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Curvature measures, normal cycles
and asymptotic cones
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Abstract
The purpose of this article is to give an overview of the theory of the normal cycle

and to show how to use it to define a curvature measures on singular surfaces embedded in
an (oriented) Euclidean space E3. In particular, we will introduce the notion of asymptotic
cone associated to a Borel subset of E3, generalizing the asymptotic directions defined at
each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra
of the 3-dimensional Euclidean space E3. The coherence of the theory lies in a convergence
theorem: If a sequence of polyhedra (Pn) tends (for a suitable topology) to a smooth surface
S, then the sequence of curvature measures of (Pn) tends to the curvature measures of S.
Details on the first part of these pages can be found in [6].

1. Smooth surfaces and polyhedra

1.1. Smooth surfaces. Let us deal with the local Riemannian geometry of submanifolds. We
endow E3 with its scalar product < ., . > and its associated Levi-Civita connexion ∇̃. In
our context, an (oriented) smooth surface S of the (oriented) Euclidean space E3 means a 2-
dimensional(oriented) C2-manifold embedded in E3. We will only deal with closed oriented sur-
faces bounding a compact domain in E3. Such surfaces are endowed with a Riemannian structure
induced by < ., . >. We still denote by < ., . > their metric. With such a structure, the embedding
of S in E3 becomes an isometric embedding. We denote by TS the tangent bundle of S and by ξ be
the unit normal vector field compatible with the orientation. TheWeingarten tensor A : TS → TS,
is the symmetric endomorphism defined for all X in TS by A(X) = −∇̃Xξ. The second funda-
mental form of S is the symmetric tensor defined for every X,Y in TS by h(X,Y ) =< A(X), Y >.
The real function H = 1

2 trace A is called the mean curvature of S, and the real function G = det A
is called the Gauss curvature of S.

1.2. Polyhedra. We consider here (triangulated) polyhedra as 2-dimensional piecewise linear sur-
faces embedded in E3. These polyhedra will be closed, bounding a 3-dimensional domain. The
area of the triangles, the length of the edges, the solid angle at vertices and the angle of incident
triangles describe their geometry. If P is a polyhedron, we denote by V, resp. E, resp. T the set
of its vertices, resp. edges, resp. triangles. Let us give precise definitions of angles.

Definition 1. Let P be a (triangulated) polyhedron in E3.
(1) The solid angle of a vertex p of P is defined by

αp =
∑
i

αip ,

where the αip are the angles at p of the triangles ti incident to p.
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p

(a) The solid angle at p

e

(b) The angle between two ori-
ented triangles incident to e

(2) The angle ∠(e) between two oriented triangles t1 and t2 (with a common edge e) is the
angle angle defined by their oriented normals.

2. A global definition of the mean curvature of a convex polyhedron

As an example, we discuss here a possible definition of the global mean curvature of a convex
polyhedron, by using the well known Steiner formula of the volume of tubes (see for instance [6]).
This formula gives the behavior of the volume Vol3(Kε) of the tube Kε of radius ε of a convex
subset K of E3. By definition, Kε is the set of points at distance less or equal to ε of K. Its volume
is a polynomial in ε, whose coefficients (called the Quermassintegrale of Minkowski) depend only
on K.

Theorem 2. (1) Let K be a convex subset of E3. Then for all ε ≥ 0, there exist constants
Φk(K), 0 ≤ k ≤ 3 such that

(2.1) Vol3(Kε) =
3∑
k=0

Φk(K)εk.

In particular, the coefficients Φk(K)’s can be explicitly computed in special situations :
(2) If K is a convex domain with smooth boundary S = ∂K, then

(2.2) Vol3(Kε) = Vol3(K) +A(S)ε+ (
∫
S

Hda)ε2 + 4
3πε

3.

(3) If K is a convex domain with polyhedral boundary P = ∂K then,

(2.3) Vol3(Kε) = Vol3(K) +A(P )ε+ (
∑
a

∠(a)l(a))ε2 + 4
3πε

3.

Here, A(S) (resp. A(P )) denotes the area of S (resp. P ).

Let us compare (2.2) and (2.3). By analogy with the smooth case, one can define the global
mean curvature of a convex domain K with polyhedral boundary P as the coefficient Φ2(K), and
give the following definition, with the previous notations:

Definition 3. The global mean curvature of a convex domain with polyhedral boundary (or
simply, if there is no possible confusion, the global mean curvature of a convex polyhedron) of E3

is the real number ∑
e∈E

l(e)∠(e).

We remark that it can be proved that all the Φk satisfy the following basic properties: If A and
B are convex subsets such that A ∪B and A ∩B are convex, then for all k ∈ {0, 1, 2, 3},
(2.4) Φk(A ∪B) = Φk(A) + Φk(B)− Φk(A ∩B).
This implies that, in order to compute the curvatures of a complicated convex subset, on can
decompose it into simple convex subsets and apply (2.4). Moreover, if Cn is a sequence of convex
subsets tending to a convex subset C in the Hausdorff sense, then limn Φk(Cn) = Φk(C). In
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particular, if Pn is a sequence of convex polyhedra tending to a convex surface S in the Hausdorff
sense,

lim
n

∑
ekn∈En

l(ekn)∠(ekn) =
∫
S

Hda,

where da denotes the area form on S.

3. Invariant differential 2-forms and normal cycle

The theory of the normal cycle is still in progress. It has been introduced theory by P. Wintgen
and M. Zahle to give a general method to define curvatures of a large class of objects, without
any assumptions of smoothness or convexity, [7], [8]. It has been successfully developed by many
authors, in particular [4], [5]. Curvature measures are defined as integrals of invariant differential
forms on a generalized unit normal bundle. The normal cycle of a singular object is this generalized
unit normal bundle. Let us be more precise.

(1) First of all, one the following differential 2-forms on E3 × E3: If (x1, x2, x3, y1, y2, y3) are
the standard coordinates on E3 × E3 identified with TE3, we put

(3.1)
ωG = y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2;

ωH = y1(dx2 ∧ dy3 + dy2 ∧ dx3) + y2(dx3 ∧ dy1 + dy3 ∧ dx1)
+ y3(dx1 ∧ dy2 + dy1 ∧ dx2),

where ∧ is the exterior product of differential forms.
(2) Then, one defines the normal cycle. The theory being very general, we describe here this

construction in very special cases: closed smooth surfaces bounding a domain, compact
convex domains and closed polyhedra bounding a domain of E3.

• Let S be a (closed) surface bounding a domain D of E3, the unit normal bundle of D is
the manifold

ST⊥D = {(p, ξp), p ∈ S, ξp unit normal vector at p, }
endowed with the orientation induced by the one of D. The normal cycle N(D) of D is
nothing but the 2-current canonically associated to ST⊥D: If ω is any 2-differential form
defined on E3 × E3, the duality bracket <,> is given by < ST⊥D,ω >=

∫
ST⊥D

ω.
• Let C be a compact convex domain of E3. The normal cone Cp(C) of a point p of C is the

set of unit vectors (p, ξp) such that
∀q ∈ C,−→pq · ξp ≤ 0.

The normal cone C(C) of C is the union of the Cp(C), when p runs over C. The normal
cycle N(C) of C is nothing but the 2-current associated to C(C) endowed with its canonical
orientation.

• A crucial property of the normal cycle is its the additivity: if A and B are subsets of E3

admitting a normal cycle, and such that A ∩ B admits a normal cycle, then, N(A ∪ B)
admits a normal cycle and

(3.2) N(A ∪B) = N(A) +N(B)−N(A ∩B).
Since a compact 3-polyhedron is the union of (convex) tetrahedra, triangles, edges and

vertices, we define the normal cycle of a polyhedron by decomposing it into (convex)
simplices, and we apply (3.2). Of course, the result is independent of the decomposition
into convex subsets.

We will now define curvature measures in an unified way, which will, in some sense, generalize our
previous definitions in the pointwise and global situations, described in the previous paragraphs.
These measures will be defined as measures on E3. We denote by B the set of Borel subsets of E3.

Definition 4. Let M be a compact smooth surface or a polyhedron of E3 bounding a domain D.
(1) The Gaussian curvature measure of M is defined for every B ∈ B by

ΦGM (B) =< N(D), χB×E3ωG > .

5



Xiang Sun and Jean-Marie Morvan

(2) The mean curvature measure of M is defined for every B ∈ B by

ΦHM (B) =< N(D), χB×E3ωH >,

where χB×E3 denotes the characteristic function of B × E3 in E3 × E3.

Let us give the explicit expression of these curvature measures for smooth surfaces and for
polyhedra, (see [5] for instance).

Theorem 5. (1) Let S be a smooth closed surface of E3.
(a) The Gaussian curvature measure of S is defined for every B ∈ B by

ΦGS (B) =
∫
B∩S

Gda.

(b) The mean curvature measure of S is defined for every B ∈ B by

ΦHM (B) =
∫
B∩S

Hda.

(2) Let P be a closed polyhedron of E3.
(a) The Gaussian curvature measure of P is defined for every B ∈ B by

ΦGS (B) =
∑

v∈V∩B
αv.

(b) The mean curvature measure of P is defined for every B ∈ B by

ΦHP (B) =
∑

e∈E∩B
l(e ∩B)β(e),

where β(e) ∈ [−π, π] is the angle between the normals to the triangles incident on e.
The sign of β(e) is positive if e is convex and negative if e is concave.

In [5], J. Fu proved a theorem related to the convergence of these curvatures. Details on the
proof and extensions can be founded in [1], [3]. We cite one of these extensions. We recall that
a polyhedron is said to be closely inscribed in a surface S if its vertices belong to S, and if the
orthogonal projection of P to S is a bijection. If B be the relative interior of an union of triangles,
we denote by pr(B) the orthogonal projection of B on S.

Theorem 6. Let P be a triangulated polyhedron closely inscribed in a smooth surface S. Let B
be the relative interior of an union of triangles. Then,

|ΦGP (B)− ΦGS (pr(B))| ≤ CSKε; |ΦHP (B)− ΦHS (pr(B))| ≤ CSKε,

where CS is a constant depending on the geometry of S, and

K =
∑
t⊂B

cr(t)2 +
∑

t⊂B,t∩∂B 6=∅

cr (t), ε = max{ cr(t), t ∈ T ∩B},

cr(t) denoting the circumradius of the triangle t.

In other words, if P "approximates" S, the curvatures of P "approximate" the curvatures of S.

4. Asymptotic cones

We denote by Ξ(E3) the C∞-module of smooth vector fields on E3, and by ΞS(E3), (resp.
ΞP (E3)) the restriction to S (resp. P ) of smooth vector fields on E3.

Definition 7. If Z ∈ Ξ(E3), the asymptotic 2-form associated to Z is the differential 2-form of
E3 × E3 defined at any point (p, n) ∈ E3 × E3 by

(4.1) hZ(p,n) = (n× Z) ∧ Z,

where n× Z is the cross product in E3 of the vector field n (identified with the point n) and the
vector field Z.
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In this definition, we have used the usual identification of vectors and 1-forms by the standard
scalar product. Remark that n is always in the kernel of hZ(p,n). Using the duality between 2-forms
and 2-currents, we will evaluate hZ on the normal cycle of Borel sets of any smooth surfaces S
in E3. Let G : S → E3 × E3 be its Gauss map defined for every p ∈ S by G(p) = (p, ξp). The
following is a simple computation, (see [1] or [3] for instance). We denote by prTS the orthogonal
projection on the tangent space of S.
Theorem 8. (1) Let S be a smooth surface in E3 bounding a domain D, and p ∈ S.

(a) For every vector field Z ∈ ΞS(E3),
(4.2) G∗p(hZ) = hp(prTSZ, prTSZ)da.

(b) Let B be a Borel subset of E3. For any Z ∈ ΞS(E3),

(4.3) < N(D), χB×E3hZ >=
∫
B∩S

h(prTSZ, prTSZ)da.

(2) Let P be a polyhedron in E3 bounding a domain D. For any Borel subset B in E3 and any
constant vector field Z of E3,

(4.4)
< N(D), χB×E3hZ > =

∑
e∈E

l(e ∩B)
2 [(∠(e)− sin∠(e)) < Z, e+ >2

+ (∠(e) + sin∠(e)) < Z, e− >2],
where e+ (resp. e−) is the normalized sum (resp. difference) of the unit outward normal
vectors to the triangles incident to e.

Let M be any smooth surface or polyhedron bounding a domain D, and let Z ∈ ΞM (E3). We
give the following definition:
Definition 9. The asymptotic curvature measure µX,M associated to M and the vector field Z
is the signed Borel measure defined for any Borel subset B ⊂ E3 by:
(4.5) µZ,M (B) =< N(D), χB×E3hZ > .

Now let us generalize the notion of asymptotic directions of smooth surfaces to integral currents.
Let D2(E3 × E3) denote the space of integral 2-currents. For every C ∈ D2(E3 × E3), we define
the following quadratic function φ on the module Ξ(E3):

φC : Ξ(E3)→ R
X 7→< C,X ∧ (n×X) > .

(4.6)

Moreover, identifying the space of constant vector fields Z ∈ ΞB∩S(E3) with E3, we can define for
every C ∈ D2(E3 × E3), the quadratic function φcC as the restriction to E3 of φC . This leads to
the following
Definition 10. The asymptotic cones associated to the current C ∈ D2(E3 × E3) are the subsets
defined by:
(4.7) CC = {Z ∈ Ξ(E3), φC(Z) = 0}, and CcC = CC ∩ E3.

If M is a surface or a polyhedron bounding D, we put
CB(M) = CN(B∩D) and CcB(M) = CB(D) ∩ E3.

With the previous notations, using Theorem 8, we get

(4.8) CB(S) = {Z ∈ Ξ(E3),
∫
B∩S

h(prTSZ, prTSZ)da = 0},

where h is the second fundamental form of S. Remember that classically, one says that a vector
field X tangent to S is asymptotic if
(4.9) h(X,X) = 0.
It is then natural to define the asymptotic cone over each point p ∈ S as the cone in TpE3 defined
by:
(4.10) Cp(S) = {Z ∈ ΞS(E3), hp(prTpSZ, prTpSZ) = 0},
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where hp denotes the second fundamental form of S at the point p. Each Cp(S) is a degenerated
cone (the union of two planes), each one being spanned by an asymptotic direction and by the
normal of the surface at p. If P is a polyhedron and B is a Borel subset of E3, by Theorem 8, we
characterize the asymptotic cone CcB(P ) of P over B as follows:

(4.11)
CcB(P ) = {Z ∈ E3,

∑
e edge of T

l(e ∩B)
2 [(∠(e)− sin∠(e)) < Z, e+ >2

+ (∠(e) + sin∠(e)) < Z, e− >2] = 0}.
Another simpler cone associated to B demanding less computation can be given by the equation:

(4.12)
∑
e∈E

l(e ∩B)∠(e) < Z, e >2= 0.

Both of them can be used in different contexts. In the smooth case the second one (4.12) is
obtained by replacing h by h ◦ j in (4.9) where j denotes a rotation of π2 in the tangent plane.

With the same techniques as in the proof of Theorem 6, see [5], [1], [3], [2], we get the following
result. In the assumptions of the theorem, we introduce the notion of fatness of a triangulation. If
P is a triangulated polyhedron, the fatness of each of its triangle t is the real number A(t)

l2 where
A(t) denotes the area of t and l the length of its longest edge. The fatness of P is the infimum of
the fatness of its triangles. Roughly speaking, the fatness of P is not too small if the angles of its
triangles are not too small...

Theorem 11. Let S be a smooth surface of E3, let (Pn) be a sequence of (triangulated) polyhedra
closely inscribed in S, and let Z be a constant vector field. Suppose that the Hausdorff limit of Pn
is S when n tends to infinity, and the fatness of Pn is uniformly bounded from below by a strictly
positive constant. Then, for any Z ∈ E3,
(4.13) lim

n→∞
µZ,Pn

= µZ,S ,

for the weak convergence of measures.

5. Examples

Let us consider the following hyperbolic surface S given by equation:
(5.1) z = 1.1x2 − y2.

Let us draw a triangulation T on it. First of all we select 4 points p1, ..., p4 on S and build
the points q1, ..., q4 on T such that pr qi = pi, i = 1, 2, 3, 4. Then we draw 4 balls B1, ..., B4 (with
the same radius) centered at q1, ..., q4 respectively. These balls are the Borel sets from which we
deduce 4 cones C1, ..., C4 computed by formula 4.11. These cones are centered at q1, ..., q4. We get
figure 5.1.

Now we only select one point p on S, we build the point q on T such that pr q = p and we draw
the plane P spanned by the triangle containing q. Associated to some Borel subset, we build the
cone C, centered at q. The intersection of P and C is reduced to 2 lines which approximated the
asymptotic directions of S at p. We get figure 5.2.

Finally in figure 5.3, we plot some asymptotic lines of S and the approximated asymptotic
directions computed by the previous process.
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Figure 5.1. Four cones in blue in the center of their corresponding Borel sets in
yellow, computed by using the triangulation.

(a) The blue plane is the plane spanned by a
triangle of T . It approximated the tangent plane
of the smooth surface.

(b) The red lines are the intersections of the
cone with the blue plane. They approximate
the asymptotic directions of the surface.

Figure 5.2

Figure 5.3. The blue lines are some asymtotic lines of S and the red lines are the
approximation of asymptotic directions of S by the process described in 5.2.
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