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Some comments and examples on generation
of (hyper-)archimedean �-groups and f-rings
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This paper is dedicated to Mel Henriksen
on the occasion of his 80th birthday.

ABSTRACT. — This paper systematizes some theory concerning the gen-
eration of �-groups and reduced f -rings from substructures. We are par-
ticularly concerned with archimedean and hyperarchimedean groups and
rings. We discuss the process of adjoining a weak order unit to an �-group,
or an identity to an f -ring and find significant contrasts between these
cases. In �-groups, hyperarchimedeanness and similar properties fail to
pass from generating structures to the structures that they generate, as
illustrated by a basic example of Conrad and Martinez which we revisit
and elaborate. For reduced f -rings, on the other hand, these properties
do inherit upwards.

RÉSUMÉ. — Dans cet article, nous donnons les bases d’une théorie sur la
génération des �-groupes et des f -anneaux réduits à partir de certaines
sous-structures. Nous sommes concernés en premier lieu par les groupes
et anneaux archimédiens et hyperarchimédiens. Nous discutons le procédé
d’adjoindre une unité faible à un �-groupe ou une identité à un f -anneau
et nous trouvons des différences significatives entre ces situations. Dans
les �-groupes, certaines propriétés comme celle d’être hyperarchimédien ne
sont pas toujours transférées aux structures engendrées, comme le mon-
tre l’exemple fondamental de Conrad et Martinez, que nous revisitons
et élaborons. Par contre, ces propriétés sont transférées dans le cas des
f -anneaux réduits.
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This paper proceeds as follows: §1. Notation and definitions. §2. Review
of basic procedures of generating an �-group or f -ring from a subgroup or
subring by closing under finite meets and joins. §3. Adjoining a weak order
unit to an archimedean �-group. §4. Characterization of sub-�-groups of hy-
perarchimedean �-groups (HA-groups) with unit, and various properties of
representations. §5. Essential closures of �-groups with basis. §6. Examples
of representations of hyperarchimedean �-groups without unit. §7. Repre-
senting and adjoining an identity to reduced archimedean f -rings (frA’s),
preliminary to §8. Characterizations of frA’s that are HA: HA qua �-group
= HA qua f -ring; no examples as in §6 are possible.

The paper owes much to Jorge Martinez, who made/asked penetrating
remarks/questions about an early version of our paper [10]. This spawned
much of §8 here, and caused us to study the Conrad-Martinez papers [6],
[7] that are discussed here in §§4, 6, 8.

We are indebted to the referee for identifying an error in our original
version of this paper, and for suggestions and comments which led to sig-
nificant improvements. We are also indebted to Jim Madden and Charles
Delzell for suggestions resulting in a streamlining of the proof of Theorem 1.

1. Preliminaries

We take standard terms and facts from ordered algebras as familiar; if
necessary, see [1]. With the (noted) exception of §2, all the �-groups and
f -rings in this paper are archimedean. (Hence the groups are abelian and
the rings are commutative.) Rings are not assumed to have a multiplicative
identity. A ring is called reduced if it contains no non-zero nilpotents.

We will be concerned with the following categories of �-algebraic objects
and their natural homomorphisms:

Arch: archimedean �-groups.

W: Arch-objects H with distinguished weak order unit eH � 0 and
homomorphisms preserving unit.

frA: reduced archimedean f -rings.

Φ: frA-objects A with identity element 1A and identity-preserving ho-
momorphisms. Note that Φ is a subcategory of W (via the functor forgetting
multiplication).
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Let [−∞, +∞] denote the extended reals with the natural order and
topology. Let X be a Tychonoff space. Then, D(X ) denotes the collection
of all f ∈ C(X , [−∞, +∞]) for which f−1(−∞, +∞) is dense in X . This
is a lattice in the pointwise order. For f, g, h ∈ D(X ), we write f + g = h
(respectively, fg = h) if f(x) + g(x) = h(x) (respectively, f(x)g(x) = h(x))
for all x ∈ X such that f(x), g(x) and h(x) are finite. Note that f + g
has an unambiguous meaning on the subset U of X where both f and
g are finite, but this function on U may have no continuous [−∞, +∞]-
valued extension to X . If there is a continuous extension h, then h ∈ D(X )
and f + g = h. Multiplication is treated similarly. A subset A of D(X )
is called an f -ring (�-group, f -algebra, etc.) in D(X ) if it is closed under
the lattice operations and the appropriate algebraic operations. Note that
such A is archimedean. For any f : X → [−∞, +∞], the zero-set of f is
z(f) = {x ∈ X : f(x) = 0} and the cozero-set of f is cozf = X \ z(f). For
S ⊆ [−∞, +∞]X , z(S) =

⋂
{z(f) : f ∈ S} and cozS = X \ z(S).

For any set X , 1X denotes the R-valued function 1X (x) = 1. Let C be
any one of Arch, W, frA, Φ. The expression “A � B in C” means that A
is a C-subobject of B (i.e., A ⊆ B and the inclusion is a C-morphism). For
C = W (respectively, Φ), this includes the datum eA = eB (resp., 1A = 1B).
The expression “A � D(X ) in C” means that A ⊆ D(X ) and is closed under
the operations in D(X ) requisite for membership in C. E.g., “A � D(X ) in
Φ” means that A is a sublattice of D(X ), that f, g ∈ A =⇒ f + g ∈ D(X )
and f + g ∈ A, likewise for f · g and f − g, and that 1X = 1A. For each
of our categories, C, any B ∈ |C| has representations “B ≈ B � D(X ) in
C” meaning B � D(X ) in C and B ≈ B is a C-isomorphism. See [18] for a
catalogue of these, and [14], [15], [16] and [17] for canonical representations
for C = W,Φ and frA, respectively.

We comment further on C = W. Here we have the Yosida representa-
tion, which will be used frequently below. For H ∈ |W|, there is an essen-
tially unique compact space YH with H ≈ Ĥ � D(YH) in W and distinct
points of YH are 0 − 1 separated by the functions in Ĥ. Moreover, for any
representation H ≈ H � D(X ) in W, there is a unique continuous YH

τ←X
with τX dense in YH and for which h = ĥ ◦ τ for each h ∈ H. See [14] for
details. We identify H with Ĥ and always use “H � D(YH)” to denote the
Yosida representation.

Any uses of “�” that are not so carefully labeled will, we hope, be clear
from context.
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Following [8], C∗(X ) denotes {f ∈ C(X ) : f is bounded}. We carry
this notation into our contexts: whenever S ⊆ D(X ), S∗ = {f ∈ S :
f is bounded}. For G ∈ |W|, with G � D(YG), the Yosida representation,
this meaning coincides with G∗ = {g ∈ G : ∃n ∈ N with |g| � neG}.

Definition 1.1. — G is hyperarchimedean (usually abbreviated “is
HA”) if every homomorphic image of G is archimedean.

The following gleans information mostly from [4]; see also [12].

Proposition 1.2. —

1. G is HA if and only if there is a representation G � RX in Arch
satisfying the condition HA1:

∀0 < f, g ∈ G ∃n ∈ N such that f(x) > 0 =⇒ g(x) < nf(x).

(a) It then follows that every representation in Arch of G in a prod-
uct of reals satisfies HA1.

(b) If G is HA, then any weak order unit of G is a strong unit.

2. A representation G � RX in Arch is said to satisfy condition HA+
1

if

0 < g ∈ G =⇒ ∃0 < r < s ∈ R so that ( g(x) �= 0 =⇒ g(x) ∈ (r, s) ) ;

equivalently, G � (RX )∗ and for every 0 �= g ∈ G+ we have inf g(coz g)
> 0. It is clear that a group having such representation satisfies HA1

so is hyperarchimedean.

3. Let H ∈ |W| with Yosida representation H � D(YH).
(a) If H is HA then the Yosida representation satisfies HA+

1 ; any
W-embedding H � RX satisfies HA+

1 ; any sub-�-group of H
inherits the HA+

1 representation property of H. (See also §3
below.)

(b) H is HA if and only if H � C(YH) and cozh is closed for each
h ∈ H. (When this is the case, then the collection of cozero sets
of members of H coincides with the collection of all clopen sets
in YH.)

(c) If an �-group G can be embedded in a hyperarchimedean W-
object, then G has a representation satisfying HA+

1 . (The con-
verse fails, as is shown by our example in §6.3.)
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4. (Bigard) G is HA if and only if there is G � RX in Arch with X
a Hausdorff space, G separating points in X , and {coz g : g ∈ G} ⊆
CO (X ) (the compact-open sets in X ).

Note that the existence of a representation of G satisfying HA+
1 does

not imply that every G � RX satisfies this condition. Nor does the existence
of an embedding G � RX satisfying the condition in (4) mean that every
embedding of G in a product RX , where X is a Hausdorff space and G
separates points in X , satisfies the given condition, or that G � C (X ) .

2. Join-meet generation

In order to describe the contents of this section, let us begin with some
notation. If S is a subset of the lattice L, we use j(S, L) (respectively,
m(S, L)) to denote the collection of all joins (resp., meets) of non-empty
finite subsets of L. When no confusion is likely, we write merely jS (mS).
Now, in the present section, we are concerned with the case in which L and
S have some additional structure, e.g., L is an �-group or an f -ring and S
is a group or a ring. We will prove that in many such cases, mjS := m(jS)
is closed under the additional operations in L, or inherits other properties.

The main theorem of this section collects several useful and closely re-
lated results. Part (A) is well-known: see, e.g., [1], 2.1.4. (B) is Theorem
3.3 in [9]. The proof there was essentially left to the reader. Many authors
have cited this result, but no one has ever published a careful proof and
experience suggests that there is much misunderstanding surrounding it.
We take this occasion to insert a complete proof into the literature. (C) is
a new observation. (D) is a combination of Theorem 3.1 in [16] with the
Henriksen-Isbell result (B). The proof below is much simpler than the proof
in [16]. It provides a powerful tool for exploring the properties of the canon-
ical embedding of a frA-object into a Φ-object (see Section 7). Note that
(A) applies to all �-groups and (B) applies to all f -rings (whether reduced
or not). Not even commutativity is assumed.

We begin with two technical lemmas.

Lemma 1. — Let A be an f-ring, and let f, g ∈ A. Then:

0 � g =⇒ fg � f2g + g,

0 � f =⇒ fg � fg2 + f.

Proof. — It suffices to show that these implications hold in totally or-
dered rings, which we do. As for the first, if g � fg, then either f � 0 and
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so fg � f2g � f2g + g, or g = 0. In either case, the first implication is
satisfied. If, on the other hand, fg < g, then fg < g + f2g. This proves the
first implication. The second is proved similarly. �

Recall that in any (additively written) �-group, f+ := f ∨ 0 and f− :=
(−f) ∨ 0. It is a fact that f = f+ − f−.

Lemma 2. — Let A be an f-ring and let f, g ∈ A. Then:

f+g+ = (fg ∧ (f2g + g) ∧ (fg2 + f)) ∨ 0.

Proof. — It suffices to show that this identity holds in any totally or-
dered ring. If f and g are both positive, then by the previous lemma, both
sides simplify to fg. Otherwise, both sides simplify to 0. �

Theorem 2.1. —

(A) ([20]) If A is a sub-semigroup of the �-group H (not necessarily a
sublattice), then jA and mA are each sub-semigroups of H. If A is
a group, then the sublattice of H generated by A, namely mjA, is a
subgroup of H.

(B) ([9]) If A is a subring of the f-ring H (not necessarily a sublattice),
then the sublattice of H generated by A, namely mjA, is a subring of
H.

(C) If A is a subgroup of D (X ) (not necessarily a sublattice), then the
sublattice of D (X ) generated by A, namely, mjA, is a subgroup of
D (X ).

(D) (cf. [16]) If A is a subring of D (X ) (not necessarily a sublattice), then
the sublattice of D (X ) generated by A, namely, mjA, is a subring of
D (X ).

Proof. — (A): The first statement is an immediate consequence of the
distributivity of the group operation over the lattice operations in the �-
group H. That mjA is a lattice is a consequence of the distributivity of
the lattice operations in H; that it is a group results from the identity
− (a ∨ b) = (−a) ∧ (−b) and its dual.

For future reference, note that this argument shows that that for any
arrays of variables x = {xij} and y = {ykl}, there is an identity of the form(∧

i

∨
j

xij

)
+

(∧
k

∨
l

ykl

)
=

∧
α

∨
β

aαβ ,
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where each aαβ is a sum of the form xij + ykl for some specific indices
i, j, k, l.

(B): In view of (A), it suffices to show that mjA is closed under mul-
tiplication. Suppose F, G ∈ mjA. We must show that FG ∈ mjA. Now,
F =

∧
i

∨
j fij and G =

∧
k

∨
l gkl, with fij , gkl ∈ A. In H,

FG = (F+ − F−)(G+ − G−) = F+G+ − F+G− − F−G+ + F+G+.

Since mjA is closed under addition and subtraction, it suffices to show that
each of the terms is in mjA. Now, since the operation ()+ and multiplication
by positive elements both distribute over suprema and infima,

F+G+ = F+
∧
k

∨
l

g+
kl =

∧
k

∨
l

F+g+
kl,

and for each k and l,

F+g+
kl =

(∧
i

∨
j

f+
ij

)
g+
kl =

∧
i

∨
j

f+
ij g

+
kl.

Thus, to show F+G+ ∈ mjA, it suffices to show that f+g+ ∈ mjA for
all f, g ∈ A. This follows from Lemma 2. For the other cases, note that
F− = (−F )+, G− = (−G)+, and by (A), −F,−G ∈ mjA, so analogous
arguments apply.

For future reference, note that we have shown that for any arrays of
variables x = {xij} and y = {ykl}, there are polynomials pαβ(x, y) with
integer coefficients and degree at most 3 such that there is an f -ring identity
of the form: (∧

i

∨
j

xij

)(∧
k

∨
l

ykl

)
=

∧
α

∨
β

pαβ(x, y).

We now prove (C) and finally (D). Bear in mind that mjA is a sublattice
of D(X ). If F ∈ mjA, it is clear that −F ∈ mjA. Let F, G ∈ mjA and
let U be their common domain of reality. Then the pointwise sum of F
and G is unambiguously defined on U . The first note above labeled “for
future reference” provides a formula that express the pointwise sum of F
and G on U as the restriction to U of an element of mjA ⊆ D(X ). But, the
definition of addition in D(X ) is exactly: “form the pointwise sum on the
common domain of reality, and then (if possible) extend to X ).” Thus mjA
is a subgroup of D(X ). To prove (D), we need to show that products of
elements of mjA are in mjA. The proof is precisely analogous to the proof
for sums that we have just given. �
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3. W-generation

This section presents the simple idea of “W-generation”, and a few easy
observations about it, which represent about all we have been able to say.
This contrasts with the corresponding idea in frA, “Φ-generation”, which
is completely pinned down in Theorem 7.3, infra. That W-generation says
so little and Φ-generation says so much seems responsible for the examples
in Arch/W (see §6) and the lack of such examples in frA/Φ (see §§7,8).

Definition 3.1. — S ⊆ H is W-generating if H ∈ |W| and H is
generated qua �-group by S and eH . G � H (respectively, σ : G ↪→ H) is
said to be W-generating if G � H in Arch and G ⊆ H (resp., σ : G ↪→ H
in Arch and σG ⊆ H) is W-generating. If G is a W-generating �-subgroup

of H, we write G
W
� H.

Proposition 3.2. — (a) S ⊆ D (X ) =⇒ S′ ⊆ D (X ), where S′ is any
one of Z ·S, S + Z ·1X , jS, mS, but it is not necessarily true that S + S ⊆
D (X ).

(b) If S ⊆ H is W-generating, then H = jm (Z · S + Z · eH). When
H � D (YH), S is W-generating in H if and only if H = jm (Z · S + Z · 1YH) .

(c) If G � D (X ), then there is H � D (X ) in which G is W-generating.

Proof. — (a) is immediate. For (b), Z · S + Z · eH is the subgroup of
H generated by S and eH ; apply Theorem 2.1.A. For (c), apply Theorem
2.1.C: H = mj (G + Z · 1X ) . �

Proposition 3.3. — Suppose H ∈ |W| . If S ⊆ H is W-generating,
then S separates points in YH; it follows that z (S) ≡

⋂
{z (s) : s ∈ S} has

|z (S)| � 1. Thus, either

1. z (S) = ∅, or

2. z (S) = {α}, and YH = cozS ∪ {α} .

Proof. — Given x �= y in YH, then there is h ∈ H with h(x) �= h(y). But

by Proposition 3.2, h =
k∨

i=1

l∧

j=1

(mijsij +nij1), for appropriate k, l,mij , nij ∈

Z and sij ∈ S. It is clear that sij (x) �= sij (y) for some i, j. �

Corollary 3.4. — If G
W
� H, then cozG is dense in YH.
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Proposition 3.5. — Suppose G
W
� H, and view G ⊆ D (YH). If z (G) =

∅, then G contains a weak order unit. The converse fails.

Proof. — The first statement succumbs to a standard compactness ar-

gument. For the second: consider G ≡ {g ∈ C ([0, 1]) : g (1) = 0}
W
� H ≡

jm
(
G + Z · 1[0,1]

)
: the function g (x) = 1 − x is a weak unit of G while

z (G) = {1}. �

4. Sub-�-groups of HA’s with unit

In this section, we characterize (in a rather weak sense) those G ∈ |Arch|
for which there is G

W
� H where H is HA (Corollary 4.7 below). This result

“originates” in [7]; see (c) in the remarks at the end of the section.

Definition 4.1. — A representation G � D (X ) in Arch is BA if

∀g ∈ G,∃0 < ε = ε (g, 0) ∈ R such that g (x) �= 0 =⇒ |g (x)| � ε);

it is BAZ if

∀g ∈ G, ∀n ∈ Z,∃0 < ε = ε (g, n) ∈ R such that g (x) �= n =⇒ |g (x) − n| � ε.

Note that neither of these conditions involves a topology on X . BA
stands for “bounded away (from zero)”; BAZ stands for “bounded away
from the integers”, (see [13]). We will, when convenient, also say that sub-
sets, and/or individual members, of D (X ) are BA or BAZ.

Since the conditions BA, BAZ, and boundedness will appear often,
and in varying combinations, we also adopt the convention of saying that
a function, or collection of functions, “is B” if the function(s) in question
is (are) bounded. It should be emphasized that the conditions B, BA, and
BAZ apply to representations of a given group G, and not to G itself,
although this distinction vanishes in W, as noted in Proposition 4.3(3)
below.

Proposition 4.2. — Suppose G � H � D (X ) in Arch.

1. If H � D (X ) is B (respectively, BA, resp., BAZ), then so is G �
D (X ). These properties “inherit down”.

2. Suppose H � D (X ) in W and G
W
� H. If G � D (X ) is B (respec-

tively, BAZ), then so is H � D (X ). These properties “inherit up”
under W-generation.

3. The statement analogous to (2) for BA fails: see Example 6.3 below.
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Proof. — (1) These are obvious.

(2) Here, H = jm(G+Z ·1X ). So for B, the statement is obvious. Now
suppose G � D(X ) is BAZ. It is readily seen that G + Z · 1X is BAZ and
that if f, g ∈ D(X ) are both BAZ, then both f ∨ g and f ∧ g are, also, with
ε(f ∨ g, n) = ε(f, n) ∧ ε(g, n) = ε(f ∧ g, n). �

Proposition 4.3. — Let G ∈ |Arch|.

1. (a) Suppose that G � RY in Arch for some set Y. For x1, x2 ∈
Y, set x1 ∼G x2 if g (x1) = g (x2) for all g ∈ G. This is an
equivalence relation: set X = Y/ ∼G. This process results in an
Arch-embedding of G in RX , where G separates points.

(b) If G � RY and G separates points in Y, endow Y with the
G-weak topology. Then Y is Tychonoff and G � C(Y).

(c) If G � D(Y), and G separates points in Y, where Y has the
G-weak topology, then there is a minimal compactification of Y,
say K, to which every member of G extends: G � D (K) .

2. If G � RY is B (respectively, BA, resp., BAZ), then there is a
compact space K such that G � D (K) is B (resp., BA, resp., BAZ).

3. Suppose H � D (X ) in W. This representation is B (respectively,
BA resp., BAZ) if and only if in the Yosida representation H �
D (YH) is B (resp., BA, resp., BAZ).

Proof. — (1) is standard.

(2) Topologize Y as in (1)(b) above, and let K =βY, the Čech-Stone
compactification of Y. For each g ∈ G, let βg denote the extension of g in
D (βY) and set βG ≡ {βg : g ∈ G}. Then βG � D(βY) is B, BA or BAZ
if and only if G is.

(3) Label the given presentation of H as H � D (X ). By the discussion in
§1, this is related to the Yosida representation H � D (YH) by continuous
dense YH

τ←−X as h = h ◦ τ for each h ∈ H. Then h is B, BA or BAZ if
and only if h is. �

Proposition 4.4. — Suppose G � D (X ) in Arch.

1. This satisfies BA if and only if cozg is closed for each g ∈ G.

2. BAZ is satisfied if and only if g−1 (n) is open, for each g ∈ G and
each n ∈ Z (whence g−1 (Z) is open).
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The proof is immediate.

Proposition 4.5. — Suppose H ∈ |W| and that, for some space X ,
we have H � D (X ) in W (so that 1X ∈ H). The following are equivalent.

1. H � D (X ) is BA.

2. H � D (X ) is BAZ.

3. H∗ is HA.

4. Whenever H � D (Y) in W for some Y, this representation is BA.

Again, the easy verification is omitted.

Proposition 4.6. — For G ∈ |Arch|, the following are equivalent.

1. There is a space X and an embedding G � D (X ) that is BAZ.

2. There is H ∈ |W| such that H∗ is HA and G � H.

3. There is J ∈ |W| with G
W
� J and such that J∗ is HA (and, conse-

quently, G � D (YJ) is BAZ).

Proof. — If G � D (X ) is BAZ, set H = jm (G + Z · 1X ). Then G
W
� H

� D (X ); apply Proposition 4.2(2): H � D (X ) is BAZ. By Proposition
4.5, H∗ is HA. Thus, (1) implies (2). Now assume (2): we have G � H �
D(YH). Set J = jm (G + Z · 1H). Then J∗ � H∗ is HA, so J � D (YJ) is
BAZ, so, G � D (YJ) is, also: (2) implies (3), the parenthetical remark in
(3) holding, by proposition 4.5. Trivially, (3) implies (1). �

The following Corollary is Proposition 4.6 with boundedness superim-
posed.

Corollary 4.7. — For G ∈ |Arch|, the following are equivalent:

1. There is a space X and an embedding G � D (X ) that is B and BAZ.

2. There is H ∈ |W| that is HA and G � H.

3. There is H ∈ W with G
W
� H and such that H is HA.

Remarks 1. — (a) In contrast with the situation in W, an Arch-object
may be BAZ in some, but not all, representations, and a representation
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may be BA but not BAZ. For example, consider the four representations
of the same Arch object, G ∼= Gi � D (N) given by

Gi = {f ∈ C(N) : ∃n0 ∈ N so that n > n0 =⇒ f(n) = mhi(n) for some m ∈ Z},

for i = 1, 2, 3,4 where, for each n ∈ N,

h1(n) =
1
n

,

h2(n) = 1,

h3(n) = n, and

h4(n) = 1 +
1
n

.

G is HA (so each G∗
i is), but G1 is not BA, while G2, G3 and G4 are,

while G4 is BA but not BAZ. Although this group has weak order units,

an example that does not is G ⊕ CK (N).

(b) Proposition 4.5 was more-or-less known to the authors of [13]. The
equivalence of (1) and (3) in that proposition is due to the second and third
authors of [13].

(c) Corollary 4.7 above seems to be exactly the equivalence of (1) and
(2) of Theorem 7 in [7]. We have been unable to understand the proof given
in [7].

5. Essential closure and �-groups with basis

Here, we collect the tools that will be required to present the examples
of the next section.

5.1. Essential closure

The results noted here are all from [3]; all objects and maps are in the
category Arch.

Recall that an embedding ϕ : G ↪→ H is said to be essential, or that
H is an essential extension of G, if whenever I is an ideal in H with
ϕG ∩ I = {0}, then I = {0}. (By ideal is meant “convex sub-�-group”.) G
is said to be essentially closed if it admits no proper essential extension; an
essential embedding of G into an essentially closed H is called an essential
closure of G.
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1. G is essentially closed if and only if G ∼= D (S) for some compact,
extremally disconnected space S.

2. For every G there is an essential closure: εG : G −→ εG.

3. If ϕ : G −→ H is an essential embedding, then there is an embedding
ψ : H −→ εG such that ψϕ = εG. If H is essentially closed (i.e., if
ϕ : G −→ H is an essential closure), then ψ is an isomorphism.

4. An essential closure of G, εG : G −→ εG = D (S), is obtained by
embedding G in D (S), where S is the Stone space of the Boolean
algebra of polars of G. If ϕ : G ↪→ H is essential, then εH = D (S),
and there is an automorphism α : εG −→ εG with αϕ = εG; the
automorphisms of D (S) are precisely the mappings of the form αf :
h �−→ fh for some f ∈ D (S)+ with f⊥ = {0} (i.e., cozf is dense in
S; or, f is a weak order unit in D (S)).

5.2. �-groups with basis

For any set X and any S ⊆ X , let χS denote the characteristic function of
S; for any x ∈ X , we let χx denote χ{x}.

Definition 5.1. — Let G ∈ |Arch| .

1. The element a ∈ G is said to be basic if a � 0 and 〈a〉, the ideal
generated by a, is totally ordered.

2. {ax : x ∈ X} is called a basis for G if: ι) it is a maximal set of
pairwise disjoint elements of G, and ιι) each ax is basic.

3. If G has a basis {ax : x ∈ X}, then an embedding τ : G −→ RX is
called a basic representation of G associated with this basis if for
each x ∈ X we have τax = rxχx for some (0 �=) rx ∈ R.

If G ∈ Arch with basis {ax : x ∈ X}, then G has an associated basic
representation, G � RX . (Each 〈ax〉 is totally ordered and archimedean, so
there is a map 0 �= τx : G −→ R whose kernel is a⊥

x . Since {ax : x ∈ X} is
a maximal pairwise disjoint family in G,

⋂
x∈Xa⊥

x = {0}. Thus, τ : G "
b �−→ τb = (τxb) ∈

∏
{Rx : x ∈ X} is an embedding.) If we endow X with

the discrete topology, then G � C (X ) = RX , and one sees readily that this
is an essential embedding, thus an essential closure of G.

The foregoing Definition and facts are known, and drawn from the dis-
cussion in [6] (see also [1]). The result that follows is a generalization and
simplification of the Lemma in [6].

– 87 –



A. W. Hager, D. G. Johnson

Theorem 5.2. — Suppose G ∈ |Arch| with basis {ax : x ∈ X} and that
G � RX is an associated basic representation of G. If σ : G ↪→ RY in
Arch, then there is ρ : RY −→ RX in Arch such that ρ ◦ σ is an essential
embedding. Consequently, there is a positive weak unit u of RX such that

ug = ρσg for each g ∈ G.

If h ∈ RY is B (respectively BA, resp., BAZ), then ρh has the same prop-
erty, and if h is the constant function h(y) = r0 ∈ R for each y ∈ Y, then
ρh (x) = r0 for each x ∈ X .

Proof. — For each x ∈ X , choose k(x) ∈ Y with σax(k(x)) �= 0, and
define

ρ : RY " h �−→ ρh = h |k(X )∈ ρRY .

Note, first, that ρσ embeds G in Rk(X ). For, if 0 � g ∈ G, then g∧ax �= 0
for some x ∈ X , since {ax : x ∈ X} is a maximal set of pairwise disjoint
elements of G. But 〈ax〉 is totally ordered and archimedean, so n (g ∧ ax) �
ax for some n ∈ N. Thus, 0 � ρσax � n(ρσg ∧ ρσax), so ρσg �= 0.

It is clear that ρ ◦ σ is a basic representation of G in RX (for each
x ∈ X , ρσ (ax) = χk(x) · σax (k (x))); hence, it is an essential embedding.
The existence of u now follows from (4) in the summary of Conrad’s results
in the first paragraph of this section. The last sentence merely collects the
properties of restriction that we require below. �

Corollary 5.3. — Suppose G ∈ |Arch| with basis {ax : x ∈ X} and
that G � C (X ) is an associated basic representation of G. If σ : G ↪→ H
is W-generating, then there is ρ : H −→ C (X ) in W such that ρ ◦ σ is an
essential embedding: there is a positive weak order unit u ∈ C (X ) such that

ρσ (g) = ug

for each g ∈ G. If h ∈ H is B (respectively BA, resp., BAZ) in D (YH),
then ρh has the same property in C (X ), and if h is the constant function
h(y) = r0 ∈ R for each y ∈ Y, then ρh (x) = r0 for each x ∈ X .

Proof. — View H ⊆ D(YH); by Corollary 3.4, cozσG is dense in YH.
But

⋃
{cozσax : x ∈ X} is dense in cozσG and each (σax)−1(R) is dense in

cozσax. So, σG ⊆ RX1 (where X1 =
⋃{

(σax)−1(R) : x ∈ X
}
), from which

it follows that H = jm(σG + Z · 1X ) ⊆ RX1 . Apply Theorem 5.2. �

Proposition 5.4. — Suppose G ∈ |Arch| and that σ : G −→ H is W-
generating. If H is HA, then there is ϕ : H � H ′ in W such that ϕ ◦ σ
is an essential embedding of G into H ′. (Of course, ϕ ◦ σ is W-generating
and H ′ is HA. )
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Proof. — We may suppose G �= {0}; otherwise, H ′ = {0} works. If
σ : G −→ H is not essential, then there is an ideal {0} �= I in H with
I ∩G = {0}. By Zorn’s Lemma, there is a maximal such, say I0. Note that
eH is a strong order unit, since H ∈ |W| and is HA, and eH /∈ I0, since G �=
{0}. Set ϕ : H −→ H/I0 ≡ H ′. Then ϕ ◦ σ : G −→ H ′ is W-generating,
since jm (ϕσ (G) + Z · ϕ (eH)) = ϕ (jm (σG + Z · eH)) = ϕ (H) . �

6. The Examples

We present three examples of HA �-groups: (6.1) with BAZ represen-
tation but no B representation, hence no embedding into an archimedean
�-group with strong order unit; (6.2) with B representation but no BA
representation in any D (Y); (6.3) with representation that is B and BA
(i.e., satisfies HA+

1 ), but no representation that is B and BAZ in an RY .
None of these embeds into a HA �-group with unit, by Corollary 4.7. The

last example also exhibits a situation: G
W
� H, where G is HA having a

representation that is B and BA, but H has no BA representation. See
Corollary 8.2 for the marked contrast in frA.

All three examples utilize the method of [6] (which method was revisited
in [7] to further ends), with the present exposition benefitting from our
clarification of B, BA, BAZ in §4 and our arrangement of the preliminary
steps in §5. Example 6.1 is exactly the example of [6]; example 6.2 answers
a natural question; example 6.3 (answers another natural question and) is a
counterexample to a parenthetical remark in [6] (II on p. 295) - which slip,
one realizes after a certain amount of careful reading, has no further effect
on [6].

All three examples have the form G (A, γ) � C (N), which is defined as
follows. Let A be a family of infinite subsets of N that is almost disjoint
(every pair of distinct members has finite intersection). Let γ : A −→ C (N)
be any function, and let G (A,γ) denote the subgroup of C (N) generated
by {χA · γ (A) : A ∈ A} ∪ {χn : n ∈ N}. One readily sees that G (A, γ) is
an �-subgroup of C (N) and that it is HA. Moreover, G (A,γ) has a basis:
{χn : n ∈ N} . Note that G (A, γ) � C (N) is an essential closure. Recall
that f ∈ C (N) with f⊥ = {0} means cozf = N: f is a weak unit in C (N) .

There are almost disjoint families of infinite subsets of N having cardi-
nality c, the power of the continuum ([8], 6Q), thus of any smaller cardinal.
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6.1. The Conrad-Martinez Example

A hyperarchimedean �-group that is presented as an �-subgroup of C (N)
that is BAZ, but that has no B representation.

Let A be of cardinality sufficient to allow an injection γ : A −→ C↑(N, N)
(the strictly increasing functions) having γ(A) cofinal in C↑(N, N) with re-
spect to the order

∗
<, where f

∗
< g if f(x) < g(x) for almost all x ∈ N. (See

comment below.)

It is clear that G ≡ G(A, γ) is BAZ; to see that it has the claimed
property, suppose otherwise: there is a set Y and an embedding σ : G −→
RY such that σg is bounded for each g ∈ G. Now apply Theorem 5.2: there
are ρ : RY −→

(
RN

)∗
in Arch and a positive weak order unit u ∈ RN such

that uG = ρσG. Since uG contains only bounded functions, the same will
be true of u1G for any u1 ∈ RN with 0 � u1 � u; since u is a weak order
unit in RN, there is u1 � u with 1

u1
∈ C↑ (N, N). Now, (1/u1)2 ∈ C↑ (N, N),

so there is a v = γ(A0) for some A0 ∈ A with v � (1/u1)2. Then g0 ≡
χA0 · γ (A0) ∈ G, while

ug0 = u · χA0 · v � u · χA0 · 1
u2

1

� χA0 · 1
u1

(since v � 1
u2

1
� 1

u1
� 1

u ). Since 1
u1

∈ C↑ (N, N), this says that ug0 is
unbounded, a contradiction.

Here, |G (A,γ)| = |A|, and the issue of minimizing this seems interesting.
The cardinal d = min

{
|D| : D is

∗
< -cofinal in C↑(N, N)

}
is due to Katětov,

and of course |A| = d suffices in the example. It is clear that ω < d, and it is
known that each of [ω1 = d < c, ω1 < d < c, ω1 < d = c] is consistent with
ZFC ([5]). So, we ask: is there an example here of size < d; even countable?

6.2. The second example

A hyperarchimedean �-group that is presented as an �-subgroup of C∗ (N) ,
but that has no BA representation in any D (Y) .

Let A be as before and again let γ : A ↪→ C↑ (N, N) have γ (A) cofinal
in C↑ (N, N) with respect to the order

∗
<. Define γ1 : A −→ C (N, R) by

γ1 (A) = 1
γ(A) for each A ∈ A.

Clearly, G ≡ G (A, γ1) � C∗ (N) . Suppose σ : G ↪→ D (Y) for some Y,
and that σG is BA and let H = jm (σG + Z · 1Y). Now apply Corollary
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5.3: there are ρ : H → C (N) and a weak unit u of C (N) such that ρσg = ug
for each g ∈ G, and uG is BA in C (N) since σG is BA in D (Y). If u1 ∈ R

N

with u � u1, then u1G is also BA, clearly. Choose u � u1 ∈ C↑ (N, N) and
then choose v � u2

1 with v = γ (A1) ∈ γ (A). Then g1 ≡ χA1 · γ1 (A1) ∈ G,
while ug1 = u · χA1 · 1

v � u · χA1 · 1
u2

1
� χA1 · 1

u1
. Thus, ug1 is not BA, a

contradiction.

6.3. The third example

A hyperarchimedean �-group G that is presented as an �-subgroup of
C∗ (N) that is BA, but that has no representation that is B and BAZ in
an R

Y
. It follows that H = jm (G + Z · 1N) fails to satisfy BA, so BA

does not “inherit up” under W-generation (Proposition 4.2(3)). (If this
representation were BA, it would be B and BA, so it would satisfy HA+

1 .
Thus, H would be HA. But, G embeds in no W-object that is HA.)

Here, let |A| = c, and set

Γ = {f ∈ C (N) : n ∈ N =⇒ f (n) > 0, and A ∈ A =⇒f |A is B and BA} .

Since |Γ| = c, there is a bijection β : A −→ Γ. Define γ : A −→ C (N)+ by

γ (A) = βA + r · βA,

where r (n) = 1
n for each n ∈ N.

The resulting construct G = G (A, γ)is, in this presentation, both B and
BA, and so satisfies HA+

1 . (Note that it is not BAZ: choose A ∈ A with
βA (n) = 1 for each n ∈ N).

We give two proofs that G has no representation in an R
Y

that is both
B and BAZ, the first using Theorem 5.2, the second using Proposition 5.4
(which avoids bases, providing food for thought).

First proof. Suppose σ : G ↪→ R
Y has σG both B and BAZ. By

Theorem 5.2, there is ρ : R
Y −→ R

N = C (N) with ρσ essential and there is
a positive weak unit u in C (N) for which ug = ρσg for each g ∈ G. Since
all σg are B and BAZ, the same is true for all ρσg, again by Theorem
5.2. It follows that for each A ∈ A, u |A is B and BAZ. Recall that
each χAγ (A) is strictly positive on A, where it is also B and BA. It
follows that u ∈ Γ, as does 1

u . Hence, 1
u = β (A0) for some A0 ∈ A, so

g0 = χA0 · γ (A0) = χA0

(
1
u + 1

u · r
)
∈ G. But, ug0 = χA0 (1 + r) is not

BAZ, a contradiction.

Second proof. By Corollary 4.7, G has a representation that is both B
and BAZ if and only if there is σ : G ↪→ H for some H which is HA and
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which has a unit. Suppose we have such an embedding σ : G ↪→ H, where
H is HA and has unit. Without loss of generality, we may assume that
σG is a W-generating subgroup of H. Apply Proposition 5.4 to produce
ϕ : H � H ′, in W with ϕσ an essential embedding; by §5.1, there is
ψ : H ′ ↪→ C (N) and a weak unit u ∈ C (N) such that ug = ψϕσg for each
g ∈ G. Now, H ′ � D (YH) is B and BAZ; so, too, is ϕσG � D (YH ′) .
Hence, ψϕσG is B and BAZ in C (N) . Now proceed exactly as in the first
proof.

7. Φ-generation

An embedding ψ : A ↪→ B in frA is said to be Φ-generating if A ∈
|frA|, B ∈ |Φ|, and B = jm (ψA + Z · 1B) (i.e., if ψA

W
� B in Arch). In this

section, after presenting background information, we prove a useful result
(Theorem 3) about Φ-generating maps.

Recall that for every Tychonoff space X there is a unique compact space
βX , called the Čech-Stone compactification of X , in which X is a dense
subspace and every f ∈ D (X ) has an extension fβ ∈ D (βX ). (See, e.g.,
[8].)

In [16], it was shown that if A ∈ |frA| there is a Tychonoff space XA
and an embedding A " a −→ a ∈ A � D (XA) such that:

1. For each a ∈ A, aβ (βXA \ XA) ⊆ {0,±∞} .

2. For each x ∈ XA, there is a ∈ A with 0 < a (x) ∈ R.

3. A separates points and closed sets in XA: given point x and closed
set K with x /∈ K, there is (ax,K =) a ∈ A with a (x) �= 0 and
a (K) = {0} .

One readily sees that XA is locally compact and that the function(s) ax,K
can always be chosen from A

∗
. This representation is unique ([17]): if ϕ

is an embedding of A in D (X ) for some Tychonoff space X that satisfies
conditions (like) (1), (2), (3) above, then there is a homeomorphism τ :
X −→ XA such that a (τx) = ϕa (x) for each a ∈ A and x ∈ X . We
require the much more general statement about this uniqueness (Proposition
7.1 below), much like that for the Yosida representation enunciated before
Definition 1.1.

In an �-ring A, I ⊆ A is called an �-ideal if it is an �-group ideal and a
ring ideal.
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Proposition 7.1. — Suppose A ∈ |frA|, and that σ : A ↪→ D (Y) for
completely regular Y. If this embedding satisfies:

y1, y2 ∈ Y with y1 �= y2 =⇒ ∃a ∈ A with 0 < σa (y1) < +∞ and σa (y2) = 0,

then there is a continuous injection τ : Y −→ XA such that τY is dense in
XA and for each a ∈ A, σa = a ◦ τ.

Proof. — Theorem 3.1 of [17] states that for each point y ∈ βY,

My =
{

a ∈ A : (σa)β (σb)β (y) = 0 for each b ∈ A
}

is either a prime maximal �-ideal of A or it is all of A (and that every prime
maximal �-ideal has this form). The condition here guarantees that My1

and My2 are distinct prime maximal �-ideals of A whenever y1 and y2 are
distinct points of Y. Corollary 3.3 of [17] says that if y ∈ βY with My �= A,
and if a ∈ A, then σa (y) = M̂y (a), where if My (a) � 0,

M̂y (a) = inf
{m

n
∈ Q : n (My (a))2 � mMy (a)

}
and if My (a) < 0,

M̂y (a) = − ̂My (|a|).
For each x ∈ XA, set

Mx =
{
a ∈ A : ab (x) = 0 for all b ∈ A

}
.

If y ∈ Y, there is a point τy ∈ XA with

Mτx = σ (My) .

The two results from [17] cited above guarantee the existence of the τy and
show that a (τy) = σa (y) for each y ∈ Y. The continuity of τ follows from
the fact that the functions in A determine the topology of XA.; since σ is
an embedding,

⋂
{My : y ∈ Y} = {0}, so τY is dense in XA. �

XA is compact if and only if A contains a superunit (a positive element
a for which ab � b for each 0 � b ∈ A (see [9])). Othewise, let MA denote
the smallest compactification of XA over which all of the functions in A
extend: there is exactly one point p ∈ MA at which a (p) = 0 for each
a ∈ A; and A, viewed as a sub-f -ring of D (MA), separates points and
closed sets in MA in the sense of (3) above - with the exception that if K is
closed and p /∈ K, then there is a ∈ A with a (p) = 0 and a (K) ⊆ [1, +∞].

In [17], Lemma 5.5 and Theorem 5.6 show the following, where A |S
denotes the frA-object consisting of the restrictions of members of A to S.
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Proposition 7.2. — If ψ : A � B in frA, then there is a closed sub-
space S in XA such that A |S" a |S �−→ ψa ∈ B is an isomorphism.

In [10], it was shown that for each A ∈ |frA| there is a canonical em-
bedding uA : A −→ uA ∈ |Φ|, namely uA = jm (A + Z · 1) in D (XA).
There, attention was focused on the class U of frA-morphisms that are
“u-extendable”: the frA-morphism A

ψ−→B is in U (A, B) if there is uψ ∈
Φ (uA, uB) with uψ ◦ uA = uB ◦ ψ.

Finally, we give the main result of this section.

Theorem 7.3. — Suppose ψ : A ↪→ B is Φ-generating.

1. Either

(a) ψ ∈ U, so that there is an isomorphism uψ : uA −→ B in Φ
with uψ ◦ uA = ψ, or

(b) ψ /∈ U, which occurs if and only if B = (ψA)⊥⊥ ⊕ (ψA)⊥, with
(ψA)⊥ �= {0}. In this case:

(i) (ψA)⊥ ∼= Z, and A has a superunit a0 with ψ (a0) not a
superunit in B.

(ii) There is an isomorphism γ : uA −→ (ψA)⊥⊥ in Φ with
γ ◦ uA = ψ◦, where ψ◦ denotes the codomain restriction of
ψ.

(iii) B = (ψA)⊥⊥ ⊕ (ψA)⊥ is the only proper direct sum decom-
position B = B1 ⊕ B2 with ψA ⊆ B1.

2. In either case (a) or case (b) above, there are unique mappings α :
B � uA in Φ and β : uA ↪→ B in frA satisfying α ◦ ψ = uA and
β ◦ uA = ψ.

B

A uA✲

❄

uA

ψ

�
�

�
�

�✠
�

�
�

�
�

�✒

β

α
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Proof. — (1) (a) This is #7 of Theorem 9 in [10].

(b) This combines Corollary 5 with Proposition 5, both in [10].

(2) In case (a), β = uψ and α = β−1.

In case (b), β = i1 ◦ γ, where i1 : (ψA)⊥⊥ −→ (ψA)⊥⊥ ⊕ (ψA)⊥ is the
injection i1 (b) = (b, 0); α = γ−1 ◦ π1, where π1 : (ψA)⊥⊥ ⊕ (ψA)⊥ −→
(ψA)⊥⊥ is the projection π1 (b1, b2) = b1. �

8. Reduced hyperarchimedean f-rings

Let F denote the forgetful functor from frA to Arch. For A ∈ |frA| we
let 〈a〉F(A) (respectively, 〈a〉A) denote the ideal in the �-group F (A) (resp.,
the �-ideal in the f -ring A) generated by a. Note that an ideal in F (A) is
an �-ideal in A if and only if it is a ring ideal.

By Proposition 7.1 (more specifically, the comment that immediately
preceeds it), any of the properties B,BA,BAZ that is satisfied by some
representation of A in a D (X ) is satisfied by all such representations.

Lemma 3. — Suppose A � D (X ) in |frA|.

1. The following are equivalent.
(a) A ⊆ C∗ (X ) ;

(b) every ideal in F(A) is an �-ideal in A;

(c)
〈
a2

〉
F(A)

⊆ 〈a〉F(A) for each a ∈ A.

2. The following are equivalent.
(a) A is BA in D (X ) ;

(b)
〈
a2

〉
F(A)

⊇ 〈a〉F(A) for each a ∈ A.

Hence, A is B and BA in D (X ) iff
〈
a2

〉
F(A)

= 〈a〉F(A) for each a ∈ A.

Proof. —

1. A ⊆ C∗ (X) ⇐⇒
∀b ∈ A∃nb ∈ N such that |b| � nb ⇐⇒
∀a ∈ A, |ab| = |a| · |b| � nb |a| =⇒
〈a〉F(A) is an �-ideal ∀a ∈ A (so (1) =⇒ (2)) =⇒
∀a ∈ A, a2 ∈ 〈a〉F(A) (so (2) =⇒ (3)) =⇒
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∀a ∈ A∃na ∈ N with a2 � na |a| =⇒
∀b ∈ B, |ab| = |a| · |b| � na |b|, since A is reduced, so (3) =⇒ (1).

2. For a ∈ A+ inf {a (x) : x ∈ coza} = 0 ⇐⇒
a � na2 for all n ∈ N ⇐⇒
a /∈

〈
a2

〉
F(A)

.

�

Theorem 8.1. — For A ∈ |frA|, the following are equivalent.

1. F (A) is HA.

2. A is HA as an �-ring: every �-ring homomorphic image is archimedean.

3. A � C∗ (XA) and every �-ideal in A has the form

z−1 (S) =
{
a ∈ A : a (S) = {0}

}
for some closed subset S of XA.

4. Every ideal in F (A) has the form z−1 (S), for some closed subset S
of XA.

5. A � D (XA) is BA and every ideal in F (A) is an �-ideal in A.

6. For each a ∈ A, 〈a〉F(A) = 〈a〉A =
〈
a2

〉
F(A)

.

7. A � C (XA) and coza is compact for every a ∈ A.

8. F (uA) is HA.

9. A � D (XA) satisfies HA+
1 (i.e., is B and BA).

10. Every frA-embedding of A in a D (X ) satisfies HA+
1 (i.e., is B and

BA).

11. A � D (XA) is B and BAZ.

12. Every frA-embedding of A in a D (X ) is B and BAZ.

Proof. — That (1) implies (2) is clear.

To see that (2) implies (3), suppose, first, that a ∈ A+ \ C∗ (XA). Then
there is a point p ∈ βXA with aβ (p) = +∞, from which it follows that
A/Mp is not archimedean. Hence, A ⊆ C∗ (XA). If I is an �-ideal in A,
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then A/I ∈ |frA|, so A/I ∼= A |S for some closed subset S of XA, by
Proposition 7.2. Thus, I = z−1 (S) .

If (3) holds, then every ideal in F (A) is an �-ideal in A by Lemma 3,
since A � C∗ (XA), so (4) holds.

Suppose a ∈ A+ \ C∗ (XA). The ideal generated in F (A) by a is 〈a〉 =
{b ∈ A : |b| � na for some n ∈ N}, and it is clear that a2 /∈ 〈a〉 . Hence, 〈a〉
and

〈
a2

〉
are distinct ideals in F (A) having the same zero set: (4) fails. In

a similar fashion, if a ∈ A+ is not BA, then a /∈
〈
a2

〉
, and (4) fails. Thus,

if (4) holds, then A � C∗ (XA) , so z−1 (S) is a ring ideal in A for every
S ⊆ XA: (5) holds.

By Lemma 3, when (5) holds, A � D (XA) is B and BA; the equalities
of (6) follow by that lemma.

Notice that each of (5) and (6) is equivalent to the statement: “A �
D (XA) is B and BA”, by Lemma 3. Suppose (6) holds: then A ⊆ C∗ (XA ).
It follows that aβ (βXA \ XA) is {0} or ∅. But A is BA in D (XA), so
cozaβ = clβXA

(coza); it follows that clβXA
(coza) ⊆ XA, whence (7) holds.

To show (7) implies (8), we show that when (7) holds for A, it also holds
for uA. Since (7) is readily seen to imply that A satisfies HA+

1 , this will show
that F (uA) is HA. Recall the construction of uA: the compact space MA

is XA if the latter is compact; otherwise, it is the smallest compactification
of XA over which all of the functions in A extend. View A as a sub-f -ring
of D (MA), and first form A1 = A + Z · 1uA, then set uA = mjA1. Note
that

(a + n1uA) (x) = 0 if and only if a (x) = −n, so

if n = 0, then a + n1uA ∈ A and has compact cozero set. Otherwise,

coz (a + n1uA) = (MA \ coza) ∪ coz
(
a2 + na

)
,

a compact set.

Next, form jA1 =
{∨n

i=1fi : fi ∈ A1, 1 � i � n; n ∈ N
}
. To see

that every member of jA1 has compact cozero set, it suffices to show that
if f and g each have compact cozero sets, then so does f ∨ g. If cozf is
compact, then cozf+ and cozf− must be disjoint clopen subsets of cozf
and cozfg = cozf ∩ cozg, so the equality

coz (f ∨ g) = cozf+ ∪ cozg+ ∪ cozfg

displays coz (f ∨ g) as the union of three compact sets.
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Similarly, coz (f ∧ g) = cozf− ∪ cozg− ∪ cozfg, which is compact when-
ever cozf , cozg are. It follows that every finite meet of functions having
compact cozero sets has compact cozero set. But this means that

uA = mjA1

is hyperarchimedean.

Finally, if (8) holds, then F (uA) has a W-embedding in a product of
copies of R that satisfies HA+

1 , from which (9) follows, and (10) now follows
by Proposition 7.1.

That (10) implies (1) follows by Proposition 1., so we now know that (1)
through (10) are equivalent. It is evident that (12) =⇒ (11) =⇒ (9), so we
complete the proof by showing that (8) =⇒ (12). Suppose (8): F (uA) is
HA. Then F (uA) � D (XuA) in W and is HA, so it is BAZ, by Proposition
4.5: (12) holds. �

Corollary 8.2. — Suppose A ∈ |frA|.

1. If A � B is Φ-generating, then A is HA if and only if B is HA.
(See Remark (e) below.)

2. If A is HA and if εA : A −→ εA is an essential closure in frA, then
jm (εAA + Z · 1εA) is HA.

Proof. — (1) As noted in Theorem 7.3, it was shown in [10] that B ∼= uA
or B ∼= uA ⊕ Z.

(2) By Theorem 9 of [10], this construct “is” uA, which is HA by
Theorem 8.1. (Note that such essential closures in frA always exist, by
Bernau’s representation theorem.) �

Proposition 8.3. — Suppose A is HA. Viewing A � D (XA) , A is
an �-ideal in uA if and only if it satisfies: a ∈ A =⇒ χcoza ∈ A.

Proof. — By Theorem 8.1, for each a ∈ A there is 0 < r ∈ R such that
a2 (x) � r for each x ∈ coza. Thus, there is n ∈ N with na2 (x) � 1 on
coza. If A is an �-ideal in uA, then χcoza = 1uA ∧ na2 ∈ A.

Conversely, suppose A satisfies the stated condition. If A contains a
superunit e, then coze = M (uA), so χcoze = 1uA ∈ A and A = uA.
Otherwise, A 	 uA and Theorem 4 in [10] states that A is an �-ideal in
uA if and only if uA = <A, where <A denotes traditional adjunction of a
unit in ring theory. (As a group, <A = A ⊕ Z, and multiplication is defined

– 98 –



Generation of �-groups and f -rings

by (a, n) · (b, m) = (ab + ma + nb, nm) .) Now, A1 = Z · 1uA + A �= <A
precisely when n1uA ∈ A for some n ∈ N which cannot occur here since A
contains no superunit. Since uA is the sublattice of D (M (uA)) generated
by A1, it suffices to show that A1 is closed under the lattice operations. For
m, n ∈ Z and a, b ∈ A, we have

(n1uA + a) ∨ (m1uA + b)
= (n ∨ m)χM(uA)
coz(a2+b2) + ((n1uA + a) ∨ (m1uA + b))χcoz(a2+b2)

= (n ∨ m)1uA + [(nχcoz(a2+b2) + a) ∨ (mχcoz(a2+b2) + b)
− (n ∨ m)χcoz(a2+b2)]
∈ Z · 1uA + A = A1 (since χcoz(a2+b2) ∈ A).

Similarly for meet. �

Remarks 2. — (a) In Theorem 8.1, the conditions “A � C∗ (XA)” in
(3) and “A � C (XA)” in (7) are necessary. The sub-f -ring A of C (N)
consisting of the eventual polynomials (including the constants) satisfies the
remaining conditions in both (3) and (7) but is not HA (here, XA = αN,
the one-point compactification of N).

(b) In Theorem 8.1, the equivalence of conditions (1) and (10) was proved
by Conrad ([4], Lemma A).

(c) In [7], the result in part 2 of Corollary 8.2 is stated without the
condition “εA ∈ frA”; it is the first part of their Corollary to Theorem
7. That “εA ∈ frA”; is needed is shown by using the following example:
the eventual constants in C (N, N) form an frA-object, say B, that is HA;
however, B " b �−→ fb ∈ C (N), where f (x) = 1

x for all x ∈ N, is an
essential Arch-embedding of B in D (βN) which fails to satisfy HA1. For
an example that does not already contain an identity element, consider
B1 = B ⊕ CK (N).

(d) Proposition 8.3 is the second statement in the Corollary to Theorem 7
of [7]. Actually, by Proposition 7.1, we could employ any frA-representation
in a D (Y) here.

(e) Question. Suppose A � D (XA) is BA. Is uA � D (XA) also BA?
(Equivalently: when A � B is Φ-generating, is it true that B � D (XB) is
also BA?) This is the same as asking whether HA can be replaced by BA
in Corollary 8.2(1). “Yes” would strengthen Corollary 8.2(1).
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