

Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières

Rencontre organisée par : Sabine Evrard

29 novembre-3 décembre 2010

Francis Clarke

A basis for Numerical Functionals

Vol. 2, n° 2 (2010), p. 79-80.

http://acirm.cedram.org/item?id=ACIRM_2010__2_2_79_0

Centre international de rencontres mathématiques U.M.S. 822 C.N.R.S./S.M.F. Luminy (Marseille) France

cedram

Texte mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

A basis for Numerical Functionals

Francis Clarke

1. Introduction

In a recent paper [2] Buchstaber and Lazarev introduced the concept of *numerical functionals*. Their definition derives from a series of dualities, but the simplest case is the following.

Let $\mathbb{Z}\{\{T\}\}$ denote the Hurwitz ring over the integers, that is, the subring of the power series ring $\mathbb{Q}[[T]]$ consisting of series of the form

$$\sum_{n>0} \frac{c_n}{n!} T^n, \quad \text{with } c_n \in \mathbb{Z}.$$

Let $\mathbb{Q}\mathbb{Z}$ denote the rational group-ring of the integers, that is, the set of finite linear combinations $\sum_{j} \lambda_{j}[a_{j}]$, where $\lambda_{j} \in \mathbb{Q}$ and $a_{j} \in \mathbb{Z}$. There is a linear map

$$\mathbb{Q}\mathbb{Z} \to \mathbb{Q}[[T]]$$
$$[a] \mapsto e^{aT} = \sum_{n \ge 0} \frac{a^n}{n!} T^n,$$

in fact it is a \mathbb{Q} -algebra monomorphism. Buchstaber and Lazarev define the ring of numerical functionals $\underline{\text{Num}}$ as the pull-back in the diagram

$$\begin{array}{ccc} \underline{\mathrm{Num}} & \longrightarrow & \mathbb{Z}\{\!\{T\}\!\} \\ \downarrow & & \downarrow \\ \mathbb{Q}\mathbb{Z} & \longrightarrow & \mathbb{Q}[[T]] \end{array}$$

Thus Num is the intersection of $\mathbb{Z}\{\{T\}\}\$ and $\mathbb{Q}\mathbb{Z}$ within $\mathbb{Q}[[T]]$.

A simple example of a non-trivial element of Num is ([1] + [-1])/2, which maps to

$$\cosh T = \frac{e^T + e^{-T}}{2} = \sum_{k \ge 0} \frac{1}{(2k)!} T^{2k} \in \mathbb{Z} \{ \{ T \} \}.$$

<u>Num</u> is thus the ring of rational linear combinations of the e^{aT} (where $a \in \mathbb{Z}$) all of whose derivatives at the origin are integral. Since $\mathbb{Q}\mathbb{Z} \cong \mathbb{Q}[z,z^{-1}]$, where $z=[1]=e^T$, we may also think of <u>Num</u> as the ring of rational Laurent polynomials $\sum_{r\in\mathbb{Z}} \lambda_r z^r$ such that $\sum_{r\in\mathbb{Z}} \lambda_r r^n \in \mathbb{Z}$ for all $n \geq 0$. For example, in the case of $\cosh T$ this condition is that $(1^n + (-1)^n)/2 \in \mathbb{Z}$ for all $n \geq 0$.

Buchstaber and Lazarev gave (in a more general context) a set of additive generators for <u>Num</u>. In this note we show how to construct a basis.

In a later paper we will generalise Buchstaber and Lazarev's definition, and our construction of a basis.

Text presented during the meeting "Third International Meeting on Integer-Valued Polynomials" organized by Sabine Evrard. 29 novembre-3 décembre 2010, C.I.R.M. (Luminy).

Received by the editors 10th June 2011.

 $^{2000\} Mathematics\ Subject\ Classification.\ 13F25,\ 13F20.$

Key words. Numerical functionals, integral basis.

2. Construction of a basis

Lemma 2.1. For all $k \geq 0$ the series

$$f_k := \frac{(e^T - 1)^k}{k!}$$

belongs to Num

Proof. That $f_k \in \mathbb{Z}\{\{T\}\}$ follows from the result of Hurwitz [5, Satz I] that if $f \in \mathbb{Z}\{\{T\}\}$ has zero constant term, then $f^k/k! \in \mathbb{Z}\{\{T\}\}$. But this case one can be even more explicit, for it is a classical result (see, for example, [4, (7.49)]) that

$$f_k = \sum_{n>k} \frac{S(n,k)}{n!} T^n,$$

where S(n,k) is the Stirling number of the second kind.

On the other hand, it is clear that f_k belongs to $\mathbb{Q}\mathbb{Z}$, being a rational linear combination of the e^{jT} for $j=0,1,\ldots,k$.

To obtain a basis for <u>Num</u> we must introduce negative powers of e^T . We do this in a manner similar to that used in [1] (see the end of the proof of Theorem 2.2) and [3, Corollary 6].

Proposition 2.2. Let

$$g_k = e^{-\lfloor k/2 \rfloor T} f_k = \frac{e^{-\lfloor k/2 \rfloor T} (e^T - 1)^k}{k!}.$$

Then the g_k , for $k \geq 0$, form an integral basis for Num.

Proof. We see from the lemma that $g_k \in \underline{\text{Num}}$.

Suppose now that $h \in \underline{\text{Num}}$. Since g_k is a rational linear combination of the e^{jT} for $j = -\lfloor k/2 \rfloor, \ldots, \lceil k/2 \rceil$, the g_k are a rational basis for $\mathbb{Q}\mathbb{Z}$, so we can write

$$h = \sum_{k=0}^{m} \lambda_k g_k$$

for some $\lambda_k \in \mathbb{Q}$.

On the other hand, since g_k has the form $\frac{T^k}{k!}$ + higher degree terms, the g_k form an integral topological basis for $\mathbb{Z}\{\{T\}\}$. Therefore there are unique $b_k \in \mathbb{Z}$ such that

$$h = \sum_{k=0}^{\infty} b_k g_k.$$

Choosing a positive integer N such that $N\lambda_k \in \mathbb{Z}$ for $k=0,1,\ldots,m$, the uniqueness of the expansion of Nh shows that $N\lambda_k = Nb_k$ for $0 \le k \le m$, with $b_k = 0$ for k > m. Hence $\lambda_k = b_k \in \mathbb{Z}$.

References

- J. F. Adams and F. W. Clarke, Stable operations on complex K-theory, Illinois J. Math. 21 (1977), no. 4, 826–829.
- [2] Victor Buchstaber and Andrey Lazarev, *The Gelfand transform in commutative algebra*, Moscow Math. J. 5 (2005), 311–327.
- [3] Francis Clarke, M. D. Crossley, and Sarah Whitehouse, Bases for cooperations in K-theory, K-Theory 23 (2001), no. 3, 237–250.
- [4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, *Concrete mathematics*, Addison-Wesley Publishing Company Advanced Book Program, 1989. A foundation for computer science.
- [5] A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann. 51 (1899), 196–226.

Department of Mathematics, Swansea University, Swansea SA2 8PP, Wales • francis.w.clarke@gmail.com