
Courbure discrète : théorie et applications

Rencontre organisée par :
Laurent Najman and Pascal Romon

18-22 novembre 2013

Paul Baird
Curvature on a graph via its geometric spectrum
Vol. 3, no 1 (2013), p. 97-105.

<http://acirm.cedram.org/item?id=ACIRM_2013__3_1_97_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) France

cedram
Texte mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://acirm.cedram.org/item?id=ACIRM_2013__3_1_97_0
http://www.cedram.org/
http://www.cedram.org/


Actes des rencontres du C.I.R.M.
Vol. 3 no 1 (2013) 97-105
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Abstract
We approach the problem of defining curvature on a graph by attempting to attach a

‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star.
How this should be done depends upon the global structure of the graph which is reflected
in its geometric spectrum. Mean curvature is the most natural curvature that arises in this
context and corresponds to local liftings of the graph into a suitable Euclidean space. We
discuss some examples.

1. Introduction

The problem we address is one of ascribing geometry to a graph using just its combinatorial
structure. Geometry should emerge from the structure rather than being imposed upon it. Our
approach is to appeal to the way we perceive objects in the world around us. A good starting
point is what psychologists refer to as the Necker cube.

When we see this picture we generally perceive one of two possible 3-dimensional cubes. The
reasons for this are a matter of cognitive science, but also the way the graph has been drawn on
the piece of paper. With the graph so realized as a framework in 3-dimensional Euclidean space,
we can begin to do geometry: edge length is defined; the Gauss curvature is defined at each vertex
in terms of the angular deficit; other curvatures appear, such as the rotation of the Gauss map
between adjacent vertices. But how has the realization of this graph come about?

To perform this procedure on an more general graph, we attempt to produce a “best-fit polytope”
at each vertex, or rather, what we call a configured star, by lifting a vertex and its neighbours in a
natural way into a Euclidean space RN . A configured star generalizes the star framework at each
vertex of a regular polytope. More specifically, it consists of an internal vertex connected to n
external vertices that have a particularly symmetric configuration (see below). In particular, any
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configured star has an axis which can be interpreted as the Gauss map at a vertex. The dimension
N of the space into which we lift is a matter of choice but must always be less than or equal to
the degree n of the vertex.

But now if we return to the cube pictured above, how do we decide whether to fit a cube to
each vertex, or a regular tetrahedron, since both have vertices of degree 3 ? The answer is the cube
because of the global combinatorial structure of the graph. In order to bring this global structure
into play, we introduce the notion of geometric spectrum in [3, 1]. The geometric spectrum is
a real-valued parameter γ defined on the vertices of a graph for which the quadratic difference
equation :
(1.1) γ(∆φ)2 = (∇φ)2

has a non-trivial solution φ (see (2.2) below for the explicit form of this equation). For technical
reasons that we explain below, we require that γ < 1. The smooth version of equation (1.1) applied
to a hypersurface in Euclidean space shows that 1/γ = −H2 where H is the mean curvature. Since
for a mesh which approximates a smooth hypersurface, equation (1.1) approximates its smooth
counterpart, it is reasonable to consider γ as corresponding to mean curvature (or more precisely
to −1/H2). It is worth noting that for regular convex polyhedra, equation (1.1) is satisfied with γ
positive in the case of a small number of vertices, for example the tetrahedron, and then becoming
negative when the number of vertices increases, for example for the icosahedron, the dodecahedron
and the 4-dimensional 600-cell, as the polyhedron approximates better a smooth round sphere.

For a complete graph on N + 1 vertices, the geometric spectrum consists of a single value
N/(N + 1) and the solution φ corresponds to the images of the vertices after an orthogonal
projection of the regular N -simplex to the complex plane. At the other extreme, for a cyclic graph
on n vertices, solutions φ to (1.1) correspond to realizations of the graph as an n-polygon in the
plane with sides of equal length. Now the geometric spectrum has continuous components with
complicated branching phenomena. An interpretation of the geometric spectrum as information
implicit in a graph which may be exploited to enact structural change is discussed in the article
[4].

Given a solution to (1.1) on a graph with γ < 1, it is shown in [5] how one has a local lifting
property at each vertex: each vertex and its neighbours can be lifted to an invariant configured
star in Euclidean space RN with 2 ≤ N ≤ n, where n is the degree of the vertex. In the case when
N = 3, except for some special cases, this lifting is unique up to a one of two possibilities (for
example, the two visualizations of the cube), as such, this dimension becomes the most interesting
when degrees are ≥ 3. How we choose from the two possible liftings is then a global matter of
correlating liftings at adjacent vertices (cf. the cube). For example, an Escher picture has local
liftings with a global inconsistency.

Given a graph and a solution to (1.1), we can now make sense of distance and curvature. In
general, provided we are only interested in relative distance between one part of the graph and
another and curvature which doesn’t depend on scale (for example Ricci curvature), these should
depend only on the geometric spectrum γ and not on the solution φ.

2. The geometric spectrum

Any regular polytope in Euclidean space satisfies the following quadratic difference equation:

(2.1) γ

n

(∑
y∼x

(
φ(y)− φ(x)

))2
=
∑
y∼x

(
φ(y)− φ(x)

)2
,

at each of its vertices x, where φ is an orthogonal projection to the complex plane, n is the
(common) degree at each vertex (the number of edges incident with x) and y ∼ x means that y
is connected to x by an edge. This fact is implicit in the work of Eastwood and Penrose [10] and
made explicit by the author in [5]. The constant γ depends on the polytope and it can be either
positive or negative but it is always < 1. For the convex regular polyhedra in R3 (the Platonic
solids), the values of γ can be calculated by expressing the angular deficit at each vertex in terms
of γ (cf. [1], Proposition 7.4) and then applying the classical theorem of Descartes: for a convex
polyhedron in R3, the sum over the vertices of their angular deficits is equal to 4π. See table 2.1.
Note that the value of γ in (2.1) is invariant by any similarity transformation of the polytope,
which suggests that the intrinsic geometry of the polytope may be characterized by three aspects:
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polyhedron γ

tetrahedron 3/4
cube 0

octahedron 1/2
icosahedron 2−

√
5

3−
√

5 < 0
dodecahedron 3(1−

√
5)

2(3−
√

5) < 0

Table 2.1: Values of γ for the Platonic solids.

(i) the fact that the underlying framework (or 1-skeleton) satisfies (2.1) ; (ii) the value of the
constant γ ; (iii) the underlying combinatorial structure. Let us therefore proceed to generalize
this construct to a more general graph.

Given a graph Γ = (V,E) with vertex set V and edge set E, together with a real-valued function
γ : V → R, we introduce the equation:

(2.2) γ(x)
n(x)

(∑
y∼x

(
φ(y)− φ(x)

))2
=
∑
y∼x

(
φ(x)− φ(y)

)2
,

at each vertex x, where φ : V → C is a complex-valued function and n(x) is the degree of Γ at
x. Solutions with γ ≡ 0 have been called holomorphic functions1 and have been used to give a
description of massless fields in a combinatorial setting [6]. Note that the equations are invariant
by the replacement of φ by the transformations
(2.3) φ 7→ λφ+ µ (λ, µ ∈ C), and φ 7→ φ.

We shall consider two solutions related in this way as equivalent.
If we set ∆φ(x) = 1

n(x)
∑
y∼x

(
φ(y)−φ(x)

)
(the Laplacian) and (∇φ)2(x) = 1

n(x)
∑
y∼x

(
φ(y)−

φ(x)
)2 (the symmetric square derivative), then equation (2.2) has the more economic expression

(1.1) given in the Introduction. The Cauchy-Schwarz inequality shows that for a given vertex x if
the values {φ(y)− φ(x) : y ∼ x} are real and not all zero, then γ(x) ≥ 1 [5].

For a given graph, we would like to know what are the admissible functions γ : V → R for
which (2.2) has a solution. Define the geometric spectrum of Γ to be the collection of equivalence
classes of functions:

Σ = {γ : V → [−∞, 1) ⊂ R : ∃ non− const. φ : V → C satisfying (2.2) } ,
where two functions are identified when they determine a common solution φ and agree on the
compliment of the set {x ∈ V : ∆φ(x) = (∇φ)2(x) = 0}. The upper bound on γ is a consequence
of the Cauchy-Schwarz inequality and our requirement of invariance with respect to similarity
transformations. We allow γ to take on the value −∞ at points where the Laplacian vanishes.

By a framework in Euclidean space, we mean a graph that is realized as a subset of Euclidean
space with edges straight line segments joining the vertices. We say that it is immersed if all vertices
are distinct and embedded if it is immersed and edges only intersect at end points. The framework
is called invariant if for a particular γ, it satisfies (2.2) with φ the restriction to the vertices of
some orthogonal projection to the complex plane independently of any similarity transformation
of the framework.

Questions that now arise are:
• For a given graph Γ, what is its geometric spectrum?
• Does a solution to (2.2) arise from an embedding of the graph as an invariant framework in

Euclidean space?
• Even if the answer to the last question is no, can we still define geometric quantities such as

edge length and curvature from a solution?
• To what extent do such quantities depend only on γ rather than on the choice of solution φ?

1A notion of holomorphic function somewhat similar to this has been introduced by S. Barré [7]; however, in
addition to (2.2) with γ ≡ 0, Barré requires that φ be harmonic.
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For an arbitrary graph, the geometric spectrum is determined by a fairly complicated set of
algebraic equations. For graphs of sufficiently small order, these can be solved by the method
of Gröbner bases with MAPLE, see [1]. The more connected a graph, the more restricted is its
geometric spectrum as discussed in the Introduction.

In order to interpret γ, we consider equation (1.1) in the smooth case of a hypersurface in
Euclidean space and find an interesting connection with mean-curvature.

Theorem 1. ([2]) Let Mn be a smooth hypersurface in Rn+1 (n ≥ 1) and let g denote the metric
onMn induced from the standard metric on Rn. Let φ : (Mn, g)→ C be any orthogonal projection;
then
(2.4) (∆φ)2 = −H2(∇φ)2 ,

where H is the mean curvature of Mn, and where in local coordinates, ∆φ = gij(φij − Γkijφk) and
(∇φ)2 = gijφiφj (summing over repeated indices).

In the case when n = 1, the theorem confirms the identity
c′′(s) = κ(s)ic′(s) ,

for a regular curve c : I ⊂ R→ C parametrized with respect to arc length. It is necessary thatMn

be a hypersurface in order to satisfy (1.1). For example, consider the surface in R4 parametrized
in the form:

(x1, x2) 7→ (x1, x2, x1x2, x1 + x2) .
Let φ : R4 → C be the projection φ(x1, x2, x3, x4) = x1 + x2i. Then is is readily checked that the
function γ defined by (1.1) is not even real.

Given the above theorem, we expect an invariant framework that closely coincides with a smooth
hypersurface to have γ approximately equal to −1/H2 modulo a scaling factor (equation (2.4) is
not scale invariant; in order to make it so, a volume term should be added).

3. Configured stars and the lifting problem

A star graph, or bipartite graph K1,n, has one internal vertex connected to n external vertices;
there are no other connections. A star framework in RN with internal vertex located at the origin
can be specified by a (N×n)–matrixW whose columns are the components of the external vertices.
We will refer to W as the star matrix. Provided the centre of mass of the external vertices does
not coincide with the origin, then it defines a line through the origin which we refer to as the axis
of the star. We are interested in a particular class of star frameworks whose external vertices form
what we call a configuration in a plane orthogonal to the axis of the star.

A collection of points {~v1, . . . , ~vn} in RN−1 forms a configuration if the ((N − 1) × n)-matrix
U = (~v1|~v2| · · · |~vn) whose columns have as components the coordinates v`j of ~v` (j = 1, . . . , N −
1; ` = 1, . . . , n), satisfies:

(3.1) UU t = ρIN−1 ,

n∑
`=1

~v` = ~0 ,

for some non-zero constant ρ (necessarily positive), where ~0 denotes the zero vector in RN−1 and
U t denotes the transpose of U . Necessarily, rank(U) = N − 1 so that n ≥ N . A star in RN
whose external vertices form a configuration in a plane not passing through the origin, is referred
to as a configured star. An invariant of such a star is a quantity that is invariant by orthogonal
transformation. The following lemma characterizes configured stars [5].

Lemma 2. Consider a configured star in RN (N ≥ 2) with internal vertex the origin connected
to n external vertices {~x1, . . . , ~xn} (n ≥ N). Let W = (~x1|~x2| · · · |~xn) be the (N ×n)-matrix whose
columns are the components x`j of ~x` (j = 1, . . . , N ; ` = 1, . . . , n). Then

(3.2) WW t = ρIN + σ~u~ut,

n∑
`=1

~x` =
√
n(σ + ρ) ~u ,

where ~u ∈ RN is a unit vector called the axis of the star, ρ > 0 and ρ+σ > 0. The quantities n, ρ, σ
are all invariants of the star; the vector ~u is normal to the affine plane containing ~x1, . . . , ~xn.
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Conversely, any matrix W = (~x1|~x2| · · · |~xn) satisfying (3.2) determines a configured star with
internal vertex the origin and external vertices ~x1, . . . , ~xn.

Corollary 3. Let W = (~x1|~x2| · · · |~xn) define a configured star and let φ : RN → C be orthogonal
projection φ(y1, y2, . . . , yN ) = y1 + iy2. Then if z` = φ(~x`) = x`1 + ix`2, we have

σ

n(σ + ρ)

(
n∑
`=1

z`

)2

=
n∑
`=1

z`
2 ,

where ρ and σ are given by (3.2). In particular, with reference to equation (2.2), γ = σ/(σ + ρ) is
real and depends only on the star invariants.

Proof. Let ~u = (u1, . . . , uN ) be the unit normal to the plane of the star. Then for each j = 1, . . . , N ,
we have

n∑
`=1

x`j =
√
n(σ + ρ)uj .

Thus (
n∑
`=1

z`

)2

=
n∑

k,`=1
(xk1x`1 − xk2x`2 + 2ixk1x`2)

= n(σ + ρ)(u1
2 − u2

2 + 2iu1u2) = n(σ + ρ)(u1 + iu2)2 ,

whereas
n∑
`=1

z`
2 =

n∑
`=1

(x`12 − x`22 + 2ix`1x`2) = (WW t)11 − (WW t)22 + 2i(WW t)12 = σ(u1 + iu2)2 .

The formula now follows. �

To test whether a framework in Euclidean space is invariant, it suffices to see whether the star
about each of its vertices is invariant at the internal vertex. A consequence of the above corollary
is that any configured star is invariant at its internal vertex. The star framework about the vertex
of any regular polytope is configured, so that the underlying framework of a regular polytope is
invariant [5]. On the other hand, not all invariant stars are configured. For example, the star in
R3 with 2r external vertices represented by the columns of the (3× (2r)) –matrix

W =

 x1 x2 · · · xr x1 x2 · · · xr
s1 s2 · · · sr −s1 −s2 · · · −sr
t1 t2 · · · tr −t1 −t2 · · · −tr

 ,

where the vectors ~s = (s1, . . . , sr) and ~t = (t1, . . . , tr) are orthogonal and of the same length, is
invariant, but it is only configured when x1 = x2 = · · · = xr. This kind of invariant star arises in
the double cone construction of the next section.

Let φ be a solution to (2.2) and consider a particular vertex x. Let y1, . . . , yn be the neighbours
of x labelled in any order. Normalize the solution so that φ(x) = 0 and then set zj = φ(yj). We
suppose that not all zj are zero. Write zj = αj + iβj in real and imaginary parts. The lifting
problem into R3 about the vertex x means finding an invariant star (whose internal vertex is
located at the origin) with matrix

W =

 α1 α2 · · · αn
β1 β2 · · · βn
x1 x2 · · · xn


If we impose the further restriction that the invariant star be configured, then provided γ(x) < 1
and rankW = 3, this can always be done with just a 2-fold ambiguity which corresponds to a choice
of sign for the vector ~x := (x1, . . . , xn) [5, 3]. The 2-fold ambiguity is illustrated by the Necker
cube discussed in the Introduction. In the case when rankW < 3, then there is a 1-parameter
family of solutions. This case occurs if and only if the complex numbers z` satisfy

n

n∑
`=1
|z`|2 + (γ − 2)

∣∣∣ n∑
`=1

z`

∣∣∣2 = 0 .
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We may lift to an invariant configured star in RN provided N ≤ n, but for N > 3, there is generally
a family of lifts [5].

Thus we find, that apart from special cases, we have a lift about each vertex of a solution to
(2.2) into R3 which is unique modulo translation along the axis of projection R3 → R2 and up
to the 2-fold ambiguity corresponding to the sign of ~x. This already enables certain geometric
quantities to be defined in an unambiguous way, for example edge length. Note that for a given
edge we may have liftings at each of its end points which endow that edge with different lengths.
In that case, we can take the average as a reasonable definition of edge length. Furthermore, the
2-fold ambiguity may sometimes be removed by a requirement of global consistency, as is the case
with the cube: a choice at one vertex imposes a choice of lift at neighbouring vertices.

The problem of when a global lifting of a given graph exists remains relatively unexplored.
An obvious geometric obstruction occurs when, as discussed in the above paragraph, the lifts
of neighbouring vertices defines a different length to the connecting edge. This is particularly
relevant when we try to lift into R3 since then, in general, edge length is unique (see, for example
[5], Example 4.4). However, in general there is a smooth family of lifts into RN when N > 3
subject to the constraint that N ≤ n (n = degree of the vertex), so that it may still be possible to
find a global lift into a higher dimension Euclidean space.

4. Examples

Given the interpretation of the parametre γ in terms of mean curvature, we now consider
the problem of constructing invariant frameworks which have constant mean curvature. The
underlying frameworks of regular polytopes provides examples, but are there others? The answer
to this question is yes. Examples were given in [2], which we now outline.

If we take a regular n-sided polygon in the plane with vertices located at the points e2kπi/n

(k = 0, 1, . . . , n−1) and construct a double cone as illustrated below, then there is a unique height
given by sin(2π/n) which makes this invariant, where by height we mean the distance from the
plane of the polygon to one of the apexes.

It is interesting to note that as n → ∞ then the height approaches zero, so the form of the
object approaches that of a disc. The value of γ at one of the lateral vertices is given by

(4.1) γlat =
2(1− 2 cos 2π

n + 2 cos2 2π
n )

(2− cos 2π
n )2 ,

whereas at one of the apexes it is given by

γapex =
2 sin2 2π

n − 1
2 sin2 2π

n

.

Invariance at either of the apexes is a consequence of Lemma 2. On the other hand, invariance
at one of the lateral vertices, that is one of the vertices of the planar polygon, now connected to
the two apexes as well as to its two polygonal neighbours, is far less obvious. The double cone
only has constant mean curvature when n = 4, in which case it corresponds to the octahedron.
However, we can remedy this by attaching another double cone along the axis of the two apexes as
illustrated below, where, for convenience, we draw the cone axis horizontally. In essence, we adjust
the length of the edge joining the double cones until the parameter γ coincides with its value at
one of the lateral vertices given by (4.1).
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Such constant mean curvature frameworks are reminiscent of the period constant mean curvature
surfaces of Delaunay [8].

If we let x denote the distance along the axis at which we must attach the next cone in order
that the new value of γ at an apex coincides with the lateral value of γ, then x is determined by a
quadratic equation. In the case when n = 3, one solution is given by x = −

√
3 which is precisely the

distance between the two apexes, so we obtain the constant mean curvature framework illustrated
in the left-hand figure below, corresponding to the complete graph on 5 vertices. The value of γ
is given by 4/5.

More generally, one can embed the complete graph on N + 1 vertices in an invariant way in
RN−1 with γ constant equal to N/(N + 1). The case when N = 3, corresponding to an embedding
of the complete graph on 4 vertices in the plane, is illustrated in the right-hand figure above.
This example illustrates the need to allow equivalence classes of functions in our definition of the
geometric spectrum. Here, both ∆φ and (∇φ)2 vanish at the central vertex, so that γ is not
well-defined by equation (2.2) at this vertex. However, we can assign to it the value it takes at the
other vertices.

For n = 4 and n = 5, there are no real solutions for x (as we would expect for n = 4 since
the octahedron is already of constant mean curvature and the attachment of another cone would
destroy this). For n = 6, there is both a positive and negative root. If we take the negative
value and perform a twist and proceed similarly for successive cones, then we obtain interlaced
frameworks with quite complicated structure.

As a final construction, we can take a tiling of the plane, form double cones and stack layers
one upon the other to obtain an analogue of triply periodic constant mean curvatures [1]. Such a
tiling by dodecahedrons and triangles is illustrated below.
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In this case, we form double cones over each triangle. Since the edges which connect each
triangle (the edges of the dodecahedron) bisect the external angle, invariance is guaranteed. We
then have to adjust the height of successive layers in order to arrange for γ to be constant.

The frameworks so constructed do not form the 1-skeleton of a polytope whose underlying
topology is that of an immersed surface. We do not know if such examples exist other than the
regular polytopes.

5. Other curvatures

By analogy with the smooth case, we view the function γ as related to mean curvature, at least
when the framework is close to a smooth surface. But what about other curvatures? Various ideas
were proposed in the arXiv article [1] which we now outline.

Suppose we have a solution to equation (2.2) and a well-defined lifting to a configured star at
each vertex. For a given edge e = xy connecting vertices x and y, let θ(e) be the angle between the
axes of the configured stars over x and y, respectively. Then this is well-defined and independent
of the choice of representative solution under the equivalence (2.3). If we now let `(e) denote the
length of the edge xy as discussed at the end of Section 3, then the radius of the best-fit circle
to that edge is r(e) = `(e)/θ(e). The reciprocal k(e) := 1/r(e) = θ(e)/`(e) may be taken as an
analogue of normal curvature. This now depends on edge length and in particular on the choice
of representative solution to (2.2). We can now make an alternative definition of mean curvature
at a vertex x as the mean of the normal curvatures of edges incident with x. We do not know if
after scaling is taken into account, there is a way to relate this to the function γ.

In smooth Riemannian geometry, the sectional curvature of a plane spanned by two vectors is
the Gaussian curvature of a geodesic surface determined by the plane. In the discrete context, we
can therefore define the sectional curvature associated to two edges e and f incident with a vertex
x as Sec (e, f) := k(e)k(f).

Perhaps the most satisfying curvature in Riemannian geometry is the Ricci curvature which is
scale invariant. For a given unit vector X, Ric (X,X) is the sum

∑
j Sec (X,Yj) of the sectional

curvatures of planes spanned by X and a set of orthonormal vectors {Yj} perpendicular to X. On
a graph, for a given edge e = xy incident with a vertex x, we therefore define the Ricci curvature
by:

Ricx(e, e) :=
∑

z∼x,z 6=y
θ(xy)θ(xz) .

There seems to be no sensible way to define Ric (e, f) for distinct edges e and f incident with x. In
the smooth case, this is usually achieved by the polarization identity, but there is no way to define
the sum of two edges in the discrete context. Our definition of Ricci curvature is independent of the
choice of representative solution to (2.2) under the equivalence (2.3). However, it is conceivable
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that for a given γ there may be two distinct classes of solutions, so it is not clear if the Ricci
curvature depends only on γ.

Let us finally consider the Gaussian curvature. For a convex polyhedron in R3, the classical
theorem of Descartes affirms that the sum of the angular deficits at each vertex is equal to 4π [9].
By angular deficit δ(x) at a vertex x, we mean 2π minus the sum of the internal angles at x of the
faces which contain x. In our case, at each vertex, we have a lifting to a configured star, but we
do not a priori have any underlying polytope. Thus in order to define the Gaussian curvature in
terms of angular deficit, we require an ordering of the edges. One way to do this is to edge colour
the graph, as discussed in [1]. However, we only expect to obtain approximate global theorems
with our method for the following reason.

Suppose we have an invariant framework in R3 which projects to a solution of (2.2). When
we perform a lift at each vertex to try to recover the original framework, we lift to a configured
star, whereas the original star may not be configured. In essence, we sacrifice global lifting for
unicity of lifting (up to 2-valuedness). As an example, consider the invariant double cone on the
triangle discussed above. Now there is an underlying polytope and we can calculate angular deficit
at each vertex in the traditional way. By the theorem of Descartes, the total angular deficit is 4π.
However, let us calculate it by taking a lift to a configured star at each vertex as determined by
the corresponding solution to (2.2). In the original figure, the stars at the lateral vertices are not
configured, so an error will occur. We find:

δapex = 2π − 3 arccos 1
7 and δlat = 2π − 4 arccos 5

7 ,

to give a total curvature of

δtot = 3δlat + 2δapex = 10π − 6
(

arccos 1
7 + 2 arccos 5

7

)
∼ 4.244× π .
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