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Complex Pisot Numeration Systems

Maki FURUKADO and Shunji ITO

1. BACKGROUND

Starting from an unimodular Pisot substitution, it is well-known that we can constuct the
numeration system. ([R], [A-I], [I-R], [F-F-I-W], etc.)

Let c beo:1+— 12, 2 — 13, 3+ 1 and the incidence matrix M, of o is M, =

O = =

1
0.
0
Then, A = M ! satisfies the complex Pisot condition, i.e. the eigenvalues of A satisfy A (= A1),
A(=X2) € C\R and || = |A] > 1 > [A3]. The family of compact sets P = {61,62,05} of the
A-invariant expanding plane P., which is given by the projection method, i.e.

di =cl({mef (s152...8k—1)| Ik € Nysp, =1}),

where w = $189 ... = lim,_, 0™ (1) is the fixed point of o, satisfies the following set equations:

1
0
1
(:

Ady = 61 U by U b3, Ady = 61 + mees, Ads = o + mee3.

T.e

T.€,

The figure of P ={d;| i =1,2,3} and AP.
Moreover, we know that we get the above family P of compact sets by using the 2-dimensional
extension Fy (0) where § =o~! ([E]).
Then we have the question: starting from an automorphism instead of a substitution, can we
construct the numeration system?

For simplicity, we discuss the case of the complex Pisot number A with degree 3 under some
assumptions ([H-F-I]). The discussion in the case of degree 4 can be found in [A-F-H-I].

2. NOTATION

Assumption 2.1. (1) A € C\R s a complex Pisot number with degree 3, i.e. X is the
algebraic integer of the minimal polynomial:

p¢(m):x3—ax2—bz:|:1, a,be
whose roots A (= A1), A (= A2), As satisfy |\ = || > 1> [As];
Text presented during the meeting “Numeration: mathematics and computer science” organized by Boris Adam-
czewski, Anne Siegel and Wolfgang Steiner. 23-27 mars 2009, C.I.LR.M. (Luminy).

Key words. Quasi-periodic tiling, Rauzy fractal, Stepped plane.
This is the joint work with Masaki Hama.

41



MAKI FURUKADO AND SHUNJI ITO

1

0 0 =F
(2) A is the 3x3 integer matriz such as Az == | 1 0 b whose characteristic polynomial
01 a

is given by px (x) respectively.
Then, A is called the companion Pisot matriz of \.
Let w1, us be the eigenvectos of A with respect to \;, i = 1,2, and let vq, v be
v = 71112 +U1, Vo =
2 21
The A-expanding plane P, of A is written by P. = £ (v1,v2) and the space R? is decomposed by
P. and the A-contractive line P, : R3 = P, @ P . Then, let us define the projection m, : R — P,
along P, by mex = x1 for € = 21 + x5 € R? where 21 € P. and x5 € P,.

—b
. |
Definition 2.3 (Complex Pisot numeration system). For a complex Pisot number X\, if we can

find the finite family of compact sets P = {71}j6{1,2,3} of P, with the finite integer vector sequence
{f,gj)}qu , flgj) € Z% and the finite index sequence {V,C(J)} , Vk(J) e {1,

<k< 1<k<l;

(N1) pe () > 0, cl(int (v;)) = 75, and pe (97;) = 0
where . is the Lebesgue measure on P, int (A) is the interior of the set A, cl(A) is the
closure of the set A, and Ov; := v;\int (y;);

(N2) for each j € {1,2,3}, the set equation holds:
Ay = Uij;l (’7v,§j) + mf,i”) (disjoint)
where m. : R® — P, is the projection along P., U, Ax (disjoint)" means that int (Ax) N
int (Ag) =0 if k # K

(N3) Uje{1,2,3} v;  (disjoint)

then, we say that the pair (A, P) is the complex Pisot numeration system of \.

U2 — Uy

Lemma 2.2. Put \; = a+bi, a,b € R, then A[vi1vs] = [v1v2] [ Z

2,3} satisfying

The reason why we call (X,P) the complex Pisot numeration system is that x € (J,_; 5 3 X; is

o0

writtenasx =y~ A™" ( fkj" 1)) by the integer vector sequence (f(”) ,gl), e f,gi:l), .. )

satisfying @ = xg € vj,, Tn = Azp_1 — ,n.ef(Jn 1)

Question 1. When a complex Pisot number X is given, how do we obtain the complex Pisot
numeration system? In other words, how do we obtain the finite family of compact sets P =

{j}jo105 of Pe satisfying (N1), (N2), (N3)?
3. RESULTS

First, we classify the distribution of A;, ¢ = 1,2,3 of A into the following four types:

p- (2) p+ (2)
type 1 type 2 type 4
A3 <0 A3 >0
a,b € 7 satisfy a,b € Z satisty
(1) —a+b<0 ()+a+b<0
a? +3b< or a +3b< or
(2)- { a®?+3b>0 (2)+ { a®>+3b>0
= 27 — 4a® — 18ab — a?b? — 46 > 0. = 27 + 4a> + 18ab — a?b? — 4b3 > 0.
Re (/\1) >0 Re ()\1) <0 ()\1) Re ()\1) <0
a>0 a<0 a>0 a<0
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Let v* and v be the left and right-eigenvectors of A\3: v*A = Az3v*, Av = A\3v, then, we see that
vt = [la/\37A§} , U =t |::F/\L3a)\3 - a, 1.

Lemma 3.1. The expanding plane P, can be characterized by using v* :
P, ={x = (z1,22,23) | (x,v*) =0}
where (y, z) means the inner product of vectors x and y.

From the signature of v*, we have the following:

type 1 \ type 2 type 3 \ type 4
sgn v* [+, —, +] [+, 4+, +]

Distribution

of {ei},
i=1,2,3

For € R3, 4,5 € {41,+2,43}, let (x,i A j) be the 2-dimensional positive oriented unit face
i A j located at « € Z3, i.e.

(z,iAj):={x+X(sgn(i)) ey +pn(sgn(j))ey |w€Z0<Au<1}.

type 1 type 2 type 3 type 4
sgn v [+, —, +] [+, +,+] [+, —, +] [+, +, +]

Teey

Te(-¢;) e “Celncel
Vi Vs Vi
(Cenln2) | (—es1A2) | (0,1A2) 0,172
The unit faces (0,1A3) (0,3A1) (0,1A3) (0,3A1)
(—e2,273) | (—es,2A3) | (0,2A3) (0,2 3)

By using the 2-dimensional positive oriented unit faces Vi, t = 1,2, 3,4, we define

3 . . _ . .
e the set of unit faces Sy of P.: Sy := {(m,z‘/\j) ‘ i&i}%) »>{83»<];} —e{l;)%>3i ,02 ANj eV, } :
) — Y - €k,
e the family of finite sets of unit faces G;: G; := {ZMEA (x,i /\j)u ‘ #A < 400, (x,1 /\j)u S } ;
e the stepped plane .%; of P.: .%; := U(.’I},i/\j)GSt (z,iNj).

The stepped plane .%; is the surface generated by 2-dimensional positive oriented unit faces. We
know that the projection 7* : % — P, along v* is bijective and there are not any lattice points
except 0 between P, and .%;.

For the companion matrix A_ (A4 ), let us choose the automorphism 6_ (6) on the free group
F (1,2,3) whose incidence matrix is A_ (A4 ) respectively as follows:

W N

0_:

W N =

— 1 — 2
— , 0+: 2 — 3
— 3e1-19b 3 - 12039,
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Using the automorphism 6, let us define the 2-dimensional extension Es (0) : G, — G; as follows:

Ex(0)(0,i0)) = 000)A0G0) = > (r(B7)+1(RY) W aw?)

1<k<;
1<1<
Es(0) (x,iNj) = Am+ Es(0)(0,iN7)
B (0) (Z (z,i /\j)u> =3 (E2 0) (z,i /\j)u)

where f: F'(1,2,3) — Z3 is the homomorphism satisfying
) =0, f(i)=e;, () =W Wy ... W,

P is the prefix of W7, ie. P =W W’  and y+(0,iAj) = (y,iAj). We will show
the behavior of Fs (6) on some examples.

3.1. The results on type 1 and type 4. Let us consider the case (a,b) = (1,0) of type 1 as an

0 0 -1
example,i.e. A=|1 0 0 ] and its characteristic polynomial is 23 — 22 + 1. The distribution
0 1 1
1 - 2
of the eigenvalues of A is . Then the automorphism 6 : 2 — 3 is determined
3 — 317!

and Fs (0) is given by
B2 (0)(0,172) = (0,0(1)A60(2)=(0,2A3)
Fs (0) (0,11 3)

(0,2A3171) = (0,273) + (5,27 171) 2 (0,273) + ((es —e1), 1A 2)

(0,3A317) = (e3,3A17) £ ((es —e1), 11 3)

(
(

B> (6) (0,2 A 3)
(

where (*) means the rearrangement.

(0,27 3)
We can see that Es (8) generates the patches whose orientations are positive in general on type
1 and we obtain the following propositons on type 1.

Proposition 3.2. On type 1, we consider
Uy =(x—e,1N2)+ (x,1N3)+ (x+e1,2N3)

where x is the solution of  + ez — e; = Ax + ae3 — e;. Then, Ey (9)2 (Uy) = U.

& &
&
@\ E3(0) E5(0)
— —e e — -
‘& e
2
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The figure of > (0)" (U1), n =0,1,2,...,7 in the case of (a,b) = (1,0) of type 1.
Let us define

T = {we (z,i A §) ‘ (@i Aj) € Es ()" Uy (:v)}7
Ying = nll_}H;o A_nﬂ'eEQ (G)n (xmj, 7 /\j) fO’I" (xmj, 1 /\j) S U1 (.’.U) .

Then,

(1) T is the quasi-periodic polygonal tiling of P. and Ty = T° — mex

where T° := {me (x,i Nj) | (x,iNj) € S1};
(2) Pr:={vinj| iNjEVL}, then (A, P1) is the complex Pisot numeration system;
(3) T1 :=A{mex + in; | Te (X, i A j) € 71} is a self-similar tiling of Pe..
Analogous results are obtained on type 4.
Proposition 3.3. On type 4, we consider
Uy :=(0,1A2)+(0,3A1)+ (0,2 3).

Then, E5 (0) (Uy) > Uy. Let us define

Ty = {me(z,iNng) | (x,iNj) € B ()" Uy},
Vinj = nliHII;OAaneEQ (0)" (inj i NjG)  for (xing i Aj) € Uy.

Then,
(1) 7y is the quasi-periodic polygonal tiling of P. and Ty = T
where T = {me (x,iNJ) | (X, iNj) € Sa};
(2) Pa:={vinj| iNj €V}, then (A, Py) is the complex Pisot numeration system;
(3) Ty = {me® +vinj | me (2,0 N J) € Tu} is a self-similar tiling of Pe..
Remark 3.4. We see that the numeration system produced from the type 4 is the same as the
numeration system produced from the unimodular Pisot substitution.

3.2. The results on type 2. Let us observe the case (a,b) = (—1, —2) of type 2 as an example,

0 0 -1
ie. A= [ 1 0 -2 ] and its characteristic polynomial is 2% + 22 4+ 2z + 1. The eivenvalues of A
0o 1 -1

1 - 2
is distributed as , then the automorphism 6:2 +— 3 is determined and
3 — 1712712713

12
E5 (0) is given by
By (0)(0,1A2) = (0,2A3)
EQ(@)(0,3/\1) (—61,2/\1)-‘1-(—61—282—63,2/\3)

E>(60)(0,2A3) = (—e1,1A3)+(—e1 —e2,2A3)+ (—e1 —2e2,2A3)
- EQ(G) e EQ(G) e
: ) ‘
i — Ts
(0,1A2) (0,11 3)
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In the case of type 2, E5 (#) generates the patches including the negative faces. How shall we
treat the negative faces?

Let us introduce the blocking method on type 2 and we see that the blocking method works
well on type 2 in general.

block (1 (—es +“block 1)) - —e2 —est
+ (es + block (3)) block (2) ((block (1) 4 block (2))
E2(6) %% )@
2(¢
blOCk(@(g) e1 + ez + block (2) Us B (6)Us Fs (02 Us
(period=2)

Proposition 3.5. On type 2, let us consider Us:

Us == block (1)+ block (2)+ block (3)

where

—a—1

block (1) = (z+ex,1A3)+ (2,2A3)+ Y (v — ke, 2A3);
k=1

block (2) = (x—eq,2N3);

block (3) = (x,1N2)

and x is the solution of © = A%z — e; — e3. Then, Es () satisfies Ey (9)2 Us = Us.

Moreover,

(1) Cy = {we (y + block (i) (g):rsoi‘f? é’){)lg%}(@) (block (7)), block (5) € Uz, } is
the covering of P.;

(2) i = limy, oo A=2"w,Ey (0)*™ ( block (i), then (A, P2), Py = {71,72,7s} is the complex
Pisot numeration system;

(3) Co = {mey +7vi | me (y + Dblock (7)) € Ca} is a self-similar tiling of P,.
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block1
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block3
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3.3. The results on type 3. Let us give an example in the case of (a,b) = (1,—2) of type 3.

0 0 1
A=1[1 0 -2
0 1 1

.
Al

eigenvalues of A is

E5 (0) is given by
E5(0) (0,1 1A2)
E5(9) (0,1 A3)
E5 (0)(0,2A3)

1 — 2
. Then the automorphism 6:2 +— 3
3 — 3

(0,27 3)
(0,27 3)+ (e3,2A 1)
(e3,3N 1)+ (e1 —ex+e3,2N3)+ (e1 —2ex+ e3,2 A 3)

In this case, Fs () also generates patches in-
cluding the negative unit faces. On this exam-
ple, the blocking method doesn’t seem to work
well. But on the stepped plane, we can find
0" with P. Arnoux by the private discussion
whose incidence matrix is same as the com-
panion matrix and we succeed in finding the
tiling substitution 6* : G — Gs, 6* # E5 (6).
However, it is unclear whether this method
can apply all of type 3 in general.

1271271

and its characteristic polynomial is 23 — 2 + 2z — 1. The distribution of the

is determined and

Bep
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