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Geometric Aspects of the Space of Triangulations
Pooran Memari

Abstract
These are the notes of my talk presented in the colloquium on discrete curvature at

the CIRM, in Luminy (France) on November 21st, 2013, in which we study the space of
triangulations from a purely geometric point of view and revisit the results presented in
[21] and [20] (joint works with Patrick Mullen, Fernando De Goes and Mathieu
Desbrun). Motivated by practical numerical issues in a number of modeling and simulation
problems, we first introduce the notion of a compatible dual complex (made out of convex
cells) to a primal triangulation, such that a simplicial mesh and its compatible dual complex
form what we call a primal-dual triangulation. Using algebraic and computational geometry
results, we show that for simply connected domains, compatible dual complexes exist only
for a particular type of triangulation known as weakly regular. We also demonstrate that
the entire space of primal-dual triangulations, which extends the well known (weighted)
Delaunay/Voronoi duality, has a convenient, geometric parameterization. We finally discuss
how this parameterization may play an important role in discrete optimization problems
such as optimal mesh generation, as it allows us to easily explore the space of primal-dual
structures along with some important subspaces.

1. Introduction

Mesh generation traditionally aims at tiling a bounded spatial domain with simplices (triangles
in 2D, tetrahedra in 3D) so that any two of these simplices are either disjoint or sharing a lower
dimensional face. The resulting triangulation provides a discretization of space through both its
primal (simplicial) elements and its dual (cell) elements. Both types of element are crucial to a va-
riety of numerical techniques, finite element (FE) and finite volume (FV) methods being arguably
the most widely used in computational science. To ensure numerical accuracy and efficiency, spe-
cific requirements on the size and shape of the primal (typically for FE) or the dual elements
(typically for FV) in the mesh are often sought after.

Towards Generalized Primal/Dual Meshes. A growing trend in numerical simulation is the si-
multaneous use of primal and dual meshes: Petrov-Galerkin finite-element/finite-volume methods
(FE/FVM, [3, 19, 24]) and exterior calculus based methods [4, 6, 13] use the ability to store quan-
tities on both primal and dual elements to enforce (co)homological relationships in, e.g., Hodge
theory. The choice of the dual, defined by the location of the dual vertices, is however not spec-
ified a priori. A very common dual to a triangulation in Rd is the cell complex which uses the
circumcenters of each d-simplex as dual vertices. The barycentric dual, for which barycenters are
used instead of circumcenters, is used for certain finite-volume computations, but it fails to satisfy
both the orthogonality and the convexity conditions on general triangulations.

While the circumcentric Delaunay-Voronoi duality [25, 8] is one of the cornerstones of meshing
methods and, as such, has been extensively used in diverse fields, more general dualities are often
desired. Building on a number of results in algebraic and computational geometry, in [20] we
present a more general primal-dual pairs of complexes, primal-dual triangulations, that we briefly
describe in the first sections of this note.
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In the last part of this note, we show how the Weighted-Delaunay/Laguerre duality could help
to provide lower error bounds on numerical computations [21]. While most previous meshing
methods focused on designing well-shaped primal triangulations or dual complexes, we provide a
unifying approach to mesh quality based on the placement of primal and orthogonal dual elements
with respect to each other. In an effort to provide meshes most appropriate for fast, yet reliable
computations, we propose functionals on primal-dual mesh pairs that offer formal bounds on the
numerical error induced by the use of diagonal Hodge stars. We then demonstrate that meshes
that minimize our functionals have desirable geometric and numerical properties. These resulting
Hodge-optimized meshes offer a much-needed alternative to the traditional use of barycentric or
circumcentric duals in discrete computations. Finally, the resulting set of meshing tools we intro-
duce has wide applications: even when a specific connectivity is needed, some of our contributions
can be applied to increase numerical robustness and accuracy of basic operators.

2. Preliminaries

We start by reviewing important notions that we build upon and extend in subsequent sections.

2.1. Complex, Subdivision, and Triangulation. A cell complex in Rd is a set K of convex
polyhedra (called cells) satisfying two conditions:

(1) Every face of a cell in K is also a cell in K, and
(2) If C and C ′ are cells in K, their intersection is a common face of both.

A simplicial complex is a cell complex whose cells are all simplices. The body |K| of a complex
K is the union of all its cells. When a subset P of Rd is the body of a complex K, then K is
said to be a subdivision of P ; if, in addition, K is a simplicial complex, then K is said to be a
triangulation of P . For a set X of points in Rd, a triangulation of X is a simplicial complex K
for which each vertex of K is in X. In that case the body of K is the convex hull of X. Let us note
that the triangulations we consider in this work, usually coming from a point set, they partition a
simply connected domain in Rd (corresponding to the convex hull of the point set).

Also, in the definition of a triangulation of X, we do not require all the points of X to be used
as vertices; a point xi ∈ X is called hidden if it is not used in the triangulation. A triangulation
with no hidden points is called a full triangulation.

2.2. Triangulations in Rd through Lifting in Rd+1. Let X = {x1, . . . ,xn} be a set of points
in Rd. A simple way of constructing a triangulation of X is through the following lifting procedure:
take an arbitrary function L : X −→ R called the lifting function; consider the points (xi, L(xi)) ∈
Rd+1, i.e., the points of X lifted onto the graph of L; in the space Rd+1, consider Conv(L) the
convex hull of vertical rays {(xi, l)| l ≥ L(xi), l ∈ R, xi ∈ X}; the bounded faces of Conv(L), i.e.
faces which do not contain vertical half lines, form the lower envelope of the lifting L. If the
function L is generic (see [11] Chap. 7), the orthogonal projection (onto the first d coordinates) of
the lower envelope of L partitions the convex hull of X and produces a triangulation of X.

It is clear that the above lifting procedure may produce triangulations for which not all points
of X are vertices. A triangulation of a set X of points obtained through lifting is full (i.e., has no
hidden points) if and only if all the points (xi, L(xi)) lie on the lower envelope of L (or, in other
words, if function L can be extended, through linear interpolation in the triangles, to a convex
piecewise-linear function).
Regular Triangulations : A triangulation obtained by orthogonally projecting the lower envelope of
a lifting of X in Rd+1 (onto the first d coordinates) is called a regular triangulation ([29], Definition
5.3).

2.3. Weighted Delaunay Triangulations. A special choice for the lifting function produces
the well-known and widely-used Delaunay triangulation (see [26, 22] for properties of Delaunay
triangulations, and [25] for numerous applications). Indeed, letX be a set of points in Rd. Consider
the lifting of the points in X onto the surface of the paraboloid h(x) = ‖x‖2 in Rd+1; i.e., each
xi = (a1, . . . , ad) ∈ X gets mapped to (xi, hi) ∈ Rd+1 with hi = ‖xi‖2 = a2

1 + · · · + a2
d. Then

the orthogonal projection of the lower envelope of this lifting partitions the convex hull of X and
produces a (full) triangulation coinciding with the Delaunay triangulation of X.
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A regular triangulation (of the convex hull) of a point set X can now be seen as a generalization of
the Delaunay triangulation of X as follows. We first define aweighted point set as a set (X,W ) =
(x1, w1), . . . , (xn, wn), where X is a set of points in Rd, and {wi}i∈[1,...,n] are real numbers called
weights. The weighted Delaunay triangulation of (X,W ) is then the triangulation of X
obtained by projecting the lower envelope of the points (xi, ‖xi‖2 − wi) ∈ Rd+1. Note that a
weighted Delaunay triangulation can now have hidden points.

Notice also that given a lifting function L and its values li = L(xi) at the points of X, one
can always define weights to be the difference between the paraboloid and the function L, wi =
‖xi‖2 − li. We conclude that for simply connected domains (i.e. convex hull of X), the notions of
regular triangulations and weighted Delaunay triangulations are equivalent. Let us note that as it
is shown in [5], this equivalence is no longer true for domains with non trivial topology.

2.4. Generalized Voronoi Diagrams vs. Weighted Delaunay Triangulation. Delaunay
triangulations (resp., weighted Delaunay triangulations) can also be obtained (or defined) from
their dual Voronoi diagrams (resp, power diagrams). Let (X,W ) = {(xi, wi)}i∈I be a weighted
point set in Rd. The power of a point x ∈ Rd with respect to a weighted point (xi, wi) (sometimes
referred to as the Laguerre distance) is defined as d2(x,xi) − wi, where d(., .) stands for the
Euclidean distance. Using this power definition, to each xi we associate its weighted Voronoi
region V (xi, wi) = {x ∈ Rd| d2(x,xi) − wi ≤ d2(x,xj) − wj ,∀j}. The power diagram of (X,W )
is the cell complex whose cells are the weighted Voronoi regions.

Note that when the weights are all equal, the power diagram coincides with the Euclidean
Voronoi diagram of X. Power diagrams are well known to be dual to weighted Delaunay triangu-
lations, as we review next.
The dual of the power diagram of (X,W ) is the weighted Delaunay triangulation of (X,W ). This
triangulation contains a k-simplex with vertices xa0 ,xa1 , . . . ,xak in X if and only if V (xa0 , wa0)∩
V (xa1 , wa1)∩ · · · ∩V (xak

, wak
) 6= ∅, ∀k ≥ 0. While many other generalization of Voronoi diagrams

exist, they do not form straight-edge and convex polytopes, and are thus not relevant here.

3. Compatible Dual Complexes of Triangulations

We now show that the notion of mesh duality can be extended so that the dual complex is defined
geometrically, and independently from the triangulation—while the combinatorial compatibility
between the triangulation and its dual is maintained.

Definition 1 (Simple Cell Complex). A cell complex K in Rd is called simple if every vertex
of K is incident to d + 1 edges. K is called labeled if every d-dimensional cell of K is assigned
a unique label; in this case, we write K = {C1, . . . , Cn}, where n is the number of d-dimensional
cells of K, and Ci is the i-th d-dimensional cell.

Definition 2 (Compatible Dual Complex). Let T be a triangulation of a set X = {x1, . . . ,xn} of
points in Rd; and K = {Ci1 , . . . , Cin} be a labeled simple cell complex, i.e. there is a one-to-one
correspondence between xp and Cip . K is called a compatible dual complex of T if, for every
pair of points xp and xq that are connected in T , Cip and Ciq share a face.

This compatibility between K and T is purely combinatorial, i.e., it simply states that the
connectivity between points induced by K coincides with the one induced by T . Notice that the
cell Cip associated to the point xp, does not necessarily contain xp in its interior. Moreover,
the edge [xp,xq] and its dual Cip ∩ Ciq are not necessarily orthogonal to each other, unlike most
conventional geometric dual structures. Consequently, we can generalize the notion of mesh duality
through the following definition:

Definition 3 (Primal-Dual Triangulation (PDT)). A pair (T,K) is said to form a d-dimensional
primal-dual triangulation if T is a triangulation in Rd and K is a compatible dual complex of
T . If every edge [xp,xq] and its dual Cip ∩ Ciq are orthogonal to each other, the pair (T,K) is
said to form an orthogonal primal-dual triangulation.
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Figure 3.1: Primal-Dual Triangulation: primal triangulation, dual complex, and
combinatorially equivalent regular triangulation separately displayed for clarity.

3.1. Characterization of Primal-Dual Triangulations. An immediate question is whether
any triangulation can be part of a PDT. We first characterize the triangulations that admit a
compatible dual complex through the following two definitions:

Definition 4 (Combinatorial Equivalence). Two triangulations T and T ′ are combinatorially
equivalent if there exists a labeling which associates to each point xi in T a point x′i in T ′ so that
the connectivity between xi’s induced by T matches the connectivity between the x′i’s induced by
T ′.

Definition 5 (Combinatorially Regular Triangulations (CRT)). A triangulation T of a d-dimensional
point set X is called a combinatorially regular triangulation if there exists a d-dimensional
point setX ′ admitting a regular triangulation T ′ such that T and T ′ are combinatorially equivalent.

Remark: these CRT triangulations have been introduced in [16] under the name of weakly reg-
ular triangulations, since a displacement of their vertices suffices to make them regular. Figure 3.2
(after [16]) shows an example of a combinatorially regular triangulation which is not, itself, regular.

Figure 3.2: A regular triangulation (left), once deformed (right), becomes a com-
binatorially regular triangulation which is not, itself, regular.

Existence of PDTs in 2D. The 2D case is rather simple, due to this result mainly based on a
classical theorem of Steinitz [27](see also [16] and [20]):

Proposition 6. Any 2-dimensional triangulation is combinatorially regular.

Therefore, every 2D triangulation T can be part of a PDT pair (T,K). However in higher
dimensions (three and above), as we showed in [20], the situation is rather different:

Proposition 7. For d ≥ 3, there exist d-dimensional triangulations that do not admit any com-
patible dual complex.

This is equivalent to the fact that there exist triangulations which are not combinatorially regu-
lar. The simplest non-combinatorially regular examples are the Brucker sphere and the Barnette
sphere [9].

3.2. PDT=CRT. We claim that combinatorially regular triangulations are the only ones that
admit compatible dual complexes. The proof revolves around a theorem due to Aurenhammer:

Every simple cell complex in Rd, d ≥ 3, is dual to a regular triangulation.

144



Geometric Aspects of the Space of Triangulations

This theorem was proved in [2] through an iterative construction which is valid in any dimension
d ≥ 3. In [20], we used this theorem to prove the following theorem which surprisingly implies
that in higher dimensions there are triangulations that do not admit a dual complex:

Theorem 8 (PDT Characterization). A d-dimensional triangulation T admits a compatible (not
necessarily orthogonal) dual complex if and only if T is combinatorially regular.

4. Parameterizing Primal-Dual Triangulations

We have established that primal-dual triangulations cover all dual complexes in d ≥ 3; they also
cover all 2D triangulations, but only triangulations which admit a dual in d ≥ 3. We now focus
on parameterizing the whole space of primal-dual triangulations with n points in Rd by simply
adding parameters at the points. We then explore a geometric interpretation of this intrinsic
parameterization as well as its properties.

The proof of Theorem 8 leads us very naturally to a parameterization of all the triangulations
that admit a compatible dual complex:

Definition 9. A parameterized primal-dual triangulation is a primal-dual triangulation
parameterized by a set of triplets (xi, wi,vi), where xi is the position in Rd of the ith node, wi
is a real number called the weight of xi, and vi is d-dimensional vector called the displacement
vector of xi. The triangulation associated with the triplets (xi, wi,vi) is defined such that its dual
complex K is the power diagram of weighted points (pi, wi), where pi = xi + vi, see Fig 3.1.

The dual complex K can be seen as the generalized Voronoi diagram of the xi’s for the distance
d(x,xi) = ‖x−xi−vi‖2−wi. When the vectors vi are all null, the parameterized primal-dual
triangulation T is regular, thus perpendicular to its dual K, and the pair (T,K) forms an orthog-
onal primal-dual triangulation. This proves that weighted Delaunay triangulations are sufficient
to parameterize the set of all orthogonal primal-dual triangulations of a simply connected domain
(see also [12]). The displacement vectors extend the type of triangulations and duals we can pa-
rameterize.

Characterizing the classes of equivalent triplets parameterizing the same PDT, and completed
with constraints for the parameters in order to avoid redundancy between equivalent triplets, we
find an efficient parameterization for the space of primal-dual triangulations (see [20] for details):

Theorem 10 (PDT Parametrization). There is a bijection between all primal-dual triangulations
in Rd and sets of triplets (xi, wi,vi), 1 ≤ i ≤ n, where xi,vi ∈ Rd, wi ∈ R with

∑
i wi = 0,∑

i vi = 0, and
∑
i ‖xi + vi‖2 =

∑
i ‖xi‖2.

Remark: using this parametrization, the particular case of Delaunay / Voronoi PDT of a set of
points {xi}i=1..n is naturally parameterized by triplets (xi, 0, 0). Note also that the condition∑
i wi = 0 may be replaced by mini wi = 0, by simply subtracting the constant mini wi from all

the weights of triplets (the PDT depending on weight differences will remain unchanged). This
new condition implies that all the weights are positive which may be useful in some applications.

5. Applications in Mesh Optimization

In the previous section, we derived a natural parameterization of all non-orthogonal primal-dual
structures of simply connected domains in Rd. Besides the theoretical interest of these new primal-
dual structures, we anticipate numerous applications. We believe that our results can benefit mesh
optimization algorithms as we provide a particularly convenient way to explore a large space of
primal-dual structures. We have already provided a first step in this direction by designing pairs of
primal-dual structures that optimize accuracy bounds on differential operators using our parame-
terization [21], thus extending variational approaches designed to improve either primal (Optimal
Delaunay Triangulations [28]) or dual (Centroidal Voronoi Tesselations) structures. In that work,
we introduce Hodge-optimized triangulations (HOT), a family of well-shaped primal-dual pairs of
complexes designed for fast and accurate computations in computer graphics. Other existing work
most commonly employs barycentric or circumcentric duals: while barycentric duals guarantee
that the dual of each simplex lies within the simplex, circumcentric duals are often preferred due
to the induced orthogonality between primal and dual complexes. We instead promote the use of
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weighted duals (“power diagrams”). They allow much greater flexibility in the location of dual
vertices while keeping primal-dual orthogonality, thus providing an invaluable extension to the
usual choices of dual by only adding one additional scalar per primal vertex. Furthermore, we
introduce a family of functionals on pairs of complexes that we derive from bounds on the errors
induced by diagonal Hodge stars, commonly used in discrete computations. The minimizers of
these functionals, called HOT meshes, are shown to be generalizations of Centroidal Voronoi Tes-
selations and Optimal Delaunay Triangulations, and to provide increased accuracy and flexibility
for a variety of computational purposes. This approach is detailed in the following sections.

6. Hodge Optimized Triangulations

To demonstrate the advantages of using regular/power triangulations, we focus on a particularly
relevant type of functionals measuring primal and dual properties. Recall that for an arbitrary
primal element σ, the diagonal approximation of the Hodge star ? [4] of a continuous differential
form α assumes

(6.1)
∫
∗σ
?α ≡ | ∗σ|

|σ|

∫
σ

α,

where |.| denotes the Lebesgue measure (length, area, volume) of a simplex or cell. In other words,
the discrete kth Hodge star is encoded as a diagonal matrix ?k with ∀i, (?k)ii := | ∗σk

i |
|σk

i
| , where σ

k
i

(resp., ∗σki ) is the ith k-simplex (resp., k-cell) of the primal-dual triangulation M = (T ,D); the
discrete Hodge star of a discrete primal k-form ωk is then computed as ?k ωk, and the extension
to dual discrete forms (with, this time, (?k)−1) is trivial (for further details see, e.g., [6]). We will
link approximation error of diagonal Hodge stars to optimal transport.

6.1. Basics of Optimal Transport. The optimal transport problem seeks to determine the
optimal way to move a pile of dirt M to a hole N of the same volume, where “optimal” means
that the integral of the distances by which the dirt is moved is minimal. The notion of “distance”
(i.e., cost of transport) may vary based on context. A common distance function defined between
probability distributions in Rd with bounded support is the q-Wasserstein metric, defined as

Wq(µ, ν) =
(

inf
π∈P(µ,ν)

∫
Rd×Rd

‖x− y‖q dπ(x, y)
)1/q
.

Let us recall here the Kantorovich-Rubinstein theorem, stating that for two distributions µ and ν
with bounded support, the 1-Wasserstein distance between µ and ν can be rewritten as:

(6.2) W1(µ, ν) = sup
continuous ϕ:S→R

Lips(ϕ)≤λ

1
λ

∫
S

ϕ(x) d(µ− ν),

where Lips(ϕ) represents the Lipschitz constant of function ϕ. This expression will be useful
shortly to link optimal transport and approximation error of diagonal Hodge stars.

6.2. Deriving Tight Bounds through Optimal Transport. While computationally conve-
nient, diagonal Hodge stars are obviously not very accurate: they are generally only exact for
constant forms. We can quantify the induced inaccuracy of ?k by defining the error density ei on
the dual of the simplex σi as the average difference between the discrete approximation and the
real Hodge star value:

ei := 1
| ∗σi|

∣∣∣∣ | ∗σi||σi|

∫
σi

ω −
∫
∗σi

?ω

∣∣∣∣ =
∣∣∣∣ 1
|σi|

∫
σi

ω − 1
| ∗σi|

∫
∗σi

?ω

∣∣∣∣
=
∣∣∣∣∫
σi

f(x)dσi
|σi|
−
∫
∗σi

f(x) d∗σi
| ∗σi|

∣∣∣∣ =
∣∣∣∣∫
σi∪∗σi

f(x)
[
dσi
|σi|
− d ∗σi
| ∗σi|

]∣∣∣∣ ,
where f(x) is the component of ω on dσi. We deduce, using Eq.(6.2), that the tightest bound one
can find on the Hodge star error density per simplex for an arbitrary λ-Lipschitz form is simply λ
times the minimum cost over all transport plans between σi (seen as a uniform distribution over
the mesh element that integrates to one) and ∗σi (also seen as a uniform distribution integrating
to one); i.e., with a slight abuse of notation,
(6.3) ei ≤ λ W1(σi, ∗σi).
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This formally establishes a link between Hodge star accuracy and optimal transport. Note that we
only required ω to be Lipschitz continuous, a reasonable assumption in most graphics applications.

6.3. Error Functionals on Meshes. From these local error densities, we can assemble a total
error by taking the Lp≥1 integral norm of the error over the mesh area by integrating the pth power
of the error density over each convex hull1 of σi and its dual ∗σi. This directly yields:

Ep(M, ?k)=

 ∑
σi∈Σk

∫
CH(σi∪∗σi)

ei
p


1
p

=

 ∑
σi∈Σk

|σi|| ∗σi|(
k
d

) ei
p

1
p

,

since the convex hull CH(σi ∪ ∗σi) is, up to a dimension factor, simply the product of the primal
and dual volumes due to our primal/dual orthogonality assumption of meshM. Note that these
convex hulls, coined “support volumes in" [15] and “diamonds” in [14, 6], tile the whole primal
mesh, thus providing a proper volume integral.

From Eq. (6.3), we conclude that a tight bound for the pth power of the total error is expressed
as:

(6.4) Ep(M, ?k)p ≤ λ(
k
d

) ∑
σi∈Σk

| ∗σi||σi|W1(σi, ∗σi)p.

(Notice that E∞(M, ?k) is thus, up to the Lipschitz constant, bounded by the maximum of the
minimum W1 distance between primal and dual elements of the mesh as expected.) For notational
convenience, we will denote by ?k- HOTp,1(M) the bound (with Lipschitz and dimension constants
removed) obtained in Eq. (6.4); more generally, we will define

?k- HOTp,q(M) ≡
∑
σi∈Σk

| ∗σi||σi|Wq(σi, ∗σi)p

as relevant functionals (or energies) to construct meshes, as minimizing them will control the
quality of the discrete Hodge stars. Let us note that most of our HOT energies are evaluated
by splitting simplices/cells into canonical subsimplices for which closed-forms integral expressions
W (p, T ) of simplex-T -to-point-p transport are easily found.
Discussion: Our HOT energies are archetypical, general-purpose examples of mesh quality measures
imposed on both primal and dual meshes, but they are by no means unique: from the local
error densities ei, other energies can be formulated to target more specific errors occurring in
mesh computations. Note also that the use of a 1-Wasserstein distance is notably less attractive
numerically than a 2-Wasserstein distance. Fortunately, we can also provide a bound of the Hodge
star error which, while less tight than the previously derived HOTp,1, will be particularly convenient
to deal with computationally:

E2(M, ?k)2≤
∑
σi∈Σk

| ∗σi||σi|W2(σi, ∗σi)2 ≡ ?k- HOT2,2(M).

The reader may have noticed that the functional ?0- HOT2,2(M) is, in the case of equal weights,
the well-known Centroidal Voronoi Tesselation (CVT) energy (

∑
i

∫
Vi
‖ x−xi ‖2 dV ) for which

several minimization techniques, from Lloyd iterations [7] to quasi-Newton methods [18], have been
developed. Lp variants (i.e., ?0- HOT2p,2(M) for p≥2) were also explored recently [17]. However,
these energies only correspond to ?0, and are not as tight as HOT1,p. Our HOT energies can
thus be seen as a direct generalization of the CVT-like functionals. Note finally that the Optimal
Delaunay Triangulation (ODT) energy used in [1] can also be seen as a variant of ?d- HOT2,2(M)
in Rd for which the dual mesh is restricted to be “barycentric”; alas, the resulting mesh will not
necessarily lead to an orthogonal primal-dual triangulation—even if the resulting simplices were
proven to be very close to isotropic.

1The reader may notice that when σi and ∗σi do not intersect, the integration domain is no longer a convex set,
but a signed union of subsimplices. For simplicity, we will still use the term “convex hull”.
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6.4. General Minimization Procedure. Given that both (continuous) vertex positions and
(discrete) mesh connectivity need to be optimized, the task of finding HOT meshes is seemingly
intractable. Thankfully, regular triangulations provide a good parameterization of the type of
primal-dual meshes we wish to explore: one can simply continuously optimize both positions and
associated weights to find a HOT mesh. However, HOT energies are not convex in general, and
a common downfall of non-convex optimization is its propensity to settle into local minima. In
our case, this can be nicely alleviated by starting the optimization from a mesh relatively near the
optimal solution, i.e., for which the vertices are well spread out. We thus run, after initializing the
domain with uniformly sampled vertices over the domain, a few iterations of CVT [7] or ODT [1]
to quickly disperse the vertices and get mesh elements roughly similar in size. Once a good initial
mesh has been found, we perform a gradient descent, or alternatively, an L-BFGS algorithm [23]. A
linear search is performed to adapt the step size along the gradient or the quasi-Newton direction.
This common minimization procedure works quite well without requiring anything else but an
evaluation of our HOT energies and their gradients. Note that since the positions xi and the
weights wi have very different scales, we proceed by alternatively minimizing our HOT energies
with respect to vertex positions and weights.

7. Results

HOT meshes can be beneficial in a number of contexts in modeling of surfaces and volumes, as
well as in simulation. A particularly common linear operator in mesh processing is the Laplacian
∆, be it in the plane or on a discrete surface. As its Discrete Exterior Calculus (DEC) expression
for 0-forms is ∆ = dt0 ?

1 d0, our HOT energies for ?1 should be particularly adapted to its accurate
computation: the d0 operator being exact, the only loss of accuracy rises from this particular
Hodge star. A ?1-HOT2,2 mesh indeed results, on a discretization of a simple test domain with
200 vertices, in a 5% reduction of the condition number of the Laplacian matrix with Dirichlet
boundary conditions compared to a CVTmesh. The result is much more dramatic for the Laplacian
of dual 0-forms, where the condition number drops from 254 to 90 on the same example.

To some extent, our approach can even help to deal with situations where the primal trian-
gulation is given and cannot safely be altered: for instance, moving vertices and/or changing the
connectivity of a triangle mesh in R3 is potentially harmful, as it affects the surface shape. Still,
the ability to optimize weights to drive the selection of the dual mesh is very useful. We can easily
optimize primal-dual triangulations (meshes) by minimizing a functional (energy) with respect to
weights. The connectivity is kept intact, regardless of the weights—only the position and shape
of the compatible dual is optimized. Our 2D and 3D experiments [21] show that only optimizing
the weights is particularly simple and beneficial on a number of meshes. Fig. 7.1 depicts a trian-
gle mesh of a hand and its intrinsic dual before and after weight optimization, showing a drastic
reduction in the number of negative dual edges—thus providing a practical alternative to the use
of intrinsic Delaunay meshes advocated in [10].

As another illustrative example, Fig. 8.1 shows that even an optimized Delaunay triangulation
(ODT mesh, 195K tets, 36K vertices)) with exceptionally high-quality tetrahedra [28] can be
made significantly better centered (i.e., with dual vertices closer to the inside of their associated
primal simplex) using a simple weight optimization. Note also that in this example the number of
tetrahedra with a dual vertex outside of the primal tet dropped from 17041 on the ODT mesh to
5489 on the optimized mesh—a two third reduction of outcentered tetrahedra.

8. Conclusion

We introduced the notion of compatible dual complex for a given triangulation in Rd, and
discussed the conditions under which an arbitrary triangulation of a simply connected domain
admits a compatible, possibly non-orthogonal dual complex. Note that our only requirement for
the dual is that it is made out of convex polytopes, thus reducing the space of possible primal-dual
pairs to a computationally-convenient subset for which basis functions and positive barycentric
coordinates are easily defined. We also pointed out a link to a previously-introduced notion of
weakly regular triangulation by Lee in the nineties, and that there are triangulations that do not
admit a dual complex. In addition, the parameterization we derived for all non-orthogonal primal-
dual structures, provides a particularly convenient way to explore a large space of triangulations
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Figure 7.1: Improving Dual Structure of a Surface Mesh: For a given
triangular mesh (left) there are several triangles whose circumcenter is far outside
the triangle (center, lines drawn in red). By optimizing only the weights the new
dual vertices are better placed inside the unchanged triangles (right) while keeping
primal/dual orthogonality.

for which we anticipate numerous applications. As we have shown in the last sections of this note,
our results can in particular benefit mesh optimization algorithms. In addition to applications in
mesh optimization, modeling (as in computational biology) that uses convex space tilings could
directly use our parameterization of PDTs. Clustering techniques based on k-means may also
benefit from parameterizing clusters by more than just centers, as weights and vectors add more
flexibility to the segmentation of input data.

Figure 8.1: Improving Dual Structure of 3D Meshes: A the dual of a high-
quality ODT mesh of the Bimba con Nastrino (a) can be optimized in terms
of Hodge star operator’s accuracy; by improving minimal dual edge length and
self-centeredness. (c) Weights are displayed according to sign (red/green) and
magnitude. When we single out the tetrahedra with a distance between weighted
circumcenter and barycenter greater than 0.5% of the bounding box, one can see
the optimized mesh (d) is significantly better than the original ODT (b), even if
the primal triangulations are exactly matching.
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