) Zcrj(n) ZG’J(") ( )
Since @ 41 =0,
8%(v. 0
0 — (pipj+1) (6.6)
8Zj32j+1
_ _Pe 09 0vn | O O OPpin
8zj5'zj+1 g+t 8zj 82j+1 8zj+1 aZj J 62]‘82]'4_1 '

Let us compose (6.6) from the left and the right by

g1 Opi 1 Opien | Don.
82’1 (9ij1 (92j+2 8zn

respectively. Since i1 = 0 for each k, Leibniz’s rule gives that

I, o Pr+1
82,3 Phtl = —Pk (92’@ ’
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cf. (6.6). Using this repeatedly for k = j+1,...,n— 1 we get that the term
corresponding to the first term in the left hand side of (6.6) equals

Lo Opia ey Opjn Opn1
021 8zj_1 02;0zj41 02542 Ozn, n

Similarly the term corresponding to the last term in the left hand side of
(6.6) equals

” dps  Dp; Pyji Opjra  Opn
! 821 82’]'71 8zj8,zj+1 8zj+2 8Zn '

Next let us compose from the right by R. Using (6.2) and (6.3) we get

o1 Opnpy  Op1  Op; Opjur  Ovn

821 8zn 821 é)zj+1 82’]‘ 3Zn

8 n n
:ﬂ...aﬁ]{ Opr  _O¢ R.
821 8Zn 8201 (1) 8zaj (n)
Combining this with dz; A -+ Adz, = —dzg, (1) A -+ A dzg,(n) We obtain
(6.5). O
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