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On the Pierce-Birkhoff Conjecture for Smooth Affine
Surfaces over Real Closed Fields

Sven Wagner
(1)

ABSTRACT. — We will prove that the Pierce-Birkhoff Conjecture holds
for non-singular two-dimensional affine real algebraic varieties over real
closed fields, i.e., if W is such a variety, then every piecewise polynomial
function on W can be written as suprema of infima of polynomial functions
on W . More precisely, we will give a proof of the so-called Connectedness
Conjecture for the coordinate rings of such varieties, which implies the
Pierce-Birkhoff Conjecture.

RÉSUMÉ. — Nous montrons que la conjecture de Pierce-Birkhoff est vérifiée
dans le cas des variétés algébriques affines réelles non-singulières de di-
mension 2 sur des corps réels clos, c’est-à-dire que si W est une telle
variété, alors toute fonction polynômiale par morceaux sur W s’écrit
comme un supremum d’infima de fonctions polynômiales sur W . Plus
précisément, nous montrons la conjecture dite de connexité pour l’anneau
des coordonnées d’une telle variété, laquelle implique la conjecture de
Pierce-Birkhoff.

1. Introduction

In 1956, G. Birkhoff and R. S. Pierce raised the following question, which
is well-known today as the Pierce-Birkhoff Conjecture:

Conjecture 1.1 (Pierce, Birkhoff). —

Let t: Rn → R be a piecewise polynomial function. Then there is a finite
family of polynomials {hij}i∈I,j∈J ⊂ R[X1, . . . , Xn] such that

t = sup
i∈I

(
inf
j∈J

hij

)
.

(1) Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz,
Germany
sven.wagner@uni-konstanz.de

– 221 –



Sven Wagner

The statement of this conjecture depends on the following

Definition 1.2. — A function t: Rn → R is said to be piecewise poly-
nomial if there are closed semialgebraic subsets U1, . . . , Um of Rn and poly-

nomials t1, . . . , tm ∈ R[X1, . . . , Xn] such that Rn =
m⋃
k=1

Uk and t = tk on

Uk.

This conjecture was proved in 1984 by Louis Mahé in the case n = 2
(see [Mah84]). For n > 2, it is still open.

In 1989, J. J. Madden formulated the Pierce-Birkhoff Conjecture for Rn

in terms of the real spectrum of the polynomial ring R[X1, . . . , Xn]. In doing
so, he introduced the concept of a “separating ideal”. He used separating
ideals to define a property that makes sense for any commutative ring and
he showed that this property is satisfied by R[X1, . . . , Xn] for n = 1, 2, 3, . . .
if and only if the Pierce-Birkhoff Conjecture is true. In 1995, D. Alvis,
B. L. Johnston and J. J. Madden applied Zariski’s theory of quadratic
transformations to study separating ideals in two-dimensional regular local
domains, showing that quadratic transforms of separating ideas are well-
behaved if the residue field is real closed. In 2007, F. Lucas, J. J. Madden,
D. Schaub and M. Spivakovsky introduced the Connectedness Conjecture
and showed that it implies the Pierce-Birkhoff Conjecture.

In the present paper, we give a proof of the Connectedness Conjecture for
the coordinate ring of any non-singular two-dimensional affine real algebraic
variety over a real closed field. Of course, this implies the Pierce-Birkhoff
Conjecture for such rings. Our proof rests on the theory developed by Mad-
den and by Alvis, Johnston and Madden. In an attempt to make the present
paper self-contained, we include a review the essential results of this theory.

The author’s work is supported by the DFG-Graduiertenkolleg “Mathe-
matische Logik und Anwendungen” (GRK 806) in Freiburg (Germany). He
thanks Prof. Dr. Alexander Prestel from the University of Konstanz for
supervising his work and the referee for useful comments.

2. Pierce-Birkhoff Rings

In the next two sections, we will give a short overview of Madden’s article
[Mad89] and we include a proof of one of the main results.

Let A be a (commutative) ring (with 1). Denote by SperA the real
spectrum of A. Let α ∈ SperA. Then α induces a total ordering on A(α) :=
A/supp(α), where supp(α) = α∩−α. We denote by ρα the homomorphism
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A → A/supp(α) and by R(α) the real closure of the quotient field k(α) of
A(α) with respect to the ordering induced by α.

Definition 2.1 (Schwartz). — An element s ∈
∏

α∈SperA R(α) is called
an abstract semialgebraic function on SperA iff the image of s is con-
structible, i.e., there exists a formula Φ(T ) in the language of ordered rings
with coefficients in A containing only one variable, which is also free, such
that, for all α ∈ SperA, Φα(s(α)) holds in R(α) and s(α) is the only solu-
tion of the specialization Φα(T ) in R(α). We say that s is continuous if
it satisfies the following compatibility condition regarding specializations:
Let α, β ∈ SperA, β a specialization of α. Then R(α) contains a largest
convex subring Cβα with maximal ideal Mβα such that A(α) ⊂ Cβα and
ρ−1
α (Mβα) = supp(β). Then Cβα/Mβα is a real closed field containing A(β)

and therefore also R(β). The condition s has to suffice is

λβα(s(α)) = s(β) ∈ R(β) ⊂ Cβα/Mβα,

where λβα:Cβα → Cβα/Mβα.

We denote by SA(A) the set of all continuous abstract semialgebraic
functions on SperA. This is a subring of

∏
α∈SperA R(α).

Remarks 2.2. —

(i) Every element a ∈ A induces an abstract semialgebraic function.

(ii) For s, t ∈ SA(A), the set {α ∈ SperA | s(α) = t(α)} ⊂ SperA is
constructible.

Definition 2.3. — By PW(A), we denote the set of all continuous ab-
stract semialgebraic functions s ∈ SA(A) with the property that, for all
α ∈ SperA, there exists an element a ∈ A such that s(α) = a(α).

The elements of PW(R[X1, . . . , Xn]) are called abstract piecewise poly-
nomial functions.

An abstract piecewise polynomial function has a presentation analogous
to that of a piecewise polynomial as in Definition 1.2. To be precise, suppose
t ∈ PW(A). Let α ∈ SperA. If t(α) = a(α) for some a ∈ A, then, t = a on a

constructible set Uα containing α. By compactness, we have SperA =
m⋃
i=1

Ui

for finitely many constructible sets Ui such that t = ai on Ui for some ai ∈ A.
Since {α ∈ SperA | t(α) = ai(α)} is closed in the spectral topology, we may
assume that each Ui is closed.
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Definition 2.4 (Madden). — Suppose t ∈ SA(A). We say t is sup-
inf-definable over A if there is a finite family {hij}i∈I,j∈J ⊂ A such
that

t = sup
i∈I

(
inf
j∈J

hij
)
.

A is called a Pierce-Birkhoff ring if every t ∈ PW(A) is sup-inf-definable
over A.

Let R be a real closed field, and let V be an algebraic subset of Rn. We
denote by P(V ) its coordinate ring. Then PW(P(V )) is isomorphic to the
ring of piecewise polynomial functions on V . Hence the question whether
the Pierce-Birkhoff Conjecture holds for V is equivalent to the question
whether P(V ) is a Pierce-Birkhoff ring.

3. Separating Ideals

The present section summarizes the main results of [Mad89], including
the definition of separating ideals and their use in describing the abstract
Pierce-Birkhoff property. First, using the abstract Pierce-Birkhoff property
(Definition 2.4) together with the compactness of the constructible topology
of the real spectrum, we show that an abstract piecewise polynomial is
globally sup-inf-definable if it is sup-inf-definable on every pair of elements
of the real spectrum. This shows that the Pierce-Birkhoff property is local
in a very strong sense.

Theorem 3.1. — A is a Pierce-Birkhoff ring if and only if, for all t ∈
PW(A) and for all α, β ∈ SperA, there is an element h ∈ A such that
h(α) � t(α) and h(β) � t(β).

Proof. — Let t ∈ PW(A).

Suppose there is a finite family {hij}i∈I,j∈J ⊂ A such that

t = sup
i∈I

(
inf
j∈J

hij
)
,

and suppose further that there exist α, β ∈ SperA such that, for all h ∈
A, h(α) � t(α) implies h(β) > t(β). Then, since there is some i0 ∈ I
such that infj∈J hi0j(α) � t(α), we have supi∈I

(
infj∈J hij(β)

)
> t(β), a

contradiction.

Suppose now that, for all α, β ∈ SperA, there is an element hαβ ∈ A
such that hαβ(α) � t(α) and hαβ(β) � t(β). In particular, hαα(α) = t(α).
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For each α, β ∈ SperA, there are closed constructible sets U(α, β) and
V (α, β) such that α ∈ U(α, β), β ∈ V (α, β) , hαβ � t on U(α, β) and
hαβ � t on V (α, β). Without loss of generality U(α, α) = V (α, α).

We fix some α ∈ SperA. Since SperA is the union of the sets V (α, β)
with β ∈ SperA, by compactness, there exist α = β0, . . . , βr ∈ SperA

such that SperA =
r⋃

j=0

V (α, βj). Let U(α) :=
r⋂

j=0

U(α, βj) and Hα :=

infj∈J hα,βj
, where J = {0, . . . , r}. Then Hα � t globally and Hα = t

on U(α).

SperA is the union of the sets U(α) with α ∈ SperA, and hence, again by

compactness, there exist α1, . . . , αs ∈ SperA such that SperA =
s⋃

i=0

U(αi).

Then t = supi∈I Hαi
, where I = {1, . . . , s}. �

Definition 3.2. — Let A be a ring. For α, β ∈ SperA, we denote by
〈α, β〉 the ideal of A generated by all a ∈ A with the property a(α) � 0 and
a(β) � 0. We will call 〈α, β〉 the separating ideal of α and β.

Remarks 3.3. — Let α, β ∈ SperA.

1. supp(α) + supp(β) ⊂ 〈α, β〉.

2. In general, 〈α, β〉 is not a prime ideal.

Lemma 3.4. — Let α, β ∈ SperA. Let a ∈ A such that a(α) � 0. Then
we have a ∈ 〈α, β〉 if and only if there exists an h ∈ A such that a(α) � h(α)
and h(β) � 0.

Definition 3.5. — Let α ∈ SperA. An ideal I of A is called α-convex
if, for all a, b ∈ α, it follows from a+ b ∈ I that a, b ∈ I. The set of α-ideals
of A is totally ordered by inclusion. If A is noetherian, there exists a largest
proper α-convex ideal in A, called the center of α in A, and denoted by
cent(α).

Proposition 3.6. — Let α, β ∈ SperA.

a) In A, the ideal 〈α, β〉 is convex with respect to α and β.

b) Both α and β induce the same total ordering on A/〈α, β〉, and 〈α, β〉
is the smallest ideal of A with this property.
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c) If
√
〈α, β〉 is proper, then it is prime, and α and β induce the same

total ordering on A/
√
〈α, β〉. Thus, in this case,

√
〈α, β〉 together

with this order is the least common specialization γ of α and β in
SperA.

d) Let t ∈ PW(A). For δ ∈ SperA, we denote by tδ any element a ∈
A such that t(δ) = a(δ). The compatibility condition for t gives us
tα(γ) = tγ(γ) = tβ(γ), hence tα − tβ ∈

√
〈α, β〉.

e) Every ideal of A containing 〈α, β〉 is α-convex if and only if it is
β-convex.

f) Suppose α and β have no common specialization. Then 〈α, β〉 = A.

g) Suppose A is noetherian and cent(α) �= cent(β). Then 〈α, β〉 = A,
since otherwise both cent(α) and cent(β) would be α- and β-convex,
and therefore equal because of their maximality.

Theorem 3.7. — A is a Pierce-Birkhoff ring if and only if for all t ∈
PW(A) and all α, β ∈ SperA, we have tα − tβ ∈ 〈α, β〉.

Corollary 3.8. — Every field is Pierce-Birkhoff.

Remarks 3.9. — Let α, β ∈ SperA.

(i) If 〈α, β〉 is a prime ideal or equal to A, then for each t ∈ PW(A), we
have tα − tβ ∈ 〈α, β〉.

(ii) If α and β have no common specialization, then 〈α, β〉 = A, so we
have to check the condition of the theorem only for α and β having
a common specialization.

(iii) If A is a ring with the property that the localization at any real prime
ideal is a discrete valuation ring, then A is a Pierce-Birkhoff ring. See,
for example, Lemma 5.1 below.

(iv) Any Dedekind ring is a Pierce-Birkhoff ring.

(v) The (real) coordinate ring of any non-singular (real) algebraic curve
is a Pierce-Birkhoff ring.
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4. Connectedness

The Connectedness Conjecture was introduced by Lucas, Madden,
Schaub and Spivakovsky in [LMSS07] who showed that it implies the Pierce-
Birkhoff Conjecture. We will review this work. First, in order to state the
conjecture, we make the following definition.

Definition 4.1. — Let A be a ring and let α, β ∈ SperA. We say α and
β satisfy the connectedness condition if for any g1, . . . , gs ∈ A \ 〈α, β〉,
there exists a connected set C ⊂ SperA such that α, β ∈ C and C ∩ {δ ∈
SperA | gj(δ) = 0} = ∅ for all j ∈ {1, . . . , s}.

Conjecture 4.2 (Connectedness Conjecture). — Suppose R is a real
closed field and A := R[X1, . . . , Xn]. Then every pair α, β ∈ SperA satisfies
the connectedness condition.

Theorem 4.3 (Lucas, Madden, Schaub, Spivakovsky). — Let A be a
noetherian ring in which the connectedness condition holds for every two
points α, β ∈ SperA with a common center. Then A is a Pierce-Birkhoff
ring.

Proof. — Let t ∈ PW(A), and let (Uj)mj=1 be a finite sequence of con-

structible sets in SperA such that SperA =
m⋃
j=1

Uj and t = tj on Uj for some

tj ∈ A. Let α, β ∈ SperA. By Theorem 3.7, we have to show that tα − tβ ∈
〈α, β〉, where tα (resp. tβ) is any element a ∈ A such that t(α) = a(α) (resp.
t(β) = a(β)). We may assume that α and β have a common center, since oth-
erwise A = 〈α, β〉. Now let T = {{j, k} ⊂ {1, . . . ,m} | tj − tk /∈ 〈α, β〉}, and
we apply the connectedness condition to the finitely many elements tj − tk
with {j, k} ∈ T to get a connected set C ⊂ SperA such that α, β ∈ C and
C ∩ {δ ∈ SperA | (tj − tk)(δ) = 0} = ∅ for all {j, k} ∈ T .

Let K be the set of all indices k ∈ {1, . . . ,m} such that there exists
a sequence j1, . . . , js ∈ {1, . . . ,m} with α ∈ Uj1 , js = k, and, for all q ∈
{1, . . . , s− 1}, we have C ∩ {δ ∈ SperA | (tjq − tjq+1)(δ) = 0} �= ∅.
Let F =

⋃
k∈K

(Uk ∩ C). Then α ∈ F by definition.

We claim that F = C. Let Kc := {1, . . . ,m}\K and G :=
⋃

j∈K(c)

(Uj∩C).

Clearly, C = F ∪ G and both sets F and G are closed in C. Suppose
F ∩ G �= ∅, and let δ ∈ F ∩ G. Then there exists some k ∈ K and some
j ∈ Kc such that δ ∈ Uk ∩ Uj , and thus tk(δ) = tj(δ). Therefore, we have
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δ ∈ C ∩ {tk − tj = 0}, and hence j ∈ K, a contradiction. We have shown
that F and G are disjoint, and since C is connected and F �= ∅, this yields
G = ∅. In particular, we have β ∈ F .

Now let k ∈ K such that β ∈ Uk, and hence we can set tk =: tβ . Then
there exists a sequence j1, . . . , js ∈ {1, . . . ,m} such that α ∈ Uj1 , js = k
and, for all q ∈ {1, . . . , s−1}, {jq, jq+1} /∈ T , i.e., tjq− tjq+1 ∈ 〈α, β〉. Hence,
we have obtained tα − tβ ∈ 〈α, β〉, if we set tα := tj1 . �

If 〈α, β〉 = {0}, then we have α = β and supp(α) = supp(β) = {0}.
Hence g(α) �= 0 for all g ∈ A \ 〈α, β〉, and therefore the set C = {α} fulfills
all requirements of the connectedness condition.

In the next sections, we will prove that the connectedness condition
holds for every pair of points α, β which are in the real spectrum of a
finitely generated two-dimensional regular R-algebra A, where R is a real
closed field, and have the same center in A, i.e., 〈α, β〉 � A. Note that, if
〈α, β〉 = A, the connectedness condition holds for α and β if and only if
there exists a connected set C ⊂ SperA that contains α and β. This is true,
for example, if A is the polynomial ring R[X1, . . . , Xn].

First, we give some examples for connected sets in the real spectrum of
a polynomial ring over a real closed field. Let R be a real closed field, and
let A := R[X1, . . . , Xn] be the polynomial ring in n indeterminates over R.

Definition 4.4. — A semialgebraic subset S of Rn is called semialge-
braically connected if there are no two non-empty closed semialgebraic
sets S1 and S2 in S such that S1 ∩ S2 = ∅ and S = S1 ∪ S2.

Proposition 4.5. — Let U, V be two semialgebraic sets, and let ϕ:U →
V be a continuous semialgebraic map, i.e., a continuous map whose graph is
semialgebraic. Then the image under ϕ of any semialgebraically connected
subset of U is again semialgebraically connected.

Proposition 4.6. — Every interval of R is semialgebraically connected.

From Proposition 4.6, one can immediately derive the following result.

Proposition 4.7. — Every convex semialgebraic set S ⊂ Rn is semial-
gebraically connected.
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Examples 4.8. — Let ε ∈ R such that ε > 0, and let I ⊂ {1, . . . , n}.
Then, by Proposition 4.7, the semialgebraic set

Cε
I := {x ∈ Rn | ε−

n∑
i=1

x2
i > 0, xi > 0 (i ∈ I)}

is semialgebraically connected.

Let V ⊂ Rn be an algebraic set, and let P(V ) be its coordinate ring.
For any semialgebraic set S in V , we denote by S̃ the corresponding con-
structible set in SperP(V ). Let us recall Proposition 7.5.1 of [BCR98], which
is an important tool to find connected sets in the real spectrum of P(V ).

Proposition 4.9. — Let S be a semialgebraic set in V . S is semialge-
braically connected if and only if S̃ is connected in the spectral topology of
P(V ).

5. The One-Dimensional Case

Let A be an integral domain. In this section, we treat the case where√
〈α, β〉 is a prime ideal of height one, and the localization of A at

√
〈α, β〉

is a regular ring.

Lemma 5.1. — Let A be a integral domain. Let α, β ∈ SperA such that√
〈α, β〉 is a prime ideal of height one and A√〈α,β〉 is a regular local ring. Let

g1, . . . , gs ∈ A \ 〈α, β〉. Then
√
〈α, β〉 = 〈α, β〉 and there exists a connected

set C ⊂ SperA such that α, β ∈ C and C ∩ {δ ∈ SperA | gj(δ) = 0} = ∅ for
all j ∈ {1, . . . , s}.

Proof. — Assume 〈α, β〉 �
√
〈α, β〉. We consider the one-dimensional

regular local ring (i.e., discrete valuation ring) B := A√〈α,β〉. Both orderings

α, β ∈ SperA extend uniquely to α′, β′ ∈ SperB. In B, the separating
ideal 〈α′, β′〉 is equal to 〈α, β〉B. By assumption, there exists some π ∈√
〈α, β〉 \ 〈α, β〉 such that πB =

√
〈α, β〉B =

√
〈α′, β′〉.

Every element in b ∈ B can be written as πru for some r ∈ N and
u ∈ B× = B\

√
〈α′, β′〉. Both π and u do not change sign between α′ and β′,

hence b = πru does not change sign either. Thus
√
〈α′, β′〉 = 〈α′, β′〉 = {0},

a contradiction.

Let γ ∈ SperA be the least common specialization of α and β. Then
supp(γ) =

√
〈α, β〉 = 〈α, β〉. Hence, for all g ∈ A \ 〈α, β〉, we have γ ∈
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SperA \ {δ ∈ SperA | g(δ) = 0}. For any such g, let Cg,γ be the connected
component of the open set SperA \ {δ ∈ SperA | g(δ) = 0} that contains γ.
Since α and β specialize to γ, they are also contained in Cg,γ .

Now let g := g1 · · · gs. Then g /∈ 〈α, β〉 =
√
〈α, β〉, so we can take

C := Cg,γ . �

6. Valuations, Orderings and Quadratic Transformations

Let R be a real closed field. In order to prove the connectedness con-
dition in the case that

√
〈α, β〉 has height two in a finitely generated two-

dimensional regular R-algebra, we have to consider so-called quadratic trans-
formations along a valuation of this ring.

Let A be a noetherian ring.

Definition 6.1. — A valuation v of A is a map A→ Γ∪ {∞}, where
Γ is a total ordered abelian group, such that for all a, b ∈ A

(i) v(0) =∞, v(1) = 0,

(ii) v(ab) = v(a) + v(b) and

(iii) v(a + b) � min{v(a), v(b)}.

The prime ideal supp(v) := {a ∈ A | v(a) =∞} is called the support of
v in A and, if v is non-negative on A, then cent(v) := {a ∈ A | v(a) > 0}
is a prime ideal called the center of v in A.

Let v be a valuation of A that is non-negative on A.

An ideal I of A is called a v-ideal if I = {a ∈ A | ∃ b ∈ I (v(b) � v(a))}.
Since A is noetherian, for all v-ideals I, there exists an element b ∈ I such
that I = {a ∈ A | v(b) � v(a)}. If I is a v-ideal, then Iv := {a ∈ A | v(b) <
v(a)} is the largest v-ideal properly contained in I. The set of v-ideals of A
is totally ordered by inclusion.

Note that the support of v is the smallest v-ideal in A and that the center
of v is the largest proper v-ideal in A.

If A is a local ring with maximal ideal m, we say that a valuation v of A
dominates A if v is non-negative on A and the center of v in A is equal
to m.

Remark 6.2. — Let A be a local ring with maximal ideal m and residue
field k, and let v be a valuation of A that dominates A. Then v induces a
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valuation on the quotient field of A/supp(v). We denote the corresponding
valuation ring by Ov, its maximal ideal by mv and its residue field by Kv.
Since v dominates A, we have k ⊂ Kv.

Let I be a v-ideal of A where I is different from the support of v. Consider
the following composition of k-vector space homomorphisms

I � I/supp(v)→ Ov/mv = Kv, a �→ a = a + supp(v) �→ a

b
+ mv,

where b is an element of I having minimal value in I. The kernel of this
composition is clearly Iv, hence I/Iv is a sub-k-vector space of Kv.

We will now assign to each ordering α ∈ SperA of A a valuation vα.

Definition 6.3. — Let α ∈ SperA. Then α induces a total ordering on
the field k(α) = Quot(A/supp(α)). Now let Oα be the convex hull of A(α) in
k(α). This is a valuation ring of k(α). Let v′α be a corresponding valuation,
then vα := v′α ◦ ρα is a valuation of A. For any vα-ideal I of A, we write
Iα instead of Ivα .

Remark 6.4. — Let α, β ∈ SperA. An ideal I of A is a vα-ideal if and
only if it is convex with respect to α. Hence 〈α, β〉 is a vα-ideal.

From now on, let A be an regular local domain with maximal ideal m and
residue field k. In particular, A is integrally closed. Let ordA be the order
valuation of A (i.e., ordA(a) = max{n ∈ N | a ∈ mn}). In [ZS60] (Appendix
5) Oscar Zariski and Pierre Samuel showed a unique factorization theorem
for v-ideals in a two-dimensional regular local ring where v is a dominating
valuation.

Definition 6.5. — An ideal I of A is called simple if it is proper and
it cannot be written as a product of proper ideals.

Remark 6.6. — The ordA-ideals of A are exactly the powers of the max-
imal ideal m, hence m is the only simple ordA-ideal of A.

Theorem 6.7. — If A has dimension two and v is a valuation of A that
dominates A, then a v-ideal of A is simple if and only if it cannot be written
as a product of proper v-ideals of A. Moreover, every v-ideal of A different
from (0) and A has a unique factorization into simple v-ideals.
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Remark 6.8. — Actually, Zariski and Samuel proved this unique factor-
ization theorem for complete ideals ([ZS60], Appendix 5, Theorem 3). In an
integrally closed domain A, an ideal I is said to be complete if it is inte-
grally closed in Quot(A), i.e., for all a ∈ Quot(A) such that am + b1a

m−1 +
· · ·+ bm = 0, where bj ∈ Ij , we already have a ∈ I. But if v is a valuation of
A that is non-negative on A, then every v-ideal I of A is complete, and if a
v-ideal I is a product of simple complete ideals, then every factor is already
a v-ideal.

In [AJM95], Alvis, Johnston and Madden give a sufficient condition for
the simplicity of the separating ideal of two points in the real spectrum that
are centered at the same maximal ideal.

Proposition 6.9. — Suppose α, β ∈ SperA are both centered at the
maximal ideal m of A. Let k := A/m. If I/Iα ∼= k for all vα-ideals I which
properly contain 〈α, β〉, then 〈α, β〉 is simple.

Proof. — Let x ∈ 〈α, β〉 such that

(i) x(α) � 0 and x(β) � 0,

(ii) x has minimal vα-value in 〈α, β〉, and

(iii) x has minimal vβ-value in 〈α, β〉.

Note that such an element always exists, since there must be an element xα
that satisfies (i) and (ii) and there must be an element xβ that satisfies (i)
and (iii), and if xα does not satisfy (iii) and xβ does not satisfy (ii), then
xα + xβ satisfies all three conditions.

Suppose 〈α, β〉 is not simple. Then, by Theorem 6.7, it can be written as
the product of two proper vα-ideals I and J . Since they (properly) contain
〈α, β〉, they are also vβ-ideals. Now we can write x =

∑r
k=1 akbk, where,

for all k ∈ {1, . . . , r}, ak ∈ I and bk ∈ J . Note that if ak ∈ Iα = Iβ

or bk ∈ Jα = Jβ , then akbk ∈ 〈α, β〉α ∩ 〈α, β〉β . Since x satisfies (ii) and
(iii), without loss of generality we can write x =

∑s
k=1 akbk + c, where s ∈

{1, . . . r}, ak ∈ I \Iα and bk ∈ J \Jα for all k � s, and c ∈ 〈α, β〉α∩〈α, β〉β .
Let a ∈ I \ Iα and b ∈ J \ Jα. Since I/Iα ∼= k ∼= J/Jα, we have, for k � s,
that ak = uka + a′k and bk = vkb + b′k for some uk, vk ∈ A×, a′k ∈ Iα and
b′k ∈ Jα. Then x = ab

∑s
k=1 ukvk + c′, where vα(c′) > vα(〈α, β〉) = vα(x)

and vβ(c′) > vβ(〈α, β〉) = vβ(x), and thus we can derive from (i) that
(x− c′)(α) � 0 and (x− c′)(β) � 0. Since x satisfies (ii) and (iii), we have∑s

k=1 ukvk ∈ A×. So a or b must change sign between α and β, but this is
impossible, since they are not elements of 〈α, β〉. �
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Definition 6.10. — A quadratic transform of A is a local ring B =
(A[x−1m])p, where ordA(x) = 1 and p is a prime ideal of A[x−1m] = { a

xm |
ordA(a) � m} such that p ∩A = m.

Under a suitable condition, one can extend orderings of A to a quadratic
transform of A ([AJM95]).

Lemma 6.11. — Let α ∈ SperA, and let B = (A[x−1m])p be a quadratic
transform of A. If supp(α) �= m, then there is a unique α′ ∈ SperB such
that α′ ∩A = α.

Definition 6.12. — Let v be a non-trivial valuation (i.e., cent(v) �=
supp(v)) of A that dominates A. The quadratic transform of A along
v is defined to be the ring B = S−1A[x−1m], where x is an element of m of
minimal value and S = {a ∈ A[x−1m] | v(a) = 0}. B is again a regular local
ring, independent of the choice of x, v is extendable to B and it dominates
B.

We can then iterate this process and derive a sequence of quadratic trans-
formations along v starting from A, denoted by

A = A(0) ≺ A(1) ≺ · · · .

This sequence may be infinite.

Definition 6.13. — Let B = (A[x−1m])p be a quadratic transform of
A. Let I be an ideal of A with ordA(I) = r. Then a

xr ∈ A[x−1m] for all
a ∈ I. Hence IA[x−1m] = xrI ′ for some ideal I ′ of A[x−1m]. The ideal
T (I) := I ′B is called the transform of I in B. Now let J be an ideal of
B. Since J is finitely generated, there is a smallest integer n ∈ N such that
xnJ = W (J)B for some ideal W (J) of A, called the inverse transform
of J .

Remarks 6.14. — We consider a quadratic transform B of A.

1. For all ideals I of A and all ideals J of B, we always have T (W (J)) =
J , but in general only W (T (I)) ⊃ I.

2. The transformation of ideals is not order-preserving.

3. For all ideals I, J of A, we have T (IJ) = T (I)T (J).
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Zariski and Samuel showed that in dimension two, any simple m-primary
complete ideal can be transformed into a maximal ideal by a suitable se-
quence of quadratic transformations (again see [ZS60], Appendix 5). Apply-
ing this result to simple m-primary v-ideals yields the following.

Theorem 6.15. — Suppose the dimension of A is two. Let v be a non-
trivial valuation of A that dominates A and is different from the order valu-
ation ordA. Let A′ be the quadratic transform of A along v, and let m′ be its
maximal ideal. Let S be the set of all simple m-primary v-ideals of A, and
let S ′ be the set of all simple m′-primary v-ideals of A′. Then A′ has again
dimension two, the residue field of A′ is an algebraic extension of the residue
field of A, every transform of an m-primary v-ideal is again a v-ideal, and
we have that the sets S \ {m} and S ′ are in one-to-one correspondence via
the order-preserving maps I �→ T (I) and J �→W (J ).
Furthermore, for every simple m-primary v-ideal I, there exists some s ∈ N

and a sequence A = A(0) ≺ · · · ≺ A(s) of quadratic transformations along v
such that the iterated transform T (s)(I) of I equals m(s), the maximal ideal
in A(s).

Remark 6.16. — Suppose the dimension of A is two. Let v be a non-
trivial valuation of A that dominates A. Consider the quadratic transform
of A along v. Let I be an m-primary v-ideal of A, and let r = ordAI be the
order of I. By Theorem 6.15, the transform T (I) is again a v-ideal, so we
may consider the following composition of k-vector space homomorphisms

I ↔ x−rI ↪→ T (I) � T (I)/T (I)v, a �→ a

xr
�→ a

xr
�→ a

xr
+ T (I)v,

where x is an element of m having minimal value. The kernel of this com-
position is the ideal Iv, hence I/Iv ⊂ T (I)/T (I)v.

Although in general, the transformation of ideals is not order-preserving,
using the Unique Factorization Theorem 6.7, Theorem 6.15 and the multi-
plicativeness of the ideal transformation, the following can be observed.

Lemma 6.17. — Suppose the dimension of A is two. Let v be a non-
trivial valuation of A that dominates A and is different from the order val-
uation ordA, and let I be a v-ideal such that I properly contains a simple
m-primary v-ideal I. Then T (s)(I) = A(s), where T (s) denotes the iterated
ideal transformation with respect to the sequence of quadratic transforma-
tions A = A(0) ≺ · · · ≺ A(s) of A along v with the property T (s)(I) = m(s).

Now we assume that A has dimension two and that the residue field of A
is real closed, and we consider quadratic transformations along a valuation
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corresponding to a point in the real spectrum of A. The next theorem is the
main result of [AJM95] and important for the proof of the (two-dimensional)
Connectedness Conjecture below.

Theorem 6.18 (Alvis, Johnston, Madden). — Let A = (A,m, R) be a
two-dimensional regular local domain such that R is real closed. Let α, β ∈
SperA such that cent(α) = m = cent(β) and 〈α, β〉 � m =

√
〈α, β〉.

Consider the quadratic transformation along vα. Then:

T (〈α, β〉) = 〈α′, β′〉 and W (〈α′, β′〉) = 〈α, β〉,

where α′ and β′ are the unique extensions of α and β with respect to the
quadratic transform of A along vα.
Furthermore, there exists an integer r ∈ N and a sequence A = A(0) ≺ · · · ≺
A(r) of quadratic transformations along vα such that the iterated transform
T (r)(〈α, β〉) of 〈α, β〉 equals m(r), the maximal ideal in A(r).

Proof. — Let α, β ∈ SperA such that cent(α) = cent(β) = m and 〈α, β〉
is m-primary, but properly contained in m.

Let I be a vα-ideal that properly contains 〈α, β〉. Then I properly con-
tains a simple m-primary vα-ideal:
Since

√
〈α, β〉 = m, there are only finitely many vα-ideals bigger than I. In

[ZS60] (Appendix 5), it is shown that vα is a prime divisor, i.e., its residue
field has transcendence degree 1 over R, if and only if there are only finitely
many simple m-primary vα-ideals. If vα is not a prime divisor, then one of
the infinitely many simple m-primary vα-ideals must be properly contained
in I. If it is a prime divisor, then, according to [AJM95] (Theorem 4.4),
〈α, β〉 contains a simple m-primary vα-ideal, which is therefore properly
contained in I.

From the fact that I properly contains a simple m-primary vα-ideal, one
concludes that I/Iα ∼= R: By Theorem 6.15, there is a sequence of quadratic
transformations A = A(0) ≺ · · ·A(s) along vα such that this simple m-
primary vα-ideal is transformed into the maximal ideal m(s) of A(s), and
therefore I is transformed into A(s) (Lemma 6.17). Since A(s)/m(s) is a real
algebraic extension of R, they are equal. Thus, by Remark 6.16, we have
I/Iα ∼= R. (Note that if vα is not a prime divisor, then Kvα = R, and
therefore I/Iα ∼= R already follows from Remark 6.2.)

By Proposition 6.9, we have that 〈α, β〉 is simple. It is true in general
that T (〈α, β〉) ⊂ 〈α′, β′〉 ([AJM95], Lemma 3.2), and with the considerations
above one easily shows that W (〈α′, β′〉) ⊂ 〈α, β〉 ([AJM95], Lemma 4.7).
Applying W on the first inclusion and T on the second, one gets, by Theorem
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6.15, 〈α, β〉 ⊂W (〈α′, β′〉) and 〈α′, β′〉 ⊂ T (〈α, β〉). Altogether, we have the
desired equalities.

Again using Theorem 6.15, the last assertion follows from the simplicity
of 〈α, β〉. �

7. The Connectedness Conjecture for Smooth Affine Surfaces
over Real Closed Fields

In this last section, we shall prove the Connectedness Conjecture for
the coordinate ring of a non-singular two-dimensional affine real algebraic
variety over a real closed field. That is, we shall show that any two points
in the real spectrum of such a coordinate ring which have the same center
satisfy the connectedness condition. We can assume that the variety is ir-
reducible. By Lemma 5.1, we then need to consider only points α, β where√
〈α, β〉 has height two. We will use Theorem 6.18 to simplify the problem

of constructing a suitable connected set.

Let A = (A,m, R) be a two-dimensional regular local domain such that
R = A/m is real closed. Let α, β ∈ SperA such that cent(α) = m = cent(β)
and 〈α, β〉 � m =

√
〈α, β〉. By Theorem 6.18, there exists a finite sequence

(A,m, R) =: (A(0),m(0), k(0)) ≺ · · · ≺ (A(r),m(r), k(r)) of quadratic transfor-
mations along the valuation vα such that 〈α(r), β(r)〉 = T (r)(〈α, β〉) = m(r),
where α(r) and β(r) are the unique extensions of α and β to A(r).

At first we take a closer look at these quadratic transformations. The
quadratic transformation (A(i),m(i), k(i)) ≺ (A(i+1),m(i+1), k(i+1)) is a trans-
formation along vα(i) , which is the unique extension of vα to A(i). We will
write v instead of vα(i) and sometimes α and β instead of α(i) and β(i).

By Theorem 6.15, we have that, for all i ∈ {0, . . . , r}, the regular local
ring A(i) has dimension two and residue field k(i) = R, since k(i) is a real
field. Now let (xi, yi) be a regular system of local parameters of A(i), i.e.,
m(i) = (xi, yi). From now on, we will assume that 0 < v(xi) � v(yi).
Then, a regular system (xi+1, yi+1) of parameters of A(i+1) such that 0 <
v(xi+1) � v(yi+1) can be derived from (xi, yi) in the following way (see
[ZS60], Appendix 5, proof of Proposition 1):

I. Suppose v(xi) < v(yi):

1. If v(xi) � v( yi

xi
), then let xi+1 := xi and yi+1 := yi

xi
.

2. If v(xi) > v( yi

xi
), then let xi+1 := yi

xi
and yi+1 := xi.
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II. Suppose v(xi) = v(yi). Pick an element u ∈ A(i)× such that yi

xi
− u

has positive value. (This is possible because v( yi

xi
) = 0, hence there

exists some element u ∈ A(i)× such that uv = yi

xi

v ∈ R.)

1. If v(xi) � v( yi

xi
− u), let xi+1 := xi and yi+1 := yi

xi
− u.

2. If v(xi) > v( yi

xi
− u), let xi+1 := yi

xi
− u and yi+1 := xi.

Without loss of generality we may assume that xi(α) > 0 and yi(α) > 0.
Since 〈α(i), β(i)〉 � m(i) for all i < r, we also have xi(β) > 0 if i < r.

Proposition 7.1. — Suppose A is the localization at the maximal ideal
(z1, . . . , zn) of a finitely generated two-dimensional regular R-algebra
R[z1, . . . , zn] without zero divisors, where R is a real closed field. Let α, β ∈
SperA both centered at the maximal ideal m of A such that 〈α, β〉 � m =√
〈α, β〉. Let v := vα. Suppose 0 < v(z1) � v(z2), . . . , v(zn). Then there ex-

ist elements u2, . . . , un ∈ R such that the quadratic transform A′ of A along
v equals the localization of R[z′1, . . . , z

′
n] at the maximal ideal (z′1, . . . , z

′
n),

where z′1 := z1 and z′j = zj

z1
− uj if j > 1. Suppose further that (z1, z2) is

a regular system of parameters of A. Then (z′1, z
′
2) is a regular system of

parameters of A′.

Proof. — Let j > 1. If v(zj) > v(z1), let uj := 0. If v(zj) = v(z1), then,
since m/mα ∼= R (as shown in the proof of 6.18), there exists some u ∈ R
such that v(zj − uz1) > v(m) = v(z1), and we take uj := u.

Let B := A[z−1
1 m] = { a

zm
1
| a ∈ A, ordA(a) � m}. Then we have

A′ = S−1B, where S = {b ∈ B | v(b) = 0}. Let a ∈ A. By assumption
a = a1

a2
, where a1 ∈ R[z1, . . . , zn] and a2 ∈ R[z1, . . . , zn] \ (z1, . . . , zn).

Let m ∈ N such that m � ordA(a) = ordA(a1), hence a′1 := a1
zm
1
∈

R[z1,
z2
z1

, . . . , zn

z1
] = R[z′1, . . . , z

′
n]. Further a2 ∈ R[z1, . . . , zn] \ (z1, . . . , zn) ⊂

R[z′1, . . . , z
′
n] \ (z′1, . . . , z

′
n). Hence B ⊂ R[z′1, . . . , z

′
n](z′1,...,z′n). The valuation

v extends uniquely to R[z′1, . . . , z
′
n], it is non-negative on this ring, and its

center is the maximal ideal (z′1, . . . , z
′
n), therefore it also extends uniquely

to R[z′1, . . . , z
′
n](z′1,...,z′n)

Suppose now that v( a
zm
1

) = 0, i.e., v(a1) = v(a) = mv(z1). Then we have
that v(a′1) = v(a2) = 0. Since v is centered on (z′1, . . . , z

′
n) in R[z′1, . . . , z

′
n],

we have that a′1 ∈ R[z′1, . . . , z
′
n] \ (z′1, . . . , z

′
n). Thus, we have shown that

A′ = S−1B = R[z′1, . . . , z
′
n](z′1,...,z′n).

The last assertion follows immediately from the considerations we made
above. �
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Lemma 7.2. — Let α, β ∈ SperA such that cent(α) = m = cent(β) and
〈α, β〉 � m =

√
〈α, β〉. Let (A,m, R) =: (A(0),m(0), R) ≺ · · · ≺ (A(r),m(r), R)

be the sequence of quadratic transformations along v := vα such that
T (r)(〈α, β〉) = m(r) = 〈α(r), β(r)〉. Then every g ∈ A \ 〈α, β〉 has the
form xery

f
rw, where (xr, yr) is a regular system of parameters of A(r), w ∈

A(r) \ m(r), e, f ∈ N, and e = 0 (resp. f = 0) if xr (resp. yr) changes sign
between α and β.

Proof. — Let g ∈ A \ 〈α, β〉. Let I := {a ∈ A | vα(a) � vα(g)} =
{a ∈ A | vβ(a) � vβ(g)}. Since g /∈ 〈α, β〉, we have that T (r)(I) = A(r), by
Lemma 6.17.
Let ν0 = ordAI be the order of the ideal I. Since g has minimal value
in I, the element g · x−ν0

0 has minimal value in the transform T (I) of I.
By induction, one shows that there exist νi ∈ N (0 � i < r) such that
g · x−ν0

0 · · ·x−νr−1
r−1 has minimal value in T (r)(I) = A(r), hence

g = xν00 · · ·x
νr−1
r−1 w′

for some for and some unit w′ in A(r).

We would like to write g in the form xery
f
rw, where w ∈ A(r)×, e, f ∈ N,

and e = 0 (resp. f = 0) if xr (resp. yr) changes sign between α and β. In
order to see how this can be done, we have to know for all i < r how to
represent a product xsiy

t
i in terms of xi+1 and yi+1. We will look again at

the several cases of a quadratic transformation along v.

I.1 If xi = xi+1 and yi = xi+1yi+1, then xsiy
t
i = xs+t

i+1y
t
i+1.

I.2 If xi = yi+1 and yi = xi+1yi+1, then xsiy
t
i = xti+1y

s+t
i+1 .

II.1 If xi = xi+1 and yi = xi+1(yi+1 + u) for some u ∈ A(i)×, then we
have xsiy

t
i = xs+t

i+1(yi+1 + u)t. Note that yi+1 + u is a unit in A(i+1).

II.2 If xi = yi+1 and yi = yi+1(xi+1 + u) for some u ∈ A(i)×, then we
have xsiy

t
i = ys+t

i+1(xi+1 + u)t, and xi+1 + u is a unit in A(i+1).

Let 0 � i < r. If both xi and yi are positive at α and β and we are in
case I.1 or I.2, then xi+1 and yi+1 are also positive at α and β. If we are
in case II.1 or II.2, it is possible that yi

xi
− u changes sign between α and

β. In case II.2, we then have xi+1 = yi

xi
− u ∈ 〈α(i+1), β(i+1)〉, and, since

xi+1 has minimal value in m(i+1) and m(i+1) contains 〈α(i+1), β(i+1)〉, this
yields m(i+1) = 〈α(i+1), β(i+1)〉, thus i + 1 = r. In case II.1, if v(xi+1) =
v(xi) = v( yi

xi
− u) = v(yi+1) and yi+1 = yi

xi
− u ∈ 〈α(i+1), β(i+1)〉, we can

use the same arguments as in the last sentence to show that i + 1 = r. In
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the same case, if v(xi) < v( yi

xi
− u) and yi+1 = yi

xi
− u ∈ 〈α(i+1), β(i+1)〉, we

will reach A(r) after a series of I.1 transformations and maybe one last I.2
transformation. The same holds if y0 changes sign between α and β.

We will now consider the implications of the last considerations for the
representation of an element g ∈ A \ 〈α, β〉 in terms of xr and yr in the ring
A(r).

1. Suppose, for all i � r, both xi and yi are positive at α and β. Then, in
the representation g = xery

f
rw with e, f ∈ N and w ∈ A(r)× of some element

g ∈ A \ 〈α, β〉, we do not care whether e or f is zero or not.

2. Now suppose yj changes sign between α and β for some j and j is min-
imal with this property. Hence, if j > 0, the last quadratic transformation
from A(j−1) to A(j) must be of type II.1. In particular, if j > 0, xj = xj−1

does not change its sign between α and β, and we have xν00 · · ·x
νj−1
j−1 =

xsj(yj + u)t, where s, t ∈ N, u a unit in A(j−1), and yj + u is a unit in A(j).
As mentioned above, we have j = r or we will reach A(r) after a series of I.1
transformations and maybe one last I.2 transformation. Thus, if j < r, we
have xj = xj+1 = · · · = xr−1 and each g ∈ A \ 〈α, β〉 has the form xerw or
yfrw with w ∈ A(r)×, depending on whether xr−1 = xr (I.1) or xr−1 = yr
(I.2). Note that in these representations none of the factors changes sign
between α and β. If j = r, then xr−1 = xr, and therefore each g ∈ A\〈α, β〉
has the form xerw with w ∈ A(r)×, and xr does not change its sign.

3. Suppose that, for all i � r, yi does not change sign between α and β,
but xr changes sign between these two points. Then, as seen above, the last
transformation must be of type II.2, hence g = yfrw with w ∈ A(r)×.

Note that the last discussion also showed that at least one of the elements
xr and yr does not change its sign between α and β. �

Finally, we are able to prove our main result.

Theorem 7.3. — Let W be a non-singular two-dimensional affine real
algebraic variety over a real closed field R, and let P(W ) be its coordi-
nate ring. Then every pair of points α, β ∈ SperP(W ) having a common
center satisfies the connectedness condition. In particular, P(W ) is Pierce-
Birkhoff.

Proof. — We may assume that W is irreducible. Let R[x, y, z1, . . . , zm]
be the coordinate ring P(W ) = R[X,Y, Z1, . . . , Zm]/I(W ) of W , where
R[X,Y, Z1, . . . , Zm] is the polynomial ring in m + 2 indeterminates over R,
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and I(W ) the prime ideal of W in R[X,Y, Z1, . . . , Zm]. Then P(W ) is a
finitely generated two-dimensional regular R-algebra without zero -divisors.
Suppose x and y are algebraically independent over R, and that zj /∈ R for
all j ∈ {1, . . . ,m}.

Let α, β ∈ SperP(W ), and assume that they are distinct and have a
common center. If the height of

√
〈α, β〉 is one, we have shown in Lemma

5.1 that α and β satisfy the connectedness condition. Hence, we can suppose
that the height of

√
〈α, β〉 is two, i.e.,

√
〈α, β〉 = cent(α) = cent(β) is a

real maximal ideal M of P(W ), and the residue field P(W )/M equals R.
Therefore, we may assume that M = (x, y, z1, . . . , zm).

Let g1, . . . , gs ∈ A \ 〈α, β〉, and let A be the localization of P(W ) at
M =

√
〈α, β〉. Let 〈α, β〉A be the separating ideal of (the unique extensions

of) α and β in A. Then 〈α, β〉A∩P(W ) = 〈α, β〉. Hence g1, . . . , gs /∈ 〈α, β〉A.

Let (A,m, R) =: (A(0),m(0), R) ≺ · · · ≺ (A(r),m(r), R) be the sequence
of quadratic transformations along vα such that m(r) = T (r)(〈α(0), β(0)〉) =
m(r) = 〈α(r), β(r)〉. Then 7.1, A(r) = R[xr, yr, z

(r)
1 , . . . , z

(r)
m ]

(xr,yr,z
(r)
1 ,...,z

(r)
m )

for some regular system of parameters (xr, yr) of A(r) having the addi-
tional property P(W ) ⊂ R[xr, yr, z

(r)
1 , . . . , z

(r)
m ]. Recall that xr and yr are

algebraically independent over R, and we assumed that xr(α) > 0 and
yr(α) > 0.

Then, by Lemma 7.2, for all j ∈ {1, . . . , s}, gj has the form x
ej
r y

fj
r wj ,

where wj ∈ A(r) \m(r), and ej , fj ∈ N are such that ej = 0 (resp. fj = 0) if
xr (resp. yr) changes sign between α and β. The units wj can be written as
wj1
wj2

with wj1, wj2 ∈ R[xr, yr, z
(r)
1 , . . . , z

(r)
m ] \ (xr, yr, z

(r)
1 , . . . , z

(r)
m ). Clearly,

0 /∈ Z(
s∏

j=1

wj1wj2), the zero set of this element.

Consider the polynomial ring R[X,Y, Z1, . . . , Zm]. Since, z
(r)
1 , . . . , z

(r)
m

are algebraic over R(xr, yr), there exists a surjective ring homomorphism π

from R[X,Y, Z1, . . . , Zm] to R[xr, yr, z
(r)
1 , . . . , z

(r)
m ] such that J := π−1(0)

is a prime ideal, and π(X) = xr, π(Y ) = yr and π(Zj) = z
(r)
j for all

j ∈ {1, . . . ,m}. Let W (r) be the irreducible affine real algebraic variety
over R corresponding to R[xr, yr, z

(r)
1 , . . . , z

(r)
m ]. Then 0 is a regular point

of W (r) with (xr, yr) as a regular system of local parameters, hence there
exist f1, . . . , fm ∈ I(W (r)) = J ⊂ R[X,Y, Z1, . . . , Zm] such that the matrix(
∂fj

∂Zk

)
j,k=1,...,m

is invertible. By the semialgebraic implicit function theo-

rem, there exist an open semialgebraic neighborhood U of 0 in R2, an open
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semialgebraic neighborhood V of 0 in Rm and a continuous semialgebraic
map ϕ:U → V such that ϕ(0) = 0 and

f1(a, b) = · · · = fm(a, b) = 0 ⇐⇒ ϕ(a) = b

for every (a, b) ∈ U × V . Then the map ψ:U �→ Z(f1, . . . , fm) ∩ U × V ,
a �→ (a, ϕ(a)) is a semialgebraic continuous bijection.

Let U be an open neighborhood of 0 in Rm+2 such that U ⊂ U × V ,

Z(f1, . . . , fm) ∩ U = W (r) ∩ U , and Z(
s∏

j=1

wj1wj2) ∩ U = ∅. Let ε ∈ R such

that ε > 0 and

{t ∈ R2 | (ε− x2
r − y2

r)(t) > 0} ⊂ ψ−1(U).

Let I be the subset of the two-element set {xr, yr} that contains all elements
which do not change sign between α and β, and let V := {t ∈ R2 | ε −∑2

i=1 t2i > 0, p(t) > 0 (p ∈ {X,Y }, π(p) ∈ I)} ⊂ ψ−1(U). Note that from
the proof of Lemma 7.2, it follows that I is not empty. By Proposition 4.7, we
have that V is semialgebraically connected, and therefore, ψ(V) ⊂W (r) ∩U
is also semialgebraically connected (Proposition 4.5). Hence, by Proposition
4.9, D := ψ̃(V) is connected in SperP(W (r)), and D contains α(r) and β(r),
since vα(xr), vα(yr), vβ(xr) and vβ(yr) are all positive, and since we assumed
that xr(α) > 0 and yr(α) > 0, and therefore they are also positive at β if
they do not change sign.

Let j ∈ {1, . . . , s}. We have wj2gj = x
ej
r y

fj
r wj1, with ej = 0 if xr /∈ I

and fj = 0 if yr /∈ I, and therefore gj(δ′) �= 0 for all δ′ ∈ D. Consider
the natural continuous map Sper (π): Sper (P(W (r))) → SperP(W ), and
set C := Sper (π)(D) = {δ′ ∩ P(W ) | δ′ ∈ D}. By Proposition 4.9, D is
connected, thus C must also be connected. D contains α(r) and β(r), and
therefore C contains α and β. Since gj(δ′) �= 0 for all j ∈ {1, . . . , s} and all
δ′ ∈ D, we have C ∩ {δ ∈ SperP(W ) | gj(δ) = 0} = ∅. �
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