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Subword complexity and finite characteristic
numbers

Alina FIRICEL
Abstract

Decimal expansions of classical constants such as v/2, = and ¢ (3) have long been a
source of difficult questions. In the case of finite characteristic numbers (Laurent series with
coefficients in a finite field), where no carry-over difficulties appear, the situation seems to
be simplified and drastically different. On the other hand, the theory of Drinfeld modules
provides analogs of real numbers such as 7, e or ¢ values. Hence, it became reasonable to
enquire how “complex” the Laurent representation of these “numbers” is.

1. INTRODUCTION

Let a = (an)n>0 be an infinite sequence over a finite alphabet A. The subword complezity of a
is the function that associates with each m € N the value p(a,m), equal to the number of distinct
factors of length m occurring in a.

For example, let us consider the infinite word a = aaa---, the concatenation of a letter a
infinitely many times. It is obvious that p(a,m) = 1 for any m € N. On the other side, let us
consider the infinite word introduced by Champernowne in 1933 ([13]) a := 01234567891011 - - -,
that is the concatenation of the sequence of all nonnegative integers ranged in increasing order.
Notice that p(a,m) = 10™ for any m € N.

However, one can easily prove that for every m € N and for every word a over the alphabet A,
we have the following;:

1 < p(a,m) < (card A)™,
and both inequalities are sharp.

A long standing open question concerns the digits of the real number 7 = 3.14159---. The
decimal expansion of m has been calculated to billions of digits and unfortunately, there are no
evident patterns occurring. Actually, for any b > 2, the b-ary expansion of 7 looks like a random
sequence (see for example [5]). More concretely, it is widely believed that 7 is normal, meaning that
all blocks of digits of equal length occur in the b-ary representation of m with the same frequency,
but current knowledge on this point is scarce.

Let « be a real number and let a be the representation of « in an integral base b > 2. The
complexity function of « is defined as follows:

p(a,b,m) = p(a,m),
for any positive integer m.
Notice that 7 being normal would imply that its complexity must be maximal, that is p(7,b,m) =

b™. In this direction, similar questions have been asked about other well-known constants like e,
log 2, ¢ values or /2 and it is widely believed that the following conjecture is true.

Conjecture 1. Let o be one of the classical constants: 7, e, log2, ¢ values and /2. The complexity
of the real number o satisfies:

p(a7 b7 m) = bm’

for every positive integer m and every b > 2.
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If a € Q, then p(c,b,m) = O(1), for every integer b > 2. Moreover, there is a famous theorem
of Morse and Hedlund ([19]) which states that, if « is an irrational number then p(a, b,m) > m+1.
Concerning irrational algebraic numbers, the main result known to date in this direction is the
following.

Theorem 1.1. [Adamczewski-Bugeaud, 2004] Let a be an irrational algebraic number and b > 2
be an integer. Then:

b
lim pi(a, ™) = +00.
m—oo m

For more details concerning the complexity of real numbers, see for instance [1, 2].

The starting point of this paper is this type of questions, but in the world of Laurent series
with coefficients in a finite field. Let us also recall the well-known analogy between integers,
rationals and real numbers on one side, and polynomials, rationals functions, and Laurent series
with coefficients in a finite field, on the other side.

In this paper, we will focus on Laurent series with coefficients in F,, where ¢ is a power of a
prime number p.

Let ng € N and consider the Laurent series:

+oo
F(T) = Z a, T € Fy((T7).
n=—no

Let m be a nonnegative integer. We define the complezity of f, denoted by p(f,m), as being
equal to the complexity of the infinite word a = (a,)n>0-

2. COMPLEXITY OF LAURENT SERIES

In this section we gather results concerning the complexity of Laurent series over I, in function
of their arithmetic properties. Notice that, if f(T') € F,(T), then p(f, m) = O(1). First of all, we
describe the situation of algebraic power series over Fy(T).

Secondly, we present the Carlitz’ analogs of m, e or { values. Many of these finite characteristic
numbers were shown to be transcendental over Fy(T') (see [18, 14, 20, 21, 22]).

Finally, we study the effect of usual operations over Laurent series. More precisely, we give
some closure properties of Laurent series of “low” complexity (addition, multiplication, Hadamard
product, derivative, Cartier operator).

For the complete proofs of these results, we refer the reader to [17].

2.1. Algebraic Laurent series. A Laurent series f(T) =Y -, a,T~" € Fy((T™")) is said to
be algebraic over the field F,(T') if there exist an integer d > 1 and polynomials Ay(T), A1(T), ..., Aq(T),
with coefficients in F, and not all zero, such that:
Ao+ Aif + -+ Agft = 0.
An important theorem of Christol ([15]) describes precisely the algebraic Laurent series over
F,(T) as follows.

Theorem 2.1. [Christol, 1979] Let f(T) =3_,.5_,,
over F,. Then f is algebraic over Fy(T) if, and only if, the sequence (an)n>0 is p-automatic.

an,T™™ be a Laurent series with coefficients

For more references on automatic sequences, see for example [4]. Furthermore, Cobham proved
that the subword complexity of an automatic sequence is at most linear (see [16]). Hence, an easy
consequence of those two results is the following.

Theorem 2.2. Let f € F,((T1)) algebraic over Fy(T). Then we have:
p(f,m) = O(m).

The reciprocal is obviously not true, since there clearly are uncountable many Laurent series
with linear complexity.
An explicit example can be the following transcendental Laurent series:

fT) =Y fuT € By (1Y),

n>0
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where f := (f;,)n>0 = 01001010010010100101 - - - is the fixed point of the morphism: ¢(0) = 01
and o(1) = 0. The infinite word f is called the Fibonacci word. It is not difficult to prove that this
sequence is not k-automatic, for any positive integer k > 2. Consequently, according to Christol’s
theorem, f is transcendental over F,(T'), for every g. On the other side, it is not difficult to prove
that p(f, m) = O(m) (see for instance the Chapter “Sturmian words” from [7]).

In contrast with the real numbers world, the situation is clarified in the case of algebraic Laurent
series. Also, notice that Theorems 1.1 and 2.2 give rise to the following corollary, which points out
the fact that the situations in F,((7')) and in R appear to be opposite.

Corollary 2.1. Let f(T Z a,T F,(T"") \ F,(T) and «a : Z app” " € R\ Q.

n>-—ng n>-—ng
If the Laurent series f is algebraic over Fp(T'), then « is transcendental. Conversely, if the real
number o is algebraic, then the Laurent series f is transcendental over F,(T').

2.2. Carlitz’ analogs of some transcendental constants. As we have already mentioned in
the introduction, we have the following analogies:

Z = Fq[T]

Q~Fy(T)

R~ (7))

C=C
where C is the completion of an algebraic closure of Fy((7)).

In 1935, Carlitz introduced ([12]) functions in positive characteristic by analogy with the Rie-
mann ¢ function, the usual exponential and the logarithm function.

2.2.1. Definitions. The Carlitz (, function is analogous of { Riemann function and it is defined as
follows:

(1) Cq:N*HFqH;”; G = Pl

Moreover there exists a Laurent series 11, such that:
(2) Vn=0mod (¢ —1),n#0, 3r, € Fy(X) , (g(n) = yr,.
II, may be defined also by the following infinite product:

®) H( )

Remark 2.1. The property (2) is analogous to the classical results of Euler concerning ¢ values
for even integers. Indeed, it is well-known that, if s is even, then ((s) = w°r, where r is a rational
number. This shows a good analogy between the real number 7 and the finite characteristic number
I1,.

The Carlitz ezponential, denoted by ec(z), is defined over C, by the following infinite product:

colz)== ] Q-—=)

a€F,[T), a0 allg

- en= (- 5)

where

Remark 2.2. Since ¢* = 1 if and only if z € 2miZ and since ec(z) was constructed by analogy
such that ec(z) = 0 if and only if z € IL,F,[T] (in other words the kernel of ec(z) is II,F,[T]), we
get a good analog 11, of 27i.
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Carlitz also defined the inverse of this exponential, the Carlitz logarithm by the following for-

mula:
400

loge(2) = Z 2L
k=0
k
where Ly, = [[ (17" — 7).
i=1

2.2.2. Complexity of Carlitz’ analogs. In the previous section, we have recalled the definitions of
the analogs of real numbers like m, ¢ values, e or logarithm values. Now we are interested in the
study of the complexity of these analogs in the case of Laurent series.

We begin with the case of the Carlitz’s analog of m. If we look for the power series expansion
of TI,, then, using formula (3), one can easily get:

0, => a7,
n>0
where the sequence (ay,)n>0 is defined as following:
(4) @, = the number of partitions of n whose parts take values in I = {¢’ — 1,5 > 1} mod p.

Computing the complexity of II, asks for a closed formula or some recurrence relations for the
sequence of partitions (a,)n>o. This seems quite difficult and we are not able to solve at this
moment.

However, it was shown in [3] that the inverse of II, has the following simple power series
expansion:

I 1 = Y
H:H<1—qu_1) =Y mT
7 j=1 n=0
where the sequence p, = (p(n))n>0 is defined as follows:

1if n=0;
pn = < (—1)°47 if there exist a set J C N* such that n = dies (@ —1);
0 if there is no set J C N* such that n =3, (¢7 —1).

We mention that if such a decomposition exists, it is unique. Besides the fact that this sequence
takes only 3 values (for any ¢), it is possible to find some nice patterns in p,. Hence, p, turn out
to be easier to study that the sequence defined in (4).

Using the above expression, we obtain the following result ([17]).

We mention that here we use Landau’s notations. We write f(m) = O(g(m)) if f is bounded
both above and below by g asymptotically. In other words, there exist positive integers k1, ka2, g
such that, for every n > ng we have

kilg(n)| < f(n) < kzlg(n)].
Theorem 2.3. Let ¢ = 2. The complexity of the inverse of 11, satisfies:

g em) = O(m?).

Theorem 2.4. Let ¢ > 3. The complexity of the inverse of Il satisfies p(Hi,m) =0O(m).

Since any algebraic Laurent series has a complexity at most linear (by Theorem 2.2), the fol-
lowing corollary yields.

Corollary 2.2. IIy is transcendental over Fo(T).

Thus, the subword complexity of Laurent series can be used to prove transcendence results.

We end this section with some questions related to other Carlitz’ analogs.
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Question 2.1. Using definition (1), we have for example:

) = ot e b e b
YT T T T T Tl TP T TP AT+
11 1 11 .
What can we say about the complexity of 2(1)? Or more generally, what can we say about the
complexity of (,(n), for any positive integer n?
In the same spirit, what can we say about the complexity of the Laurent series expansion of
ec(1), the analog of the real number e?

When investigating these problems, we need, in general, the Laurent series expansions of such
functions. In this context, one has to mention the work of Berthé [8, 9, 10, 11], where there are
illustrated some Laurent series expansions of Carlitz’ functions.

Problem 2.1. It would be interesting to investigate the following general question.

Is it true that finite charcteristic analogs of classical constants (see Section 2.2) all have a “low’
complexity (i.e. polynomial or subexponential)?

The first clue in this direction are the examples provided by Theorems 2.2, 2.3 and 2.4.

Notice also that a positive answer would reinforce the differences between R and F,((T1)) as
hinted in Corollary 2.1. Indeed, recall that classical constants like v/2, e, 7,1og2 € R are expected
to be normal, which implies that they have an exponential complexity.

4

2.3. Closure properties of a special class of Laurent series. It is natural to classify Laurent
series in function of their complexity. Let us introduce the following set:

P ={f €F,((T™")), there exists K such that p(f,m) = O(m™)}.

We have already seen, in Theorem 2.2, that the algebraic Laurent series belong to P. Also, by
Theorem 2.3 and 2.4, H% belongs to P. Hence, P seems to be an important object of interest for
this classification. Furthermore, P is a good candidate to enjoy some nice closure properties.

In this direction, we obtain in [17] the following result.

Theorem 2.5. P is a vector space over Fq(T).
The proof of this theorem is a straightforward consequence of Propositions 1 and 2.

Proposition 1. Let f and g be two Laurent series belonging to Fy((T~1)). Then, for every m € N
we have:

() p(f +g,m) < p(f,m)p(g,m).
Proposition 2. Let 7(T) € Fy(T) and f(T) = 3,5, anT™" € F,((T~Y)). Then for every
m € N, there is a positive constant M, depending only on r(T') and ng, such that:
p(rf,m) < Mp(f,m).
Related to Proposition 1, one can naturally ask the following question.

Question 2.2. Is it possible to saturate the inequality (5) in Proposition 1?7 In particular, it
would be interesting to construct two explicit examples of Laurent series of linear complexity such
that their sum has quadratic complexity.

Further, we mention other closure properties of P.
Theorem 2.6. P is stable by Hadamard product, formal derivative, Cartier operator.

The reader may refer to Chapter 12 of the monograph [4] for more details about Hadamard
product or Cartier operator.

Problem 2.2. It would be also interesting to study other closure properties of the class P. In
particular, is it true that P is closed under the usual Cauchy product?

Notice that if the answer is positive, this could lead to results of algebraic independence. There
are actually some particular cases of Laurent series with low complexity whose product still belongs
to P (see [17]).
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On the other hand, if the answer is negative, is it possible to give some explicit examples of
Laurent series belonging to P, whose product does not belong to P?

3. CONCLUDING REMARKS
We conclude this note with some remarks and comments.

e First of all, we precise that another motivation of this work has been also the article [6]
of R. Beals and D. Thakur. They proposed a classification of finite characteristic numbers
in function of their space or time complexity. This complexity is in fact a characteristic of
the (Turing) machine that computes the coefficient a;, if f(T') :== >, a,7~". They showed
that some classes of Laurent series have good algebraic properties (for example the class
of Laurent series corresponding to deterministic space class S(n), S(n) > n, form a field).
They also place some finite characteristic numbers like II;, 1/TI,; or e in the computational
hierarchy.

e Other applications of complexity results for Laurent series include diophantine properties.
In particular, bounds for irrationality measures can be obtained for elements of the class
of Laurent series of linear complexity.
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