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Computing r-removed P -orderings and
P -orderings of order h

Keith Johnson
Abstract

We develop a recursive method for computing the r-removed P -orderings and P -orderings
of order h , the characteristic sequences associated to these and limits associated to these
sequences for subsets S of a Dedekind domain D. This method is applied to compute these
objects for S = Z and S = Z\pZ.

1. Introduction

Let D be a Dedekind domain, P a prime ideal of D, K the quotient field of D and q the
cardinality of D/P . Also, for x ∈ D, let νP (x) denote the largest integer k for which x ∈ P k. If S
is a subset of D then a P -ordering of S, as introduced in [2], is a sequence {ai, i = 0, 1, 2, . . .} of
elements of S with the property that for each i ≥ 1 the element ai minimizes

∑
j<i

νP (s− aj)) over

all s ∈ S. Such orderings play a central role in the study of polynomials which are integer valued
on subsets of D ([2], [3]), giving a method of constructing a regular basis for this algebra.

In two recent papers, ([4], [5]), two variations on the idea of a P -ordering have been introduced.
For r a positive integer, an r-removed P -ordering is a sequence {ai, i = 0, 1, 2, . . .} in which the first
r+ 1 elements are chosen arbitrarily and then for i ≥ r+ 1 ai is chosen to minimize

∑
j∈A

νp(s− aj)

over all s ∈ S and over all subsets A of {a0, a1, . . . , ai−1} of cardinality i − r. Similarly for h a
positive integer a P -ordering of order h is a sequence {ai, i = 0, 1, 2, . . .} in which ai is chosen
to minimize

∑
j<i

min(νp(s − aj , h)). Just as a P -ordering gives a regular basis for the ring of

polynomials integer valued on S, an r removed P -ordering gives a regular basis for the ring of
polynomials all of whose divided differences of order less than or equal to r are integer valued on
S and a P -ordering of order h gives a regular basis for the ring of polynomials which are integer
valued of modulus Ph on S.

For any algebra of polynomials the n-th characteristic ideal is the fractional ideal consisting of
0 and the leading coefficients of polynomials in the algebra of degree less than or equal to n. The
sequence of P -adic values of these ideals is called the characteristic sequence of the algebra and
an important property of P -orderings is that the sequence of sums {

∑
j<i

νP (ai − aj)}, called the

P -sequence of S, gives the characteristic sequence for the algebra of polynomials integer valued
on S, independent of the choice of P -ordering. The corresponding result holds for r-removed
P -orderings and P -orderings of order h also.

In [9] a recursive method of constructing P -orderings was used to establish some combinatorial
results about them. The sets, S, considered in that case were finite however the construction
applies to infinite sets also and it was used in [8] to calculate certain limits associated to the
characteristic sequences of infinite sets describing the asymptotic behavior of those characteristic
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sequences. The purpose of the present paper is to show that these methods apply equally well to
r-removed P -orderings and to P -orderings of order h and to explore some of the consequences of
this.

In more detail the paper is organized as follows: section 2 contains the extensions of lemmas
3.3 and 3.5 of [9] to the cases of r-removed P -orderings and P -orderings of order h. A similar
result is also given in ( [5], 2.10) for P -orderings of order h as the key step in showing that those
algebras are finitely generated. The extension of proposition 7 of [8] is also given in that section.
In section 3 these results are applied to obtain orderings and characteristic sequences in the case
S = D = Z. The results are:

Theorem 1.1. The r-removed p-sequence of Z is, for n ≥ rp, given by

α(n) =
k∑

i=1
bn/pic − kr = νp(n!)− νp(bn/pkc!)− kr

where k = blog(n/r)/log(p)c. If n < rp its value is 0. The p-ordering of Z of order h is given by

α(n) =
h∑

i=1
bn/pic = νp(n!)− νp(bn/phc!).

In both cases the usual increasing order on Z≥0 gives a p-ordering.

In spite of the similarity of names the algebra of polynomials whose divided differences of
order ≤ r are integer valued on Z does not coincide with the algebra of polynomials whose finite
differences of order ≤ r are integer valued on Z as studied in [1], [7], and [6] unless r = 0 or
1. For higher values of r the former is a proper subalgebra [5] and in section 3 we compare the
characteristic sequences of these two algebras and give a formula for the difference between them.
This difference is bounded by νp(r!), although that can be shown directly. In section 4 we apply
the results of sections 2 and 3 to describe an algorithm for computing the r-removed p-sequences
and p-sequences of order h and their limits for Z and for homogeneous subsets of Z.

2. P -Sequences, Shuffles and Limits

We begin by establishing the analogs of Lemma 3.3 (c) of [9]:

Proposition 2.1. (a) For any c ∈ D and any subset S ⊆ D the r-removed P -sequences of S
and of S + c are equal.

(b) If α(n) is the r-removed P -sequence of S ⊆ D then the r-removed P -sequences of p · S is
given by {

α(n) + n− r if n ≥ r
0 if n < r

(c) For any c ∈ D and any subset S ⊆ D the P -sequences of order h of S and of S + c are
equal.

(d) If α(n) is the P -sequence of order h of S ⊆ D then the P -sequence of order h− 1 of p · S
is equal to α(n) + n.

Proof. Since
∑

νp(s−aj) =
∑

νp((s+ c)− (aj + c)) the map φ : S → c+S given by φ(x) = c+x

preserves the value of the sums
∑

νp(s − aj)) and so maps P -orderings, r-removed P -orderings
and P -orderings of order h bijectively from S to c+ S. Parts (a) and (c) follow.

Similarly
∑

νp(ps − paj) = m +
∑

νp(s − aj) where m is the number of terms in the sum.
Since m = n− r is constant at the n-th stage in the construction of an r-removed P -ordering, the
map φ : S → p · S given by φ(x) = px gives a bijective map between r-removed P -orderings of S
and of p · S. Part (b) follows since

∑
νp(pan − paj) = n− r +

∑
νp(an − aj).

Since min(νp(px− py), h) = 1 + min(νp(x− y), h− 1) it follows that
∑
j<n

min(νp(ps− paj), h) =

n +
∑
j<n

min(νp(s − aj), h − 1) and so that the map φ : S → p · S given by φ(x) = px gives a
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bijective map between P -orderings of order h − 1 of S and P -orderings of order h of p ·H. Part
(d) follows. �

Recall from [9] that a shuffle is a finite set of maps (φ1, . . . , φs) with φi : Z≥0 → Z≥0 strictly
increasing for each i such that the images of the φi’s are disjoint and together cover Z≥0. If
α1(n), α2(n), . . . , αs(n) are s sequences then the (φ1, . . . , φs) shuffle of these sequences is the unique
sequence α(n) for which α(n) = αi(m) if φi(m) = n. By proposition 4 of [9] if the αi’s are
nondecreasing,unbounded sequences in Z≥0 then there is a unique sequence α(n) which is the
shuffle of the αi’s and is nondecreasing.
Proposition 2.2. (a) If S is a subset of D which is not contained in a single residue class

modulo P then the r-removed P -sequence of S is the nondecreasing shuffle of the r-removed
P -sequences of the sets Sc = S∩(c+PD) where c ranges over those residue classes modulo
P for which this intersection is nonempty. The shuffle which combines these P -sequences
to give that of S will, when applied to a set of r-removed P -orderings for the sets Sc give
an r-removed P -ordering of S.

(b) If S is a subset of D which is not contained in a single residue class modulo P then the
P -sequence of order h of S is the nondecreasing shuffle of the P -sequences of order h of
the sets Sc = S ∩ (c+ PD) where c ranges over those residue classes modulo P for which
this intersection is nonempty. The shuffle which combines these P -sequences to give that
of S will, when applied to a set of P -orderings of order h for the sets Sc give a P -ordering
of order h of S.

Proof. If {ai} is an r-removed P -ordering and an ∈ Sc then∑
νp(an − aj) =

∑
aj∈Sc

νp(an − aj)

and so the subsequence of entries in the r-removed P -sequence of S which are in Sc give an r-
removed P -ordering of Sc. The entries in the r-removed P -sequence of S corresponding to ai’s
which are in Sc are equal to the entries in the r-removed P -sequence of Sc. Since this is true for
each residue class c the r-removed P -sequence of S is a shuffle of those of the Sc’s and since it
must be nondecreasing as are those of the Sc’s it must be the unique nondecreasing shuffle. The
same argument applies in the case of P -orderings of order h. �

This result allows us to apply corollary 10 of [8] to obtain a recursive formula for computing
the limits limn→∞ α(n)/n for either the r-removed P -sequence or the P -sequence of order h of a
set S.
Proposition 2.3. If α(n) is either the r-removed P -sequence or the P -sequence of order h of a
set S which is not contained in a single residue class modulo P and if αc(n) are the corresponding
sequences for the sets Sc = S∩c+PD and if L = limn→∞ α(n)/n and Lc = limn→∞ αc(n)/n then

L = (
∑

(Lc)−1)−1

where the sum is over the residue classes for which Sc is nontrivial.
In order to make use of these formulas we need to know the value of the r-removed P -sequences

and P -sequences of order h for some basic set S. We compute this in the next section.

3. Orderings and p-sequences for S = D = Z

If S = D = Z then the sets i + pZ for i = 0, 1, 2, . . . , p − 1 all have the same r-removed p-
sequence and the same p-sequence of order h by parts (a) and (c) of proposition 2.1 and so the
shuffle that combines these to make the p-sequence of Z in either case can be taken to be the one
that uniformly interleaves them, i.e. the shuffle (φ0, φ1, . . . , φp−1) with φi(m) = pm+ i. Since the
relation between the p-sequence of the set i + pZ and that of Z is given by parts (b) and (d) of
proposition 2.1 we have:
Proposition 3.1. (a) The r-removed p-sequence, α(n), of Z satisfies the recurrence

α(n) = α(bn/pc) + bn/pc − r
provided n ≥ pr. If n < pr then α(n) = 0.
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(b) The p-sequence of order h, α(n), of Z is related to the p-sequence α′(n) of order h− 1 by
α(n) = α′(bn/pc) + bn/pc

The recurrence in part (a) of this proposition can be applied repeatedly to give the following
result:

Proposition 3.2. The r-removed p-sequence, α(n), of Z is given by

α(n) =
k∑

i=1
bn/pic − kr = νp(n!)− νp(bn/pkc!)− kr

where k = blog(n/r)/log(p)c.

Proof. The formula in part (a) of the previous proposition can be applied repeatedly to give

α(n) = α(bn/pjc) +
j∑

i=1
bn/pic − jr

as long as n/pj−1 ≥ pr. If k, as in the statement of the proposition, is such that pk+1r > n ≥ pkr
then α(bn/pkc) = 0. The second part of the proposition follows from the Legendre formula for
νp(n!). �

Corollary 3.3. If α(n) is the r-removed p-sequence of Z then

lim
n→∞

α(n)
n

= 1
p− 1 .

Proof. This follows from the corresponding calculation for the p-sequence of Z since
lim

n→∞
log(n/r)/n = 0

�

Corollary 3.4. For r = 1 the r-removed p-sequence for Z is given by
α(n) = νp(n!)− blog(n)/ log(p)c.

This agrees with the formula for the p-sequence of the algebra of integer valued polynomials
whose first finite difference is also integer valued as given in [6, IX 3.2].

Proposition 3.5. For any prime p and any nonnegative integer r the usual order on Z≥0 gives
an r-removed P -ordering of Z.

Proof. First note that the sequence (0, 1, 2, . . . , rp−1) satisfies the condition for being an r-removed
p-ordering of Z since it contains r representatives of each residue class modulo p and so the p-adic
norm of the relevant products are all 0. For any i the map ψ : Z→ (i+pZ) given by ψ(x) = px+ i
will map an r-removed p-ordering of Z to one of i+ pZ and the shuffle (φ0, . . . , φp−1) will combine
r-removed p-orderings of the sets i+ pZ to give one of Z. Composing these two operations gives a
construction of the beginning portion of an r-removed p-ordering of Z of length pm+1r from one
of length pmr. Repeatedly applying this, starting with the portion of length pr given above, gives
the result. �

Definition 3.6. For n ∈ Z≥0 let µr(n) = νp(bn/pkc!) + kr where k = blog(n/r)/log(p)c.

Corollary 3.7. An integer valued polynomial
∑̀
n=0

cn

(
x

n

)
with cn ∈ Z for all n is an r-removed

integer valued polynomial if and only if νp(cn) ≥ µp(n) for all n and all primes p.

Applying the recurrence in part (b) of proposition 3.1 repeatedly gives the following formula
for the p-sequence of order h of Z:

Proposition 3.8. The p-sequence of order h of Z is given by

α(n) =
h∑

i=1
bn/pic = νp(n!)− νp(bn/phc!).
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Proof. First note that the p-sequence of order 0 is the constant 0 sequence (and any ordering of
Z can serve as a p-sequence of order 0). Proceeding by induction on h we have by proposition 3.1
part (b) that

α(n) = α′(bn/pc) + bn/pc
and by induction

α′(bn/pc) =
h−1∑
i=1
bn/pi+1c.

�

Corollary 3.9. If α(n) is the p-sequence of order h of Z then

lim
n→∞

α(n)
n

= 1− ph

ph(p− 1) .

Corollary 3.10. For any prime p and any nonnegative integer h the usual order on Z≥0 gives a
p-ordering of order h of Z.

Proof. It suffices to note that
n∑

j=1
min(νp(j), h) =

h∑
i=1
bn/pic.

�

As remarked in the introduction, the algebra of polynomials with integral valued divided dif-
ferences of order ≤ r to which r-removed P -orderings provide a basis does not, for r > 1, coincide
with the algebra of polynomials with integral valued finite differences of order ≤ r which is studied
in [1] and [7] and in chapter 9 of [6]. According to those sources the p-sequence of that algebra for
the prime p is α(n) = νp(n!)− λr(n) where

λr(n) = max{
k∑

i=1
νp(ji) : k ≤ r,

k∑
i=1

ji ≤ n, (ji ≥ 1)}

and an integer valued polynomial
∑̀
n=0

cn

(
x

n

)
has integer valued finite differences of order ≤ r if

and only if νp(cn) ≥ λr(n) for all n and all primes p.

Lemma 3.11. If n ≥ rp then there is a sequence (j1, . . . , jr) realizing the value of λr(n) in which
ji ≥ p for each i.

Proof. Suppose (j1, . . . , jr) realizes the value of λr(n) and that ji < p for some i. If for some ` it
is the case that j` ≥ p2 then replacing j` by j` − (p− ji) and ji by p alters neither the sum of the
sequence nor the sum of its p-adic values. This can be repeated for any ji’s which are less than
p. If there are no j` ≥ p2 then

∑r
i=1 νp(ji) ≤ r however the sequence (p, . . . , p) has sum rp and∑r

i=1 νp(p) = r hence must realize the value of λr(n) in this case. �

Lemma 3.12. For any r > 0 the function λr satisfies the condition

λr(pn) = λr(n) + r

for any n ≥ rp.

Proof. If (j1, . . . , jr) is a sequence of positive integers with
∑k

i=1 ji ≤ n then
∑r

i=1 pji ≤ pn and∑r
i=1 νp(pji) = r+

∑r
i=1 ji. Thus λr(pn) ≥ λr(n)+r. On the other hand if (j1, . . . , jr) is a sequence

of positive integers with
∑r

i=1 ji ≤ pn realizing the maximum value of
∑r

i=1 νp(ji) and ji ≥ p for
each i then we may assume that each ji is divisible by p since otherwise νp(ji) = 0 and replacing it
by pbji/pc which is nonzero would not increase the sum but would increase the sum of the p-adic
norms. Thus (j1/p, . . . , jk/p) is a sequence with

∑k
i=1 ji/p ≤ n and

∑k
i=1 νp(ji/p) = λr(pn) − r.

Thus λr(pn)− r ≤ λr(n). �
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Corollary 3.13. The characteristic sequence, α(n), of the algebra of polynomials whose finite
differences of order up to r are integer valued satisfies the recurrence

α(n) = α(bn/pc) + bn/pc − r

provided n ≥ rp2.

Corollary 3.14. If k = blog(n/r)/log(p)c then

µr(n)− λr(n) = µp(bn/pk−1c)− λr(bn/pk−1c)

and so the values of µr(n)− λr(n) for all n are determined by those for n < rp2.

Proof. From 3.1 and 3.13 it follows that the difference at n is equal to that at bn/pc provided
n ≥ rp2. �

To determine the difference in the range 0 ≤ n ≤ rp2 we compute λr(n) for in this range:

Lemma 3.15.

λr(n) =

 bn/pc if n ≤ rp
r + b n− rp

p(p− 1)c if rp < n < rp2

Proof. If n ≤ rp then taking

ji =
{
p if i ≤ bn/pc
0 if i > bn/pc

gives a set (j1, . . . , jr) realizing the maximal value λr(n) = bn/pc.
If rp < n ≤ rp2 then taking

ji =


p2 if i ≤ b n− rp

p(p− 1)c

p if b n− rp
p(p− 1)c < i ≤ rp2

gives a set (j1, . . . , jr) realizing the maximal value λr(n) = r + b n− rp
p(p− 1)c. �

Corollary 3.16.

µr(n)− λr(n) =


νp(bn/pc!) if n ≤ rp

νp(bn/pc!)− b n− rp
p(p− 1)c if rp < n ≤ rp2

Proof. For n ≤ rp the difference is

νp(n!)− λr(n) = νp(n!)− bn/pc = νp(bn/pc!)

while if rp < n ≤ rp2 it is

νp(n!)− (bn
p
c − r)− λr(n) = νp(n!)− b n− rp

p(p− 1)c − b
n

p
c

= νp(bn
p
c!)− b n− rp

p(p− 1)c

�

It is clear from this formula that this difference is bounded above by νp(r!) and in fact achieves
that value when n = rp2 at which point

νp(brp
2

p
c!)− brp

2 − rp
p(p− 1) c = νp(r!)

This bound may also be found by noting that the r-th derivative of a polynomial can be expressed
in terms of r! times the r-th divided difference and that the ring of polynomials whose derivatives
up to order r are integer valued is contained in the algebra of polynomials whose finite differences
up to order r are integer valued.
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4. Orderings and p-sequences of Homogeneous Subsets

Homogeneous sets S ⊆ D are sets with the property that there exists ` > 0 such that S =
S + P `D. Such sets can be expressed as unions of cosets

S = ∪i(di + P `D)
where the di’s are a collection of representatives of some of the distinct cosets modulo P `. The
p-sequence of each of the sets di + P `D can be computed using proposition 2.1 and these can be
combined to obtain the p-sequence of S by repeated use of proposition 2.2.

The set Z\pZ is equal to the union ∪p−1
i=1 (i + pZ) in which each of the components has, by

proposition 2.1(b) and proposition 3.2, the r-removed p-sequence
νp(n!)− νp(bn/pkc!)− kr + (n− r)

= (n+ νp(n!))− νp(bn/pkc!)− (k + 1)r
= νp((pn)!)− νp(bpn/pk+1c!)− (k + 1)r

where k = blog(n/r)/log(p)c. Since these are the same for all nonzero residue classes the shuffle
which combines them to give the r-removed p-sequence of S repeats each entry p−1 times, yielding
the sequence

α(n) = νp(p(bn/(p− 1)c)!)− νp((b(pbn/(p− 1)c)/pk+1c)!)− (k + 1)r
Since an r-removed p-ordering for each of the cosets i+ pZ is the set of positive elements with

the increasing order and the shuffle that combined the p-sequences can be taken to be the one that
uniformly interleaves them the increasing order on the positive elements of S gives an r-removed
p-ordering.

Similarly the p-sequence of order h of i+ pZ will, by proposition 2.1(d) and proposition 3.8, be
νp(n!)− νp(bn/ph+1c!) + n = νp((pn)!)− νp(bn/ph+1c!)

and the p-sequence of order h of S = Z\pZ will be the shuffle of (p− 1) copies of this, hence
α(n) = νp((pbn/p− 1c)!)− νp((bbn/(p− 1)c/ph+1c)!).

As in the r-removed case the usual increasing order on the positive elements of S provides a
p-ordering of order h in this case.

For m > 1 the set S = Z\pmZ has the decomposition

Z\pmZ = Z\pm−1Z ∪ ∪p−1
i=1 (i+ pmZ).

The p-sequences of the sets i + pmZ can be determined using Proposition 2.1 and so if those of
Z\pm−1Z are known by induction then those of S can be determined. This scheme will determine
any finite portion of these sequences however the shuffles involved cannot be deduced by symmetry
as in the case m = 1 so a closed form formula for these sequences is not available.

Proposition 4.1. If S is a homogeneous subset of Z with p-sequence α(n) and r-removed p-
sequence α′(n) then

lim
n→∞

α′(n)/n = lim
n→∞

α(n)/n.

Proof. It follows from Proposition 3.3 that for S = Z these limits agree and, by Proposition 2.1,
that they agree for any coset of the form S = di +P `Z. Corollary 10 of [8] gives a formula for these
limits for sets formed as unions of cosets in terms of the limits for the cosets. Since these limits
agree for such cosets they must agree for unions of these also, i.e. for all homogeneous sets. �
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