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Discrete geometry and numeration

Valérie BERTHE

Our aim is to show how discrete geometry and numeration systems interact in a natural way
through the study of the most basic objects in discrete geometry, namely arithmetic discrete planes.
Numeration systems are meant here in a wide sense as representation systems, which includes
continued fraction expansions, classical positional number systems such as Ostrowski numeration,
or else, some adic types of representations based on substitutions. In word combinatorics, Sturmian
words and regular continued fractions are known to provide a very fruitful interaction between
arithmetics, discrete geometry and symbolic dynamics. Sturmian words are infinite words over a
two-letter alphabet which code irrational discrete lines. Most combinatorial properties of Sturmian
words can be described in terms of the continued fraction expansion of the slope of the discrete
line that they code. We want to extend this interaction to higher dimensions by working with
multidimensional continued fraction algorithms. The idea is to find a suitable representation
system for arithmetic discrete planes in S-adic terms, that is, by iterating a finite number of
multidimensional substitutions. We then can deduce from this representation a generation method
for discrete planes based on a numeration system associated with a multidimensional continued
fraction. More precisely, we start with a multidimensional continued fraction algorithm formulated
in terms of nonnegative unimodular matrices. We will illustrate this here with the Jacobi-Perron
algorithm. We then interpret these unimodular matrices as incidence matrices of well-chosen
substitutions. We finally use the formalism of generalized substitutions to associate with these
unimodular matrices geometric maps acting on discrete planes.

1. S-ADIC EXPANSION

A substitutions is a morphism of the free monoid that maps non-emtpy words onto non-empty
words. Substitutions are widely used to generate infinite words (see e.g. [15, 14]). We consider
here infinite words generated not only by iterating as usually a single substitution, but by taking
successive compositions of an infinite sequence of substitutions as follows:

Définition 1. A sequence u € AN is said S-adic if there exist a finite set of substitutions S over
an alphabet D = {0, ...,d — 1}, a morphism ¢ from D* to A*, an infinite sequence of substitutions
(0n)n>1 with values in S such that
u= lim ¢oo109...0,(0).
n—-+oo

For more on S-adic words, consider e.g. Chap. 11 in [14]. The terminology S-adic is inspired
by Vershik [19] and enter the framework of arithmetic dynamics such as described in [18]. The aim
of arithmetic dynamics is to provide explicit expansions of real numbers or of vectors which have
a dynamical meaning in order to produce symbolic codings of dynamical systems which preserve
their arithmetic structure.

Sturmian words are known to be S-adic. In particular, so-called characteristic Sturmian words
are generated by the set S = {0¢,01} where 0p: 0+— 0,1+— 10 and 07: 0 — 01, 1 — 1 as

3 ayl _az azn _A2n+41
nEIfOOUO 017+ 095" 09,41 (0)
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where the coefficients a; are deduced from the continued fraction expansion of the slope. The
S-adic expansion of general Sturmian words, which involve 4 substitutions, is governed by the
Ostrowski expansion of the intercept. For more details, see [5, 13].

Having S-adic expansions allows us to define multidimensional continued fractions associated
with some families of infinite words, like for instance the Arnoux-Rauzy words (for more details,
see [14]). Conversely, we can start with a multidimensional continued fraction algorithm and
associate with it an S-adic system. This is the viewpoint we take here and that will be developed
in Section 2. We translate a continued fraction algorithm into S-adic terms. We then will give a
multidimensional version of this process in Section 3.

2. S-ADIC EXPANSIONS AND CONTINUED FRACTION ALGORITHMS

In the multidimensional case, there is no canonical extension of the regular continued fraction
algorithm. Several approaches have been proposed (see Brentjes [6] or Schweiger [17] for a sum-
mary). Here, we follow the definition of Lagarias [12], where multidimensional continued fraction
algorithms produce sequences of matrices in GL(d,Z).

Définition 2. Let X C R%. A d-dimensional continued fraction map over X is a map T : X — X
such that T(X) C X and, for any x € X, there is M(x) € GL(d,Z) satisfying:

x = M (x).T(x).
The associated continued fraction algorithm consists in iteratively applying the map T on a vector

x € X. This yields the following sequence of matrices, called the continued fraction expansion of
x:

(M(T™(x)))n>1-

If the matrices M (x) have nonnegative entries, the algorithm is said nonnegative.
Consider for instance the Jacobi-Perron algorithm. Its projective version is defined on the unit
square [0,1) x [0,1) by:

1

(07

@i (=120 -1

) 1) = (/e /e,
Its linear version is defined on the positive cone X = {(a,b,c) € R3|0 < a,b < ¢} by:
T(a,b,c) = (a1,b1,c1) = (b— |b/a]a,c — |c¢/a]a,a).

Set B = |b/a]a, C = |c/a]. One has

a 0 0 1 ai
b = 1 0 B b1
c 01 C c1

The Jacobi-Perron algorithm is thus a unimodular nonnegative continued fraction algorithm.

Assume we are given a set of nonnegative matrices in SL3(N) which describes a continued frac-
tion algorithm. Let us interpret these nonnegative unimodular matrices as transpose of incidence
matrices of well-chosen substitutions. The incidence matrix M = (m; ;) of a substitution o is
defined as m; j = |o(j)]i, where |w|; stands for the number of occurrences of the letter 7 in w. The
fact that we take the transpose of these matrices will be explained in Section 3. Let us stress the
fact that this choice is highly non-canonical.

We come back to the Jacobi-Perron algorithm as an illustration. The iteration of the algorithm
yields a sequence of digits (B,,, Cy,)n>1, with admissibility conditions

(1) 0<B,<C,, Cp,>1, if B, =C, then B,11 #0.
Let B, C be nonnegative integers and C' be positive. We set
0 1 0
Mpc=|0 0 1
1 B C
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We consider the three-letter alphabet substitution op,c with incidence matrix Mp ¢:
opc(l)=3, opc(2) =135  opc(3)=23°.

This choice for the substitution op ¢ yields convergence for the underlying S-adic process.
Indeed, for any sequence of Jacobi-Perron digits (B,,, Cy,)n>1, with 0 < B,,, C,, and C,, > 1 for all
n, lim, 4o 0B,.C,0B,,C5---0B,,,c, (1) is easily seen to exist and to coincide with the limit of the
same sequence of iterations starting from the letter 2 or 3. We use the fact that o coop,croopr cr
has a primitive incidence matrix and that the image of any letter starts by itself (provided that
CC'C" #£0).

We thus define the Jacobi-Perron S-adic system as the set of infinite words generated in an S-
adic way based on the set of substitutions S = {op ¢ | B,C € N, C' > 1, B < C}. First, note that
this set is infinite but the Jacobi-Perron algorithm can be made easily into an additive algorithm
yielding a finite set of substitutions. Second, we have to restrict ourselves to the admissibility
conditions (1) for the applications using the arithmetic properties of Jacobi-Perron algorithm.

3. MULTIDIMENSIONAL SUBSTITUTIONS

We now want to translate these S-adic systems associated with multidimensional continued
fractions into the formalism of generalized substitutions due to [1]. Before recalling this formalism,
we first introduce the notion of a discrete approximation of a hyperplane, according to [16]. We
here approximate a hyperplane of normal vector x.

Définition 3. Let x be a strictly positive vector in R% and let h € R. The (standard) arithmetic
discrete plane Py p) is defined as

P(x,h) = {y € Zd | 0< <X7Y> +h < ||X||1}

The stepped plane B (x,n) is defined as the union of the facets of integer translates of unit cubes
whose set of integer vertices equals Px )

This definition is illustrated below.

"
‘o.'

Arithmetic discrete planes are classic objects in discrete geometry that are widely studied. We
recover Sturmian words when d = 2 by using the Freeman code which codes in the stepped line
B(x,n) horizontal steps and vertical steps by two different letters. Note that there is no multidi-
mensional continued fraction algorithm that occurs in a natural way in the study of arithmetic
discrete planes.

Our aim is to represent in an S-adic way the arithmetic discre plane Py ). We first need to be
able to define a multidimensional version of the notion of substitution.

We have two methods at our disposal. We can work by induction of the underlying Z2?-action
by translations on R/Z such as described in [2], or else, we can use the formalism of generalized
substitutions introduced in [1]. By choosing a suitable interval of induction of R/Z, both notions
are proved to coincide (see [2]).

The formalism introduced by [1] works as follows. It is defined by duality with respect to a
geometric extension of the notion of substitution to unions of segments in R¢ located at integers
points. Let (ey, ez, e3) denote the canonical basis of R3. For x € R3, let (x,1%), (x,2%), (x,3%)
stand for the following facets of integer translates of the unit hypercube:

(x,1*) = {e1+ Xez+ pes, (A, ) € [0,1[%}
(X, 2*) = {e2 + )\el + ues, ()‘7 /’L) € [07 1[2}
(x,3%) = {es+ ey + pea, (A, pu) €0, 1[2}.
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A substitution o is said unimodular if the determinant of its incidence matrix equals +1. We
define the abelianization map 1: A* — IN?, 1(w) = *(|w|y, [w|a, - - - , |w|q) where |w|; stands for the
number of occurrences of the letter ¢ in the word w.

Let o be a unimodular substitution. The map E} acts on unions of facets in a morphic way
with repect to the union and is defined on facets as

Ei(o => D M (x-UP)) K.
k€A P, o(k)=PiS

We illustrate this definition with the image by Ef(o1,2) of the upper unit cube

b’

One key property of generalized substitutions is that they map arithmetic discrete planes onto
arithmetic discrete planes [1, 8]. Indeed, let o be a unimodular substitution with incidence matrix
M. One has

(2) E{(0)Poon) = Piearxn)-
This explains why we have chosen in Section 2 to take substitutions having as incidence matrix
the transpose of the matrices produced by a multidimensional continued fraction algorithm.

Let us come back to the Jacobi-Perron algorithm. We assume h = 0 for the sake of clarity and
use the notation P(q p.c) for P(ap,¢),0)- Let (a,b,¢c) € X and let (an,bn,Cr) = T"(a, b, c) for all n.
We deduce from (2) that

ET (UB C)(P(al b1,c1) ) = P(a b,c)-
Assume now we are given the sequence of Jacobi-Perron digits (By,, Cy,)n>1. One has

Ef(oB,,c1)) © E1(0(By,c0)) - 0 BT (0(B,,.,¢0)) (Plan bn,en)) = Plabie)-

We now use the fact that the upper unit cube & = (0, 1*) 4 (0,2*) + (0,3*) belongs to every
arithmetic discrete plane with parameter h = 0. We thus deduce that

ET(U(BLCI)) e ET(U(Bn,Cn))(U) C Pab,e)-

The question is now whether the patterns Ej(o(p, cy))--- Ef(0(B,.c,))(U) generate the whole
plane P4 p ¢, that is, whether

Jim Ey(os,.00) - E1(08,.0,)U) = Plabe)
If yes, then we get an S-adic type representation of the arithmetic discrete plane P, 5, ). Note that
this question is a substitutive counterpart of the Finiteness Property in beta-numeration, which
states that every « € Z[1/8] N[0,1) has a finite J-expansion. For more details, see [4].

This question has been answered in the Jacobi-Perron case in [10]. Indeed, it has been proved
in [10] that there exists a finite set of facets V with & C V such that if there exists n such that for
all k

B3k = Crysk, Cnysk+1 — Bngsk1 > 1, Buisgro =0,
then the sequence of patterns Ef(o(p, c,)) .. Ef(0(B,,c,))(V) generates the whole plane P4 p,c).-
Otherwise, the sequence of patterns Ef(o(p, c,)) .- Ei(0(B,,c,))(U) generates the whole plane
Pla,b,c)- This result is proved thanks a tedious graph study which is not likely to be easily handled
for other multidimensional continued fraction algorithms such as Brun algorithm.

Question Assume we are given a nonnegative unimodular continued fraction algorithm 7.
Characterize the expansions of vectors x for which the associated generalized S-adic system gen-
erates the whole arithmetic discrete plane Py starting from the unit cube U.

Consider now a vector x for which the associated generalized S-adic system generates the whole
arithmetic discrete plane Py. It is natural to consider the topological porperties of the shape of
the corresponding patterns. Let us recall the following result of [7]. Let o be an invertible three-
letter substitution (by invertible, we mean that o considered as a morphism of the free group is
an automorphism). The boundary of Ef(o)(U) is given by the mirror image of the inverse of o.
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We thus can apply this result to get a description of the boudary of the generating patterns and
to deduce various topological properties such as connectedness, dislikeness etc.

Let us stress that we are not only able to substitute, i.e., to replace facets of hypercubes by
unions of facets, but also to desubstitute, i.e., to perform the converse operation, by using the
algebraic property Ej(c) = Ef(oc~!). For more details see [3] which deals with Brun algorithm.
This is used in [9], where original algorithms for both digital plane recognition and digital plane
generation problems. The discrete plane recognition problem can be stated as follows: given a set
of points in Z¢, does there exist an arithmetic discrete plane that contains it? This question is
classical and central in the field of discrete geometry for the segmentation of discrete surfaces and
for polyhedrization issues, for instance. Indeed, numerous applications can be derived in image
analysis and synthesis, volume modeling, pattern recognition, etc.

Note that we have not taken yet into account the parameter h of Definition 3 in our discussion.
By considering a skew product of the Jacobi-Perron algorithm, it is possible to define a numeration
system playing the role of Ostrowski’s numeration which allows us to define an S-adic expansion
for P(x,h)~

Let us end with a nice question issued from discrete geometry.

Question Find the smallest width w for which the plane
Pinw =1y €Z% | 0 < (Z,9) + h < w}

is connected (either edge connected or vertex connected).
The case of rational parameters has been solved in [11]. Examples of a disconnected arithmetic
discrete plane (on the left) and of a vertex connected one (on the right) are depicted below.

o, S,
S RSO

¢ ¢
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