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A proof of Tait’s Conjecture on prime alternating
−achiral knots

Nicola Ermotti(1), Cam Van Quach Hongler,
Claude Weber

ABSTRACT. — In this paper we are interested in symmetries of alternating
knots, more precisely in those related to achirality. We call the following
statement Tait’s Conjecture on alternating −achiral knots:
Let K be a prime alternating −achiral knot. Then there exists a minimal
projection Π of K in S2 ⊂ S3 and an involution ϕ : S3 → S3 such that:
1) ϕ reverses the orientation of S3;
2) ϕ(S2) = S2;
3) ϕ(Π) = Π;
4) ϕ has two fixed points on Π and hence reverses the orientation of K.
The purpose of this paper is to prove this statement.
For the historical background of the conjecture in Peter Tait’s and Mary
Haseman’s papers see [16].

RÉSUMÉ. — Nous nous intéressons dans cet article à la chiralité des
noeuds alternés. Nous appelons Conjecture de Tait sur les noeuds
−alternés l’affirmation suivante :
SoitK un noeud premier, alterné et−achiral. Alors il existe une projection
Π de K dans S2 ⊂ S3 et une involution ϕ : S3 → S3 telles que :
1) ϕ renverse l’orientation de S3 ;
2) ϕ(S2) = S2 ;
3) ϕ(Π) = Π ;
4) ϕ a deux points fixes sur Π et donc renverse l’orientation de K.
Le but de cet article est de démontrer cette affirmation.
Les prémices de cette conjecture se trouvent dans les articles de Peter Tait
et de Mary Haseman. Pour plus de détails sur les origines des questions
de chiralité des noeuds voir [16].
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1. Introduction

In this paper we are interested in symmetries of alternating knots, more
precisely in those related to achirality.

Definition 1.1. — A knot K ⊂ S3 is said to be achiral if there exists
a diffeomorphism Φ : S3 → S3 such that:
1) Φ reverses the orientation of S3;
2) Φ(K) = K.
If there exists a diffeomorphism Φ such that its restriction to K preserves
(resp. reverses) the orientation of K, the knot is said to be +achiral (resp.
−achiral).

In his pioneering attempt to classify knots, Peter Tait (see [18] [19] and
[20]) considered mostly alternating knot projections. One can see through-
out his papers that he was guided by the conviction that most questions
about alternating knots can be answered by an effective procedure based
on minimal alternating knot projections. Several unproved principles used
by Tait were later called “Tait’s Conjectures” and proved in the eighties
and nineties of last century, after Vaughn Jones’ discovery of his polyno-
mial. On the other hand, it is also known that some of Tait’s principles
cannot be true in general. For instance the unknotting number cannot al-
ways be determined by considering minimal projections. See [1] and [15]. It
was made clear in [16] that Tait was mostly interested in −achirality, while
Mary Haseman was the first to seriously address the +achirality question.

We call the following statement Tait’s Conjecture on prime alter-
nating −achiral knots:

Conjecture 1.2. — Let K be a prime alternating −achiral knot. Then
there exist a minimal projection Π of K in S2 ⊂ S3 and an involution
ϕ : S3 → S3 such that:
1) ϕ reverses the orientation of S3;
2) ϕ(S2) = S2;
3) ϕ(Π) = Π;
4) ϕ has two fixed points on Π and hence reverses the orientation of K.

The reasons for which the paternity of this “conjecture” may be at-
tributed to Tait are expounded in [16]. The purpose of this paper is to
prove this statement.

Before moving towards the proof, we pause to point out that there is
a significant difference between +achirality and −achirality. Here is why.
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All prime alternating achiral knots are hyperbolic (see [13]). It results from
several beautiful theorems in three dimensional topology that, if a hyper-
bolic knot K is ±achiral, there exists a diffeomorphism Φ : S3 → S3 as in
Definition 1 which is periodic. Let us call the minimal period of such diffeo-
morphisms Φ the order of ±achirality of K. Now, the order of −achirality of
a hyperbolic knot is always equal to 2. Roughly speaking, Tait’s Conjecture
states that for −achirality, there exists a Φ of minimal order (i.e. of order
2) which can be seen on a minimal projection of K. On the other hand, the
order of +achirality can be any power of 2. When the order is equal to 2a

with a � 2 there exist alternating +achiral knots which have no minimal
projection on which the symmetry is visible. Examples were provided by
Dasbach-Hougardy for a = 2. See [7]. These facts are related to the isomor-
phism problem between the two checkerboard graphs, which is treated in
Section 7.

The main tool to address chirality and more generally symmetry ques-
tions about alternating knots is provided by Tait Flyping Conjecture, proved
by William Menasco and Morwen Thistlethwaite [14].

Theorem 1.3 (Flyping Theorem). — Let Π1 and Π2 be two prime min-
imal oriented projections in S2 representing the same isotopy class of ori-
ented prime alternating links in S3. Then one can transform Π1 into Π2

by a finite sequence of flypes and orientation preserving diffeomorphisms of
S2.

Let us recall that a flype is the transformation of projections introduced
by Tait and represented in Figure 1.

A

B

A

B

(a) (b)

Figure 1. — A flype.

Notation. — Let Π be an oriented knot projection in S2. We denote
by Π̂ the mirror image of Π through the sphere S2 containing Π and by
+Π (resp. −Π) the projection obtained by preserving (resp. reversing) the
orientation of Π.
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The following result is a consequence of the Flyping Theorem.

Theorem 1.4 (Key Theorem). — Let K be a prime alternating oriented
knot. Let Π be an oriented minimal projection of K. Then K is ±achiral if
and only if one can proceed from Π to ±Π̂ by a finite sequence of flypes and
orientation preserving diffeomorphisms of S2.

Roughly speaking, to produce a proof of Tait’s Conjecture we therefore
have to prove that in the case of −achirality we can always find a minimal
projection for which no flypes are needed in the Key Theorem.

To achieve this goal, we have to know where flypes can be. The answer is
provided by the paper [17] in which, following Francis Bonahon and Laurent
Siebenmann, the authors decompose in a canonical way a knot projection Π
into jewels and twisted band diagrams. It turns out that the flypes are
all situated in the latter. Moreover Bonahon-Siebenmann’s decomposition
is (partly) coded by a finite tree. All minimal projections of a given prime
alternating knot K produce the same tree (up to canonical isomorphism).
We call it the structure tree of K and denote it by A(K). The achirality
of K produces an automorphism ϕ of A(K). The proof continues by deter-
mining the possible fixed points of ϕ and by providing an argument in each
case.

The content of the paper is the following.

In Section 2 we recall the salient points about jewels and twisted band
diagrams. Under mild assumptions (stated in four hypotheses) a (non-
necessarily alternating) link projection Π can be decomposed by Haseman
circles (circles which cut Π in four points) in a canonical way. This gives rise
to the canonical decomposition of Π in jewels and twisted band diagrams.

In Section 3 we make explicit the position of flypes and we construct the
structure tree A(K).

In Section 4 we present the broad lines of the proof of Tait’s Conjecture.
Since K is achiral, the Key Theorem implies that there exists an automor-
phism ϕ : A(K)→ A(K) which reflects the achirality of K. The proof then
proceeds by an analysis of the possible fixed points of ϕ. They correspond
to an invariant subset of (S2; Π) which can be a priori a jewel, a twisted
band diagram or a Haseman circle. In the second part of Section 4 we prove
that a twisted band diagram cannot be invariant.

In Section 5 we prove Tait’s Conjecture if a jewel is invariant.

In Section 6 we investigate achirality when a Haseman circle γ is invari-
ant. This circle separates Π into two tangles. As they are exchanged by ϕ,

– 28 –



A proof of Tait’s Conjecture on prime alternating −achiral knots

they differ by their position with respect to γ and by flypes. A detailed study
of the various possibilities is thus undertaken. A proof of Tait’s Conjecture
follows, as well as some results about +achirality.

In Section 7 we apply our methods to the Kauffman and the Kauffman-
Jablan Conjectures about checkerboard graphs. We show that Kauffman’s
Conjecture is true for−achiral alternating knots and that Kauffman-Jablan’s
Conjecture is not true.

2. The canonical decomposition of a projection

In this section we do not assume that link projections are alternating.

2.1. Diagrams

Definition 2.1. — A planar surface Σ is a compact connected surface
embedded in the 2-sphere S2.

We consider compact graphs Γ embedded in Σ and satisfying the follo-
wing four conditions:
1) Each vertex of Γ has valency 1 or 4.
2) Let bΓ be the set of vertices of Γ of valency 1. Then Γ is properly embedded
in Σ, i.e. bΣ ∩ Γ = bΓ, where we denote by bΣ the boundary of Σ.
3) The number of vertices of Γ contained in each connected component of
bΣ is equal to 4.
4) A vertex of Γ of valency 4 is called a crossing point. We require that
at each crossing point an over and an under thread be chosen and pictured
as usual. We denote by c the number of crossing points.

Definition 2.2. — The pair D = (Σ,Γ) is called a diagram.

Definition 2.3. — A singleton is a diagram diffeomorphic to Figure
2(a).

Definition 2.4. — A twisted band diagram is a diagram diffeomor-
phic to Figure 2(b).

(a) (b)

Figure 2. — (a) a singleton (b) a twisted band diagram.
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The sign of a crossing point sitting on a band is defined according to
Figure 3.

+1 −1

Figure 3. — The sign of a crossing on a band.

First hypothesis. Crossing points sitting side by side along the same band
have the same sign. In other words we assume that Reidemeister Move 2
cannot be applied to reduce the number of crossing points along a band.

Let us again picture a twisted band diagram as illustrated in Figure 4.

a κ

γ
γ

1
γ

2 Κ+1

1 aaa 2 κ +11

Figure 4. — A twisted band diagram with intermediate weights.

In Figure 4 the boundary components of Σ are denoted by γ1, . . . , γk+1

where k � 0. The ai are integers. |ai| denotes the number of crossing points
sitting side by side between γi and γi+1. The sign of ai is the sign of the
crossing points. The integer ai will be called an intermediate weight. The
corresponding portion of the diagram is called a twist.

Second hypothesis. If k+ 1 = 1 we assume that |a1| � 2. If k+ 1 = 2 we
assume that a1 and a2 are not both 0.

Remark. — Using flypes and then Reidemeister Move 2, we can reduce
the number of crossing points of a twisted band diagram in such a way that
either ai � 0 for all i = 1, . . . , k + 1 or ai � 0 for all i = 1, . . . , k + 1.

This reduction process is not quite canonical, but any two diagrams
reduced in this manner are equivalent by flypes. This is enough for our
purposes.

Third hypothesis. We assume that in any twisted band diagram, all the
non-zero ai have the same sign.
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Notation. — The sum of the ai is called the weight of the twisted
band diagram and is denoted by a. If k + 1 � 3 we may have a = 0.

2.2. Haseman circles

Definition 2.5. — A Haseman circle for a diagram D = (Σ,Γ) is
a circle γ ⊂ Σ meeting Γ transversally in four points, away from crossing
points. A Haseman circle is said to be compressible if:

i) γ bounds a disc ∆ in Σ.

ii) There exists a properly embedded arc α ⊂ ∆ such that α∩ Γ = ∅ and
such that α is not boundary parallel in ∆. The arc α is called a compressing
arc for γ.

In this paper we consider only incompressible Haseman circles and we
write simply “Haseman circle”.

Two Haseman circles are said to be parallel if they bound an annulus
A ⊂ Σ such that the pair (A,A ∩ Γ) is diffeomorphic to Figure 5.

Figure 5. — Parallel Haseman circles.

Analogously, we define a Haseman circle γ to be boundary parallel if
there exists an annulus A ⊂ Σ such that:

1) the boundary bA of A is the disjoint union of γ and a boundary
component of Σ;

2) (A,A ∩ Γ) is diffeomorphic to Figure 5.

Definition 2.6. — A jewel is a diagram which satisfies the following
four conditions:
a) it is not a singleton;
b) it is not a twisted band diagram with k = 1 and a = ±1;

– 31 –



Nicola Ermotti, Cam Van Quach Hongler, Claude Weber

c) it is not a twisted band diagram with k = 2 and a = 0;
d) every Haseman circle in Σ is either boundary parallel or bounds a sin-
gleton.

Figure 6. — A jewel.

Comment. — The diagrams listed in a), b) and c) satisfy condition d)
but we do not wish them to be jewels. As a consequence, a jewel is neither
a singleton nor a twisted band diagram.

2.3. Families of Haseman circles for a projection

Definition 2.7. — A link projection Π (also called a projection for
brevity) is a diagram in Σ = S2.

Fourth hypothesis. The projections we consider are connected and prime.

Definition 2.8. — Let Π be a link projection. A family of Haseman
circles for Π is a set of Haseman circles satisfying the following conditions:
1. any two circles are disjoint.
2. no two circles are parallel.

Note that a family is always finite, since a projection has a finite number
of crossing points.

Let H = {γ1, ..., γn} be a family of Haseman circles for Π. Let R be the

closure of a connected component of S2\⋃i=n
i=1 γi. We call the pair (R,R∩Π)

a diagram of Π determined by the family H.

Definition 2.9. — A family C of Haseman circles is an admissible
family if each diagram determined by it is either a twisted band diagram
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or a jewel. An admissible family is minimal if the deletion of any circle
transforms it into a family which is not admissible.

Theorem 2.10 is the main structure theorem about link projections
proved in [17]. It is essentially due to Bonahon and Siebenmann.

Theorem 2.10 (Existence and uniqueness theorem of minimal admis-
sible families). — Let Π be a link projection in S2. Then:

i) there exist minimal admissible families for Π;

ii) any two minimal admissible families are isotopic, by an isotopy which
respects Π.

Definition 2.11. — “The” minimal admissible family will be called the
canonical Conway family for Π and denoted by Ccan. The decomposition
of Π into twisted band diagrams and jewels determined by Ccan will be called
the canonical decomposition of Π.

It may happen that Ccan is empty. The next proposition tells us when
this occurs.

Proposition 2.12. — Let Π be a link projection. Then Ccan = ∅ if and
only if Π is either a jewel with empty boundary or the minimal projection
of the torus knot/link of type (2,m).

Comment. — A jewel with empty boundary is simply a polyhedron
in John Conway’s sense which is indecomposable with respect to tangle
sum. The minimal projection of the torus knot/link of type (2,m) can be
considered as a twisted band diagram with k + 1 = 0.

3. The position of flypes and the structure tree

3.1. The position of flypes

From now on, we assume that the projection Π we are considering is
prime, alternating and minimal. Theorem 4 is an immediate consequence
of the machinery presented in Section 2. Its importance for us is that we
now can locate with precision where the flypes occur. Thanks to the Flyping
Theorem we can thus have a good idea about all minimal projections of an
alternating link.
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Theorem 3.1 (Position of flypes). — Let Π be a prime alternating link
projection in S2 and suppose that a flype can be performed in Π. Then, its
active crossing point belongs to a twisted band diagram determined by Ccan.
The flype moves the active crossing point
1) either inside the twist to which it belongs,
2) or to another twist of the same twisted band diagram.

Comments. — 1) The active crossing point is the one that moves
during the flyping transformation.

2) Sometimes a flype of type 1) is called an inefficient flype while one
of type 2) is called efficient. We are interested mainly in efficient flypes.

Definition 3.2. — We call the set of crossing points of the twists of a
given twisted band diagram a flype orbit.

B B

B B

(a)

(b)

Figure 7. — (a) An inefficient flype (b) An efficient flype

Corollary 3.3. — A flype moves an active crossing point inside the
flype orbit to which it belongs. Two distinct flype orbits are disjoint.

Corollary 1 can be interpreted as a loose kind of commutativity of flypes.
Compare with [4].

3.2. The structure tree A(K)

Construction of A(K). Let K be a prime alternating link and let Π
be a minimal projection of K. Let Ccan be the canonical Conway family
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for Π. We construct the tree A(K) as follows. Its vertices are in bijection
with the diagrams determined by Ccan. Its edges are in bijection with the
Haseman circles of Ccan. The extremities of an edge (representing a Haseman
circle γ) are the vertices which represent the two diagrams which contain
the circle γ in their boundary. Since the diagrams are planar surfaces of a
decomposition of the 2-sphere S2 and since S2 has genus zero, the graph we
have constructed is a tree. This tree is “abstract”, i.e. it is not embedded
in the plane.

We label the vertices of A(K) as follows. If a vertex represents a twisted
band diagram we label it with the letter B and by the weight a. If the vertex
represents a jewel we label it with the letter J .

Remarks. — 1) The tree A(K) is independent of the minimal projection
chosen to represent K. This is an immediate consequence of the Flyping
Theorem. Indeed, as we have seen, the flypes modify the decomposition of
the weight a of a twisted band diagram as the sum of intermediate weights,
but the sum remains constant. A flype also modifies the way in which dia-
grams are embedded in S2. Since the tree is abstract, a flype has no effect
on it. See [17] Section 6. This is why we call it the structure tree of K
(and not of Π).

2) A(K) contains some information about the decomposition of S2 in
diagrams determined by Ccan but we cannot reconstruct the decomposition
from it. However one can do better if no jewels are present. In this case
the link (and its minimal projections) are called arborescent by Bonahon-
Siebenmann. They produce a planar tree which actually codes a given ar-
borescent projection. See [17] for details.

3) If K is oriented, we do not encode the orientation in A(K).

Definition 3.4 (In the spirit of [2]). — If all vertices of A(K) have a
B label the alternating knot K is said to be arborescent, while it is said
to be polyhedral if all its vertices have a J label.

4. First steps towards the proof of Tait’s Conjecture

4.1. The automorphism of the structure tree

Let K̂ be the mirror image of a prime alternating knot K. Let Π̂ be the
mirror image of a minimal projection Π of K. It differs from Π by the sign of
the crossings. Hence the tree A(K̂) is obtained from A(K) by reversing the
weight sign at each B-vertex. As abstract trees without signs at B-vertices,
the two trees are canonically isomorphic (“equal”).
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Suppose now that K is achiral (it does not matter whether + or −).

The Key Theorem says that there exists an isomorphism ψ : (S2,K)→
(S2, K̂) which is a composition of flypes and orientation preserving diffeo-

morphisms. This isomorphism induces an isomorphism A(K)→ A(K̂). We
interpret it as an automorphism ϕ : A(K) → A(K) which, among other
things, sends a B-vertex of weight a to a B-vertex of weight −a. The Lef-
schetz Fixed Point Theorem implies that ϕ : A(K) → A(K) has fixed
points.

Remark. — During the proof we shall see that ϕ has just one fixed point.

The proof of Tait’s Conjecture is separated into three cases, depending
(a priori) on whether:

1) a twisted band diagram is invariant (in fact we shall prove immediately
below that this is impossible);

2) a jewel is invariant;

3) a Haseman circle is invariant. This last case is the most involved.

4.2. A twisted band diagram cannot be invariant

Lemma 4.1. — Let Π be an alternating projection and let γ be a Hase-
man circle for Π. Choose one side of γ. Consider the four threads of Π
which cut γ. Label each thread with a + or a − if at the next crossing on
the chosen side the thread will pass above or below. Then opposite threads
along γ have the same label.

Proof. — Consider the checkerboard associated to Π. Then Π is alter-
nating according to the following rule. Consider a thread slightly before a
crossing and move along the thread towards the crossing. If a given colour
(say black) is on the right during the move then the thread will be an over-
pass. Since opposite regions along γ have the same colour this proves the
lemma. �

Consequence of Lemma 1. — Let Π be a minimal alternating projection.
Consider its canonical Conway family Ccan. Let D be a diagram (either a
twisted band diagram or a jewel) determined by Ccan. Let γ be a boundary
component of D. Then it is always possible to attach a singleton on γ in
order to obtain an alternating projection D∗. This procedure is unique. The
next lemma follows immediately.
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Lemma 4.2. — Suppose that the diagram D considered above is invari-
ant by ψ. Then the restriction of ψ to D extends to D∗.

Proposition 4.3. — A twisted band diagram cannot be invariant by ψ.

Proof. — Let D be a twisted band diagram invariant by ψ. Let ψ∗ :
D∗ → D∗ be its extension to D∗. Since D∗ is the minimal alternating
projection of a torus knot/link of type (2,m) which is chiral, the existence
of such a diffeomorphism ψ∗ is impossible. The referee has pointed out that
this argument requires that m � 3. This condition is in fact implied by the
Second Hypothesis, once we observe that an invariant twisted band diagram
must have a vanishing weight. �

Corollary 4.4. — Suppose that the edge of A(K) representing a Hase-
man circle γ is invariant by ϕ. Then the extremities of this edge cannot be
labeled one by a B and the other by a J .

Intermediate result in our quest to understand the achirality of alterna-
ting knots. We are thus left with three possibilities:

A) Existence of an invariant jewel: a jewel is invariant by ϕ : A(K) →
A(K).

B) Existence of a polyhedral invariant circle: a Haseman circle γ is in-
variant by ψ and both diagrams adjacent to γ are jewels; we shall see in
next section that in this case the two diagrams adjacent to γ are exchanged
by ψ.

C) Existence of an arborescent invariant circle: a Haseman circle γ is
invariant by ψ and both diagrams adjacent to γ are twisted band diagrams.
By Proposition 2 the two adjacent diagrams must be exchanged by ψ.

Remark. — The terms we use (polyhedral or arborescent) do not mean
that the whole projection is so, but only the region of the projection near
the fixed point is.

5. Proof of Tait’s Conjecture if a jewel is invariant

Proposition 5.1. — Let Π be a projection and let f : (S2,Π)→ (S2,Π)
be a diffeomorphism. Then f is isotopic (by an isotopy respecting Π) to a
diffeomorphism of finite order.

Proof. — Consider the cell decomposition of S2 induced by Π and argue
inductively on the dimension of cells. �
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Lemma 5.2 (Tutte’s Lemma). — Let Γ ⊂ S2 be a finite graph embedded
in the 2-sphere. Let g : (S2,Γ) → (S2,Γ) be an orientation preserving dif-
feomorphism of finite order which is the identity on an edge of Γ. Then g
is the identity.

For a proof of the lemma see [21].

Proposition 5.3. — Let K be a prime alternating −achiral knot. Let
Π be a minimal projection such that no flype is needed to transform Π into
−Π̂. Then the projection Π satisfies Tait’s Conjecture.

Proof. — If no flype is needed there is an orientation preserving dif-
feomorphism f : S2 → S2 which transforms Π into −Π̄. By Proposition 3
we may assume that f is of finite order. Since Π is the image of a generic
immersion of the circle S1 in S2, the restriction of f to Π pulls back to a
diffeomorphism f̂ of finite order of S1. Since f reverses the orientation of
Π, by Smith theory f̂ has 2 fixed points and is of order 2. Then, by Tutte’s
Lemma f : S2 → S2 is of order 2. �

The Filling Construction. Let Π be a knot projection and let D be a
jewel subdiagram of Π. Let γ1, . . . , γk be the Haseman circles which are the
boundary components of D. Each γi bounds in S2 a disc ∆i which does not
meet the interior of D. The projection Π cuts each γi in 4 points. Inside ∆i

the projection Π joins either opposite points or adjacent points. In the first
case, we replace ∆i∩Π by a singleton. In the second case we replace ∆i∩Π
as in Figure 8:

Figure 8. — Replacement

We obtain in this manner a new projection Π∗. The Filling Construc-
tion is such that Π∗ is again the projection of a knot. Using Lemma 1 we
can choose the over/under crossings in ∆i ∩ Π∗ in such a way that Π∗ is
alternating. An important fact is that Π∗ has no place for a flype.

Suppose now that the knot K represented by Π is + or −achiral. Let ψ :
Π→ Π̂ be as before a composition of flypes and diffeomorphisms produced
by the Key Theorem and suppose that D is invariant by ψ. The way we
proceed to the replacement implies that Π∗ is the projection of a + or
−achiral knot as Π was and that the restriction of ψ to D extends to ψ∗ :
Π∗ → Π̂∗. Since Π∗ has no place for flypes, ψ∗ is a diffeomorphism.
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We also see that ψ∗ (and hence also ψ) leaves no boundary component
of D invariant. This proves that in Case B) above the two jewels adjacent
to γ must be exchanged.

Proposition 5.4. — Let K be a prime alternating −achiral knot. Let
Π be a minimal projection of K such that a jewel diagram is invariant by
ψ. Then Tait’s Conjecture is true for Π.

Proof. — Let D be the jewel invariant by ψ. Let Π∗ be the projection
obtained by the Filling Construction above and let ψ∗ : Π∗ → Π∗ be the
automorphism induced by ψ. It results from the construction of ψ∗ and
from Proposition 4 that ψ∗ is an involution that leaves no Haseman circle
invariant. Let k = 2l be the number of these circles. We number the cir-
cles γ1, . . . , γ2l in such a way that ψ∗(γi) = γ2l+1−i for i = 1, . . . , 2l. Let
Di = (∆i,Γi) be the diagram contained in the disc ∆i bounded by γi. The
diffeomorphism ψ sends ∆i onto ∆2l+1−i. It follows from the Key Theorem
that ψ(Di) is flype equivalent to D2l+1−i. Hence let us perform flypes in
D2l+1−i to obtain D̂2l+1−i in such a way that ψ(Di) = D̂2l+1−i. Since ψ∗

is an involution we have ψ(D̂2l+1−i) = Di. Thus we have constructed a
projection which is invariant by an involution. �

Remarks on the proof. — 1) We have modified the initial projection by
equivariant flypes in the discs ∆i. This was possible since the involution ψ∗

acts freely on the family of discs ∆i.

2) It is crucial in the proof that Π be the projection of a knot (not of a
link with several components) since we use Proposition 4 in the argument.
It is also crucial that we study −achirality (i.e. that the orientation of the
knot is reversed).

Comments. — 1) Proceeding backwards, we see that projections satis-
fying Tait’s Conjecture with an invariant jewel D are obtained as follows.
Start with a −achiral projection D∗ which is a jewel. Consider the auto-
morphism ψ∗ : D∗ → D∗ which realises the −achirality symmetry. Then
replace the singletons by arbitrary diagrams in an equivariant way. This
construction is well known to specialists and was certainly known to John
Conway when he wrote his celebrated paper [6].

2) The proof of Tait’s Conjecture in Case B) (existence of an invariant
polyhedral circle) follows the same lines as the proof in Case A). We just
have to replace the invariant jewel D by the union of the two jewels which
are adjacent to the invariant Haseman circle γ.

3) We shall study in a future publication [8] the status of +achiral al-
ternating knots when a jewel is invariant. Among other things, we shall see
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that the order of achirality can be any power of 2 and that this symmetry is
not always realised by a diffeomorphism on a minimal projection (in other
words, flypes may be needed). The main reason is that, when the order of
achirality is not prime (i.e. equal to 2a, with a � 2), the permutation in-
duced by ψ∗ on the discs ∆i may have cycles of different lengths. Of course,
this cannot happen if the order of achirality is equal to 2; this is one reason
why Tait’s Conjecture is true for −achirality.

6. Achirality when a Haseman circle is invariant

In this section we suppose that K is ±achiral. We shall return to
−achirality when needed. Our study applies to invariant Haseman circles,
either polyhedral or arborescent.

γ

Figure 9. — The partition of Π induced by the splitting of γ.

6.1. The partition of Π induced by the invariant Haseman circle

To prepare a further study of +achirality, we investigate the following
situation, which includes Cases B) and C). The origin of this study goes
back to Mary Haseman.

We have a Haseman circle γ invariant by ψ. The two diagrams D1 and
D2 adjacent to γ are either both twisted band diagrams or both jewels;
they are exchanged by ψ. To better see what happens, we choose to picture
the situation as shown in Figure 9, with the circle γ split into two parallel
circles. This produces a partition of Π in two tangles.

Theorem 6.1. — Let K be a prime oriented ±achiral knot. Suppose that
K has a minimal projection with an invariant Haseman circle γ. Then, up
to a global change of orientation, K admits a minimal projection of Type I
or II, as shown in Figures 10 and 11.
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Figure 10. — Type I Figure 11. — Type II.

Explanations about the figures:

i) The symbol F denotes the tangle inside the left-hand side circle;

ii) the symbol F̂ denotes the image of the tangle F by the reflection
through the projection plane;

iii) in the Type II picture, the right-hand tangle is obtained from the left-
hand one by a rotation of angle π

2 with an axis orthogonal to the projection
plane, followed by a reflection through the projection plane;

iv) in the Type I picture, the right-hand tangle is obtained from the
left-hand one by the following three moves:
1) a rotation of angle π

2 with an axis orthogonal to the projection plane;
2) a rotation of angle π with an axis in the projection plane;
3) a reflection through the projection plane.

Theorem 5 applies to invariant Haseman circles which are polyhedral as
well as arborescent.

Proof. — We shall advance in the proof step by step.

Step 1. — We know that the achirality of K produces an isomorphism
ψ : Π → Π̂, via the Key Theorem. In turn, ψ induces an automorphism
ϕ : A(K)→ A(K) which, by hypothesis, has a fixed point in the middle of
an edge ε. This reflects the fact that ψ leaves invariant the Haseman circle
γ corresponding to ε. We know that ψ has to exchange the two tangles F1

and F2 (see Figure 9) which have γ for boundary. Let us denote one of them
by F .

Now comes a rather subtle point. The minimal projection Π is not unique
as it is acted upon by flypes. However:
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(i) the Haseman circle γ is insensitive to flypes (because of the theorem
which determines the position of flypes);

(ii) flypes act independently in the two tangles determined by γ.

We summarise a consequence of these last arguments as follows.

Important observation. If a prime alternating knotK possesses a minimal
projection of Type I or II, then this projection is unique up to flypes occuring
in F and/or in F̂ .

Let σ : (S2,Π) → (S2, Π̂) be a diffeomorphism which exchanges the
two tangles and is part of ψ (remember that ψ is a composition of flypes
and diffeomorphisms). Since K is achiral of some sort, there must exist by

the Key Theorem flypes which transform σ(F ) into F̂ . The point is that,

without knowing exactly what σ can be, the position of F̂ with respect to
F is not arbitrary. The theorem says that the only possibilities are shown
in projections of Type I and II.

The detailed study of the potential diffeomorphisms σ will be undertaken
in later subsections.

Step 2. — Neglecting orientations there are a priori eight possible par-
titions of Π (Figure 12). Indeed, keeping the tangle F̂ fixed, there are eight
ways to place F in the left-hand side tangle. Notice that the dihedral group
D4 acts freely and transitively on these left-hand side tangles, as the group
of symmetries of a circle with four marked points.

Figure 12. — The eight possible configurations.
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Step 3. — The cases (i), (iii), (v), (vii) of Figure 12 are impossible.
Proof:

The boundary circle of a tangle is cut transversely in four points by
the projection Π. Traditionally, these four points are located in North-West
(NW), North-East (NE), South-East (SE) and South-West (SW) positions.
In each tangle, the projection Π connects these four points in pairs. We call
this connection a “connection path”. A priori, there are three possible such
paths:

NW is connected to NE, and SW to SE. We denote this connection path
by H, for “horizontal”.

NW is connected to SW and NE to SE. We denote this connection path
by V , for “vertical”.

NW is connected to SE and SW to NE. We denote this connection path
by X, for “crossing”.

H V X

Figure 13. — Description of the connection paths H, V and X.

Now in the figures 11(i), (iii), (v) and (vii), the positions of F and F̂
differ essentially by a rotation of angle π. This leaves the connection paths
invariants. In other words, the connection paths are the same in the two
tangles. A quickly drawn picture shows that, in each of the three cases (two
H’s, or two V ’s, or two X’s), the projection Π represents a link with two
components and not a knot.

Figure 14

Step 4. — Figure 12(ii) is isomorphic to Figure 12(iv) and Figure 12(vi)
is isomorphic to Figure 12(viii). Indeed, we can transform (ii) into (iv) and
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(vi) into (viii) by a rotation of angle π, with axis in the projection plane as
indicated in Figure 14. The rotation axis is represented by a dotted line.

Step 5. — Orientations of the strands. We are thus left with the two
figures Figure 12(ii) and Figure 12(vi). We wish to orient the four strands
which connect the two tangles. We number them from 1 to 4, beginning
with the top one. We say that an orientation of the stands, represented by
an arrow on each strand, is a parallel one, if there exist two consecutive
strands which have arrows pointing in the same direction. We claim that a
parallel orientation of the strands is impossible. To prove this, we consider
the connection paths inside the tangles. We observe that the two connection
paths in F and in F̂ differ by a rotation of angle π

2 . If one is X, then so is
the other. We have already seen that this is impossible. If one is H then the
other is V . But this is incompatible with a parallel orientation.

Hence, up to global change of orientations, there is only one possible
orientation of the strands. It is the one in which two consecutive arrows
have the opposite direction. In this case, one connection path is an H while
the other is a V . �

Note that Theorem 5 does not answer the achirality question of projec-
tions of Type I or II. This will be done in the next subsections.

6.2. Achirality of projections of Type I

Definition 6.2. — Let F1 and F2 be two tangles. We say that they are
flype equivalent if one can obtain F2 from F1 by a sequence of flypes
leaving the boundary circle fixed. We write F1 ∼ F2 for this relation.

Let F be a tangle. We denote by:

F ∗ the tangle obtained from F by a rotation of angle π, with an axis
orthogonal to the projection plane.

Fh the tangle obtained from F by a rotation of angle π, with an hori-
zontal axis contained in the projection plane.

F v the tangle obtained from F by a rotation of angle π, with a vertical
axis contained in the projection plane.

See Figure 15.

Proposition 6.3. — Let K be a prime alternating knot which possesses
a minimal projection of Type I. Then:
(i) K is +achiral if and only if F ∼ F ∗;
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(ii) K is −achiral if and only if F ∼ Fh or F ∼ F v.
In particular, if K is −achiral, then K possesses also a projection of Type II.

F F* F h F
v

Figure 15. — A picture of the tangles F , F ∗, Fh and F v .

Proof. — The argument will be as follows.

We know that ψ transforms Π into Π̂ and leaves γ invariant. Besides
flypes, ψ contains a diffeomorphism S2 → S2 which leaves γ invariant and
exchanges the two hemispheres. Now look at Figure 9, which contains the
Haseman circle split in two, thus producing two tangles. Let us call this
structure the frame of a projection of Type I or II. The content of the
circles (i.e the tangles themselves) is not part of the structure. The frame
consists of the two circles, connected by four strands. We denote it by Ω
and consider it as embedded in S2.

We are looking for automorphisms σ : (S2; Ω) → (S2; Ω) of the frame
which exchange the two circles. We produce a complete list of such auto-
morphisms (up to isotopy). Then we search among them for those which
could occur in the symmetry ψ. These eligible ones impose conditions on
the tangle F .

We represent S2 as a terrestrial globe. We single out the Equator E and
mark on E the degrees of longitude from 0◦ to 360◦. We draw two great
circles C1 and C2 on S2. Both go through the North Pole N and the South
Pole S and are orthogonal to E. The great circle C1 intersects E at the
longitudes 0◦ and 180◦ while C2 intersects E at 90◦ and 270◦.

By hypothesis, the invariant Haseman circle γ divides Π into two tangles
F and F̂ . The Equator E is the Haseman circle γ. The tangle F is contained
in the Northern Hemisphere NH and F̂ is contained in the Southern Hemi-
sphere SH. The “band” which goes from γ to F is essentially concentrated
along C1 ∩ NH and the “band” which goes from γ to F̂ is concentrated
along C2 ∩SH. The tangle F itself is near the North Pole, while the tangle
F̂ is near the South Pole. See Figure 16.
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Figure 16. — A picture of Π on the 2-sphere.

We consider five rotation axes. They are among the symmetry axes of
the octahedron drawn on S2 consisting of E, C1 and C2. A priori, they are
the only admissible ones for the picture we consider.
The lines L1, L2, L3 and L4 are contained in the equatorial plane in such a
way that:
L1 cuts the Equator at 135◦ and 315◦.
L2 cuts the Equator at 45◦ and 225◦.
L3 cuts the Equator at 0◦ and 180◦.
L4 cuts the Equator at 90◦ and 270◦.
L5 is the vertical line through the poles.

For i = 1, . . . , 5 we denote by rLin the rotation of angle 2π
n , with the line

Li as axis. We denote by ρ the reflection through the equatorial plane.

It is easily checked that the only orthogonal transformations σ : (S2; Ω)→
(S2,Ω) are the following eight ones:

(i) id (the identity)

(ii) rL1
2

(iii) rL2
2

(iv) ρ ◦ rL5
4 = RL5

4

(v) ρ ◦ rL5
−4 = RL5

−4

(vi) ρ ◦ rL3
2 = RL3

2

(vii) ρ ◦ rL4
2 = RL4

2

(viii) rL5
2
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Figure 17. — The action of rL1
2 .

We now visualise and analyse each of the eight symmetries. Since we are
interested in achirality, we use the following principle.

Let σ be any of the eight symmetries. Then σ is relevant for the achirality
of the knot K represented by the projection Π if either:

1) σ preserves the orientation of S3 (represented in the figures by R3)

and sends Π to Π̂ or

2) σ reverses the orientation of S3 and sends Π to Π.

On the other hand, if σ reverses the orientation of S3 and sends Π to Π̂
then σ is not pertinent.

Analysis of (i), the identity symmetry. This means that we can modify

the tangle F to the tangle F̂ by flypes only, leaving the boundary circle
fixed. This is impossible. Here is why.

If no flypes are possible in F , there is nothing to prove since F contains
crossings and since F̂ differs from F by the over/under passes at crossings.

Hence suppose by contradiction that flypes occur. We have seen in Sec-
tion 3 that flypes occur in twisted band diagrams. If a flype occurs in such
a diagram D, the weight of D is �= 0. We know that weights are invariant by
flypes, and that the weights of F̂ are the opposite of those of F . If the weight
of D is different from 0, we reach a contradiction as D does not move since
γ is fixed. Otherwise, we can find a chain of enclosed twisted band diagrams
D = D1 ⊃ D2 ⊃ . . . ⊃ Dk such that the weight of Di is 0 for 1 � i � k − 1
and the weight of Dk is different from 0. We reach a contradiction as above.
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Analysis of (ii) rL1
2 . The action of rL1

2 is represented in Figure 17.

We see that we can transform Π into Π̂ (actually into −Π̂) with flypes
and the rotation rL1

2 if and only if F ∼ Fh. Remark that F ∼ Fh implies
that Π is a Type II projection.

Analysis of (iii) rL2
2 . The action of rL2

2 is represented in Figure 18.

Figure 18. — The action of rL2
2 .

The action of this rotation is very similar to the preceding one. We see
that we can transform Π into Π̂ (actually into −Π̂) with flypes and the
rotation rL2

2 if and only if F ∼ F v. Remark that F ∼ F v implies that Π is
a Type II projection.

Analysis of (iv) RL5
4 . The action of RL5

4 is represented in Figure 19. We
see that Π is invariant by flypes and RL5

4 if and only if F ∼ F ∗.

ρ

Figure 19. — The action of RL5
4 .

Analysis of (v) RL5
−4. The action of RL5

−4 is very similar to that of RL5
4 .

Again, the conclusion is that Π is invariant by flypes and RL5
−4 if and only

if F ∼ F ∗.
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Analysis of (vi) RL3
2 and of (vii) RL4

2 . The action of RL3
2 is represented

in Figure 20. Here the situation is different from the preceding ones. We can
transform Π into Π̂ by flypes and RL3

2 or RL4
2 if and only if F ∼ Fh ∼ F v.

Since RL3
2 and RL4

2 reverse the orientation of S3, these symmetries are not
pertinent to achirality.

ρ

Figure 20. — The action of RL3
2 .

Analysis of (viii) rL5
2 . Arguments quite similar to those above show that

this symmetry is not suitable for achirality.

Summary. — The symmetries rL1
2 and rL1

2 are relevant for −achirality.
Note that these two symmetries are of order 2.

The symmetries RL5
4 and RL5

−4 are relevant for +achirality. Note that
these two symmetries are of order 4.

The other symmetries are not relevant to achirality.

Completing the proof of Proposition 6.

Proposition 6 states conditions on F in order that K be + or −achiral.

That these conditions are sufficient is clear from the analysis of the fig-
ures. See also “Remarks on the sufficiency of the conditions in Propositions
6 and 7” below.

That these conditions are necessary is deep. Here, the fact that Π is
a minimal alternating projection is essential. The necessity relies on the
following arguments:

(a) the proof that a prime alternating ±achiral knot must have a pro-
jection of Type I or II;

(b) the “important observation” that a projection of Type I or II is
unique up to flypes in the two tangles;
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(c) the exhaustive analysis performed above of the symmetries of pro-
jections of Type I and II. �

6.3. Achirality of projections of Type II and completion of the
proof of Tait’s Conjecture

The same careful analysis carried out in the proof of Proposition 6 eas-
ily leads to the next proposition when the decomposition of Figure 10 is
replaced by that of Figure 11.

Proposition 6.4. — Let K be a prime alternating knot which possesses
a minimal projection of Type II. Then:

K is always −achiral. Furthermore this symmetry is realised by a rota-
tion of S2 of angle π.

K is +achiral if and only if F ∼ Fh ∼ F v. In that case K also admits
a projection of Type I.

Remarks. — on the sufficiency of the conditions in Propositions 6 and 7.
The figures presented in the proof of Proposition 6 and the comments which
accompany them show that the conditions expressed in the statements of
Propositions 6 and 7 are always sufficient. Explicitly:

(1) Suppose that the knot K possesses a (non-necessarily alternating)
projection Π of Type I. Then:
K is +achiral if Π satisfies F ∼ F ∗;
K is −achiral if Π satisfies F ∼ Fh or F ∼ F v.

(2) Suppose that the knot K possesses a (non-necessarily alternating)
projection Π of Type II. Then:
K is +achiral if Π satisfies F ∼ Fh ∼ F v;
K is always −achiral.

Theorem 6 summarises the situation for projections with an invariant
Haseman circle.

Theorem 6.5. — Let K be a prime alternating achiral knot and let Π
be a minimal projection of K with an invariant Haseman circle. Then:

(1) K is +achiral if and only if K possesses a minimal projection of
Type I such that F ∼ F ∗;

(2) K is −achiral if and only if K possesses a minimal projection of

Type II. In this case, Π can be transformed into its mirror image F̂ by a
rotation of order 2.
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Corollary 6.6. — Tait’s Conjecture for prime alternating −achiral
knots is true.

Proof. — At the end of Section 4, we divided the proof of Tait’s Con-
jecture into three cases named A, B and C. The proof of Case A is given in
Section 5, which contains also a proof of Case B. The theorem above implies
that Tait’s Conjecture is true in Cases B and C. �

Comments. — 1) Roughly speaking, when a Haseman circle is invari-
ant we can expect to have symmetries of order 2 (for −achirality) or of order
4 (for +achirality). If we wish to have symmetries of higher order (a power
of 2 and only in case of +achirality) we have to look for an invariant jewel.

2) Going back in time, we could say that Tait and Haseman discovered
and studied achirality when a Haseman circle is invariant. Tait’s efforts were
devoted to −achirality (hence to symmetries of order 2) and Haseman’s were
devoted to +achirality and symmetries of order 4.

7. The two checkerboard graphs

In this section we show how the methods developed in this paper can be
used to answer questions about checkerboards. There are two points we wish
to emphasise. First, plain achirality is not precise enough. It is necessary
to clearly distinguish between + and − achirality. It is also important to
consider the nature of the fixed point of ϕ : A(K)→ A(K) as presented at
the end of Section 4. We propose the following definition.

Figure 21. — A checkerboard graph.

Definition 7.1. — A prime achiral alternating knot K is quasi-poly-
hedral if the fixed point of ϕ is either a jewel or a Haseman circle adjacent
to two jewels (Case A or Case B).

The knot K is quasi-arborescent if the fixed point of ϕ is a Haseman
circle adjacent to two band diagrams (Case C).
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Let Π be a minimal projection of a prime alternating knot K. We de-
note by G(Π) and G∗(Π) the two checkerboard graphs associated to Π. For
the convenience of the reader we recall their main properties. A connected
component of S2 \ Π is called a region determined by Π. Each region can
be colored (in white or black) in such a way that two adjacent regions get
a different color. In other words, Π determines a checkerboard partition of
S2. The graph G(Π) associated to one color (say white) is the planar graph
constructed as follows. In each white region R choose a vertex SR. Let P
be a crossing point of Π meeting two white regions R and R′. We associate
to P an edge AP joining SR to SR′ through P and in the union R ∪ R′.
Similarly, the black regions give rise to the graph G∗(Π). The two graphs
G(Π) and G∗(Π) are dual in S2.

From G(Π) we can recover the projection Π by proceeding backwards.
We expand each vertex to a disc and each edge to a half-twisted band. It
remains to know if the half-twist is right-handed (i.e. positive) or left-handed
(i.e. negative). This is achieved by labeling each edge with a + or − sign.

The main point about alternating projections is the following. A projec-
tion Π is alternating if and only if all edges of G(Π) have the same sign. Of
course the same goes for G∗(Π) with the opposite sign.

For more information about these graphs see for instance [16] where the
graphs are denoted by ∆ and Λ.

The question whether G(Π) and G∗(Π) are isomorphic as planar graphs
(i.e. as graphs embedded in the 2-sphere) is related to the achirality of K
as already noted and exploited by Tait. Louis Kauffman made the following
conjecture. See [11].

Conjecture 7.2 (Kauffman’s Conjecture) . — A prime alternating
achiral knot has a minimal projection Π such that G(Π) is isomorphic to
G∗(Π).

Comment. — Let us go back to Theorem 2 and let K be a prime, alter-
nating and achiral knot. Suppose that there exists a projection Π of K and
a diffeomorphism φ : (S2,Π) → (S2,Π) which realizes the achiral symme-
try. Then φ must exchange G(Π) and G∗(Π), since their edges have opposite
have signs. Hence Kauffman’s Conjecture is true for K. Therefore a possible
counterexample to the Kauffman Conjecture is necessarily a knot for which
every minimal projection needs flypes to realize the achiral symmetry.

To explicitly distinguish between + and − achirality it is necessary to
make precise what “isomorphic” means.
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Definition 7.3. — Two planar graphs Γ and Γ∗ are ±equivalent if there
exists a diffeomorphism g : S2 → S2 of degree ±1 such that g(Γ) = Γ∗.

The next proposition is presumably well known.

Proposition 7.4. — Let Π be a minimal projection of a prime alter-
nating knot K.

i) One can move Π to −Π̂ by an orientation preserving diffeomorphism
of S2 if and only if G(Π) is +equivalent to G∗(Π).

ii) One can move Π to +Π̂ by an orientation preserving diffeomorphism
of S2 if and only if G(Π) is −equivalent to G∗(Π).

Proof. — For case i)(−achirality) see [15, Prop.6.2] and for case ii)
(+achirality) see [15, Prop.7.2]. �

Theorem 7 is a consequence of the proof of Tait’s Conjecture.

Theorem 7.5. — Kauffman’s Conjecture is true for prime −achiral al-
ternating knots. More precisely, every prime −achiral alternating knot has
a minimal projection Π such that G(Π) is +equivalent to G∗(Π).

However it is known that Kauffman’s Conjecture is not true in general. A
counterexample was provided by Dasbach-Hougardy in [7]. From the above
theorem, we deduce that counterexamples to Kauffman’s Conjecture are
necessarily +achiral and not −achiral.

In [11] Kauffman and Jablan observe that the Dasbach-Hougardy coun-
terexample is arborescent. It is easy to construct infinite families of such
knots. Hence Kauffman-Jablan put forward the following conjecture.

Conjecture 7.6 (The Kauffman-Jablan Conjecture) Let K be
a prime alternating knot which is a counterexample to Kauffman’s Conjec-
ture (such a knot is called Dasbach-Hougardy in [11]). Then K is arbores-
cent.

In a future publication [8] we shall study in details +achiral alternat-
ing knots. Among other things, we shall prove that the Kauffman-Jablan
Conjecture is not true. More precisely we have the following result.
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Theorem 7.7. — For every integer a � 2 there exists a prime alternat-
ing knot K which is:

1) +achiral of period 2a,

2) quasi-polyhedral,

3) Dasbach-Hougardy.

Figure 22 is an example of such a knot where the tangle F is pictured in
Figure 15 while asking the projection to be alternating. See also the third
comment at the end of Section 5.

Figure 22
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