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Curvature and Flow in Digital Space
Atsushi Imiya

Abstract
We first define the curvature indices of vertices of digital objects. Second, using these

indices, we define the principal normal vectors of digital curves and surfaces. These defini-
tions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce
curvature flow for isothetic polytopes defined in a digital space.

1. Introduction

A unified treatment of shape deformation is required for the intelligent editing of image contents
for multimedia technology. The deformation of image data based on curvature flow and diffusion
processes [17, 18, 29, 21] on surfaces [13, 22] provides a mathematical foundation for the unified
treatment of deformation [23].

These deformation operations for boundaries are discussed in the framework of the free bound-
ary problem in mathematics. For the construction of solutions of partial differential equations
as deformed surfaces, the numerical computation is achieved using an appropriate discretization
scheme [13, 1]. Bruckstein et al. derived a digital version of this problem for planar shapes [7].
Furthermore, Bobenko and Suris proposed a spatial version of their digital treatment [6].

In this paper, we introduce a transform [12] for a binary digital set [14], which we call Digital
Curvature Flow. Digital curvature flow describes the geometric flow [7, 10] controlled by the
curvature on the boundary of binary digital images on a plane and in a space. This flow, which
moves the boundary, can also be considered as the curvature flow on isothetic polytopes of which
all edges are parallel to axes of the orthogonal coordinate system [14].

For the numerical analysis of partial differential equations, it is required to generate grids [28] or
decompose the region of interest to small domains [27] for the discretization of equations [19, 9, 20].
Therefore, numerical analysis is achieved in discrete forms. However, these grids usually depend
on problems which we want to deal with. In contrast to this classical numerical treatment [27, 28],
in this paper, we define the digital treatment of the deformation of the boundary of an object in
a digital space which is defined as a collection of lattice points [14].

Control of the topology is an important problem for flow-based shape analysis and processing
[13, 22, 7]. Curvature flows usually cause the collapse of the topology. Therefore, we propose a
method for the examination of the topology of digital shapes and objects. Using this process we can
detect collapses of topologies and control the topology of shapes and objects during deformation
by flow-based processing.

Since the curvature of a point on curves and surfaces is defined locally [26, 24, 31, 25], the
curvature flow is basically a local operation on them. As a digital treatment of partial differential
equations, the theory of cellular automaton is proposed. In this theory, a space is also digitized
and equations are approximately expressed as rules which rewrite the configurations of 1-points in
a neighbourhood of a digital space [15, 14]. Therefore, rules for the cellular-automaton treatment
[16, 8, 30] of partial differential equations are basically local operations. These similar properties
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between cellular automata and curvature suggest that our treatment of boundary deformation is
natural from the viewpoint of space discretization.

2. Connectivity and Neighbourhood

Setting R2 and R3 to be two- and three-dimensional Euclidean spaces, we express vectors in
R2 and R3 as x = (x, y)> and x = (x, y, z)>, respectively, where > is the transpose of the vector.
Setting Z to be the set of all integers, the two- and three-dimensional digital spaces Z2 and Z3 are
sets of points such that both x and y are integers and x, y and z are all integers, respectively.

On Z2 and in Z3

(2.1) N4((m,n)>) = {(m± 1, n)>, (m,n± 1)>}
and

N6((k,m, n)>) = {(k ± 1,m, n)>, (k,m± 1, n)>, (k,m, n± 1)>}
are the planar 4-neighbourhood of point (m,n)> and the spatial 6-neighbourhood of point (k,m, n)>,
respectively. In this paper, we assume 4-connectivity on Z2 and 6-connectivity in Z3.

For integers k, m and n, the collection of integer triplets (k′,m′, n′) which satisfy the equation
(2.2) (k − k′)2 + (m−m′)2 + (n− n′)2 = 1
defines points in the 6-neighbourhood of point (k,m, n)>. If we substitute k = k′, m = m′ and
n = n′ into eq. (2.2), we obtain the equations
(2.3) (m−m′)2 + (n− n′)2 = 1, (k − k′)2 + (n− n′)2 = 1, (m−m′)2 + (n− n′)2 = 1.
These equations define points in the planar 4-neighbourhoods. Therefore, setting one of x, y or z
to be a fixed integer, we obtain two-dimensional sets of lattice points such that
(2.4) Z2

1((k,m, n)>) = {(k,m, n)>|∃k, ∀m, ∀n ∈ Z},

(2.5) Z2
2((k,m, n)>) = {(k,m, n)>|∀k, ∃m,∀n ∈ Z},

and
(2.6) Z2

3((k,m, n)>) = {(k,m, n)>|∀k, ∀m,∃n ∈ Z}.
These two-dimensional digital spaces are mutually orthogonal. Denoting
(2.7) N4

1((k,m, n)>) = {(k,m± 1, n)>, (k,m, n± 1)>},

(2.8) N4
2((k,m, n)>) = {(k ± 1,m, n)>, (k,m, n± 1)>},

and
(2.9) N4

3((k,m, n)>) = {(k ± 1,m, n)>, (k,m± 1, n)>},
the relationship

N6((k,m, n)>) = N4
1((k,m, n)>) ∪N4

2((k,m, n)>) ∪N4
3((k,m, n)>)

holds since N4
i ((k,m, n)>) is the 4-neighbourhood on the plane Z2

i ((k,m, n)>) for i = 1, 2, 3 [11].
Equation (2.10) implies that the 6-neighbourhood is decomposed into three mutually orthogonal
4-neighbourhoods [11]. Figures 2.1 (a) and (b) illustrate the spatial 6-neighbourhood and planar
4-neighbourhood, respectively. The 6-neighbourfood in Z3 is decomposed into three mutually
orthogonal 4-neighbourhoods as shown in Figure 2.1 (c).

A pair of points (k,m, n)> and x ∈ N6((k,m, n)>) defines a unit line segment in Z3. Further-
more, four 6-connected points which form a circle define a unit plane segment in Z3 with respect
to the 6-connectivity. Therefore, we assume that our object is a complex of 2× 2× 2 cubes which
share at least one face with each other. Thus, the surface of an object is a collection of unit squares
which are parallel to the planes x = 0, y = 0 and z = 0.

Definition 1. For a point x ∈ Z3, the collection of eight points
(2.10) S3 = {x,x+ e1,x+ e2,x+ e3,x+ e1 + e2,x+ e2 + e3,x+ e3 + e1,x+ e1 + e2 + e2}
is a digital 3-simplex.

Definition 2. A digital object is a complex of a finite number of digital 3-simplices.
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(a) (b)

(c)

A B C

(d)

Figure 2.1: Local configuration of 2-manifold in Z3. (a) 6-neighbourhood in Z3

(b) 4-neighbourhood on Z2. (c) Decomposition of the 6-neighbourhood in the
space to 4-neighbourhoods on the three orthogonal planes. (d) Configurations of
points on the planar boundary. The spatial 6-neighbourfood in Z3 is decomposed
into three mutually orthogonal 4-neighbourhoods.

3. Digital Boundary Manifold

For a pair of setsA andB in Rn, the Minkowski additionA⊕B and the Minkowski subtraction
A	B are defined as

(3.1) A⊕B =
⋃
b∈B

A(b), A	B =
⋂
b∈B

A(b),

for A(x) = {y|y = a+ x, ∀a ∈ A}.
For the Minkowski addition and subtraction, the relations

F 	G = F ⊕G(3.2)
F ⊕ (G ∪H) = (F ⊕G) ∪ (F ⊕H)(3.3)
F 	 (G ∪H) = (F 	G) ∩ (F 	H)(3.4)

are satisfied. Furthermore, we obtain the following theorem.

Theorem 3. If F ∩G = ∅, the equality
(3.5) (F ∪G)	H = (F 	H) ∪ (G	H)
is satisfied

(Proof)

(F ∪G)	H =
⋂
x∈H

(F ∪G)(x)

= {x+ y|∀x ∈H, ∃y ∈ (F ∪G)}
= {x+ y|∀x ∈H, ∃y ∈ F } ∪ {x+ y|∀x ∈H, ∃y ∈ G}
= (F 	H) ∪ (G	H)

�
In Z3, the inner boundary of F is defined as

(3.6) ∂F = F \ (F	N6),
where N6 = N6((0, 0, 0)>). A polyhedron whose vertices are points in ∂F is a Nef polyhedron
[4, 2, 3, 5]. Therefore, the inner boundary of F is a Nef polyhedron.

Definition 4. We call a Nef polyhedron in Z3 a grid Nef polyhedron.
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In this paper, we deal with the topological and geometrical properties of grid points on the
surface of a grid Nef polyhedron.

For i = 1, 2, 3, we set

(3.7) Z2
k(i) = {x|x = z + k(i)ei, z ∈ Z2

i ((0, 0, 0)>)},

where e1 = (1, 0, 0)>, e2 = (0, 1, 0)> and e3 = (0, 0, 1)>. A slice of F perpendicular to the plane
Z2
i for i = 1, 2, 3 is

(3.8) F2
k(i) = F ∩ Z2

k(i),

Furthermore, we set

(3.9) K(i) = {k(i)|F ∩ Z2
k(i) 6= ∅},

that is, K(i) is the number of slices which are perpendicular to ei. We have the following decom-
position theorem.

Theorem 5. Setting

(3.10) ∂F2
k(i) = F2

k(i) \ (F2
k(i) 	N4

i ),

where N4
i = N((0, 0, 0)>), the relation

(3.11) ∂F =
3⋃
i=1

⋃
k(i)∈K(i)

∂F2
k(i)

is satisfied.

(Proof) Since N6 =
⋃3
i=1 N4

i , we have the relation F 	N6 =
⋃3
i=1(F 	N4

i ). Furthermore, the
decomposition F =

⋃3
i=1

{⋃
k(i)∈K(i) F2

k(i)

}
derives the relation

F \ (F	N6) =

 3⋃
i=1

⋃
k(i)∈K(i)

F2
k(i)

 \


3⋃
i=1

((
⋃

k(i)∈K(i)

F2
k(i))	N4

i )


=

3⋃
i=1

⋃
k(i)∈K(i)

{
F2
k(i) \ (F2

k(i) 	N4
i )
}
.(3.12)

�
Theorem 5 implies the following properties.

Property 6. On the surface of a grid Nef polyhedron, each point lies on two or three digital planes.

Property 7. The boundary ∂F of a three-dimensional digital object F is the union of the two-
dimensional boundaries.

Therefore, it is possible to construct ∂F from {∂F2
k(i)}

3
k(i)∈K(i),i=1. Using this relation recur-

sively, we can construct the boundary detection algorithm for three-dimensional digital objects
from two-dimensional boundary detection algorithms.

4. Curvature Indices of Points

4.1. Planar Curvature Indices. Since we are concerned with a binary digital object, we affix
values of 0 and 1 to points in the background and in objects, respectively. On Z2, the three types
of point configurations illustrated in Figure 2.1 (d) exist in the neighbourhood of a point × on
the boundary. In the three configurations A, B and C in Figure 2.1 (d), • and ◦ are points on the
boundary and in the background, respectively. Setting fi ∈ {0, 1} to be the value of point xi such
that

(4.1)
x3 = (m,n+ 1)>

x5 = (m− 1, n)> x0 = (m,n)> x1 = (m+ 1, n)>
x7 = (m,n− 1)>,
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the curvature of point x0 is defined by

(4.2) r(x0) = 1− 1
2
∑
k∈N

fk + 1
4
∑
k∈N

fkfk+1fk+2,

where N = {1, 3, 5, 7} and k + 8 = k [24]. The curvature indices of configurations (a), (b) and (c)
are positive, zero and negative, respectively. Therefore, we call these configurations convex, flat
and concave, and affix the indices +, 0 and −, respectively.

4.2. Spatial Curvature Indices. Using combinations of planar curvature indices on three mu-
tually orthogonal planes passing through a point x0, we define the curvature index of a point x0
in Z3 since the 6-neighbourhood is decomposed into three 4-neighbourhoods. On the boundary of
a 6-connected object, Theorem 5 implies that there exist nine configurations in the 3× 3× 3 local
neighbourhoods shown in Figure 4.1.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.1: Local configurations of 2-manifold in Z3

Setting αi to be the planar curvature index on plane Z2
i (k(i)) for i = 1, 2, 3, the curvature

index of a point in Z3 is a triplet of two-dimensional curvature indices (α1, α2, α3) such that
αi ∈ {+,−, 0, ∅}. Here, if αi = ∅, the curvature index of a point on the plane Z2

i (k(i)) is not
defined. Therefore, for the boundary points, seven configurations,

(4.3)
(+,+,+), (+,+,−), (+, 0, 0),

(0, 0, ∅),
(−,−,−), (+,−,−), (−, 0, 0),

and their permutations are possible [11]. For a spatial curvature index α, setting n(α) to be the
number of octspaces in the 3× 3× 3 neighbourhood of a point, we have the relations

(4.4)
n((+,+,+)) = 1, n((+,+,−)) = 3, n((+, 0, 0)) = 2,

n((0, 0, ∅)) = 4,
n((−,−,−)) = 4, 7, n((+,−,−)) = 4, 5, n((−, 0, 0)) = 6.

Since there exist two configurations for (−,−,−) and (+,−,−), we set

(4.5) n((−,−,−)) = 7, n((−,−,−)−) = 4, n((+,−,−)) = 5, n((+,−,−)+) = 4.

Furthermore, since i
8 = 1− 8−i

8 , the vertex angles of the nine configurations on the boundary are

(4.6)

γ((+,+,+)) = 1
8 , γ((+, 0, 0)) = 2

8 , γ((+,+,−)) = 3
8 ,

γ((+,−,−)+) = 4
8 , γ((0, 0, ∅)) = 0, γ((−,−,−)−) = −4

8 ,

γ((+,−,−)) = −3
8 , γ(−, 0, 0) = −2

8 , γ((−,−,−)) = −1
8 .
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Definition 8. Using the nine configurations of eq. (4.6), we define the relation between the codes
and the triplet vectors α(x) for point x as

(4.7)

α(x) γ(x) α(x) γ(x)
(1, 1, 1)> (0, 0,+) (1, 1,−1)> (+,+,−)

(0,+, 0) (−,−,+)
(+, 0, 0) (1,−1, 1)> (+,−,+)
(+,+,+) (−,+,−)
(−,−,−) (−1, 1, 1)> (−,+,+)
(0, 0,−) (+,−,−)
(0,−, 0) (1, 1, 0)> (0, 0, ∅)
(−, 0, 0) (1, 0, 1)> (0, ∅, 0)

(0, 1, 1)> (∅, 0, 0).

Definition 9. Setting s(±) = ±1, s(0) = 0 and s(∅) = 0, we define the vertex indices as

(4.8) f(α1, α2, α3) = (s(α1) + s(α2) + s(α3))× (|s(α1)|+ |s(α2) + |s(α3)|)

using eq. (4.7).

This function f(·, ·, ·) takes values of {0,±1,±3,±9} according to the configurations on the
boundary. Furthermore, the sign of the function f(α1, α2, α3) indicates the direction of normal
vector n(x) at point x on the boundary. The direction of the normal vector is outward or inward
if the sign is positive or negative, respectively.

Setting ni to be the number of points whose vertex angles are i
8 , we define three vectors,

n = (n−4, n−3, n−2, n−1, n0, n1, n2, n3, n4)>(4.9)
a = (−2,−1, 0, 1, 0, 1, 0,−1,−2)>,(4.10)
k = a2 = (4, 1, 0, 1, 0, 1, 0, 1, 4)>.(4.11)

Using these vectors, we have the following theorems for the Euler characteristics of digital
objects [4, 2, 3, 5].

Theorem 10. An object F without tunnels satisfies the relationship

(4.12) a>n = 8.

Theorem 11. A collection of objects {Fi}ni=1, with gi tunnels satisfies the relationship

(4.13) a>n = 8
n∑
i=1

(1− gi).

5. Digital Curvature Flow

5.1. Normal Vectors on Digital Plane. For n = 2, 3 we define the dual set for the set lattice
points Zn as

(5.1) Zn = {x+ 1
2e|x ∈ Zn},

where e = (1, 1)> and e = (1, 1, 1)> for n = 2 and n = 3, respectively. We call Zn and Zn
the lattice and the dual lattice, respectively. Using the lattice and the dual lattice, we define the
curvature flow for surfaces defined in the lattice space.

We first deal with a closed planar curve. Setting C = {xj}Nj=1 to be the set of points on
the boundary ∂Fk(i) for fixed i and K(i), we assume that only two points xj=1 and xj+1 are
connected for each i and that the triplet xj−1, xj and xj+1 lies in the anticlockwise direction on
the boundary.

Using triplet of points xj−1, xj and xj+1, we compute the normal vector of each point. For the
planar point xj = (xj , yj)>, we express this vector as the complex number zj = xj + iyj . Setting

(5.2) αj + iβj =
(
zj+1 − zj
zj−1 − zj

) 1
2

,

188



Digital Flow

we define the outward normal vector nj as

(5.3) nj = λaj , aj = (αj , βj)>,

for point xj . From the local configurations of triplets of vectors on the boundary, there exist three
combinations for αj and βj :

(1) |αj | = 1/
√

2 and |βj | = 1/
√

2,
(2) |αj | = 0 and |βj | 6= 0,
(3) |αj | 6= 0 and |βj | = 0.

These geometrical relations imply that

(5.4) λj =
{ 1

2 if αjβj = 0,
1√
2 otherwise.

Figure 5.1 shows the directions of normal vectors on a digital curve on a plane.

Figure 5.1: Normal vectors on the corner. On the digital boundary, there exist
three configurations of the normal vectors of the point.

Using the curvature code γ(xj) of each point xj , we classify points on the boundary C := ∂Fk(i)
for fixed i and k(i) into types N+ and N−.

Definition 12. For a sequence of flat points

(5.5) N−(j) = {xβ |γ(xβ) = 0, j < β < j +m, s(γ(xj))× s(γ(xj+m)) = −1},

where s(γ(x)) = 1 and s(γ(x)) = −1 for (γ(xj)andγ(xj+m)) = (+,−) and (γ(xj)andγ(xj+m)) =
(−,+), respectively.

Each N−(j) is a sequence of flat points whose one endpoint is the concave point. Then, we set

(5.6) N− =
⋃
j

N−(j), N+ = C \N−.

Since N− is the union of sequences whose one endpoint is the concave point on the boundary, we
have the relation

(5.7) C = N+
⋃

N−, N+
⋂

N− = ∅.

Therefore, points in N+ and N− lie in convex and concave parts on the original boundary, respec-
tively.

Definition 13. If an end of a line segment is negative, we say that this line segment is a negative
line segment. Furthermore, if both ends are positive, we say that this line segment is a positive
line segment.

Using these geometrical properties of point sets N+ and N− on the boundary, we define a global
transform from point set C on Z2 to point set C on Z2 as

(5.8) xj =


xj − nj , if γ(xj) 6= 0,
xj − nj ± 1

2n
>
j , if γ(xj) = 0, xj ∈ N+,

xj + nj ± 1
2n
>
j , if γ(xj) = 0, xj ∈ N−.
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5.2. Normal Vectors in Digital Space. Point configurations on the boundary are defined by
the digital lines which lie on two or three mutually orthogonal vectors. Therefore, we define
three normal vectors n1, n2 and n3 which lie on planes perpendicular to vectors e1, e2 and e3,
respectively. According to these definitions, for n = (α, β)> on each plane, we have

(5.9) n1 = (0, α, β)>, n2 = (α, 0, β)>, n3 = (α, β, 0)>.

Using the vector nα, α = 1, 2, 3, we define the normal vector n(x) for a point x on the boundary
S in digital space Z3. There are nine types of vertex configurations in a 3× 3× 3 neighbourhood
on the boundary. Using eq. (4.7), we define the normal vector n(x) of point x.

Definition 14. The normal vector of a point x ∈ Z3 is

(5.10) n(x) = 1
2Nα(x)

for matrix N = (n1,n2,n3) on the surface of a Nef polyhedron.

5.3. Curvature-based Motion of Points. We derive a transformation using the global infor-
mation of the concavity of the digital boundary.

Definition 15. For boundary points whose two-dimensional codes are zero, we affix the same
two-dimensional curvature codes with these of line segments on which points lie.

The rule of Definition 15 derives the codes (α, β1, β2), (β1, α, β2) and (β1, β2, α), where βi ∈
{+,−}, for a point whose codes are (α, 0, 0), (0, α, 0) and (0, 0, α), where α ∈ {+,−, ∅}. These
notations lead to the codes (+,+,+), (+,+,−), (+,−,−), (−,−,−), (∅,+,+), (∅,+,−), (∅,−,−)
and their permutations. Using these codes, we define the code of the flat points and points on
edges as

(5.11) g(α, β1, β2) =
{

+, if f(α, β1, β2) = 9,
−, otherwise,

for (α, β1, β2) and its permutations.
Setting

(5.12) h(β1, β2) = (s(β1) + s(β2))× (|s(β1)|+ |s(β2)|),

we set the codes of flat points and points on edges as positive and negative if h(β1, β2) > 0 and
otherwise, respectively. For these curvature codes, the code of a flat point is defined as negative if
the number of negative codes in the curvature code is positive. Furthermore, we move flat points
outward and inward, if the codes are positive and negative, respectively.

Definition 16. For two line segments, which are mutually orthogonal, pass through flat points
with codes (∅, 0, 0), (0, ∅, 0) and (0, 0, ∅), using the codes of the end points of these two line segments
on a plane, we can affix the codes of flat points. Furthermore, If at least one end point is negative,
we assign the negative code to a point on this line.

There are six possibilities for the configurations of end points of two mutually orthogonal line
segments. These definitions for codes also conclude that the codes of points with the curvature
codes (+, 0, 0), (0,+, 0) and (0, 0,+) on an edge are negative if one end or both ends are negative.
Figure 5.2 shows examples of the signs of vertex indices on the boundary.

The normal vector on the discrete surface defined by eq. (5.10) is in the form

(5.13) n(x) = 1
2(a1e1 + a2e2 + a3e3),

where ai ∈ {−1, 0, 1}. Therefore, if ai = 1 and ai = −1, the vector (x + n(x)) determines
the transformation from x ∈ Z3 to y ∈ Z3. Moreover, if and only if the codes are (+,+,+),
(−,−,−), and (−,−,−)− and (α, β, γ) for α, β, γ ∈ {+,−}, the vector (x+n(x)) determines the
transformation from x ∈ Z3 to y ∈ Z3.
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Figure 5.2: Signs for flat points and edges.

For the codes (−,−,−), (α, 0, 0), (α, 0, 0) and (0, 0, α) for α ∈ {+,−, ∅}, the normal vectors
hold the relations

(5.14)

α(x) (∅, 0, 0) (0, ∅, 0) (0, 0, ∅) (−,−,−)
n(x) 0 0 0 aiei + ajej

α(x) (±, 0, 0) (0,±, 0) (0, 0,±)
n(x) ± 1

2 (a2e2 + a3e3) ± 1
2 (a1e1 + a3e3) ± 1

2 (a1e1 + a2e2).

However, these normal vectors do not define the transformation from points in Z3 to Z3. Therefore,
we define the transformation from x ∈ Z3 to y ∈ Z3 using g(·, ·, ·).

Definition 17. The point transformation S(·) between x ∈ Z3 and y ∈ Z3 is defined as

(5.15) y = S(x) = x+ εm(x)

for

(5.16)

α(x) (∅, 0, 0) (0, ∅, 0) (0, 0, ∅) (−,−,−)+
m(x) ± 1

2e1 n(x)± 1
2e2 n(x)± 1

2e3
1
2n(x)± 1

2ek

α(x) (±, 0, 0) (0,±, 0) (0, 0,±)
m(x) ± 1

2 (a2e2 + a3e3) ± 1
2 (a1e1 + a3e3) ± 1

2 (a1e1 + a2e2),

where

(5.17) ε =
{

1, for (+,+,+), (−,−,−), (−,−,−)−, (+,+,−), (+,−,+) and (−,+,+),
−1, for points where g(α, β1, β2) < 0.

The negative sign of ε depends on the configuration of two mutually orthogonal line segments
which pass through the points. Since the saddle points on a discrete dumbbell move inward,
our method preserves the topology of the dumbbell. However, according to the definitions of the
directions of the motion of points in the curvature flow, positive points on edges with both end
points negative move outward. This configuration defines the outward motion for points on the
bar of a dumbbell. Therefore, these definitions of the codes of flat points and edges preserve the
topology of dumbbells. The successive application of eq. (5.15) defines a transformation of point
sets between the lattice and the dual lattice.

Definition 18. The digital curvature flow is a sequence of point sets Sm for m ≥ 0 such that

(5.18) Sm =


∂F ⊂ Z3 if m = 0,
{x|x = S(x),x ∈ Z3} ⊂ Z3 if m = 2k for k ≥ 1,
{x|x = S(x),x ∈ Z3} ⊂ Z3 otherwise.

The odd and even steps of the digital curvature flow transform points on the lattice to points
on the dual lattice and points on the dual lattice to points on the lattice, respectively.

Now, we show an example.
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Example 19. Setting lattice points on a polyhedron to be

P10 =

 (0, 0, 2)>, (0, 1, 2)>,
(0, 0, 1)>, (0, 1, 1)>, (0, 2, 1)>
(0, 0, 0)>, (0, 1, 0)>, (0, 2, 0)>

 ,

P11 =

 (1, 0, 2)>, (1, 1, 2)>,
(1, 0, 1)>, (1, 1, 1)>, (1, 2, 1)>
(1, 0, 0)>, (1, 1, 0)>, (1, 2, 0)>

(5.19)

P12 =
{

(2, 0, 1)>, (2, 1, 1)>
(2, 0, 0)>, (2, 1, 0)>

}
,

the digital curvature flow

(5.20)

( 1
2 ,

1
2 ,

1
2 )> ← (0, 0, 0)>,

( 1
2 ,

3
2 ,

1
2 )>, ← (0, 2, 1)>, (0, 2, 0)>,

(1, 2, 1)>, (1, 2, 0)>
( 3

2 ,
3
2 ,

1
2 )> ← (1, 1, 0)>

( 3
2 ,

1
2 ,

1
2 )>, ← (1, 0, 0)>, (2, 0, 0)>, (2, 1, 0)>,

(2, 1, 1)>, (2, 0, 1)>
( 1

2 ,
1
2 ,

3
2 )>, ← (0, 0, 2)>, (0, 1, 2)>,

(1, 0, 2)>, (1, 1, 2)>,
( 1

2 ,
3
2 ,

3
2 )> ← (0, 1, 1)>,

( 3
2 ,

3
2 ,

3
2 )> ← (1, 1, 1)>,

( 3
2 ,

1
2 ,

3
2 )> ← (1, 0, 1)>

derives the cube

(5.21) P =

 ( 1
2 ,

1
2 ,

1
2 )> ( 1

2 ,
3
2 ,

1
2 )> ( 3

2 ,
3
2 ,

1
2 )>

( 3
2 ,

1
2 ,

1
2 )> ( 1

2 ,
1
2 ,

3
2 )> ( 1

2 ,
3
2 ,

3
2 )>

( 3
2 ,

3
2 ,

3
2 )> ( 3

2 ,
1
2 ,

3
2 )>

 .

In the next step, P converges to the point (1, 1, 1)>. Figures 5.3 (a) and (b)respectively show the
original polyhedron and a cube obtained as the result of the digital curvature flow.

(a) (b)

Figure 5.3: Example of deformation. (a) is transformed to (b). Furthermore, In
the next step, P converges the point (1, 1, 1)>

The curvature flow transforms each planar curve segment passing through lattice points on
a polyhedral boundary to a straight line segment passing through lattice points on a polyhe-
dral boundary. Furthermore, each closed curve on a plane is transformed to a rectangle. If
γ(x) = (+,+,+) at each step, the digital curvature flow eliminates 3/4 unit area from the corners.
Moreover, positive and negative parts on the boundary move outward and inward, respectively.
These considerations conclude the following theorems.

Theorem 20. For a closed surface, in each step, the digital curvature flow shrinks the boundary
on each planar 6 unit area from corners such that γ(x) = (+,+,+).

Theorem 21. The digital curvature flow preserves the topology if there is no tunnel.

Theorem 22. The digital curvature flow transforms a boundary to a cuboid.
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Theorem 23. The final form of the digital curvature flow is a spatial rectangle.

Furthermore, setting the surface energy.

(5.22) E = k>n,

we have the following theorem.

Theorem 24. On a closed two-dimensional manifold ∂F in Z3

(5.23) E = k>n ≥ 8(1 + g).

(Proof) From theorems 20, 21, 22 and 23, if F has no hole, F is topologically equivalent to a
cuboid. Since E = 8 for a cuboid, E ≥ 8 for an object without holes. Furthermore, if an object
has g holes, the object is topologically equivalent to a cuboid with g cuboid tunnels. Therefore,
for an object with g tunnels, E ≥ 8(1 + g). �

Moreover, we have the following theorem for E from theorem 20.

Theorem 25. For the surface evolution of eq. (5.15), E = k>n satisfies the relation

(5.24) ∂E

∂t
≤ 0.

6. Conclusions

We have defined curvature codes on a digital manifold in the three-dimensional digital space Z3.
A point on a 6-connected three-dimensional digital manifold lies on at least two 4-connected planar
curves, which lie on a pair of perpendicular digital planes. From this geometrical configuration of
orthogonal slices of digital manifolds, the three-dimensional curvature codes were constructed as
a combination of three planar curvature codes.

As an extension, we can define the curvature codes of points on an m-dimensional digital
manifold in the n-dimensional digital space for m ≤ n − 1. For example, if m = n − 1, the
curvature code on the digital manifold is described in the form α = (α1, α2, · · · , αn), where
αi ∈ {+1,−1, 0, ∅} and the curvature index of this point is

(6.1) f(απ(1), απ(2), · · ·απ(n)) = (
n∑
i=1

s(απ(i)))× (Πn
i=1|s(απ(i))|).

Theorem 11, which characterizes the topology of closed surfaces in the three-dimensional digital
surface, is a digital version of the Gauss-Bonnet theorem. This theorem suggests that using the
curvature codes on a higher-dimensional digital manifold, the digital version of the Chern-Gauss-
Bonnet theorem can be constructed as
(6.2) a>n = 2n(1− g),
where a and n are vectors which define the weights for the configurations of points on the surface
and the number of configurations on the surface, respectively, and g is the number of the holes of
an object. Moreover, the surface energy

(6.3) E = k>n = 2n(1 + g),
where each element of the vector k is the square of the corresponding element of a, will satisfy the
inequality ∂E

∂t ≤ 0.
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