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An overview of curvature bounds and spectral
theory of planar tessellations

Matthias Keller

Abstract
We give a survey about the spectral consequences of upper bounds on the curvature on

planar tessellating graphs. We first discuss spectral bounds and then put a particular focus
on uniformly decreasing curvature. This case is characterized by purely discrete spectrum
and we further present eigenvalue asymptotics and exponential decay of eigenfunctions. We
then discuss absence of compactly supported eigenfunctions and dependence of the spectrum
of the Laplacian on the underlying `p space.

1. Introduction

In this article we survey results relating curvature bounds and spectral theory. We focus on
infinite planar tessellations which can be considered as discrete analogues of non compact surfaces.
The tiles of the tessellations are all treated as regular polygons.

We study a curvature function which arises as an angular defect. This notion of curvature
is justified by the Gauß Bonnet formula. This idea goes back at least to Descartes, see [16], and
appeared since then independently at various places, see e.g. [37, 20, 25, 40]. A substantial amount
of research was conducted to study the geometric property of the tessellation in dependence of
the curvature, see e.g. [3, 4, 5, 9, 10, 11, 22, 23, 24, 26, 29, 34, 37, 39, 40, 42]. The operator
under investigation is the graph Laplacian on the tessellation with constant edge weights. First,
we show spectral bounds resulting from curvature bounds. Here, the quantitative bounds result
from estimates in [29]. Secondly, we take a closer look at the case of uniformly unbounded negative
curvature. This case characterizes discreteness of spectrum, [26], for which we present eigenvalue
asymptotics, [6, 7], and decay properties of eigenfunctions, [28]. Thirdly, unique continuation
properties of eigenfunctions are discussed, [7, 30], and, finally we summarize results on the p-
dependence of the spectrum of the Laplacian as an operator on `p, p ∈ [1,∞].

2. Set up and definitions

In this section we introduce planar tessellations, notions of curvature and the graph Laplacian.

2.1. Planar tessellations. Let (V,E) be a simple planar graph embedded into an orientable
topological surface S that is homeomorphic to R2. We assume the embedded graph is locally
finite, i.e., for every compact K ⊆ S, one has

#{e ∈ E | e ∩K 6= ∅} <∞.

In particular, this excludes the situation that a vertex has infinitely many neighbors. In the
following we do not distinguish between the graph and its embedding. Nevertheless, we stress that
we only use the combinatorial properties of the graph which do not depend on the embedding.
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The set of faces F has the connected components of

S \
⋃
E

as elements. For f ∈ F , we denote by f the closure of f in S. We denote G = (V,E, F ). Following
[3, 4], we call G = (V,E, F ) a tessellation if the following three assumptions are satisfied:
(T1) Every edge is contained in two faces.
(T2) Two faces are either disjoint or intersect in a vertex or an edge.
(T3) Every face is homeomorphic to the unit disc.

There are related definitions such as semi-planar graphs see [23, 24] and locally tessellating graphs
[27]. Indeed, most of the results presented here hold for general planar graphs on surfaces of finite
genus. However, the definition of curvature becomes more involved and some of the estimates turn
out to me more technical. Thus, we stick to the ’tame’ special case of tessellations.

2.2. Curvature. In order to define a curvature function, we first introduce the notation for the
vertex degree and the face degree. We denote the vertex degree of a vertex v ∈ V by

|v| = #edges emanating from v

and the face degree of a face f ∈ F by

|f | = #boundary edges of f = #boundary vertices of f.

The vertex curvature κ : V → R is defined as

κ(v) = 1− |v|2 +
∑

f∈F,v∈f

1
|f |
.

The idea traces back at least to Descartes [16] and was later introduced in the above form by Stone
in [37] referring to ideas of Alexandrov. Since then this notion of curvature was widely used, see
e.g. [3, 4, 11, 22, 24, 26, 27, 29, 34, 40, 42]. The notion of curvature is motivated as an angular
defect: Assume a face f is a regular polygon. Then, the inner angles of f are all equal to

β(f) = 2π |f | − 2
2|f | .

This formula is easily derived as walking around f once results in an angle of 2π, while going
around the |f | corners of f one takes a turn by an angle of π − β(f) each time. In this light the
vertex curvature might be rewritten as

2πκ(v) = 2π −
∑

f∈F,v∈f

β(f), v ∈ V.

Nevertheless, it should be stressed that the mathematical nature of κ is purely combinatorial
while assuming a particular nice embedding it allows for a geometric interpretation. The notion
has its further justification in the Gauß Bonnet formula which is mathematical folklore and may
for instance be found in [3] or [27].

A finer notion of curvature arises when one asks which contribution to the total curvature at a
vertex v comes from a corner at a face f with v ∈ f . Precisely, the set of corners of a tessellation
G is given by

C(G) = {(v, f) ∈ V × F | v ∈ f}.
Define the corner curvature κC : C(G)→ R by

κC(v, f) = 1
|v|
− 1

2 + 1
|f |
.

One immediately infers

κ(v) =
∑

f∈F,v∈f

κC(v, f).

This notion of curvature was first introduced in [3] and further studied in [4, 27].
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2.3. The Laplacian. Next, we come to the graph Laplacian. Consider the quadratic form Q :
C(V )→ [0,∞]

Q(f) = 1
2

∑
v∼w
|f(v)− f(w)|2,

where C(V ) is the space of complex valued functions on V . Choosing the counting measure on V
yields a Hilbert space `2(V ) of complex valued functions whose absolute value square is summable.
The scalar product on `2(V ) is given by

〈f, g〉 =
∑
v∈V

f(v)g(v), f, g ∈ `2(V ),

and the norm by ‖f‖ = 〈f, f〉 1
2 . Restricting Q to the subspace

{f ∈ `2(V ) | Q(f) <∞}

yields a positive quadratic form which can seen to be closed. By general theory, there is a positive
selfadjoint operator ∆ associated to Q which acts as

∆f(v) =
∑
w∼v

(f(v)− f(w))

and has the domain

D(∆) = {f ∈ `2(V ) | ∆f ∈ `2(V )}.

The complex valued functions of compact support Cc(V ) are dense in D(∆), see [41]. It is not
hard to see that the operator ∆ is bounded if and only if

sup
v∈V
|v| <∞.

Remark 2.1. There is another common choice of a measure on V , namely the vertex degree
function. This way one determines the volume of a set by counting the number of edges (twice
the number of edges with both end vertices in the set and ones the number of edges having only
one vertex in the set) rather than by the number of vertices in the case of the counting measure.
Restricting the quadratic form Q to the corresponding `2 space yields a different positive selfadjoint
operator ∆n which is always bounded and is often referred to as the normalized Laplacian.

3. The bottom of the spectrum

In this section we turn to the bottom of the spectrum of ∆. In the case where the bottom
of the spectrum is strictly positive one speaks of existence of a spectral gap. We discuss that
non-negative curvature implies absence of a spectral gap while in the case of negative curvature
we show existence of a spectral gap for which we then present quantitative estimates.

Since the operator ∆ is a positive selfadjoint operator on the Hilbert space `2(V ), its spectrum
σ(∆) is included in the positive half axis [0,∞). We consider the bottom of the spectrum of ∆

λ0(∆) = inf σ(∆)

which, by the Rayleigh-Ritz variational characterization, is equal to

λ0(∆) = inf
f∈D(∆),‖f‖=1

〈f,∆f〉 = inf
f∈Cc(V ),‖f‖=1

〈f,∆f〉,

where the second equality follows from the density of Cc(V ) in D(∆).

3.1. Non-negative curvature. The following theorem is a rather immediate consequence of
considerations of Jost/Hua/Liu in [24, Theorem 4.1], that every non-negatively curved planar
graph has at most quadratic volume growth, and [13, 17, 35], that the bottom of spectrum of graphs
with subexponential volume is zero which holds for general graphs. An important technicality is
that a lower curvature bound implies boundedness of ∆ and, thus, [13, 17, 35] are applicable by
[26, Theorem 1].

Theorem 3.1. Assume κ ≥ 0, then λ0(∆) = 0.
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3.2. Average negative curvature. In [40], Woess showed that the isoperimetric constant of a
planar tessellation is strictly positive whenever the curvature is negative on average on large sets.
He defined

κ = lim sup
n→∞

inf
W⊆V,n≤|W |<∞

1
|W |

∑
v∈W

κ(v).

From [40, Theorem 1] and [26, Theorem 1] we infer the next result.

Theorem 3.2. Assume κ < 0, then λ0(∆) > 0.

Remark 3.3. Dodziuk proved in [12] that planar graphs with |v| ≥ 7, v ∈ V , satisfy λ0(∆) > 0.
In particular, this assumption implies κ < 0. Independently to the theorem above, but somewhat
later, Higuchi [22] showed that κ < 0 implies λ0(∆) > 0.

3.3. Negative curvature. The theorem above only yields positivity of the bottom of the spec-
trum. In the case of negative curvature, we get the following quantitative result which is a direct
consequence of [29, Theorem 1], [18, Proposition 1] and estimate [26, Theorem 1].

Theorem 3.4. Assume κ < 0 and let

K = − sup
v∈V

κ(v)
|v|

and d = min
v∈V
|v|.

Then there is a constant C ≥ 1 specified below such that

λ0(∆) ≥ d(1−
√

1− 4C2K2) ≥ 2dC2K2,

where for p = supv∈V |v| and q = supf∈F |f | the constant C is given by

C :=


1 : if q =∞,
1 + 2

q−2 : if q <∞ and p =∞,
(1 + 2

q−2 )(1 + 2
(p−2)(q−2)−2 ) : if p, q <∞.

Remark 3.5. (a) The second inequality in the theorem follows simply by the Taylor expansion
of the square root.
(b) The theorem above can be considered as a discrete analogue to a theorem of McKean [32]
who proves for a n-dimensional complete Riemannian manifold M with upper sectional curvature
bound −k that the bottom of the spectrum of the Laplace-Beltrami ∆M ≥ 0 satisfies

λ0(∆M ) ≥ (n− 1)2k/4.

(c) A curious fact noted by Higuchi [22], see also [43], is that if κ < 0, then already κ ≤ −1/1806
which is the case that a triangle, a heptagon and a 43-gon meet in a vertex. Indeed, this implies
that κ < 0 yields for the constant in our theorem K > 0 and, therefore, λ0(∆) > 0.

4. Discrete spectrum, eigenvalue asymptotics and decay of eigenfunctions

In this section we study the case of uniformly decreasing curvature. That is if the quantity

κ∞ = inf
K⊆V finite

sup
v∈V \K

κ(v)

equals −∞. In this case, we discuss below that the spectrum of ∆ consists only of discrete
eigenvalues which accumulate at ∞. We denote the eigenvalues in increasing order counted with
multiplicity by λn(∆), n ≥ 0. Moreover, we discuss the asymptotics of the eigenvalues and the
exponential decay of eigenfunctions.

4.1. Discrete spectrum. The next theorem which is characterizing pure discrete spectrum is
found in [26, Theorem 3].

Theorem 4.1. The spectrum of ∆ is purely discrete if and only if κ∞ = −∞.
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Remark 4.2. (a) The theorem above can be considered as a discrete analogue of a theorem of
Donnelly/Li [15] which states that a negatively curved, complete Riemannian manifold M with
sectional curvature bound decaying uniformly to −∞ the Laplace-Beltrami operator ∆M has pure
discrete spectrum.

(b) In [18] Fujiwara proved a related statement for the normalized Laplacian on trees, namely
that spectrum is discrete except for the point 1, where the discrete eigenvalues accumulate.

(c) Wojciechowski [41] showed also discreteness of the spectrum of ∆ on general graphs in terms
of a different quantity which is sometimes referred to as a mean curvature.

4.2. Eigenvalue asymptotics. An important observation in the proof of the theorem above is
the following estimate

−|v|2 ≤ κ(v) ≤ 1− |v|6 , v ∈ V.

This inequality implies that | · | and −κ go simultaneously to ∞.
In particular, if κ∞ = −∞, then there is a bijective map N0 → V , n 7→ vn, such that

|vn| ≤ |vn+1|, n ≥ 0.

The following eigenvalue asymptotics are found in the recent work [7] improving the results for
planar graphs which were obtained in [19] for trees and for general graphs in [6] .

Theorem 4.3. If κ∞ = −∞, then

|vn| − 2
√
|vn| . λn . |vn|+ 2

√
|vn|,

that is

lim
n→∞

λn
|vn|

= 1

and

−1 ≤ lim inf
n→∞

λn − |vn|
2
√
|vn|

≤ lim sup
n→∞

λn − |vn|
2
√
|vn|

≤ 1.

Remark 4.4. The only related results we are aware of are found in [33] for the adjacency matrix
on sparse finite graphs.

4.3. Decay of eigenfunctions. After having treated eigenvalues, we next come to the decay of
eigenfunctions. It turns out that eigenfunctions decay exponentially in an `2 sense, see [28].

Theorem 4.5. If κ∞ −∞ and ϕn ∈ D(∆), n ≥ 0, are eigenfunctions, i.e.,

∆ϕn = λnϕn

then, for any β < e−1 and o ∈ V ,

|κ| 12 eβd(o,·)ϕn ∈ `2(V ),

where d(·, ·) is the natural graph distance.

Remark 4.6. The proof is based on ideas based on the work of Agmon for Schrödinger operators
in Rd. The somewhat curious constant e−1 comes in via an optimization that is caused by the
non-locality of the graph Laplacian in contrast to the strongly local Laplace operator on Rn.

5. Unique continuation of eigenfunctions

In Riemannian manifolds very strong unique continuation properties of eigenfunctions hold.
Often very subtle quantitative statements can be obtained which all have the basic corollary that
there are no eigenfunctions of compact support. However, for graphs such eigenfunctions can be
produced rather easily, see e.g. [1, 8, 14, 31] for examples. In this section we discuss that having
non-positive corner curvature excludes such eigenfunctions.
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5.1. Absence of compactly supported eigenfunctions. Klassert/Lenz/Peyerimhoff/Stollmann
[30] proved the following unique continuation result for tessellations with non-positive corner cur-
vature, κC ≤ 0, which was later generalized to planar graphs in [27] with a different proof.

Theorem 5.1. If κC ≤ 0, then there are no eigenfunctions of compact support.

We stress that the assumption κC ≤ 0 can not be relaxed to κ ≤ 0 (or κ < 0). This can be seen
by the example that contains a 2n-gon f and has triangles attached at every edge f . Now, given
a function which takes the values ±1 alternating around the vertices f and zero otherwise, can be
seen to be a compactly supported eigenfunction to the eigenvalue 6.

5.2. Finitely many compactly supported eigenfunctions. One can now ask whether the
exponentially decaying eigenfunctions of Theorem 4.5 can be compactly supported. As it can be
seen from the theorem above if κC ≤ 0 then there are no such eigenfunctions at all. However,
κ∞ = −∞ only implies κC ≤ 0 outside of a finite set. The following theorem, found in [7], tells
us that in this case there can be at most finitely many linearly independent compactly supported
eigenfunctions.

Theorem 5.2. If κ∞ = −∞, then there is a finite set such that every eigenfunction of compact
support is supported in this set.

It can be seen from the proof in [7] that κ∞ = −∞ is not necessary but it is sufficient to have
sufficiently negative curvature outside of a finite set. On the other hand, it is also shown in [7]
that κC ≤ 0 outside of a finite set is not enough.

6. The `p spectrum

Finally we come to the spectrum of the Laplacian as an operator on `p(V ), p ∈ [1,∞]. For
these Banach spaces the Laplacian ∆p acts as ∆ and has the domain

D(∆p) = {ϕ ∈ `p(V ) | ∆ϕ ∈ `p(V )}.
The operators ∆p are the generators of the extension of the semigroup e−t∆2 , t > 0, to `p(V ),
p ∈ [1,∞), and ∆∞ is the adjoint of ∆1. An important question which was initially brought up by
Simon [36] and answered by Hempel/Voigt [21] for Schrödinger operators is whether the spectrum
depends on the underlying Banach space. Sturm, [38], addressed this question in the manifold
settings in terms of uniform subexponential volume growth. A special case he considers is the
case of curvature bounds. An analogous result for graphs is proven in [2]. As a consequence of
this theorem and some geometric and functional analytic ingredients one can derive the following
theorem which is also found in [2].

Theorem 6.1. (a) If κ ≥ 0, then σ(∆2) = σ(∆p) for all p ∈ [1,∞].
(b) If −K ≤ κ < 0, then λ0(∆2) 6= λ0(∆1).
(c) If κ∞ = −∞, then σ(∆2) = σ(∆p) for all p ∈ (1,∞).

Acknowledgement. MK enjoyed the hospitality of C.I.R.M. and acknowledges the financial
support of the German Science Foundation (DFG).

References
[1] Michael Aizenman and Simone Warzel. The canopy graph and level statistics for random operators on trees.

Math. Phys. Anal. Geom., 9(4):291–333 (2007), 2006.
[2] Frank Bauer, Bobo Hua, and Matthias Keller. On the lp spectrum of Laplacians on graphs. Adv. Math.,

248:717–735, 2013.
[3] O. Baues and N. Peyerimhoff. Curvature and geometry of tessellating plane graphs. Discrete Comput. Geom.,

25(1):141–159, 2001.
[4] Oliver Baues and Norbert Peyerimhoff. Geodesics in non-positively curved plane tessellations. Adv. Geom.,

6(2):243–263, 2006.
[5] Ethan D. Bloch. A characterization of the angle defect and the Euler characteristic in dimension 2. Discrete

Comput. Geom., 43(1):100–120, 2010.
[6] Michel Bonnefont, Sylvain Golénia, and Matthias Keller. Eigenvalue asymptotics for Schrödinger operators on

sparse graphs. preprint, 2013.
[7] Michel Bonnefont, Sylvain Golénia, and Matthias Keller. Eigenvalue asymptotics and unique continuation of

eigenfunctions on planar graphs. preprint, 2014.

66



Curvature bounds and spectral theory

[8] Jonathan Breuer and Matthias Keller. Spectral analysis of certain spherically homogeneous graphs. Oper.
Matrices, 7(4):825–847, 2013.

[9] Beifang Chen. The Gauss-Bonnet formula of polytopal manifolds and the characterization of embedded graphs
with nonnegative curvature. Proc. Amer. Math. Soc., 137(5):1601–1611, 2009.

[10] Beifang Chen and Guantao Chen. Gauss-Bonnet formula, finiteness condition, and characterizations of graphs
embedded in surfaces. Graphs Combin., 24(3):159–183, 2008.

[11] Matt DeVos and Bojan Mohar. An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s
conjecture. Trans. Amer. Math. Soc., 359(7):3287–3300 (electronic), 2007.

[12] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks. Trans.
Amer. Math. Soc., 284(2):787–794, 1984.

[13] Jozef Dodziuk and Leon Karp. Spectral and function theory for combinatorial Laplacians. In Geometry of ran-
dom motion (Ithaca, N.Y., 1987), volume 73 of Contemp. Math., pages 25–40. Amer. Math. Soc., Providence,
RI, 1988.

[14] Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, and Stuart Yates. Approximating L2-invariants
and the Atiyah conjecture. Comm. Pure Appl. Math., 56(7):839–873, 2003. Dedicated to the memory of Jürgen
K. Moser.

[15] Harold Donnelly and Peter Li. Pure point spectrum and negative curvature for noncompact manifolds. Duke
Math. J., 46(3):497–503, 1979.

[16] Pasquale Joseph Federico. Descartes on polyhedra, volume 4 of Sources in the History of Mathematics and
Physical Sciences. Springer-Verlag, New York-Berlin, 1982. A study of the ıt De solidorum elementis.

[17] Koji Fujiwara. Growth and the spectrum of the Laplacian of an infinite graph. Tohoku Math. J. (2), 48(2):293–
302, 1996.

[18] Koji Fujiwara. The Laplacian on rapidly branching trees. Duke Math. J., 83(1):191–202, 1996.
[19] Sylvain Golénia. Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians. J. Funct.

Anal., 266(5):2662–2688, 2014.
[20] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages

75–263. Springer, New York, 1987.
[21] Rainer Hempel and Jürgen Voigt. The spectrum of a Schrödinger operator in Lp(Rν) is p-independent. Comm.

Math. Phys., 104(2):243–250, 1986.
[22] Yusuke Higuchi. Combinatorial curvature for planar graphs. J. Graph Theory, 38(4):220–229, 2001.
[23] Bobo Hua and Jürgen Jost. Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature

II. to appear in Trans. Amer. Math. Soc.
[24] Bobo Hua, Jürgen Jost, and Shiping Liu. Geometric analysis aspects of infinite semiplanar graphs with non-

negative curvature. to appear in J. Reine Angew. Math.
[25] M. Ishida. Pseudo-curvature of a graph. lecture at ’Workshop on topological graph theory’, Yokohama National

University, 1990.
[26] Matthias Keller. The essential spectrum of the Laplacian on rapidly branching tessellations. Math. Ann.,

346(1):51–66, 2010.
[27] Matthias Keller. Curvature, geometry and spectral properties of planar graphs. Discrete Comput. Geom.,

46(3):500–525, 2011.
[28] Matthias Keller and Daniel Lenz. Agmon type estimates and purely discrete spectrum for graphs. preprint.
[29] Matthias Keller and Norbert Peyerimhoff. Cheeger constants, growth and spectrum of locally tessellating planar

graphs. Math. Z., 268(3-4):871–886, 2011.
[30] Steffen Klassert, Daniel Lenz, Norbert Peyerimhoff, and Peter Stollmann. Elliptic operators on planar graphs:

unique continuation for eigenfunctions and nonpositive curvature. Proc. Amer. Math. Soc., 134(5):1549–1559,
2006.

[31] Steffen Klassert, Daniel Lenz, and Peter Stollmann. Discontinuities of the integrated density of states for
random operators on Delone sets. Comm. Math. Phys., 241(2-3):235–243, 2003.

[32] H. P. McKean. An upper bound to the spectrum of ∆ on a manifold of negative curvature. J. Differential
Geometry, 4:359–366, 1970.

[33] Bojan Mohar. Many large eigenvalues in sparse graphs. European J. Combin., 34(7):1125–1129, 2013.
[34] Byung-Geun Oh. Duality Properties of Strong Isoperimetric Inequalities on a Planar Graph and Combinatorial

Curvatures. Discrete Comput. Geom., 51(4):859–884, 2014.
[35] Yoshiki Ohno and Hajime Urakawa. On the first eigenvalue of the combinatorial Laplacian for a graph. Inter-

discip. Inform. Sci., 1(1):33–46, 1994.
[36] Barry Simon. Brownian motion, Lp properties of Schrödinger operators and the localization of binding. J.

Funct. Anal., 35(2):215–229, 1980.
[37] David A. Stone. A combinatorial analogue of a theorem of Myers. Illinois J. Math., 20(1):12–21, 1976.
[38] Karl-Theodor Sturm. On the Lp-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct.

Anal., 118(2):442–453, 1993.
[39] Liang Sun and Xingxing Yu. Positively curved cubic plane graphs are finite. J. Graph Theory, 47(4):241–274,

2004.
[40] Wolfgang Woess. A note on tilings and strong isoperimetric inequality. Math. Proc. Cambridge Philos. Soc.,

124(3):385–393, 1998.
[41] Radoslaw Krzysztof Wojciechowski. Stochastic completeness of graphs. ProQuest LLC, Ann Arbor, MI, 2008.

Thesis (Ph.D.)–City University of New York.

67



M. Keller

[42] Lili Zhang. A result on combinatorial curvature for embedded graphs on a surface. Discrete Math.,
308(24):6588–6595, 2008.

[43] Andrzej Żuk. On the norms of the random walks on planar graphs. Ann. Inst. Fourier (Grenoble), 47(5):1463–
1490, 1997.

Mathematisches Institut , Friedrich Schiller Universität Jena , 07743 Jena, Germany • m.keller@uni-jena.de

68

mailto:m.keller@uni-jena.de

	1. Introduction
	2. Set up and definitions
	2.1. Planar tessellations
	2.2. Curvature
	2.3. The Laplacian

	3. The bottom of the spectrum
	3.1. Non-negative curvature
	3.2. Average negative curvature
	3.3. Negative curvature

	4. Discrete spectrum, eigenvalue asymptotics and decay of eigenfunctions
	4.1. Discrete spectrum
	4.2. Eigenvalue asymptotics
	4.3. Decay of eigenfunctions

	5. Unique continuation of eigenfunctions
	5.1. Absence of compactly supported eigenfunctions
	5.2. Finitely many compactly supported eigenfunctions

	6. The p spectrum
	References

